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0 Introduction

This text is divided in two parts, which both illustrate an important gap between complex
projective geometry and compact Kähler geometry. These two parts correspond to the
two lectures I delivered during the meeting “ADVANCES IN NUMBER THEORY AND
GEOMETRY” organized by the Riemann International School of Mathematics in Verbania.

The first gap is of a topological nature. Namely we will show that complex projective
manifolds are more topologically restricted than compact Kähler manifolds. One curious
aspect of the criterion used here, which is the notion of polarized Hodge structure on a
cohomology algebra, is that it can be used as well to provide new topological restrictions
on compact Kähler manifolds, which leads to the construction of extremely simple compact
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symplectic manifolds, built as complex projective bundles over complex tori, but topologi-
cally non Kähler. More precisely, the projective manifolds will have a Hodge structure on
their cohomology algebra with a rational polarization, while in the general Kähler case, the
polarization can only be taken to be real. But as we will show, even the existence of a Hodge
structure on the cohomology algebra is very restrictive, not to speak of the existence of such
a structure with a real polarization.

The second gap is of an analytic nature and concerns Hodge classes. Hodge conjecture
could be formulated in the compact Kähler context as well. However we show that some
Hodge classes on certain compact Kähler manifolds may exist while there are no non zero
Chern classes of coherent sheaves in the corresponding degree (they are the most general
Hodge classes built starting from an holomorphic object). This shows that Hodge theory, or
more precisely the theory of Hodge structures does not have the same power of information
in the general Kähler case as in the projective case. Something is missing in the former
situation which prevents to read on the Hodge structure geometric properties of the varieties.
In the last section, we will describe some of the supplementary structure the cohomology of a
complex projective manifold has (which is related to motives), which is one very fascinating
aspect of Hodge theory in the projective case, and which makes the Hodge conjecture more
meaningful in the algebro-geometric situation. Namely the Hodge filtration on cohomology
with complex coefficients can be computed using algebraic differentials, and more precisely
“algebraic de Rham cohomology” and is thus defined over the same field as the variety itself.
We will describe the incidence of this on the Hodge conjecture and the best known evidence
for the Hodge conjecture.

This text is organized as follows: section 1 introduces the tools from Hodge theory
we will be using later on. Section 2 is devoted to our work on the Kodaira problem and
further applications of the notion of polarized Hodge structures on cohomology algebras.
Finally, section 3 is devoted to a a discussion of the necessity of the projectivity condition
in the Hodge conjecture and the particular flavour of the Hodge conjecture in the algebro-
geometric context. We refer to [39] for a more extended discussion of the status of the Hodge
conjecture.

Thanks. I thank the organizers of this extremely beautiful and interesting meeting
around the work of Riemann for inviting me to give lectures there.

1 Hodge theory

1.1 The Hodge decomposition

On any complex manifold, we have the bigradation given by decomposition of C∞ complex
differential forms into forms of type (p, q). Here (1, 0)-forms are those which are C-linear
and (0, 1)-forms are the C-antilinear ones. The operator d splits as

d = ∂ + ∂,

where the operator ∂ sends forms of type (p, q) to forms of type (p + 1, q) and the operator
∂ sends forms of type (p, q) to forms of type (p, q + 1)

Define Hp,q(X) ⊂ Hp+q(X,C) as the set of cohomology classes which can be represented
by closed forms of type (p, q). This is not very meaningful topologically for general compact
complex manifolds.

Recall now that a complex manifolds is Kähler if it admits a Hermitian metric h = g−ιω,
where g = Re h is a Riemannian metric and ω is closed. For compact Kähler manifolds,
Hodge theory of harmonic forms applied to a Kähler metric gives:

Theorem 1.1 (Hodge decomposition theorem) If X is compact Kähler,

Hk(X,C) = ⊕p+q=kHp,q(X).
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A consequence of Theorem 1.1 and the definition of Hp,q(X) is known as Hodge sym-
metry:

Lemma 1.2 If X is a compact Kähler manifold, one has

Hp,q(X) = Hq,p(X),

where we use the complex conjugation acting on Hp+q(X,C) = Hp+q(X,R)⊗ C.

Indeed, the map ηp,q 7→ ηp,q clearly induces a C-antilinear isomorphism between the
space Hp,q(X) of de Rham cohomology classes of closed forms of type (p, q) and the space
Hq,p(X) of de Rham cohomology classes of closed forms of type (q, p).

An obvious but crucial observation for all the results presented in section 2 is the following
compatibility result between the Hodge decomposition and the cup-product:

Lemma 1.3 One has
Hp,q ∪Hp′,q′(X) ⊂ Hp+p′,q+q′(X).

This follows indeed from the definition of the Hq,p(X)’s and the fact that the wedge product
of a closed form of type (p, q) and a closed form of type (p′, q′) is a closed form of type
(p + p′, q + q′).

1.2 The hard Lefschetz theorem

Another very deep application of Hodge theory is the hard Lefschetz theorem, which says
the following: let X be a compact Kähler manifold of dimension n and ω ∈ H2(X,R) the
class of a Kähler form on X. Cup-product with ω gives an operator usually denoted by
L : H∗(X,R) → H∗+2(X,R).

Theorem 1.4 For any k ≤ n,

Ln−k : Hk(X,R) → H2n−k(X,R)

is an isomorphism.

So far, the theory sketched above works for general compact Kähler manifolds, and
indeed, applications of Hodge theory are the fact that there are strong topological restrictions
for a complex compact manifold to be Kähler. In section 2.6, we will describe some of
these applications, concerning restrictions on the structure of the cohomology algebra of
a compact Kähler manifold. The only difference between Kähler geometry and projective
geometry from the above point of view is the fact that in the second case we can choose the
class ω to be rational. Our main result in section 2.3 is the fact that one can extract from
this further restrictions on the structure of the cohomology algebra of a projective complex
manifold.

1.3 Hodge structures

The complex cohomology of a compact Kähler manifold carries the Hodge decomposition.
On the other hand, it is not only a complex vector space, since it has a canonical integral
structure, namely we have the change of coefficients theorem:

Hk(X,C) = Hk(X,Z)⊗ C.

In the sequel we will denote by Hk(X,Z) the integral cohomology of X modulo torsion. Thus
Hk(X,Z) is a lattice, and Hodge theory provides us with an interesting continuous invariant
attached to a Kähler complex structure on X, namely the position of the complex spaces
Hp,q with respect to the lattice Hk(X,Z). This leads to the notion of Hodge structure.
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Definition 1.5 A weight k (integral) Hodge structure is a lattice V , with a decomposition

VC = ⊕p+q=kV p,q, V q,p = V p,q,

where VC := V ⊗ C.

The Hodge structure is said to be effective, if V p,q = 0 for p < 0 or q < 0.

Remark 1.6 The Hodge decomposition on VC satisfying Hodge symmetry gives rise to an
action of C∗, seen as a real algebraic group, on VR. Namely z ∈ C∗ acts by zpzqId on V p,q.

If X is a compact Kähler manifold, each cohomology group (modulo torsion) Hk(X,Z)
carries a canonical effective Hodge structure of weight k.

Example 1.7 The simplest Hodge structures are trivial Hodge structures of even weight
2k. Namely, one defines VC = V k,k, V p,q = 0, (p, q) 6= (k, k).

Example 1.8 The next simplest Hodge structures are weight 1 (effective) Hodge struc-
tures. Such a Hodge structure is given by a lattice V (necessary of even rank 2n), and a
decomposition

VC = V 1,0 ⊕ V 0,1, V 0,1 = V 1,0.

Given V , weight 1 Hodge decompositions as above on VC are determined by the subspace
V 1,0 of VC which belongs to the dense open set of the Grassmannian Grass(n, 2n) of rank
n complex vector subspaces W of VC satisfying the property W ∩W = {0}.

If (V, VC = V 1,0 ⊕ V 1,0) is such a Hodge structure, we have VR ∩ V 1,0 = {0}, and thus
via the natural projection VC → VC/V 1,0, VR projects isomorphically to the right hand side.
As V ⊂ VR is a lattice, the projection above sends V to a lattice in the complex vector space
VC/V 1,0. It follows that the quotient

T = VC/(V 1,0 ⊕ V )

is a complex torus, the complex structure being given by the complex structure on VC/V 1,0.
Conversely, a n-dimensional complex torus T is a quotient of a complex vector space K

of rank n by a lattice V of rank 2n. The inclusion i : V ↪→ K extends by C-linearity to a
map of complex vector spaces iC : VC → K, which is surjective, as V generates K over R.
Thus, denoting V 1,0 = Ker iC, we find that T = VC/(V 1,0 ⊕ V ). As V is a lattice in the
quotient VC/V 1,0 = K, it follows that VR ∩ V 1,0 = {0}, or equivalently V 1,0 ∩ V 1,0 = {0}.

This way we have an equivalence of categories between effective Hodge structures of
weight 1 and complex tori (see next section for the notion of morphism of Hodge structures).

1.4 Hodge classes and morphisms of Hodge structures

Definition 1.9 A morphism of Hodge structures (V, V p,q), (W,W p′,q′) of respective weights
k, k + 2r is a morphism of lattices

φ : V → W,

such that the C-linear extension φC of φ sends V p,q to W p+r,q+r.

Such a morphism is said to be of bidegree (r, r), as it shifts by (r, r) the bigraduation given by
the Hodge decomposition. Natural examples of morphisms of Hodge structures are induced
by holomorphic maps f : X → Y between compact Kähler manifolds. The pull-back on
cohomology

f∗ : Hk(Y,Z) → Hk(X,Z)

is a morphism of Hodge structures of weight k, because the pull-back by f of a closed form
of type (p, q) is again a closed form of type (p, q).

