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0 Introduction

For X a projective variety, L a line bundle on X, and F a coherent sheaf on
X, denote, following [4], by Kp,q(X, L,F) the cohomology at the middle of the
exact sequence

p+1∧
H0(X,L)⊗H0(X,F((q − 1)L)) →

p∧
H0(X,L)⊗H0(X,F(qL))

→
p−1∧

H0(X,L)⊗H0(X,F((q + 1)L)),

where the maps are Koszul differentials. For F = OX , use the notation
Kp,q(X, L). Green’s conjecture on syzygies of canonical curves (see [4]) re-
lates the Koszul cohomology groups

Kp,1(C,KC),

for C a smooth projective curve, to the Clifford index of the curve :

Cliff(C) := MinD{deg D − 2r},

where D runs through the set of divisors D on C satisfying :

r + 1 := h0(D) ≥ 2, h1(D) ≥ 2.

Conjecture 1 (Green)

Kl,1(C, KC) = 0, ∀l ≥ p ⇔ Cliff(C) > g − p− 2.

The direction ⇒ is proved by Green and Lazarsfeld in the appendix to [4].
The case p = g − 2 of the conjecture is equivalent to Noether’s theorem, and
the case p = g − 3 to Petri’s theorem (see [6]). The case p = g − 4 has been
proved in any genus by Schreyer [10] and by the author [13] for g > 10.

More recently, the conjecture has been studied in [11], [12], for generic
curves of fixed gonality. Teixidor proves the following
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Theorem 1 ([11]) Green’s conjecture is true for generic curves of genus g
and fixed gonality γ, in the range

γ ≤ g + 7

3
.

Note that Brill-Noether theory says that the gonality γ always satisfies the
inequality

γ ≤ [
g + 3

2
],

with equality for the generic curve. We proved the following

Theorem 2 ([12]) Green’s conjecture is true for generic curves of genus g
and fixed gonality γ, in the range

γ ≥ g

3
,

except possibly for the generic curves of odd genus g = 2k + 1, whose gonality
is k + 2.

So, for generic curves of fixed gonality, the only remaining case is that of
generic curves of odd genus g = 2k + 1. Green’s conjecture together with
Brill-Noether theory predicts that

Kk,1(C,KC) = 0. (0.1)

This is the main result proved in this paper. We give the precise statement
below; it gives slightly more, since it proves the vanishing (0.1) for some explicit
curves which we know to be generic in the Brill-Noether sense. Applications
of this result to the gonality conjecture for generic curves of even genus can be
found in [2], [1].

Note that this last case was especially challenging, first of all because, as
noticed in [7], the locus of jumping syzygies, i.e. the locus where Kk,1(C, KC) 6=
0 is of codimension 1 in Mg in this case, and in fact has a natural structure of
determinantal hypersurface, and also because of the following important result
of Hirschowitz and Ramanan :

Theorem 3 ([7]) If the Green conjecture is true for generic curves of genus
2k + 1, then the locus of jumping syzygies in M2k+1 is equal set theoretically
to the k + 1-gonal divisor, which is also the locus where the Clifford index is
one less the generic Clifford index.

Combined with the generic Green conjecture for genus 2k + 1-curves, this
provides a strong evidence for conjecture 1.

Coming back to our result, the curves we consider are the following : we
consider a smooth projective K3 surface S, such that Pic(S) is isomorphic to
Z2, and is freely generated by L and OS(∆), where ∆ is a smooth rational
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curve such that deg L|∆ = 2, and L is a very ample line bundle with L2 =
2g − 2, g = 2k + 1. By the hyperplane section theorem (see [4]), we have

Kk,1(S, L) ∼= Kk,1(C, L), ∀C ∈| L | .

As we shall see in the next section, curves in | L | have the generic Clifford
index. Hence we expect from Green’s conjecture that

Kk,1(C,L) = 0 = Kk,1(S, L).

Our theorem says indeed :

Theorem 4 The K3 surface S being as above, we have

Kk,1(S, L) = 0.

In the first section, we show how to adapt the arguments of [12], to the line
bundle L + ∆ on S, in order to show that

Kk+1,1(S, L + ∆) = 0.

Note that the proof of [12] worked under the assumption Pic(S) = Z, which
is why a few supplementary arguments are needed.

In the second section, we show how to deduce from this the vanishing
Kk,1(S, L) = 0. The last section is devoted to the proof of the crucial propo-
sition 8 used in the proof of Theorem 4.

Acknowledgements: I am very indebted to the referee for pointing out
a mistake in my original proof of Proposition 8 and for helpful comments.

1 The case of curves of even genus on a K3

surface with a node

Let S be a K3 surface, whose Picard group is freely generated by a very ample
line bundle L, such that

L2 = 2g − 2, g = 2k + 1,

and OS(∆), where ∆ is a rational curve such that

deg L|∆ = 2.

Let L′ = L(∆) ; smooth curves in | L′ | do not meet ∆ and are of genus
2k + 2 = 2(k + 1). Contracting ∆ to a node, the line bundle L′ descends,
and we are essentially in the situation considered in [12]. (Note however the
change of notations from k to k + 1.)

We first apply Lazarsfeld’s argument in [8] to show :
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Proposition 1 Smooth curves C in | L | or in | L′ | are generic in the
Brill-Noether sense, i.e., do not have a gr

d when the Brill-Noether number
ρ(g(C), d, r) is negative. In particular, their Clifford index is the generic one.

Proof. It follows from [8] that if C ⊂ S is a smooth curve in a linear system
| M |, and D is a gr

d on C with ρ(g(C), d, r) < 0, there exists a line bundle H
on S with

h0(H) ≥ 2, h0(M −H) ≥ 2.

Apply this to M = L or M = L′. Writing H = αL + β∆, the condition
h0(H) ≥ 2 implies that α ≥ 1. Similarly, the condition h0(M−H) ≥ 2 implies
that 1− α ≥ 1, whether M = L or M = L′. This is a contradiction.

It is now expected from Green’s conjecture 1 that

Kk+1,1(S, L′) = 0, Kk,1(S, L) = 0.

In [12], we proved the vanishing

Kk+1,1(S, L′) = 0,

for a line bundle L′ on S with

L′2 = 2g′ − 2, g′ = 2k + 2,

under the assumption that L′ generates Pic(S). Our first goal is to extend
this result in our situation.