We also have the Gysin map

f∗ : Hk(X,Z) → Hk+2r(Y,Z),
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where r := dimY −dimX. It is defined on integral cohomology as the composition PD−1
Y ◦

f∗ ◦ PDX , where PDX is the Poincaré duality isomorphism

PDX : H l(X,Z) ∼= H2n−l(X,Z), n = dim X

and similarly for PDY , and f∗ at the middle is the natural push-forward map induced on
homology by f . The map f∗ being the transpose with respect to Poincaré duality of f∗, one
shows easily by a duality argument that f∗ is a morphism of Hodge structures of bidegree
(r, r).

Definition 1.10 Let (V, VC = ⊕p+q=2kV p,q) be a Hodge structure of even weight 2k. Then
the set of rational Hodge classes Hdg(V ) of V is defined as the set of classes α ∈ VQ ∩V k,k,
where the intersection is taken inside VC.

If V = H2k(X,Z) where X is compact Kähler, we will use the notation Hdg2k(X) :=
Hdg(V ).

If X, Y are compact Kähler and α ∈ H l(X,Q)⊗Hk(Y,Q) ⊂ Hk+l(X×Y,Q), k+ l = 2r,
we can see by Poincaré duality α as an element of Hom (H2n−l(X,Q), Hk(Y,Q)), where
n = dimX. Then we have:

Lemma 1.11 The class α is a Hodge class on X×Y if and only if the associated morphism
is a morphism of Hodge structures (of bidegree (s, s), s = r − n).

Proof. This indeed follows from the fact that by Lemma 1.3, the Hodge structure on the
cohomology of X×Y is the tensor product of the Hodge structures on the cohomology of X
and Y , and that the Hodge decomposition is compatible with Poincaré duality in the sense
that

Hp,q(X) = (⊕(p′,q′) 6=(n−p,n−q)H
p′,q′(X))⊥ = Hn−p,n−q(X)∗.

This interpretation of Hodge classes on products is crucial for the formulation of the
standard conjectures (cf. [24] and section 3.5), which are all particular instances of the
Hodge conjecture or consequences of them.

An important fact that we will use is the following:

Lemma 1.12 If α ∈ H2k(X,Q) is a Hodge class, then the cup-product by α:

∪α : H l(X,Q) → H l+2k(X,Q)

is a morphism of Hodge structures (of bidegree (k, k)).

This follows indeed immediately from lemma 1.3.

1.5 Polarizations

A first formal consequence of the hard Lefschetz theorem 1.4 is the so-called Lefschetz
decomposition. With the same notations as before, define for k ≤ n the primitive degree k
cohomology of X by

Hk(X,R)prim := Ker (Ln−k+1 : Hk(X,R) → H2n+2−k(X,R)).

For example, if k = 1, the whole cohomology is primitive, and if k = 2, primitive co-
homology is the same as the orthogonal subspace, with respect to Poincaré duality, of
ωn−1 ∈ H2n−2(X,R).

The Lefschetz decomposition is the following (it can also be extended to k > n using the
hard Lefschetz isomorphism).

Theorem 1.13 The cohomology groups Hk(X,R) for k ≤ n decompose as

Hk(X,R) = ⊕2r≤kLrHk−2r(X,R)prim.
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1.5.1 Hodge-Riemann bilinear relations

We consider a Kähler compact manifold X with Kähler class ω. We can define an intersection
form qω on each Hk(X,R) by the formula

qω(α, β) =
∫

X

ωn−k ∪ α ∪ β.

By hard Lefschetz theorem and Poincaré duality, qω is a non-degenerate bilinear form. It is
skew-symmetric if k is odd and symmetric if k is even. Furthermore, the extension of qω to
Hk(X,C) satisfies the property that

qω(α, β) = 0, α ∈ Hp,q, β ∈ Hp′,q′ , (p′, q′) 6= (q, p).

This property is indeed an immediate consequence of lemma 1.3 and the fact that H2n(X,C) =
Hn,n(X), n = dimCX.

Another way to rephrase this is to say that the Hermitian pairing hω on Hk(X,C) defined
by

hω(α, β) = ιkqω(α, β)

has the property that the Hodge decomposition is orthogonal with respect to hω.
This property is summarized under the name of first Hodge-Riemann bilinear relations.
Coming back to qω, note also that the Lefschetz decomposition is orthogonal with respect

to qω. Indeed, if α = Lrα′, β = Lsβ′, with r < s, and α′, β′ primitive, then

Ln−kα ∪ β = Ln−k+r+sα′ ∪ β′,

with Ln−k+r+sα′ = 0 because Ln−k+2r+1α′ = 0.
The second Hodge-Riemann bilinear relations given in Theorem 1.14 below play a crucial

role, especially in the study of the period maps. Note first that, because the operator L
shifts the Hodge decomposition by (1, 1), the primitive cohomology has an induced Hodge
decomposition:

Hk(X,C)prim = ⊕p+q=kHp,q(X)prim,

with Hp,q(X)prim := Hp,q(X) ∩Hp+q(X,C)prim. We have now

Theorem 1.14 The Hermitian form hω is definite of sign (−1)
k(k−1)

2 ιp−q−k on the compo-
nent LrHp,q(X)prim, 2r + p + q = k, of Hk(X,C).

1.5.2 Rational polarizations and polarized Hodge structures

The Lefschetz decomposition is particularly useful if the Kähler class can be chosen to be
rational, or equivalently if the manifold X is projective (see section 2). Indeed, in this
case, the Lefschetz decomposition is a decomposition into rational vector subspaces, and as
each of these subspaces is stable under the Hodge decomposition, it is a decomposition into
Hodge substructures. This is very important for using Hodge theory to study moduli spaces
of projective complex manifolds (cf. [18]). Indeed, the period map, which roughly speaking
associates to a (Kähler or projective) complex structure the Hodge decomposition on the
complex cohomology groups regarded as a varying decomposition on a fixed complex vector
space, splits in the projective case into a product of period map for each primitive component
(considering deformations of the complex structure with fixed integral Kähler class). Thus
it takes values in a product of polarized period domains, which satisfy very strong curvature
properties, (at least in the so-called horizontal directions satisfying Griffiths transversality,
see [19]).

Let us formalize the notion which emerges from the Hodge-Lefschetz decomposition and
the Hodge-Riemann bilinear relations.
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Definition 1.15 A rational polarized Hodge structure of weight k is a Hodge structure
(V, V p,q) of weight k, together with a rational intersection form q on V , symmetric if k
is even, skew-symmetric if k is odd, such that the associated Hermitian bilinear form h on
VC, defined by h(v, w) = ιkq(v, w) satisfies the Hodge-Riemann bilinear relations:

1. The Hodge decomposition is orthogonal with respect to h.

2. The restriction of h to each V p,q is definite of sign εk(−1)p, εk = ±1.

This is (up to a sign) the structure we get on the primitive components of the cohomology
of a compact Kähler manifold endowed with a rational Kähler class.

Example 1.16 We have seen that a weight 1 integral Hodge structure is the same thing
as a complex torus. In this correspondence, a weight 1 integral polarized Hodge structure
is the same thing as a projective complex torus (an abelian variety) with a given integral
Kähler cohomology class. Indeed, let (V, VC = V 1,0 ⊕ V 1,0) be a weight 1 Hodge structure
and q :

∧2
V → Z be a polarization. Then, recalling that the corresponding complex torus

T is given by
T = VC/(V 1,0 ⊕ V ),

we find that
∧2

V ∗ ∼= ∧2
H1(T,Z) = H2(T,Z), and thus q can be seen as an integral

cohomology class on T . Furthermore, q is represented in de Rham cohomology by the R-
linear extension qR of q to VR, which is a 2-form on T , and VR is isomorphic to V 0,1 by the
projection, which gives the complex structure on the real tangent space VR of T . Now one
verifies ([41], I, 7.2.2) that the first Hodge-Riemann bilinear relation says that qR is of type
(1, 1) and the second Hodge-Riemann bilinear relations say that qR is a positive real (1, 1)
form, that is a Kähler form. Thus q is an integral Kähler class on T and T is projective
by the Kodaira criterion (Theorem 2.1), or directly by Riemann’s theory of Theta functions
(cf. [28]).

2 The Kodaira problem

2.1 The Kodaira criterion

The Kodaira criterion [25] characterizes projective complex manifolds inside the class of
compact Kähler manifolds.

Theorem 2.1 (Kodaira’s embedding theorem) A compact complex manifold X is projective
if and only if X admits a Kähler class ω which is rational, that is belongs to H2(X,Q) ⊂
H2(X,R).

The “only if” is easy. It comes from the fact that if X is projective, one gets a Kähler form
on X by restricting the Fubini-Study Kähler form on some projective space PN in which
X is imbedded as a complex submanifold. But the Fubini-Study Kähler form has integral
cohomology class, as its class is the first Chern class of the holomorphic line bundle OPN (1)
on PN .

The converse is a beautiful application of the Kodaira vanishing theorem for line bundles
endowed with metrics of positive associated Chern forms.

Definition 2.2 A polarization on a projective manifold X is the datum of a rational Kähler
cohomology class.

As explained in the previous section, a polarization on X induces an operator L of cup-
product with the given Kähler class, a Lefschetz decomposition on each cohomology group
Hk(X,Q), and a polarization on each component LrHk−2r(X,Q)prim of the Lefschetz de-
composition.
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2.2 Kodaira’s theorem on surfaces

Kodaira’s embedding theorem 2.1 can also be used to show that certain compact Kähler
manifolds X become projective after a small deformations of their complex structure. The
point is that the Kähler classes belong to H1,1(X)R, the set of degree 2 cohomology classes
which can be represented by a real closed (1, 1)-form. They even form an open cone, the
Kähler cone, in this real vector subspace of H2(X,R). This subspace deforms differentiably
with the complex structure, and by Kodaira’s criterion we are reduced to see whether one
can arrange that after a small deformation of the complex structure on X, the deformed
Kähler cone contains a rational cohomology class.

Example 2.3 Complex tori admit arbitrarily small deformations which are projective.

Let us state the beautiful theorem of Kodaira which was at the origin of the work [36].

Theorem 2.4 [26] Let S be a compact Kähler surface. Then there is an arbitrarily small
deformation of S which is projective.

Kodaira proved this theorem using his classification of surfaces. Buchdahl [6], [7] gives a
proof of Kodaira theorem which does not use the classification. His proof is infinitesimal
and shows for example that a rigid compact Kähler surface is projective.

2.3 Various forms of the Kodaira problem

Kodaira’s theorem 2.4 immediately leads to formulate a number of questions in higher
dimensions:

Question 1:(The Kodaira problem) Does any compact Kähler manifold admit an arbi-
trarily small deformation which is projective?

In order to disprove this, it suffices to find rigid Kähler manifolds which are not projective.
However, the paper [13] shows that it is not so easy: if a complex torus T carries three
holomorphic line bundles L1, L2, L3 such that the deformations of T preserving the Li are
trivial, then T is projective. The relation with the previous problem is the fact that from
(T, L1, L2, L3), one can construct a compact Kähler manifold whose deformations identify
to the deformations of the 4-uple (T,L1, L2, L3).

A weaker question concerns global deformations.

Question 2: (The global Kodaira problem) Does any compact Kähler manifold X admit
a deformation which is projective?

Here we consider any deformation parameterized by a connected analytic space B, that
is any smooth proper map π : X → B between connected analytic spaces, with X0 = X
for some 0 ∈ B. Then any fiber Xt will be said to be a deformation of X0. In that case,
even the existence of rigid Kähler manifolds which are not projective would not suffice to
provide a negative answer, as there exist complex manifolds which are locally rigid but not
globally (consider for example the case of P1 × P1 which is rigid but deforms to a different
Hirzebruch surface). This means that we may have a family of smooth compact complex
manifolds π : X → B whose all fibers Xt for t 6= 0 are isomorphic but are not isomorphic to
the central fiber X0.

Note that if X is a deformation of Y , then X and Y are diffeomorphic, because the base
B is path connected, and the family of deformations can be trivialized in the C∞-category
over any path in B.
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In particular, X and Y should be homeomorphic, hence have the same homotopy type,
hence also the same cohomology ring. Thus Question 2 can be weakened as follows :

Question 3: (The topological Kodaira problem) Is any compact Kähler manifold X
diffeomorphic or homeomorphic to a projective complex manifold?

Does any compact Kähler manifold X have the homotopy type of a projective complex
manifold?

The following theorem answers negatively the questions above.

Theorem 2.5 [36] There exist, in any dimension ≥ 4, examples of compact Kähler mani-
folds which do not have the integral cohomology ring of a projective complex manifold.

Our first proof used integral coefficients and worked only in the non simply connected case.
Deligne provided then us with lemma 2.12 due to Deligne, which allowed him to extend the
result to cohomology with rational coefficients, and even, after modification of our original
example, complex coefficients, [36]). Using his Lemma, we also produce in [36] simply
connected examples satisfying the above conclusion.

The examples built in [36] were built by blowing-up in an adequate way compact Kähler
manifolds which had themselves the property of deforming to projective ones, namely self-
products of complex tori, or self-products of Kummer varieties. This left open the possibility
suggested by by Buchdahl, Campana and Yau, that under bimeromorphic transformations,
the topological obstructions we obtained above for a Kähler manifold to admit a projective
complex structure would disappear.

Question 4: (The birational Kodaira problem) Is any compact Kähler manifold X
bimeromorphic to a smooth compact complex manifold which deforms to a projective complex
manifold?

However we proved in [37] the following result.

Theorem 2.6 In dimensions ≥ 10, there exist compact Kähler manifolds, no smooth bimero-
morphic model of which has the rational cohomology algebra of a projective complex manifold.

Note however that the compact Kähler manifolds constructed there do not have non-
negative Kodaira dimension, as they are bimeromorphic to P1×P1-bundles on a product of
Kummer manifolds. Thus the following remains open:

Conjecture 2.7 (Campana 04, Tsunoda 86) Any compact Kähler manifold X of nonneg-
ative Kodaira dimension is bimeromorphic to a smooth compact complex manifold which
deforms to a projective complex manifold.

We will give the main example and the detail of the argument of Theorem 2.5 in the
next sections. Let us say that the topological obstruction that we exhibit comes from
the notion of polarized Hodge structure on a cohomology algebra, where the polarization
here is rational. The key point is the elementary lemma 1.3 which says that the Hodge
decomposition on the cohomology groups of a compact Kähler manifold is compatible with
the ring structure: If the ring structure is rich enough, this may force the Hodge structures to
admit endomorphisms of Hodge structures. But certain endomorphisms of Hodge structures
prevent the existence of a rational polarization.

2.4 Construction of examples

The simplest example of a compact Kähler manifold which cannot admit a projective com-
plex structure for topological reasons is based on the existence of endomorphisms of complex
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tori which prevent the complex tori in question to be algebraic. Let Γ be a rank 2n lattice,
and let φ be an endomorphism of Γ. Assume that the eigenvalues of φ are all distinct and
none is real. Choosing n of these eigenvalues λ1, . . . , λn, so that no two of them are complex
conjugate, one can then define

Γ1,0 := eigenspace associated to the λ′is ⊂ ΓC.

Clearly ΓC = Γ1,0 ⊕ Γ1,0, so that we get a complex torus

T = ΓC/(Γ1,0 ⊕ Γ).

The extended endomorphism φC of ΓC preserves both Γ1,0 and Γ, and thus descends to an
endomorphism φT of T . We have then the following :

Proposition 2.8 [36] If n ≥ 2 and the Galois group of the field Q(λ1, . . . , λn, λ1, . . . , λn),
(that is the splitting field of Q(φ),) acts as the full symmetric group S2n on the eigenvalues
of φ, then T has Hdg2(T ) = 0 and thus T is not projective.

Remark 2.9 In fact it would suffice here to know that the Galois group acts bitransitively
on the eigenvalues. However, for the purpose of [37], which needs also the absence of Hodge
classes of higher degree on T × T̂ , except for the obvious ones, this stronger condition on
the Galois group is needed.

Proof of proposition 2.8. Indeed, one looks at the action φ∗T of φT on H2(T,Q) =
∧2 Γ∗Q.

φ∗T identifies to ∧2 tφ. The assumption on the Galois group then shows that this action is
irreducible. On the other hand, this action preserves the subspace Hdg2(T ), which must
then be either {0} or the whole of H2(T,Q). As n ≥ 2, we have H1,1(T ) 6= H2(T,C) and
thus Hdg2(T ) = {0}.

Our first example was the following. Let (T, φT ) be as before, satisfying the assumptions
of Proposition 2.8. Inside T × T we have the four subtori

T1 = T × 0, T2 = 0× T, T3 = Diag, T4 = Graph(φT ),

which are all isomorphic to T .
These tori meet pairwise transversally in finitely many points x1, . . . , xN . Blowing-up

these points, the proper transforms T̃i are smooth and do not meet anymore. We can thus
blow-up them all to get a compact Kähler manifold X. This is our example.

Theorem 2.10 X does not have the cohomology ring of a projective complex manifold. In
other words, if Y is a compact Kähler manifold such that there exists an isomorphism

γ : H∗(Y,Z) ∼= H∗(X,Z)

of graded rings, then Y is not projective.

We shall explain later on a simple proof of that. With the help of Lemma 2.12, to
be explained later on, Deligne improved the result above, replacing integral coefficients by
rational ones. Deligne also modified our example X in such a way that in the statement
above, rational cohomology can be replaced with complex cohomology (cf [36], section 3.1).

2.4.1 Proof of theorem 2.10

We want to sketch here the proof of Theorem 2.10. Thus let X be constructed as in section
2.4, and Y be compact Kähler with an isomorphism γ : H∗(Y,Z) ∼= H∗(X,Z) of cohomology
rings. Our goal is to show that the Hodge structure on H1(Y,Z) cannot be polarized, thus
proving that Y is not projective.

The cohomology group H2(X,Z) contains the classes ei of the exceptional divisors Ei

over the T̃i. We claim the following:
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Lemma 2.11 The classes ai := γ−1(ei) are Hodge classes on Y .

Assuming this, it follows that the morphisms of Hodge structures

∪ai : H1(Y,Z) → H3(Y,Z)

have for kernels Hodge substructures Li of H1(Y,Z). Of course Li = γ−1(Ker ∪ ei).
Recall now that X is obtained from T × T by blow-ups. Thus H1(X,Z) = H1(T,Z) ⊕

H1(T,Z). Furthermore, an easy computation involving the cohomology ring of a blow-up
(cf [41], I, 7.3.3) shows that Ker ∪ ei, i = 1, . . . , 4, are equal respectively to

pr∗2H1(T,Z), pr∗1H1(T,Z), ∆−, Graph(φ∗T )−,

where
∆− := {(α,−α), α ∈ H1(T,Z)},

Graph(φ∗T )− = {(φ∗T α,−α), α ∈ H1(T,Z)}.
But it follows that the 4 Hodge substructures Li of H1(Y,Z) satisfy

L1 ⊕ L2 = H1(Y,Z)

as Hodge structures, and furthermore

L3 ⊂ L1 ⊕ L2, resp. L4 ⊂ L1 ⊕ L2

can be seen as the graphs of an isomorphism (resp. a homomorphism) of Hodge structures
between L1 and L2. Thus using the isomorphism given by L3, we can set L1 = L2 =: L,
and the homomorphism given by L4 gives an endomorphism ψ of L. It is immediate to see
that ψ identifies to φ∗T .