Theorem 5 For S, L′ = L(∆) as above, we have

Kk+1,1(S, L′) = 0. (1.2)

The proof of this theorem occupies the rest of this section. Let C ′ ∈| L′ | be
smooth; by Brill-Noether theory, there is a smooth g1

k+2, say D, on C ′. By
proposition 1, both D and KC′ − D are generated by sections. Consider the
Lazarsfeld bundle

E = F ∗ = F ⊗ L′, (1.3)

where F is the rank 2 vector bundle fitting in the exact sequence

0 → F → H0(C ′, D)⊗OS → D → 0. (1.4)

Here the last map is the evaluation map along C ′. One can show that E does
not depend on the curve C ′, and neither on D′. The bundle E has detE ∼= L′,
and h0(E) = k + 3. The following key point, which was used constantly
throughout the proof of [12], remains true in our situation :

Proposition 2 The determinant map

d :
2∧

H0(S, E) → H0(S, L′)

does not vanish on decomposable elements.
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Proof. Indeed assume s, s′ ∈ H0(S,E) are not proportional but satisfy d(s∧
s′) = 0. Then s, s′ generate a sub-line bundle of E, say H, which we may
assume saturated, and which satisfies

h0(H) ≥ 2.

Hence there is an exact sequence

0 → H → E → H ′ → T → 0,

where H ′ is a line bundle such that H + H ′ = det E = L′, and T is torsion
supported on points of S. Since E is generated by sections, H ′ is generated
by sections away from the support of T . On the other hand H ′ is not trivial,
since H0(S, E∗) = 0. So h0(H ′) ≥ 2. But this contradicts the fact we already
mentioned, that we cannot write L′ as the sum of two line bundles admitting
at least two sections.

We now recall the main points of the proof of the vanishing (1.2) given in
[12], in order to make clear what has to be added in our situation. We warn
again the reader that the notation of [12] has been shifted (the integer k there
becomes k + 1 here).

First step. Let S
[k+2]
curv be the open subset of the Hilbert scheme of S

parametrizing curvilinear, degree k + 2, 0-dimensional subschemes of S. Let

Ik+2
πk+2→ S[k+2]

curv , Ik+2 ⊂ S × S[k+1]
curv

be the incidence scheme. We established the following isomorphism :

Kk+1,1(S, L′) ∼= H0(Ik+2, π
∗
k+2L

′
k+2)/π

∗
k+2H

0(S[k+2]
curv , L′k+2), (1.5)

where the line bundle L′k+2 is the determinant of the vector bundle EL′ of rank

k + 2 on S
[k+2]
curv , defined as

EL′ = R0πk+2∗(pr∗1L
′).

From this we deduced the following criterion :

Lemma 1 The vanishing Kk+1,1(S, L′) = 0 holds if there exists a reduced
scheme Z, and a morphism

j : Z → S[k+2]
curv

such that, denoting

Z̃
j̃→ Ik+2

the fibered product
Z̃ = Z ×

S
[k+2]
curv

Ik+2

we have :
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1. The map

j̃∗ : H0(Ik+2, π
∗
k+2L

′
k+2) → H0(Z̃, j̃∗π∗k+2L

′
k+2) (1.6)

is injective.

2. Denoting by π : Z̃ → Z the first projection, the map

π∗ : H0(Z, j∗L′k+2) → H0(Z̃, j̃∗π∗k+2L
′
k+2) (1.7)

is surjective.

Second step. The construction of Z is as follows : we start with the vector
bundle E of (1.3), (1.4). It has c2(E) = k + 2. Denote by

P(H0(E))curv ⊂ P(H0(S,E))

the open set parametrizing sections σ ∈ H0(S, E) whose 0-scheme zσ is 0-
dimensional and curvilinear. There is a natural morphism

P(H0(E))curv → S[k+2]
curv

σ 7→ zσ.

Let W = P(H0(E))curv×S
[k+2]
curv

Ik+2. This is a degree k+2 cover of P(H0(E))curv.
It admits a natural morphism, say f to Ik+2. We use now the morphism

τk+2 : Ik+2 → S × S[k+1]
curv ,

which sends a point (x, z), {x} ⊂ z of Ik+2 to the residual scheme of x in z,
which is curvilinear of length k + 1, since z is curvilinear. Let

ψ : W → S[k+1]
curv

be the composed map ψ = τk+2 ◦ f . Finally we construct the sum map:

j : Z := (S̃ ×W )0 → S[k+2]
curv ,

(x,w) 7→ x ∪ ψ(w),

where the ˜ stands here to mean “blowup along the incidence subscheme in
order to make the scheme structure on the union x ∪ ψ(w) well defined”, and
the subscript 0 means, “taking an open set in order to make sure that this
scheme structure is curvilinear”.

Third step . The injectivity of the map (1.6) in Lemma 1 is easily reduced
to the injectivity of the restriction map

ψ∗ : H0(S[k+1]
curv , L′k+1)

∼=
k+1∧

H0(S, L′) → H0(W,ψ∗L′k+1).

6



Now if β : W → P(H0(E))curv is the natural surjective map, we showed that

ψ∗L′k+1
∼= β∗OP(H0(E))curv

(k + 1)

and that the map above is the composition of β∗ and of an isomorphism

k+1∧
H0(S, L′) ∼= H0(P(H0(E))curv,O(k + 1)) ∼= Sk+1H0(S, E)∗.

The construction of this isomorphism uses only the proposition 2 which remains
true in our situation. Hence this step works as in [12].

Fourth step. In [12], we reduced easily the proof of the surjectivity of the
map (1.7) in Lemma 1, to the proof of the following : let

W̃ = W ×S[k+1] Ik+1,

and denote by γ : W̃ → W the natural map.

Proposition 3 The map

γ∗ : H0(W,ψ∗Lk+1) → H0(W̃ , γ∗ψ∗Lk+1) (1.8)

is surjective.

Using the fact that

ψ∗Lk+1 = r∗OP(H0(E))curv
(k + 1),

where
r = β ◦ γ : W̃ → P(H0(E))curv,

this proposition is a consequence of the following :

Proposition 4 The map

r∗ : H0(OP(H0(E))curv
(k + 1)) = Sk+1H0(S,E)∗ → H0(W̃ , r∗OP(H0(E))curv

(k + 1))(1.9)

is surjective.

This is in the proof of this proposition that we shall see a difference between
the case considered in [12] and the present case. Indeed, let us introduce as in
[12], the codimension 4 subscheme

W ′ = {(z, σ) ∈ S̃ × S × P(H0(S,E)), σ|z = 0}, (1.10)

where S̃ × S is the blowup of S × S along its diagonal, hence parametrizes
ordered length 2 subschemes of S × S.

In [12], we used the fact that W̃ can be seen as a large (i.e. the complemen-
tary set has codimension ≥ 2) Zariski open set in W ′, and the fact (which is
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inaccurately not mentioned explicitly) that W ′ is normal (in fact it is smooth
for k + 1 > 3, see below) to conclude that

H0(W̃ , r∗OP(H0(E))curv
(k + 1)) = H0(W ′, pr∗2OP(H0(S,E))(k + 1)).

Here we cannot do that because it is not true anymore that W ′ is normal,
nor that W̃ is large in W ′. In fact W ′ is not irreducible. Indeed, consider the
rational curve ∆ ⊂ S. The exact sequence (1.4) together with the fact that
L′|∆ is trivial, shows that E|∆ is trivial and that the restriction map

H0(S, E) → H0(∆, E|∆)

is surjective, the right hand side being of rank 2. So H0(S,E(−∆)) is of
codimension 2 in H0(S, E), so that W ′ has one component isomorphic to ∆×
∆× P(H0(S,E(−∆)).

However, what remains true in our situation is the following

Lemma 2 Assume k+1 > 3 (Theorem 5 is already known for k+1 ≤ 3). Let

U := P(H0(S, E))− P(H0(S,E(−∆))).

Then W ′
U := W ′ ∩ (S̃ × S × U) is smooth and W̃ is a large open set in it.

Proof. If a section of E vanishes at a point of ∆, then it vanishes along ∆,
hence its 0-locus is not 0-dimensional. So W̃ ⊂ W ′. The proof that it is a large
open set is easy. To prove that W ′

U is smooth, it suffices to show the following :

For any z ∈ (S −∆)[2], the restriction map

H0(S,E) → H0(E|z) (1.11)

is surjective.

Choose a smooth curve C ′ ∈| L′ | containing z. It exists because z does
not meet ∆. There is an exact sequence

0 → D → E|C′ → KC′ −D → 0,

where D is a divisor of degree k + 2 on C ′, with h0(D) = 2. Furthermore the
map H0(S, E) → H0(C ′, E|C′) is surjective and there is an exact sequence

0 → H0(C ′, D) → H0(C ′, E|C′) → H0(C ′, KC′ −D) → 0.

Now, by proposition 1, the curve C ′ is generic in the Brill-Noether sense.
Hence, since k + 1 > 3, it does not possesses a g2

k+4. Hence the map

H0(C ′, KC′ −D) → H0((KC′ −D)|z)
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is surjective. So the map (1.11) has at least rank 3 since | D | has no base
point so that the restriction map H0(C ′, D) → H0(D|z) has at least rank 1,
and our statement will be proved if we can furthermore choose C ′ and D so
that the restriction map

H0(C ′, D) → H0(D|z)

is injective. Take now two sections s, s′ of E such that d(s∧ s′) vanishes on z,
but s, s′ have independent restrictions in H0(E|z). It is easily shown to exist
once we know that the restriction map (1.11) has rank at least 3. Let C ′ be
defined by d(s ∧ s′). The sections s, s′ generate a subline bundle D of E|C′ as
above and the two sections of D restrict injectively to z.

Last step. Lemma 2 shows that we have an isomorphism

H0(W̃ , r∗OP(H0(E))curv
(k + 1)) ∼= H0(W ′

U , pr∗2OU(k + 1)),

so that proposition 4 reduces to

Proposition 5 The map

pr∗2 : H0(U,OU(k + 1)) ∼= Sk+1H0(S, E)∗ → H0(W ′
U , pr∗2(OU(k + 1)))

is an isomorphism.

Proof. The proof works as in [12] ; we note that W ′
U is the zero locus of a

section σ̃ of a certain rank 4 vector bundle pr∗1Ẽ2⊗ pr∗2(OU(1)) on S̃ × S ×U .
We use then the corresponding Koszul resolution of IW ′

U
to conclude that

H1(S̃ × S × U, IW ′
U
⊗ pr∗2(OU(k + 1))) = 0. (1.12)

There is one difference with the case considered in [12]: namely, the spectral

sequence which converges to H∗(S̃ × S × U, IW ′
U
⊗ pr∗2OU(k + 1)), has degree

1 terms

Ei,1−i
1 = H i(S̃ × S × U, pr∗1

i∧
Ẽ∗

2 ⊗ pr∗2(OU(k + 1− i))), i ≥ 1.

Of course we have

H0(U,OU(k + 1)) = Sk+1H0(S, E)∗.

But unlike the case considered in [12], where we worked over the whole P(H0(S, E)),
there might be some terms

H i−1(S̃ × S,

i∧
Ẽ∗

2)⊗H1(U,OU(k + 1))

contributing to the term Ei,1−i
1 above. It turns out that this is not the case,

thanks to the following lemma :
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Lemma 3 We have

H i−1(S̃ × S,

i∧
Ẽ∗

2) = 0,

for any i ≥ 1.

Proof. We refer to [12], Proposition 6, for more details and similar computa-
tions.

First of all, the vanishing h0(S̃ × S, Ẽ∗
2) = 0 follows from the fact that the

dual vector bundle Ẽ2 admits for space of global sections the space H0(E),
which generates it generically, and that all of these sections vanish somewhere.

Next,
∧4 Ẽ∗

2
∼= det Ẽ∗

2 = (−L) £ (−L)(2D) where D is the exceptional

divisor of S̃ × S, and we denote abusively by (−L)£ (−L) the pull-back of the

line bundle (−L) £ (−L) on S ×S to S̃ × S via the blowing-down map. Since

the canonical divisor of S̃ × S is equal to D, we get by Serre duality :

H3(S̃ × S,

4∧
Ẽ∗

2) = H1(S̃ × S, L £ L(−D))∗,

and the space on the right is 0 because the multiplication map S2H0(S, L) →
H0(S, 2L) is surjective.