Thus we proved that the Hodge structure on H1(Y,Z) is a direct sum L ⊕ L of two
copies of a certain weight 1 Hodge structure L carrying an automorphism wich is conjugate
to φ∗T = tφ. By proposition 2.8 and Example 1.16, L is not polarizable, and neither is the
Hodge structure on H1(Y,Z) .

It remains to prove lemma 2.11. We will be brief here, as the use of Deligne’s lemma
2.12 gives a much better approach to this statement, working for the rational cohomology
algebra as well. The point is that looking at the isomorphism γ, we can conclude that the
Albanese map aY of Y must be birational to its image, as it is the case for X. Indeed this
property can be seen on the cohomology ring of a m-dimensional Kähler compact manifold,
because it is equivalent to the fact that the natural map given by cup-product:

2m∧
H1(Y,Z) → H2m(Y,Z)

is an isomorphism.
Having this, one checks that the γ−1(ei) must be in the kernel of the Gysin map

(aY )∗ : H2(Y,Z) → H2(Alb(Y ),Z),

(because this kernel can be described using only the cohomology ring of Y , which is iso-
morphic to that of X). As aY is birational, this kernel is generated by the classes of the
exceptional divisors of aY , hence consists of Hodge classes.

11



2.4.2 Deligne’s lemma and applications

As we have seen in the previous proof, the key point was to show that under the assumptions
of Theorem 2.10, certain classes in H2(Y,Z) must be Hodge classes, and then use them to
show the existence of automorphisms of Hodge structures which prevent the existence of a
polarization on the Hodge structure of H1(Y,Z).

The following provides an alternative proof for Lemma 2.11, namely the fact that the
classes γ−1(ei) must be Hodge classes, even if γ is only an isomorphism of rational co-
homology rings, which leads to the proof (due to Deligne) of theorem 2.10 with rational
coefficients.

Let A∗ = ⊕Ak be a graded Q-algebra, and assume that each Ak carries a weight k Hodge
structure, compatible with the product. (Recall that this means that the product map

Ak ⊗Al → Ak+l (2.1)

is a morphism of weight k + l Hodge structures.)

Lemma 2.12 (Deligne) Let Z ⊂ Ak
C be a closed algebraic subset defined by homogeneous

equations expressed only in terms of the product map on A∗, and let Z ′ ⊂ Z be an irreducible
component of Z. Assume the vector space < Z ′ > generated by Z ′ is defined over Q, that is

< Z ′ >= B ⊗ C,

for some Q-vector subspace B of Ak. Then B is a rational Hodge substructure of Ak.

Here, by “defined by homogeneous equations expressed only in terms of the product map
on A∗”, we mean eg the following kind of algebraic subsets:

1. Z = {α ∈ Ak
C, αl = 0 in Akl}, where l is a fixed integer.

2. Z = {α ∈ Ak
C, rk (α· : Al → Ak+l) ≤ m} where l, m are fixed integers.

Proof of lemma 2.12. Indeed, as B is rational, to say that it is a Hodge substructure of
Ak is equivalent to say that BC is stable under the Hodge decomposition, or equivalently,
that BC =< Z ′ > is stable under the action of (the real algebraic group) C∗ (see remark
1.6) defining the Hodge decomposition.

But this is immediate because the compatibility of the Hodge structures with the product
is equivalent to the fact that the product map (2.1) is equivariant with respect to the C∗-
actions on both sides. Hence Z, and also Z ′, are stable under the C∗-action, and thus, so is
< Z ′ >.

A first application of this is the following proof of Lemma 2.11. (In fact we will prove a
slightly weaker statement, but which is enough for our purpose.) First of all, consider the
subset P ⊂ H2(X,Q) generated by classes of exceptional divisors over T × T . This set P is
characterized intrinsically by the rational cohomology algebra of X, as being the subspace
annihilating (under cup-product) the image of

∧4n−2
H1(X,Q) in H4n−2(X,Q).

Inside P , there is the subspace P ′ generated by the classes of the total transforms of ex-
ceptional divisors over points. This P ′ has the property that for any a ∈ P ′, the cup-product
map a∪ : H1(X,Q) → H3(X,Q) vanishes, and in fact P ′ is the subspace characterized by
this property. Thus by Deligne’s lemma, we find that both γ−1(P ′) and γ−1(P ) are Hodge
substructures of H2(Y,Q).

Finally, we look at the natural map induced by cup-product on Y :

µ : γ−1(P )/γ−1(P ′) → Hom (H1(Y,Q), H3(Y,Q)).

Looking at the structure of the cohomology ring of X, we find that the set of elements p of
(γ−1(P )/γ−1(P ′)) ⊗ C for which µ(p) : H1(Y,Q) → H3(Y,Q) is not injective is the union
of the four lines generated by ai = γ−1(ei) (or more precisely their projections modulo P ′).
Hence Deligne’s lemma shows that the projection of each ai in γ−1(P )/γ−1(P ′) is a Hodge
class. The rest of the proof then goes as before, because we conclude that the µ(ai) are
morphisms of Hodge structures, which is the only thing we need to conclude the proof as
before.
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2.5 (Polarized) Hodge structures on cohomology algebras

Here a cohomology algebra A∗ is the rational cohomology algebra of an orientable compact
manifold. However, everything is true for any graded commutative finite dimensional Q-
algebra whose top degree term Ad has rank 1 and satisfying Poincaré duality which says
that the pairings Ak ×Ad−k → Ad, given by the product, are perfect.

Definition 2.13 A Hodge structure on A∗ is a Hodge structure of weight k on each Ak (i.e.
a Hodge decomp. on Ak

C, satisfying Hodge symmetry), such that:

Ap,q
C ∪Ap′,q′

C ⊂ Ap+p′,q+q′

C .

Remark 2.14 If there is a Hodge structure on A∗, the top degree d of A∗ must be even,
d = 2n. Indeed, there is a weight d Hodge structure on Ad, which has rank 1.

Definition 2.15 Such a Hodge structure admits a real polarization if some α ∈ A1,1
R satisfies

the hard Lefschetz property and the Hodge-Riemann bilinear relations. The polarization is
said to be rational if α can be chosen in A2

Q ∩A1,1.

This makes sense abstractly: the hard Lefschetz property implies the Lefschetz decomposi-
tion. This is a decomposition into real Hodge substructures, thus giving a Hodge-Lefschetz
decomposition. The class αn trivializes A2n, which gives a Poincaré duality on A∗, and
allows to construct the intersection pairings qα as in section 1.5.1. One can summarize the
topological obstruction for our X to be projective as follows:

Theorem 2.16 The compact Kähler manifolds constructed in the previous sections have
the property that their cohomology algebra does not admit a Hodge structure with rational
polarization.

Remark 2.17 As they are Kähler compact, their cohomology algebra admits a Hodge
structure with real polarization.

2.6 Further applications: topological restrictions on compact Kähler
manifolds

There is a close geometric relation between symplectic geometry and Kähler geometry. If
X is compact Kähler, forgetting the complex structure on X and keeping a Kähler form
provides a pair (X, ω) which is a symplectic manifold. In the other direction, given a
symplectic manifold (X, ω), the set of compatible almost complex structures J, J2 = −Id
on TX , i. e. satisfying the conditions

ω(Ju, Jv), u, v ∈ TX,x, ω(u, Ju) > 0, 0 6= u ∈ TX,x

is connected and non-empty by Gromov [21].
On the other hand, numerous topological restrictions are satisfied by compact Kähler

manifolds, and not by general symplectic manifolds (cf [32]). For example, very strong
restrictions on fundamental groups of compact Kähler manifolds have been found (see [1])
while Gompf proves in [16] that fundamental groups of compact symplectic manifolds are
unrestricted.

Hodge theory provides two classical restrictions which come directly from what we dis-
cussed in section 1.

1. The odd degree Betti numbers b2i+1(X) are even for X compact Kähler. This follows
either from the Hodge decomposition combined with Hodge symmetry or from the
hard Lefschetz property.
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2. The hard Lefschetz property

[ω]n−k∪ : Hk(X,R) ∼= H2n−k(X,R), 2n = dimRX

is satisfied.

Another topological restriction on compact Kähler manifolds is the so-called formality prop-
erty [10]. A number of methods to produce examples of symplectic topologically non Kähler
manifolds were found by Thurston [31], McDuff [27], Gompf [16]. On these examples, one
of the properties above was not satified.

We exhibit below numerous other topological restrictions, coming from the notion of
Hodge structure on a cohomology algebra. That is we want to exploit the following criterion.

Criterion 2.18 The cohomology algebra H∗(X,Q) of a Kähler manifold admits a Hodge
structure (with real polarization).

The difficulty one meets here is the fact that none of the data used to define the (po-
larized) Hodge structure, namely the Hodge numbers hp,q := dim Hp,q or the class (set of
classes) used for the polarization, are topological invariants.

Thus we have to analyse abstractly the constraints without knowing the hp,q-numbers
or the set of polarization classes. Let us give the simplest example of how one can use this
criterion. The proof, which is purely algebraic, is based on Deligne’s lemma 2.12.

We start with an orientable compact manifold X and consider a complex vector bundle
E on X. We denote by p : P(E) → X the corresponding projective bundle. We make the
following assumptions on (X,E) :

H∗(X) generated in degree ≤ 2 and c1(E) = 0.

By Leray-Hirsch theorem, one has an injection (of algebras) p∗ : H∗(X,Q) ↪→ H∗(P(E),Q).

Theorem 2.19 [40] If H∗(P(E),Q) admits a Hodge structure, then each Hk(X,C) ⊂
Hk(P(E),C) has an induced Hodge decomposition (and thus H∗(X,Q) also admits a Hodge
structure).

Furthermore each ci(E) ∈ H2i(X,Q), i ≥ 2, is of type (i, i) for this Hodge structure on
H2i(X,Q).

This allows the construction of symplectic manifolds with abelian fundamental group sat-
isfying formality (cf [10]) and the hard Lefschetz property, but not having the cohomology
algebra of a compact Kähler manifold. These manifolds are produced as complex projective
bundles over simply connected compact Kähler manifolds (eg complex tori), which easily
implies that all the properties above are satisfied. We start with a compact Kähler X having
a given class α ∈ H4(X,Q) such that for any compatible Hodge decomposition on H∗(X),
α is not of type (2, 2). Then if E is any complex vector bundle on X satisfying c1(E) = 0,
c2(E) = α, P(E) is topologically non Kähler by theorem 2.19, using the criterion 2.18.

The simplest example of such a pair (X, α) is obtained by choosing for X a complex
torus of dimension at least 4 and for α a class satisfying the property that the cup-product
map α∪ : H1(X,Q) → H5(X,Q) has odd rank. Indeed, if α was Hodge for some Hodge
structure on the cohomology algebra of X, this morphism would be a morphism of Hodge
structure, hence its kernel would be a Hodge substructure of H1(X,Q), hence of even rank.

3 Hodge classes on projective and Kähler manifolds

This second lecture is devoted to describing the failure of any possible extension of the Hodge
conjecture to the Kähler context, and to a discussion of the supplementary structures the
cohomology with complex coefficients of a complex projective manifold has; these extra data
are deduced from the fact that their cohomology can then be computed algebraically.
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3.1 Betti cycle class and the Hodge conjecture

The simplest way of defining the Hodge class [Z] ∈ Hdg2k(X) of a codimension k closed

algebraic subset Z
j

↪→ X of a complex projective manifold, (resp. closed analytic subset of
a compact Kähler manifold), is to introduce a desingularization j̃ : Z̃ → X of Z, and to
consider the functional α 7→ ∫

Z̃
j̃∗α defined on H2n−2k(X,Q), n = dimX.

One then observes that this functional vanishes for type reasons on⊕(p′,q′) 6=(n−k,n−k)H
p′,q′(X).

By Poincaré duality, it thus provides a class [Z] ∈ H2k(X,Q) which is in Hk,k(X), that is
a Hodge class.

The Hodge conjecture states the following:

Conjecture 3.1 Assume X is projective. Then any Hodge class can be written as a com-
bination with rational coefficients of classes [Z] constructed above.

3.2 Chern classes and Hodge classes

In this section, we want to discuss the possibility of enlarging the Hodge conjecture to the
Kähler context. In this more general situation cycle classes do not provide in this case
enough Hodge classes to generate Hodge classes. The simplest example is provided by
a complex torus T admitting a holomorphic line bundle L of indefinite curvature. This
means that a de Rham representative of c1(L) is given by a real (1, 1)-form with constant
coefficients on T , such that the corresponding Hermitian form is indefinite. If the torus
T satisfying this condition is chosen general enough, its space Hdg2(T ) will be generated
by c1(L), as one shows by a deformation argument. It follows that T will not contain any
analytic hypersurface, hence no non zero degree 2 Hodge class can be constructed as the
Hodge class of a codimension 1 closed analytic subset. Thus we are in a situation where a
Hodge classe can be constructed as the first Chern class of a holomorphic line bundle, but
not as a combination with rational coefficients of classes of closed analytic subsets.

- Chern classes of holomorphic vector bundles. If E is a complex vector bundle
on a topological manifold X, we have the rational Chern classes ci(E) ∈ H2i(X,Q). (Note
that the Chern classes are usually defined as integral cohomology classes, ci ∈ H2i(X,Z),
but in this text, the notation ci will be used for the rational ones.)

These Chern classes of E can be defined in an axiomatic way, starting from the construc-
tion of c1(L) for any complex line bundle (see [15], [22]). Here c1(L) can be defined by the
exponential exact sequence, which provides

H1(X, C∗0 ) → H2(X,Z),

where C∗0 is the sheaf of invertible complex functions on X. It can be also defined as the
Euler class of the corresponding oriented real vector bundle of rank 2. One then uses the
following decomposition formula for the cohomology of the projective bundle p : P(E) → X
(cf. [41], 7.3.3):

H∗(P(E),Q) ∼= ⊕0≤i≤r−1h
ip∗H∗−2i(X,Q), (3.2)

where h := c1(H), and H is the dual of the Hopf (or tautological) sub-line bundle on P(E).
This provides a relation in H∗(P(E),Q), uniquely determining the ci(E) ∈ H2i(X,Q):

∑

0≤i≤r

(−1)ihicr−i(E) = 0.

If E is now a holomorphic vector bundle on a complex manifold X, the Chern classes of
E are Hodge classes. This follows from the fact that the classes c1(L) are Hodge classes, for
any holomorphic line bundle on a complex manifold, so in particular c1(H) is a Hodge class
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on P(E), and from the fact that the isomorphism given in (3.2) is an isomorphism of Hodge
structures.

One can alternatively use Chern-Weil theory which provides explicit de Rham represen-
tatives for the Chern classes, using a complex connection on E.

- Chern classes of coherent sheaves. Coherent sheaves F on a complex manifold X
are sheaves of OX -modules which are locally presented as quotients

Or
X

φ→ Os
X → F → 0,

where φ is a matrix of holomorphic functions.
If X is a smooth projective complex manifold of dimension n, it is known (cf [29], [5])

that coherent sheaves on X admit finite locally free resolutions

0 → Fn → . . . → F0 → F → 0,

where the Fi are locally free. Identifying locally free coherent sheaves with holomorphic
vector bundles, we can thus define the Chern classes of F by the Whitney formula :

c(F) := Πlc(Fl)εl . (3.3)

In this formula, εl := (−1)l, the total Chern class c(F) is given by the formula

c(F) = 1 + c1(F) + . . . + cn(F),

and the series can be inverted because the cohomology ring is nilpotent in degree > 0 (see
[15]). The Whitney formula and the case of holomorphic vector bundles imply that the right
hand side of (3.3) is independent of the choice of locally free resolution and that the Chern
classes ci(F) so defined are Hodge classes.

On a general compact Kähler manifold, such a finite locally free resolution does not exist
in general (cf [35]). In order to define the ci(F), one can however use a finite locally free
resolution as above of the sheaf F⊗OX

HX by sheaves of locally free HX -modules, where HX

is the sheaf of real analytic complex functions. One can then define the Chern classes of F
by a Whitney formula as in (3.3) and some further work is needed to prove that these classes
are Hodge classes. An alternative construction avoiding the use of real analytic resolutions
can be found in [20].

The construction of rational Hodge classes as rational combinations of Chern classes of
coherent sheaves is more general than the two previously given constructions. Namely, it is
obvious that it generalizes Chern classes of holomorphic vector bundles, as a coherent sheaf
is a more general object than a holomorphic vector bundle, but it is also true that it also
generalizes the construction of classes of analytic subsets, for the following reason:

If Z ⊂ X is a closed analytic subset of codimension k, then its ideal sheaf IZ is a coherent
sheaf, and one has:

ck(IZ) = (−1)k(k − 1)![Z]. (3.4)

In the projective case, it is known that the three constructions generate over Q the same
space of Hodge classes (cf. [29] and [5]). It was already mentioned that in the general
Kähler case, Chern classes of holomorphic vector bundles or coherent sheaves may provide
more Hodge classes than cycle classes. The fact that Chern classes of coherent sheaves allow
to construct strictly more Hodge classes than Chern classes of holomorphic vector bundles
was proved in [35]. This is something which cannot be detected in degree 2, as in degree 2,
Chern classes of holomorphic line bundles generate all integral Hodge classes, a fact which
is known as the Lefschetz theorem on (1, 1)-classes.

If we want to extend the Hodge conjecture to the Kähler case, we therefore are led to
consider the following question:
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Question 3.2 Are Hodge classes on compact Kähler manifolds generated over Q by Chern
classes of coherent sheaves?

The answer to this question is negative, as we proved in [35]. The next subsection will
be devoted to describing the counterexample.

3.3 Weil tori and Weil classes

The Hodge classes described below have been constructed by Weil in the case of algebraic
tori, as a potential counterexample to the Hodge conjecture for algebraic varieties. In the
case of a general complex torus, the construction is still simpler. These complex tori have
been also considered in [42] by Zucker. In the application, it will suffice to consider 4-
dimensional Weil tori, but the general construction is not more complicated. We will show
that they provide a counterexample to Question 3.2.

Recall from Example 1.8 that there is an equivalence of categories between complex tori
and weight 1 Hodge structures. In particular, a complex torus admitting an endomorphism
I such that I2 = −Id is the same as a weight 1 Hodge structure Γ, ΓC = W ⊕W , endowed
with a endomorphism I of the lattice Γ, such that I2 = −Id and I leaves W stable.