To compute H2(S̃ × S,
∧3 Ẽ∗

2), we use the isomorphism

3∧
Ẽ∗

2
∼= det Ẽ∗

2 ⊗ Ẽ2,

and the exact sequence

0 → Ẽ2 → pr∗1E ⊕ pr∗2E → τ ∗E → 0, (1.13)

where τ : D → S is the restriction of the blowing-down map to D, and the
pri are the projections to S composed with the blowing-down map. It follows
then from the associated long exact sequence that we only have to prove the
vanishings

H1(D, τ ∗E(−2L))(2D|D)) = 0, (1.14)

H2(S̃ × S, pr∗i E((−L) £ (−L))(2D)) = 0. (1.15)

(1.14) comes from the fact that R1τ∗(2D|D) ∼= OS and from H0(S,E(−2L)) =
0. (1.15) is deduced from Serre’s duality and from

H2(S̃ × S, pr∗i E
∗(L £ L)(−D)) = 0.

This last property is itself deduced from H2(S×S, pr∗i E
∗(L£L) = 0 and from

H1(D, pr∗i E
∗(L £ L)|D) = H1(D, τ ∗(E(2L))) = 0.
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It remains only to prove the vanishing H1(S̃ × S,
∧2 Ẽ∗

2) = 0. We use for
this the fact, which follows from the dualization of the exact sequence (1.13)
cf [12], that

∧2 Ẽ∗
2 has a filtration whose successive quotients are

2∧
(pr∗1E

∗ ⊕ pr∗2E
∗), (pr∗1E

∗ ⊕ pr∗2E
∗)⊗ τ ∗E∗ ⊗OD(D),

2∧
τ ∗E∗ ⊗OD(2D).

It is immediate to prove that each term has H1 = 0.

Once we have these vanishings, the spectral sequence converging to H∗(S̃ × S×
U, IW ′

U
⊗ pr∗2OU(k + 1)) has the same shape in degree 1 as in [12], and then

the proof of the vanishing (1.12) works as in [12]. This concludes the proof of
proposition 5, hence of theorem 5.

2 Proof of Theorem 4

We start recalling the duality theorem of [4], which we state here only in the
case of surfaces :

Theorem 6 (Green) Let X be a smooth projective surface, M be a line bundle
on X which is generated by sections, and F be a coherent sheaf on X satisfying
the condition

H1(X,F(sM)) = 0, ∀s ∈ Z.

Then there is for all p, q a duality isomorphism (which is canonical up to a
multiplicative coefficient):

Kp,q(X, M,F) ∼= Kr−2−p,3−q(X,M,F∗ ⊗KX)∗,

where r + 1 = h0(X,M).

We consider now the case where X is the K3 surface S of the previous
section, M is either L or L′, and F is trivial. Then in the first case, r + 1 =
g + 1 = 2k + 2, and in the second case r′ + 1 = g′ + 1 = 2k + 3. So the duality
theorem above gives, using the fact that KS

∼= OS :

Kk,1(S, L)∗ ∼= Kk−1,2(S, L), (2.16)

Kk+1,1(S, L′)∗ ∼= Kk−1,2(S, L′). (2.17)

Theorem 5 now says that Kk+1,1(S, L′) = 0 or equivalently by (2.17)

Kk−1,2(S, L′) = 0. (2.18)

Next, recall that we want to prove that Kk,1(S, L) = 0, and by (2.16), this is
equivalent to

Kk−1,2(S, L) = 0. (2.19)

Recalling that L′ = L + ∆, and choosing a σ ∈ H0(S, L′) such that σ
generates H0(S, L′)/H0(S, L), (equivalently, σ nowhere vanishes along ∆), we
have now the following :
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Proposition 6 The space Kk−1,2(S, L) is generated as follows : consider the
Koszul differential

δ′ :
k−1∧

H0(S, L)⊗H0(S, L−∆) →
k−2∧

H0(S, L)⊗H0(S, 2L−∆). (2.20)

For any α ∈ Ker δ′, multiplication on the right by σ ∈ H0(S, L + ∆) provides
an element α · σ which is in

Ker δ :
k−1∧

H0(S, L)⊗H0(S, 2L) →
k−2∧

H0(S, L)⊗H0(S, 3L),

where δ is also the Koszul differential, however acting on a different space.
The classes of these elements α · σ generate Kk−1,2(S, L).

Proof. Let β ∈ Ker δ ⊂ ∧k−1 H0(S, L) ⊗ H0(S, 2L). Since we know that
Kk−1,2(S, L′) = 0 by (2.18), we can write

β = δγ

for some γ ∈ ∧k H0(S, L′) ⊗H0(S, L′). Since H0(S, L′) = H0(S, L)⊕ < σ >,
we can now decompose γ as

γ = γ1 + σ ∧ γ2 + γ3 ⊗ σ + σ ∧ γ4 ⊗ σ,

where

γ1 ∈
k∧

H0(S, L)⊗H0(S, L), γ2 ∈
k−1∧

H0(S, L)⊗H0(S, L),

γ3 ∈
k∧

H0(S, L), γ4 ∈
k−1∧

H0(S, L).

The fact that δγ = β belongs to
∧k−1 H0(S, L)⊗H0(S, 2L) implies that γ4 = 0

since γ4 identifies to the image of δγ in
∧k−1 H0(S, L′)⊗H0(2L′|∆). Next, since

we consider β only modulo

Im δ :
k∧

H0(S, L)⊗H0(S, L) →
k−1∧

H0(S, L)⊗H0(S, 2L),

we may assume, modifying β by an exact element, that γ1 = 0. Finally, we
note that γ is defined up to δ-closed and in particular up to δ-exact elements.
Using the relation

γ3 ⊗ σ = −δ(σ ∧ γ3)− σ ∧ δγ3,

we conclude that modifying γ we may also assume that γ3 = 0.
In conclusion, Kk−1,2(S, L) is generated by classes of δ-closed elements β

such that in
∧k−1 H0(S, L′)⊗H0(S, 2L′), we have

β = δ(σ ∧ γ),
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for some γ ∈ ∧k−1 H0(S, L)⊗H0(S, L). Now we observe that the condition

δ(σ ∧ γ) ∈
k−1∧

H0(S, L)⊗H0(S, 2L)

implies that δγ = 0. Hence

δ(σ ∧ γ) = −γ · σ.

The condition that

γ · σ ∈
k−1∧

H0(S, L)⊗H0(S, 2L),

with σ ∈ H0(S, L + ∆), σ|∆ 6= 0, implies now that γ ∈ ∧k−1 H0(S, L) ⊗
H0(S, L−∆). Hence γ ∈ Ker δ′ and the proposition is proved.

Our next task is to compute the dimension of the space

K := Ker (δ′ :
k−1∧

H0(S, L)⊗H0(S, L−∆) →
k−2∧

H0(S, L)⊗H0(S, 2L−∆)).

Notice that the Koszul complex of (S, L, L − ∆) equipped with the Koszul
differential δ′ has the following shape :

0 →
k−1∧

H0(S, L)⊗H0(S, L−∆)
δ′→

k−2∧
H0(S, L)⊗H0(S, 2L−∆) → (2.21)

. . . →
k−i∧

H0(S, L)⊗H0(S, iL−∆) → . . . .

So K is the first cohomology group of this complex, while the next ones are
the Kk−i,i−1(S, L, L−∆) for i ≥ 2. We have now

Lemma 4 The Koszul cohomology groups Kk−i,i−1(S, L, L − ∆) vanish for
i ≥ 2.

Proof. We observe that the triple (S, L, L−∆) satisfies the assumptions of the
duality theorem 6. Hence, using KS

∼= OS, and h0(L) = 2k + 2, we conclude
that Kk−i,i−1(S, L, L−∆) is dual to Kk−1+i,3−i+1(S, L,−L + ∆).

If i = 2, the last group is the cohomology at the middle of the sequence

k+2∧
H0(S, L)⊗H0(S, ∆)

δ1→
k+1∧

H0(S, L)⊗H0(S, L+∆)
δ2→

k∧
H0(S, L)⊗H0(S, 2L+∆).

Now we use the equality L′ = L + ∆ and Theorem 5 to conclude that if
β ∈ Ker δ2, then we have

β = δγ,

for some γ ∈ ∧k+2 H0(S, L′). As in the previous proof, we now write

γ = γ1 + σ ∧ γ2,
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with

γ1 ∈
k+2∧

H0(S, L), γ2 ∈
k+1∧

H0(S, L).

The fact that

δγ = β ∈
k+1∧

H0(S, L)⊗H0(S, L + ∆)

implies immediately that γ2 = 0. Hence in fact, we have in
∧k+1 H0(S, L′) ⊗

H0(S, L′) the equality

β = δγ, γ ∈
k+2∧

H0(S, L).

Using the fact that the inclusion H0(S, L) ⊂ H0(S, L+∆) is the multiplication
by the unique section of H0(S, ∆), it is obvious that this is equivalent to
β ∈ Im δ1. So the claim is proved in this case.

Next assume that i = 3. Then Kk−1+i,3−i+1(S, L,−L+∆) is the cohomology
in the middle of the sequence

k+3∧
H0(S, L)⊗H0(S,−L+∆)

δ1→
k+2∧

H0(S, L)⊗H0(S, ∆)
δ2→

k+1∧
H0(S, L)⊗H0(S, L+∆).

But since H0(S, ∆) is of dimension 1, it is easy to see that Ker δ2 = 0. So this
case is also proved.

Finally, if i ≥ 4, Kk−1+i,3−i+1(S, L,−L+∆) is 0 because it is the cohomology
at the middle of a complex with vanishing middle term, since H0(S, sL+∆) =
{0} for s < 0.

Corollary 1 The dimension of K is equal to the binomial coefficient

(
2k + 1
k − 1

)
.

Proof. K is the degree 0 cohomology group of the complex (2.21) whose
all next cohomology groups vanish. Hence the dimension of K is equal to
the Euler characteristic of this complex. Since the terms of the complex are∧k−i H0(S, L)⊗H0(S, iL−∆) put in degree i− 1, for i ≥ 1, and since

h0(S, L) = 2k + 2, h0(S, iL−∆) = 1 + 2ki2 − 2i,

we are reduced to proving the following identity:

(
2k + 1
k − 1

)
=

∑
i≥1

(−1)i−1

(
2k + 2
k − i

)
(1 + 2ki2 − 2i).

The proof is left to the reader.
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Recall now the vector bundle E from (1.3). Our strategy to conclude the
proof of Theorem 4, or equivalently the vanishing Kk−1,2(S, L) = 0, will be to
construct a map

φ : Sk−1H0(S, E) → K = Ker δ′

and to prove first of all that it is an isomorphism and secondly that all the
elements in Im φ are annihilated by the map ·σ of Proposition 6. The vanishing
Kk−1,2(S, L) = 0 will then be a consequence of Proposition 6.

Construction of φ. Recall that E|∆ ∼= O2
∆, and that the restriction map

H0(S, E) → H0(∆, E|∆)

is surjective. Since H0(S,E) is of dimension k +3, H0(S, E(−∆)) is of dimen-
sion k + 1. Consider the determinant map

d :
2∧

H0(S, E) → H0(S, L′).

Note that for v ∈ ∧2 H0(S, E(−∆)) we have d(v) ∈ H0(S, L(−∆)) and for
v ∈ H0(S,E) ∧H0(S, E(−∆)), we have d(v) ∈ H0(S, L). Let

w1, . . . , wk+1

be a basis of H0(S, E(−∆)). The map φ is defined by the following formula

φ(τ k−1) =
∑
i<j

(−1)i+jd(τ ∧ w1) ∧ . . . î . . . ĵ . . . ∧ d(τ ∧ wk+1)⊗ d(wi ∧ wj).(2.22)

By the remarks above, we have

φ(τ k−1) ∈
k−1∧

H0(S, L)⊗H0(S, L(−∆)) ⊂
k−1∧

H0(S, L′)⊗H0(S, L′).

We prove now:

Lemma 5 The image of φ is contained in Ker δ′, where δ′ is the Koszul dif-
ferential of (2.20).