We thus start with a Z[I]-action on Γ := Z4n, where I2 = −Id, which makes ΓQ := Γ⊗Q
into a K-vector space, where K is the quadratic field Q[I].

Let ΓC = Γ⊗C = C2n
ι ⊕C2n

−ι be the associated decomposition into eigenspaces for I. A
2n dimensional complex subspace W of ΓC which is stable under I has to be the direct sum

W = Wι ⊕W−ι

of its intersections with C2n
ι and C2n

−ι. It has furthermore to satisfy the condition that

W ∩ ΓR = {0} (3.5)

which is equivalent to the fact that W and W are complementary subspaces.
Given W , the complex torus X is given by the formula : X = ΓC/(W ⊕ Γ).
We will choose W so that the following (crucial) condition holds:

dimWι = dimW−ι = n. (3.6)

Hence X is determined in this case by the choice of the n-dimensional subspaces

Wι ⊂ C2n
ι , W−ι ⊂ C2n

−ι,

which have to be general enough so that condition (3.5) is satisfied.
We have isomorphisms

H2n(X,Q) ∼= H2n(X,Q) ∼=
2n∧

ΓQ. (3.7)

Consider the subspace

2n∧

K

ΓQ ⊂
2n∧

ΓQ. (3.8)

To better understand how this subspace is defined, let us (for ease of notation) identify
K = Q[I] with Q[ι]. Then as ΓQ is a K-vector space, there is a splitting

ΓQ ⊗K = ΓK,ι ⊕ ΓK,−ι

into eigenspaces for the I-action. Then we have the following maps of Q-vector spaces whose
composition gives our desired inclusion:
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2n∧

K

ΓQ ∼=
2n∧

K

ΓK,ι →
2n∧

K

ΓK
∼=

2n∧
ΓQ ⊗K

Tr→
2n∧

ΓQ. (3.9)

Since ΓQ is a 2n-dimensional K-vector space,
∧2n

K ΓQ is a one dimensional K-vector
space, and its image under this inclusion is thus a 2 dimensional Q-vector space. The claim
is that, under the assumption (3.6),

∧2n
K ΓQ is made of Hodge classes, that is, is contained

in the subspace Hn,n(X) of the Hodge decomposition. Notice that under the isomorphisms
(3.7), tensored by C, Hn,n(X) identifies with the image of

∧n
W ⊗∧n

W in
∧2n ΓC.

The claim follows immediately from the description in (3.9) of the subspace (3.8). Indeed,∧2n
K ΓQ ⊂

∧2n ΓQ is defined as the image of
∧2n

K ΓK,ι ⊂
∧2n

K ΓK via the trace map

2n∧

K

ΓK =
2n∧

Q
ΓQ ⊗K →

2n∧
ΓQ.

Now we have the inclusion
ΓK ⊂ ΓC,

with ΓC = ΓK ⊗Q R, and the equality

ΓK,ι = ΓK ∩ C2n
ι .

The space ΓK,ι is a 2n dimensional K-vector space which generates over R the space C2n
ι . It

follows that the image of
∧2n

K ΓK,ι in
∧2n ΓC generates over R the complex line

∧2nC2n
ι . But

we know that C2n
ι is the direct sum of the two spaces Wι and W−ι which are n-dimensional.

Hence
2n∧
C2n

ι =
n∧

Wι ⊗
n∧

W−ι ⊂
n∧

W ⊗
n∧

W = Hn,n(X).

We proved in [35] that the Weil Hodge classes on general Weil tori provide a coun-
terexample to question 3.2, thus showing that the projectivity assumption is crucial in the
statement of the Hodge conjecture.

Theorem 3.3 [35] Let T be a general Weil torus of dimension 4. Then any coherent sheaf
F on T satisfies c2(F) = 0.

Thus the Weil Hodge classes constructed in the previous sections are not in the space
generated by Chern classes of coherent sheaves.

The proof uses the Uhlenbeck-Yau theorem [34], and can be even shortened by using
the Bando-Siu theorem [2], which extends Uhlenbeck-Yau theorem to the case of reflexive
coherent sheaves. This proof shows that complex analysis and differential geometry produce
in fact restrictions on Hodge classes coming from global holomorphic objects. The main
point here is the fact that, as a consequence of the Uhlenbeck-Yau theorem, for a compact
Kähler manifold X with a trivial space Hdg2(X) of Hodge classes of degree 2, Chern classes
c2(E) of stable vector bundles E on X have to satisfy a certain positivity condition. Bando
and Siu extend this to coherent reflexive stable sheaves.

3.4 Algebraic de Rham cohomology and algebraic cycle class

Let X be a smooth projective variety defined over a field K of characteristic 0. One has
the sheaf of Kähler differentials ΩX/K which is a locally free algebraic coherent sheaf on X,
locally generated near x ∈ X(K) by dfi, where fi(x) = 0 and the fi generate Mx/M2

x as a
K-vector space.

We can form the locally free sheaves Ωl
X/K :=

∧l ΩX/K and by the definition of ΩX/K

we get the differentials d : OX → ΩX/K , d : Ωl
X/K → Ωl+1

X/K satisfying d ◦ d = 0.
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Definition 3.4 The algebraic de Rham cohomology of X is defined as

Hk
dR(X/K) := Hk(X, Ω∗X/K).

Note that this finite dimensional K-vector space depends on K. However, when K ⊂ L
(field extension), one has

Hk
dR(XL/L) = Hk

dR(X/K)⊗K L.

We want now to use this notion to show the following remarkable fact discovered by
Grothendieck:

The Betti cohomology with complex coefficients of a smooth complex projective manifold
Xan corresponding to a smooth projective variety X defined over C, can be computed as an
algebraic invariant of X seen as an algebraic variety.

Note that this is not at all true if we change the field of coefficients. Even with R instead
of C, and even if the variety X is defined over R, the cohomology of Xan with real coefficients
cannot be computed by algebraic means. It is furthermore known by work of Serre (see also
[9], [30] for further refined versions of this phenomenon) that the homotopy types indeed
does not depend only on the abstract algebraic variety X. In fact, a field automorphism of
C will provide another complex algebraic variety, thus another complex manifold, which is
usually not homeomorphic or homotopically equivalent to the original one.

The precise form of the statement above is the following:

Theorem 3.5 Let X be a smooth algebraic variety defined over C. Then there is a canonical
isomorphism

Hk
dR(X/C) = Hk(Xan,C),

where Xan is the corresponding complex submanifold of CPn.

Proof. We first recall the GAGA principle: Let X ⊂ PN (C) be a closed algebraic subset,
or more precisely a closed subscheme, and let F be an algebraic coherent sheaf on X. The
sheaf F has an analytic counterpart Fan, which is an analytic coherent sheaf on Xan. The
space of sections of the sheaf Fan over an (usual) open set U of Xan is essentially the space
of sections of the sheaf F defined over a Zariski neighbourhood of U , tensored by the space
of holomorphic functions on U . Thus morally, it is the sheaf of holomorphic sections of F ,
considered in the usual topology.

The GAGA comparison theorem [29] says the following:

Theorem 3.6 (Serre) For any algebraic coherent sheaf F on X, one has a canonical
isomorphism H l(X,F) → H l(Xan,Fan), induced by the morphism of ringed spaces φ :
(Xan,OXan) → (X,OX), which satisfies : φ∗F = Fan.

We now apply this to the sheaves Ωl
X/C of Kähler differentials. It is easy to prove that

the corresponding analytic coherent sheaves are nothing but the sheaves of holomorphic
differentials Ωl

Xan . We thus conclude that for X smooth and algebraic, and for any p, q, we
have

Hq(X, Ωp
X/C) ∼= Hq(Xan,Ωp

Xan),

where on the right we have the Dolbeault cohomology of Xan. A spectral sequence argument
then allows to conclude that we have a canonical isomorphism of hypercohomology groups:

Hk(X, Ω∗X/C) ∼= Hk(Xan,Ω∗Xan). (3.10)

But we have the holomorphic de Rham resolution

0 → C→OXan
d→ ΩXan → ... → Ωn

Xan → 0, n = dimX
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of the constant sheaf C on Xan, which makes the constant sheaf C on Xan quasiisomorphic
to the holomorphic de Rham complex Ω∗Xan . This implies that (3.10) can be written as

Hk
dR(X/C) := Hk(X, Ω∗X/C) ∼= Hk(Xan,C). (3.11)

Remark 3.7 What makes striking Theorem 3.5 is the fact that the algebraic de Rham
complex is not at all acyclic in positive degree in the Zariski topology, so that the proof
above is completely indirect. In fact, by the affine version of Theorem 3.5, its degree i
cohomology sheaf is the complexified version of the sheaf Hi studied by Bloch and Ogus [3].

3.4.1 Algebraic cycle class

Let X be a smooth projective variety defined over K and Z ⊂ X be a local complete
intersection closed algebraic subset of X, also defined over K. Following Bloch [4], we
construct a cycle class

[Z]alg ∈ H2k
dR(X/K)

which by construction lies in fact in

F kH2k
dR(X/K) := Im (H2k(X, Ω∗≥k

X/K) → H2k(X, Ω∗X/K)).