Proof. Observe that we have the following quadratic equations for S, imbed-
ded in projective space via | L′ |, (these equations are in fact quadratic equa-
tions defining the Grassmannian of codimension 2 subspaces of H0(E), in
which S lies naturally): consider the natural map

ψ :
3∧

H0(S, E)⊗H0(S, E) →
2∧

H0(S, E)⊗
2∧

H0(S, E)

d⊗d→ H0(S, L′)⊗H0(S, L′) → S2H0(S, L′).
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Here the first map sends v1 ∧ v2 ∧ v3 ⊗ γ to

v2 ∧ v3 ⊗ v1 ∧ γ − v1 ∧ v3 ⊗ v2 ∧ γ + v1 ∧ v2 ⊗ v3 ∧ γ.

We claim that the image of ψ is contained in the ideal of S. The reason is
simply that the map ψ commutes with evaluation at x ∈ S and that since
rank E = 2, we have

∧3 Ex = 0.
So we conclude that we have the following equalities :

d(v2 ∧ v3) · d(v1 ∧ γ)− d(v1 ∧ v3) · d(v2 ∧ γ) (2.23)

+d(v1 ∧ v2) · d(v3 ∧ γ) = 0 in H0(S, 2L′).

We now compute :

δ′(φ(τ k−1)) =
∑

k<i<j

(−1)i+j+kd(τ∧w1)∧. . . k̂ î ĵ . . .∧d(τ∧wk+1)⊗d(τ∧wk)·d(wi∧wj)

−
∑

i<k<j

(−1)i+j+kd(τ ∧ w1) ∧ . . . î k̂ ĵ . . . ∧ d(τ ∧ wk+1)⊗ d(τ ∧ wk) · d(wi ∧ wj)

+
∑

i<j<k

(−1)i+j+kd(τ ∧ w1) ∧ . . . î ĵ k̂ . . . ∧ d(τ ∧ wk+1)⊗ d(τ ∧ wk) · d(wi ∧ wj).

This is also equal to
∑

i<j<k

(−1)i+j+kd(τ ∧ w1) ∧ . . . î . . . ĵ . . . k̂ . . . ∧ d(τ ∧ wk+1)

⊗(d(τ ∧ wk) · d(wi ∧ wj) + d(τ ∧ wi) · d(wj ∧ wk)− d(τ ∧ wj) · d(wi ∧ wk)).

Hence by (2.23), we find that

δ′(φ(τ k−1)) = 0 in
k−2∧

H0(S, L)⊗H0(S, 2L−∆).

Remark 1 The map φ is strongly related to the construction due to Green and
Lazarsfeld (see [4], Appendix) of non trivial syzygies in Kr1+r2−1,1(X, L1⊗L2),
where for i = 1, 2, Li are line bundles on X with ri + 1 = h0(X,Li). The
precise relation is obtained by taking X = C ∈| L |, L1 a line bundle of degree
k +2 on C with h0(L1) = 2, h0(L1−∆|C) = 1, and L2 = KC −L1. One has to
use for that the relation (given by sequences like (1.4)) between the Lazarsfeld
vector bundle E and linear systems on the curve C, or more precisely C ∪∆.

We shall prove the following :

Proposition 7 The map

φ : Sk−1H0(S, E) → K

is an isomorphism.
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Proof. By corollary 1, both spaces have the same dimension, since rank H0(S,E) =
k + 3. The fact that φ is an isomorphism reduces then to the following :

Proposition 8 The map φ is injective.

We postpone the proof of Proposition 8 to the next section.

Assuming Proposition 8, the proof of the vanishing

Kk−1,2(S, L) = 0

is then a consequence of Proposition 7, Proposition 6 and of the following :

Proposition 9 For β ∈ Imφ ⊂ K, we have

β · σ = 0 in Kk−1,2(S, L).

Proof. Let β = φ(τ k−1). We may assume first that τ 6∈ H0(S, E(−∆)), and
then that σ = d(τ ∧ w), for some w ∈ H0(S, E), because the result depends
only on the class of σ modulo H0(S, L), and the map

H0(S, E) → H0(S, L + ∆)/H0(S, L),

v 7→ d(τ ∧ v) mod H0(S, L)

is surjective. Next recall the formula (2.22)

φ(τ k−1) =
∑
i<j

(−1)i+jd(τ ∧ w1) ∧ . . . î . . . ĵ . . . ∧ d(τ ∧ wk+1)⊗ d(wi ∧ wj).

Using equations (2.23) applied to v1 = wi, v2 = wj, v3 = τ, γ = w, we get now

d(wi ∧ wj) · d(τ ∧ w) = d(τ ∧ wj) · d(wi ∧ w)− d(τ ∧ wi) · d(wj ∧ w).

Hence

φ(τ k−1) · d(τ ∧ w) =
∑
i<j

(−1)i+jd(τ ∧ w1) ∧ . . . î . . . ĵ . . . ∧ d(τ ∧ wk+1)

⊗(−d(τ ∧ wi) · d(wj ∧ w) + d(τ ∧ wj) · d(wi ∧ w)).

Now the expression on the right is equal to δβ′, with

β′ =
∑

i

(−1)id(τ ∧ w1) ∧ . . . î . . . ∧ d(τ ∧ wk+1)⊗ d(wi ∧ w),

and since wi ∈ H0(S, E(−∆)) we have

d(τ ∧ wi) ∈ H0(S, L), d(wi ∧ w) ∈ H0(S, L)

so that β′ ∈ ∧k H0(S, L)⊗H0(S, L). So β · σ = 0 in Kk−1,2(S, L).
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3 Proof of Proposition 8

Let us first recall the statement: we have the determinant map

d :
2∧

H0(E) → H0(S, L′),

which has the property that it does not vanish on non-zero decomposable
elements. Here the rank of H0(E) is k + 3 and the rank of H0(E(−∆)) is
k + 1. We defined the map

φ : Sk−1H0(E) →
k−1∧

H0(L)⊗H0(L(−∆)),

explicitly by the formula (cf (2.22))

φ(τ k−1) =
∑
i<j

(−1)i+jd(τ ∧ w1) ∧ . . . î . . . ĵ . . . ∧ d(τ ∧ wk+1)⊗ d(wi ∧ wj),

where the wl’s form a basis of H0(E(−∆)). Proposition 8 states that this map
is injective.

We give an ad hoc, presumably not optimal, proof of this, relying on the
particular geometry of the determinant map d. We believe that it is in fact
true for any d satisfying the condition that d does not vanish on decomposable
elements.

We assume in the following that k ≥ 2.
In our situation, let x ∈ S be a generic point. Consider the composition

φx of φ with the evaluation at x:

φx : Sk−1H0(E) →
k−1∧

H0(S, L)⊗H0(S, L(−∆)|x).

Choose the basis w1, . . . wk+1 in such a way that w1, . . . , wk−1 form a basis of
H0(S, E(−∆)⊗Ix). Then the d(wi∧wj) vanish at x if i or j is non greater than
k− 1, while d(wk ∧wk+1) does not vanish in H0(S, L(−∆)|x). Identifying this
last space with C, it follows that φx has the following form up to a coefficient:

φx(τ
k−1) = d(τ ∧ w1) ∧ . . . ∧ d(τ ∧ wk−1). (3.24)

First step. We first use formula (3.24) to express the map φ, or rather its
transpose, as the map induced in cohomology by the top exterior power of a
vector bundle map over an adequate variety. That will allow us later on to use
the Koszul resolution of such top exterior powers.

Denote by V the vector bundle on the K3 surface, which is defined by the
exact sequence

0 → V → H0(E(−∆))⊗OS → E(−∆) → 0.
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So the fiber Vx at x ∈ S is the space generated by the w1, . . . , wk−1 introduced
above.

On Y := P(H0(E))× S, there is a natural map

h : pr∗2V ⊗ pr∗1OP(H0(E))(−1) → H0(S, L)⊗OY ,

which at the point (τ, x) is the map

d(τ∧ ) : H0(E(−∆)⊗ Ix) → H0(L).

This map is injective when τ 6∈ H0(E(−∆) ⊗ Ix), and has for kernel < τ >
otherwise. Since we want to study the map induced in cohomology by the
top exterior power of h, we first want to make h into a morphism which is
everywhere injective. This is done as follows (we refer to diagram (3.31) for
the notations) : Let

P(V) =: Z = {(τ, x) ∈ Y, τ ∈ H0(E(−∆)⊗ Ix)}.

So Z is the locus of points (τ, x) where hτ,x is not injective. Denote by f : Ỹ →
Y the blow-up of Y along Z. For simplicity, denote by P the space P(H0(E))

and by p the map pr1 ◦ f : Ỹ → P. Let also q := pr2 ◦ f : Ỹ → S. The map h
extends to a map

h̃ : G → H0(S, L)⊗OỸ ,

which is now injective everywhere, where G is obtained from q∗V ⊗ p∗OP(−1)
by an elementary transform along the exceptional divisor D of f . Namely G
fits in an exact sequence

0 → q∗V ⊗ p∗OP(−1) → G → HD → 0,

where HD is a line bundle supported on D, and the restriction of the first
map to D has exactly for kernel the kernel of the map h|D, that is the sub-line
bundle

p∗OP(−2)|D ⊂ q∗V ⊗ p∗OP(−1)|D.

Note that

k−1∧
G = detG = p∗OP(−k + 1)⊗ q∗(L−1(∆))(D). (3.25)

Let

h̃k−1 : detG →
k−1∧

H0(L)⊗OỸ

be the map which is the k − 1-th exterior power of h̃, and let

h′k−1 :
k−1∧

H0(L)∗ ⊗ q∗(L−1(∆))(D) →
k−1∧

G∗ ⊗ q∗(L−1(∆))(D)
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be the transpose of h̃k−1 twisted by q∗(L−1(∆))(D). We first claim that the
transpose of the map φ identifies to the map h2(h′k−1):

H2(Ỹ ,
∧k−1 H0(L)∗ ⊗ q∗(L−1(∆))(D)) → H2(Ỹ ,

∧k−1 G∗ ⊗ q∗(L−1(∆))(D))
‖ ‖

∧k−1 H0(L)∗ ⊗H0(L(−∆))
tφ→ H2(Ỹ , p∗O(k − 1)) = Sk−1H0(E)∗ .

(3.26)

Indeed, by (3.25), we have

Rk+2q∗(KỸ ⊗ p∗OP(−k + 1)) = Rk+2q∗(KỸ ⊗ detG ⊗ q∗(L(−∆))(−D)),

and by Serre duality and KS = OS, the left hand side identifies to Sk−1H0(E)⊗
OS. Now, formula (3.24) says that the map induced (up to a twist) by h̃k−1 :

Sk−1H0(E)⊗OS
∼= Rk+2q∗(KỸ ⊗ detG ⊗ q∗(L(−∆))(−D))

→ Rk+2q∗(KỸ ⊗
k−1∧

H0(L)⊗ q∗(L(−∆))(−D)) =
k−1∧

H0(L)⊗ L(−∆)

is exactly the map φ followed with evaluation. Taking global sections on S,
we conclude that φ is the map induced by h̃k−1 (up to a twist):

Hk+2(Ỹ , KỸ⊗detG⊗q∗(L(−∆))(−D)) → Hk+2(Ỹ ,KỸ⊗
k−1∧

H0(L)⊗q∗(L(−∆))(−D)),

and applying Serre duality gives the result.
So the content of Proposition 8 is the surjectivity of the map h2(h′k−1).

Second step. We shall now analyse the spectral sequence associated to the
Koszul resolution of Ker h′k−1: associated to the surjective map th̃, there is a
resolution

0 →
2k+2∧

H0(L)∗ ⊗ Sk+3G → . . . →
k∧

H0(L)∗ ⊗ G (3.27)

→
k−1∧

H0(L)∗ ⊗OỸ →
k−1∧

G∗ → 0.

We claim now that the surjectivity of the map (3.26) follows from the following
lemmas.

Lemma 6 For 1 ≤ l ≤ k, or l = k + 2, we have

H l+2(Ỹ , SlG ⊗ q∗(L−1(∆))(D)) = 0.

Lemma 7 The sequence

2k+1∧
H0(L)∗ ⊗Hk+3(Ỹ , Sk+2G ⊗ q∗(L−1(∆))(D)) (3.28)

→
2k∧

H0(L)∗ ⊗Hk+3(Ỹ , Sk+1G ⊗ q∗(L−1(∆))(D))

→
2k−1∧

H0(L)∗ ⊗Hk+3(Ỹ , SkG ⊗ q∗(L−1(∆))(D))

induced by the complex (3.27) is exact at the middle.
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Indeed, these two lemmas together imply that the vector bundle Ker h′k−1

satisfies H3(Ỹ , Ker h′k−1) = 0, which implies the surjectivity of h2(h′k−1): In
fact, twisting the complex (3.27) by q∗(L−1(∆))(D), we get a resolution of
Ker h′k−1 as follows :

0 →
2k+2∧

H0(L)∗⊗Sk+3G⊗q∗(L−1(∆))(D) → . . . →
k∧

H0(L)∗⊗G⊗q∗(L−1(∆))(D)

→ Ker h′k−1 → 0.