Being a local complete intersection, Z can be locally in the Zariski topology defined by
k equations f1, . . . , fk. On a Zariski open set U where these k equations define U ∩ Z, we
have a covering of U by k open sets

Ui := {x ∈ U, fi(x) 6= 0}.
On the intersection U1 ∩ . . .∩Uk, the closed degree k differential df1

f1
∧ . . .∧ dfk

fk
has no poles

hence defines a section of Ωk
U/K which is in fact a closed form. We can see it as a Čech

cocycle on U relative to the open cover above, with value in Ωk,c
U/K , where the superscript c

stands for “closed”. We thus get an element of Hk−1(U, Ωk,c
U/K). Observe now that there is

an obvious map of complexes
Ωk,c

X/K → Ω∗≥k
X/K ,

where the left hand side should be put in degree k. We thus get a class in

H2k−1(U,Ω∗≥k
U/K) ∼= H2k

Z∩U (U,Ω∗≥k
U/K).

This class can be shown to be independent of the choice of equations fi. These locally
defined classes thus provide a global section of the sheaf of hypercohomology with support
H2k

Z (Ω∗≥k
X/K). Examining the local to global spectral sequence for H2k

Z (X, Ω∗≥k
X/K) one finds

now that it is very degenerate, so that

H0(Z,H2k
Z (Ω∗≥k

X/K)) = H2k
Z (X, Ω∗≥k

X/K)

which provides us with a class in H2k
Z (X, Ω∗≥k

X/K). Using the natural map

H2k
Z (X, Ω∗≥k

X/K) → H2k(X, Ω∗≥k
X/K),

we finally get the desired cycle class [Z]alg.
Let now X be a smooth projective variety defined over C and Z ⊂ X be as above. The

following comparison result can be verified to hold as a consequence of Cauchy formula or
rather multiple residue formula:

Theorem 3.8 Via the isomorphism (3.11) in degree 2k, one has

[Z]alg = (2ιπ)k[Z].
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3.5 Absolute Hodge classes

Here we enter one of the most fascinating aspects of the Hodge conjecture, which seriously
involves the fact that the complex manifolds we are considering are algebraic.

Let us first introduce the notion of (de Rham) absolute Hodge class (cf. [12]). First
of all, let us make a change of definition: a Hodge class of degree 2k on X will be in this
section a class α ∈ (2iπ)kH2k(X,Q)∩Hk,k(X). The reason for this shift is the fact that we
want to use the algebraic cycle class [Z]alg introduced in section 3.4.1, which takes value in
algebraic de Rham cohomology, and which equals (via the isomorphism (3.11)) (2iπ)k[Z] by
Theorem 3.8.

Let Xan be a complex projective manifold and α ∈ Hdg2k(Xan) be a Hodge class. Thus
α ∈ (2iπ)kH2k(X,Q) and

α ∈ F kH2k(Xan,C) ∼= H2k(Xan, Ω∗≥k
Xan). (3.12)

Here, the left hand side can be shown to be given by the Hodge filtration

F kH2k(Xan,C) = ⊕p≥kHp,2k−p(Xan)

on the Betti cohomology of the complex manifold Xan and the isomorphism of (3.12) is
induced by the holomorphic de Rham resolution.

As before, the right hand side in (3.12) can be computed as in Theorem 3.5 as the hyper-
cohomology of the algebraic variety X with value in the complex of algebraic differentials:

H2k(Xan, Ω∗≥k
Xan) ∼= H2k(X, Ω∗≥k

X/C). (3.13)

Let us denote by E the set of fields embeddings of C in C. For each element σ of E ,
we get a new algebraic variety Xσ defined over C, obtained from X by applying σ to the
coefficients of the defining equations of X, and we have a similar isomorphism for Xσ. Note
that σ acts on complex points of Pn, which induces a natural map from X(C) (which as a set
is Xan) to Xσ(C) (which as a set is Xan

σ ), but that this map Xan → Xan
σ is not continuous

in general (the only non trivial continuous automorphism of C being complex conjugation).
But as an algebraic variety, Xσ is deduced from X by applying σ, and it follows that

there is a natural (only σ(C)-linear) map between algebraic de Rham cohomology spaces:

H2k(X, Ω∗≥k
X/C) → H2k(Xσ, Ω∗≥k

Xσ/C).

Applying the comparison isomorphism (3.13) in the reverse way, the class α provides a (de
Rham or Betti) complex cohomology class

ασ ∈ H2k(Xσ, Ω∗≥k
Xσ

) = F kH2k(Xan
σ ,C)

for each σ ∈ E .

Definition 3.9 (cf [12]) The class α is said to be (de Rham) absolute Hodge if ασ is a
Hodge class for each σ, that is ασ = (2iπ)kβσ, for some rational cohomology class βσ ∈
H2k(Xan

σ ,Q).

The main reason for introducing this definition is the following:

Proposition 3.10 If Z ⊂ X is a complex subvariety of codimension k, then (2iπ)k[Z] ∈
(2iπ)kH2k(X,Q) is an absolute Hodge class.

Proof. This indeed follows from the comparison theorem 3.8 which tells us that (2iπ)k[Z] =
[Z]alg, and from the fact that

[Z]alg,σ = [Zσ]alg = (2iπ)k[Zσ],

as shows the explicit construction described in section 3.4.1. Here Zσ ⊂ Xσ is deduced from
Z by applying the field embedding σ to the defining equations of Z.
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Proposition 3.10 shows that the Hodge conjecture contains naturally the following sub-
conjectures:

Conjecture 3.11 Hodge classes on smooth complex projective varieties are absolute Hodge.

This conjecture is solved affirmatively by Deligne for Hodge classes on abelian varieties (cf.
[12]). An important but easy point in this proof is the fact that Weil classes (cf. section
3.3) on Weil abelian varieties are absolute Hodge.

To conclude this section, let us mention two crucial examples of absolute Hodge classes.
They play an important role in the theory of algebraic cycles (cf. [24]) and are not known
to be algebraic (that is to satisfy the Hodge conjecture).

Example 3.12 Let X be smooth projective of dimension n. The class [∆X ] of the diagonal
in X ×X is an algebraic class in H2n(X ×X,Q). This spaces identifies under Künneth de-
composition and Poincaré duality to ⊕iEnd Hi(X,Q). The (algebraic) class of the diagonal
identifies to (2ιπ)n

∑
i IdHi(X,Q). By lemma 1.11, for each i ≤ 2n, the class corresponding

to (2ιπ)nIdHi(X,Q) gives a Hodge class on X ×X. This Hodge class is absolute.

Example 3.13 X being as above, recall from Theorem 1.4 that if h = c1(H) where H is an
ample line bundle on X, there is for each k ≤ n an isomorphism of Hodge structures

hn−k : Hk(X,Q) ∼= H2n−k(X,Q).

The corresponding Hodge class of degree 4n − 2k on X × X is algebraic. In fact it is the
class of the cycle Hn−k supported on the diagonal ∆X .

Consider now the inverse of the Lefschetz isomorphism:

(hn−k)−1 : H2n−k(X,Q) ∼= Hk(X,Q).

It provides a Hodge class of degree 2k on X ×X, which is absolute Hodge, and is not known
to be algebraic.

3.6 Absolute Hodge classes and the structure of Hodge loci

3.6.1 Locus of Hodge classes

The key point in which algebraic geometry differs from Kähler geometry is the fact that
a smooth complex projective variety X does not come alone, but accompanied by a full
family of deformations π : X → T , where π is smooth and projective (that is X ⊂ T × PN

over T , for some integer N), and where the basis T is quasi-projective smooth and defined
over Q. (Here T is not supposed to be geometrically connected). Indeed, one can take for
T a desingularization of a Zariski open set of the reduced Hilbert scheme parameterizing
subschemes of Pn with same Hilbert polynomial as X. The existence of this family of
deformations is reflected in the transformations X 7→ Xσ considered above. Namely, the
variety T being defined over Q, σ acts on its complex points, and if X is the fiber over some
complex point 0 ∈ T (C), then Xσ is the fiber over the complex point σ(0) of T (C).

The total space X is thus an algebraic variety defined over Q (and in fact we may even
complete it to a smooth projective variety defined over Q), but for the moment, let us
consider it as a family of smooth complex varieties, that is, let us work with π : X an → T an.

Associated to this family are the Hodge bundles

F lHk := Rkπ∗(Ω
∗≥l
Xan/T an) ⊂ Hk := Rkπ∗(Ω∗Xan/T an) = Rkπ∗C⊗OT an , (3.14)

which are coherent analytic locally free sheaves with respective fibers over t ∈ T

F lHk(Xt,C) ⊂ Hk(Xt,C).

In (3.14), the last isomorphism Rkπ∗(Ω∗Xan/T an) = Rkπ∗C⊗OT an is induced by the resolu-
tion of the sheaf π−1OT an by the relative holomorphic de Rham complex.

We shall denote by F lHk the total space of the corresponding vector bundles.
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Definition 3.14 (cf [8]) The locus of Hodge classes for the family X → T and in degree 2k
is the subset Z ⊂ F kH2k consisting of pairs (t, α) where t ∈ T (C) and αt is a Hodge class
on Xt, αt ∈ F kH2k(Xt,C) ∩ (2iπ)kH2k(Xt,Q).

This locus is thus the set of all Hodge classes in fibers of π.
For α ∈ Z we shall denote by Zα the connected component of Z passing through α and

by Tα the projection of Zα to T . Tα is the Hodge locus of α, that is the locus of deformations
of X where α deforms as a Hodge class.

Let us give a local analytic description of the locus of Hodge classes : we want to describe
all the pairs (t, α), t ∈ T, α ∈ (2iπ)kH2k(Xt,Q), such that α ∈ F kH2k(Xt,C). Let us choose
a connected and simply connected neighbourhood U of 0 in T . Then all the fibers Xt, t ∈ U ,
are canonically homeomorphic to X0, so that we have a canonical identification

H2k(Xt,Q) ∼= H2k(X0,Q)

and more precisely a holomorphic trivialization of the vector bundle H2k over U :

H2k ∼= U ×H2k(X0,C). (3.15)

This identification preserves the rational structures on both sides.
Let us consider the following composite holomorphic map:

Φ : F kH2k ↪→ H2k ∼= U ×H2k(X0,C)
pr2→ H2k(X0,C).

By definition, a Hodge class on Xt is a class in F kH2k(Xt,C) which via Φ is sent to a (2ιπ)k

times rational cohomology class in H2k(X0,C). It follows that the locus of Hodge classes
is locally defined as Φ−1((2ιπ)kH2k(X0,Q)), which is a countable union a closed analytic
subsets of F kH2k.

The above description is highly transcendental, as it makes use of the trivialization (3.15).
Note now the fact that the complex (maybe reducible) manifold F kH2k is in fact algebraic
and defined over Q. Indeed, using GAGA principle, the coherent sheaf F kH2k is simply the
analytic coherent sheaf associated to the algebraic sheaf R2kπ∗(Ω

∗≥k
X/T ) which is defined over

Q on T . (Here the R2kπ∗ is the algebraic derived functor.)
Thinking a little more, we see that if σ : C→ C is a field embedding, then σ acts on the

complex points of the complex manifold F kH2k (because it is defined over Q), and that if
(t, αt) ∈ F kH2k is a complex point of this complex manifold, then σ(t, αt) is nothing but
the class αt,σ ∈ F kH2k(Xan

t,σ) we considered in the previous section. We deduce from this
the following interpretation of the notion of absolute Hodge class.

Lemma 3.15 (cf. [38]) i) To say that Hodge classes of degree 2k on fibers of the family
X → T are absolute Hodge is equivalent to say that the locus Z is a countable union of
closed algebraic subsets of F kH2k defined over Q.

ii) To say that α is an absolute Hodge class is equivalent to say that Zα is a closed
algebraic subset of F kH2k defined over Q and that its images under Gal (Q : Q) are again
components of the locus of Hodge classes.

Proof. i) The implication ⇐ is obvious once one observes that α 7→ ασ is nothing but the
action of σ ∈ AutC on the complex points of F kH2k; indeed, if Z is of the stated form,
it is then stable under the action of AutC, and Hodge classes are absolute Hodge. In the
other direction, we have to prove that if Z is stable under AutC, it is a countable union of
closed algebraic subsets defined over Q. Observe now that if α ∈ Z, the orbit of α under
AutC fills in the complement of a countable union of proper Zariski closed subsets of the Q-
Zariski closure of α in F kH2k. Taking for α a sufficiently general point in a local connected
component of Z, and using the local structure of Z as a countable union of closed analytic
subsets of F kH2k, we then conclude that Z equals the countable union of Q-Zariski closure
of adequately chosen α ∈ Z.
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ii) One direction is again obvious. In the other direction, we will use the algebraicity
theorem 3.16 below. It thus only remains to prove that Zα is defined over Q. For this, one
observes as in [12] that if α is absolute Hodge, then any α′ ∈ Zα is also absolute Hodge
(for which one needs in fact Theorem 3.16 below). But then, if α is absolute Hodge, for
any σ ∈ AutC the algebraic subset Zα,σ ⊂ F kH2k is also contained in the locus of Hodge
classes, and as an easy argument shows, Zα,σ is locally a component of this locus. But the
locus of Hodge classes has only countably many components (as shows its local description)
and thus we conclude that there only countably many translates Zα,σ ⊂ F kH2k, σ ∈ AutC.
We then use the fact that a closed algebraic subset of a complex variety defined over Q
which has only countably many translates under AutC is defined over Q.

The following result, which anwers partially conjecture 3.11, establishes part of the ex-
pected structure of the locus of Hodge classes.

Theorem 3.16 [8] The connected components Zα of Z are closed algebraic subsets of
F kH2k. As a consequence, the Hodge loci Tα are closed algebraic subsets of T .

This theorem is very deep. It is very much expected if one believes in the Hodge conjec-
ture, because then the Zα will be the images by the relative algebraic cycle class of universal
relative cycles parameterized by components of the relative Hilbert scheme of X → T .

Let us now investigate the arithmetic aspect of the notion of absolute Hodge class,
exploiting its relation with the definition field of the component of the Hodge loci.

Proposition 3.17 [38] i) Let α ∈ F kH2k be an absolute Hodge class. Then the Hodge
conjecture is true for α if it is true for absolute Hodge classes on varieties defined over Q.

ii) Let α ∈ F kH2k be a Hodge class, such that the Hodge locus Tα is defined over Q.
Then the Hodge conjecture is true for α if it is true for Hodge classes on varieties defined
over Q.

Proof. i) The key ingredient is the global invariant cycle theorem or more classically
“Theorem of the fixed part” (Theorem 3.18 below) due to Deligne [11]. Let Y be a smooth
complex projective variety, and U ⊂ Y a Zariski open set. Let φ : U → B be a smooth
proper algebraic morphism, where B is quasi-projective. Thus the fibers of φ are smooth
complex projective varieties and there is a monodromy action:

ρ : π1(B, 0) → Aut H l(Y0,Q), 0 ∈ B.

Theorem 3.18 The space of invariant classes

H l(Y0,Q)ρ := {α ∈ H l(Y0,Q), ρ(γ)(α) = α, ∀γ ∈ π1(B, 0)}
is equal to the image of the restriction map (which is a morphism of Hodge structures) :

H l(Y,Q) → H l(Y0,Q).

In particular it is a Hodge substructure of H l(Y0,Q).

Let us now put everything together: let X be complex projective and α ∈ (2iπ)kH2k(X,Q)
be an absolute Hodge class. There is a smooth projective map π : X → T defined over Q,
with X and T smooth quasi-projective, and such that X is the fiber of π over a complex
point of T (the smooth locus of π).

As we explained above, the fact that α is absolute Hodge implies that the component of
the Hodge locus containing α, say Zα, is defined over Q. We consider the reduced subscheme
underlying Zα, say Rα, which we may assume by shrinking to be smooth and connected.
Then we make the base change Rα → T , which gives πα : Xα → Rα, where both varieties
are smooth quasi-projective and defined over Q, and πα is smooth projective.

Tautologically, over Rα we have a holomorphic section α̃ of F kH2k. By definition
of Rα, this holomorphic section has the particularity that at any point t ∈ Rα, αt ∈

24



(2iπ)kH2k(Xt,Q). But then, by countability, we conclude that α̃ is a locally constant
section of H2k, which is everywhere of type (k, k). Hence our class α extends to a global
section of the local system (2iπ)kR2kπα∗Q, which means equivalently that α is invariant
under the monodromy action along Rα.

Now we introduce a smooth compactification Xα defined over Q. The global invariant
cycles theorem tells us that there is a class

β ∈ (2iπ)kH2k(Xα,Q) ∩ F kH2k(Xα)

which restricts to α on X. With some more work, using the polarizations introduced in
section 1.5.2, one can show that β can be chosen absolute Hodge. Now, if the Hodge
conjecture is true for β, it is true for α.

Statement ii) is proved in a similar way.

Proposition 3.17 is one motivation to investigate the question whether the Hodge loci Tα

are defined over Q, which by Lemma 3.15 is weaker than the question whether Hodge class
are absolute.

Concerning this last problem, we conclude with the following criterion, also proved in
[38]:

Theorem 3.19 Let α ∈ F kH2k(X,C) be a Hodge class. Suppose that any locally constant
Hodge substructures L ⊂ H2k(Xt,Q), t ∈ Tα, is purely of type (k, k). Then Tα is defined
over Q, and its translates under Gal(Q/Q) are again of the form Tβ.

The assumptions in the theorem are reasonably easy to check in practice, for example
by infinitesimal methods. On the other hand, they are clearly not satisfied in a case where
the component Tα of the Hodge locus consists of one isolated point, if the Hodge structure
on H2k(X) is not trivial. In this case, what predicts the Hodge conjecture is that this point
should be defined over Q. But our criterion does not give this: in fact our criterion applies
only when we actually have a non trivial variation of Hodge structure along Tα.

Note that Theorem 3.19 also addresses partially Conjecture 3.11, in view of Lemma 3.15.
Indeed, we know by Theorem 3.16 that the Zα’s are algebraic, and thus by Lemma 3.15,
Conjecture 3.11 is a question about the definition field of the Zα’s and their translates under
Gal(Q/Q). Theorem 3.19 addresses the same question for the Tα’s instead of Zα.
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[5] A. Borel, J.-P. Serre. Le théorème de Riemann-Roch (d’après Grothendieck), Bull. Soc.
Math. France, 86, (1958), 97136.

[6] N. Buchdahl. Algebraic deformations of compact Kähler surfaces, Math. Z. 253 (2006),
no. 3, 453–459.

[7] N. Buchdahl. Algebraic deformations of compact Kähler surfaces. II. Math. Z. 258
(2008), no. 3, 493–498.

25



[8] E. Cattani, P. Deligne, A. Kaplan, On the locus of Hodge classes, J. Amer. Math. Soc.
8, 483-506 (1995).

[9] F. Charles. Conjugate varieties with distinct real cohomology algebras. J. Reine Angew.
Math. 630 (2009), 125–139.

[10] P. Deligne, Ph. Griffiths, J. Morgan, D. Sullivan. Real homotopy theory of Kähler
manifolds, Inventiones Math. 2 (1975), 245-274.
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