The associated spectral sequence abutting to the hypercohomology of the com-
plex

0 →
2k+2∧

H0(L)∗⊗Sk+3G⊗q∗(L−1(∆))(D) → . . . →
k∧

H0(L)∗⊗G⊗q∗(L−1(∆))(D) → 0,

where we put the last term on the right in degree 0, has

Ep,q
1
∼=

k−p∧
H0(L)∗ ⊗Hq(Ỹ , S1−pG ⊗ q∗(L−1(∆))(D)).

Now Lemma 6 says that the Ep,q
1 for p + q = 3, q ≥ 3 are 0 unless q = k + 3.

For q = k + 3, we have E−k,k+3
1 6= 0 but Lemma 7 says that E−k,k+3

2 = 0.

Hence this complex has H3 = 0 and thus H3(Ỹ , Ker h′k−1) = 0.

Third step. We start now proving Lemmas 6 and 7. We shall use for this
another geometric definition of the vector bundle G. We refer to diagram (3.31)
for the notations.

Proof of Lemma 6. Let F be the quotient bundle H0(S,E) ⊗ OS/V .
There is the relative projection

χ : Ỹ → P(F),

which makes Ỹ isomorphic to P(H), where H is a vector bundle on P(F) which
fits in the exact sequence

O → π∗V → H → OP(F)(−1) → 0, (3.29)

where π : P(F) → S is the structural map. We observe now that G is naturally
isomorphic to the twisted relative tangent bundle Tχ⊗ p∗OP(−2). To see this,
we consider the relative Euler sequence

0 → p∗OP(−2) → χ∗H⊗ p∗OP(−1) → Tχ(−2) → 0. (3.30)

It induces a map
q∗V ⊗ p∗OP(−1) → Tχ,
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and it follows from the Euler sequence that this map is injective away from
D and has p∗OP(−2)|D as kernel along D. Hence Tχ is deduced from q∗V ⊗
p∗OP(−1) by the same elementary transform as G.

D Ỹ = P(H) P(F)

Z = P(V) Y

P := P(H0(E)) S

y w

u

A
A
A
A
A
A
A
A
AAD

p

u
f



















�

q

wχ

A
A
A
A
A
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AAD

π
y w[[[[[[̂

pr1

'
'
'
'
'
'')

pr2

(3.31)

The relative Euler sequence (3.30) describes G by the exact sequence :

0 → p∗OP(−2) → p∗OP(−1)⊗ χ∗H → G → 0. (3.32)

Taking the l-th symmetric power, we get the exact sequence :

0 → p∗OP(−l − 1)⊗ χ∗Sl−1H → p∗OP(−l)⊗ χ∗SlH → SlG → 0. (3.33)

Assume first that 1 ≤ l ≤ k − 1. By the exact sequence (3.33), the vanishing

H l+2(Ỹ , SlG ⊗ q∗(L−1(∆))(D)) = 0

is implied by the vanishings :

H l+2(Ỹ , p∗OP(−l)⊗ χ∗SlH⊗ q∗(L−1(∆))(D)) = 0, (3.34)

H l+3(Ỹ , p∗OP(−l − 1)⊗ χ∗Sl−1H⊗ q∗(L−1(∆))(D)) = 0.

Now, if k − 1 ≥ l ≥ 2, the line bundles p∗OP(−l)(D), p∗OP(−l − 1)(D), have
trivial cohomology along the fibers of χ, which are Pk−1’s, on which D restricts
to O(1). Hence the vanishings (3.34) are proved in this case. The case l = 1
is also easy.

If l = k, the argument above gives an inclusion

Hk+2(Ỹ , SkG ⊗ q∗(L−1(∆))(D))

↪→ Hk+3(Ỹ , p∗OP(−k − 1)⊗ χ∗Sk−1H⊗ q∗(L−1(∆))(D)).

By Serre duality, this dualizes as

H1(Ỹ , p∗OP(−2)⊗ χ∗Sk−1H∗ ⊗ q∗(L(−∆))(2D)).

Since p∗OP(−2)(2D) = χ∗OP(F)(−2) and Sk−1H∗ = R0χ∗(p∗OP(k − 1)), the
last space is equal to

H1(Ỹ , p∗OP(k − 3)(2D)⊗ q∗(L− (∆))),
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which is 0 because the map f = (p, q) is the blow-down map, and 2D has trivial

cohomology along the fibers of f . It follows that H1(Ỹ , p∗OP(k − 3)(2D) ⊗
q∗(L− (∆))) = H1(Y, pr∗1OP(k − 3)⊗ pr∗2(L− (∆))) = 0.

Next, if l = k + 2, we use the inclusion p∗OP(−1) ⊗ q∗V ⊂ G, which is an
isomorphism away from D, to get a surjective map

Hk+4(Ỹ , p∗OP(−k − 2)⊗ q∗Sk+2V ⊗ q∗(L−1(∆))(D))

→ Hk+4(Ỹ , Sk+2G ⊗ q∗(L−1(∆))(D)).

The left hand side is zero because D has trivial cohomology along the fibers
of (p, q), so that

Hk+4(Ỹ , p∗OP(−k − 2)⊗ q∗Sk+2V ⊗ q∗(L−1(∆))(D))

= Hk+4(Y, pr∗1OP(−k − 2)⊗ pr∗2(S
k+2V ⊗ L−1(∆))) = 0

(recall that Y = P(H0(E)) × S, with rk H0(E) = k + 3). Hence we conclude

that Hk+4(Ỹ , Sk+2G ⊗ q∗(L−1(∆))(D)) = 0.

In order to prove Lemma 7, we will need the following :

Lemma 8 1. The space

Hk+3(Ỹ , Sk+1G ⊗ q∗(L−1(∆))(D)) (3.35)

is canonically isomorphic to Sk−2H0(E)⊗H2(S,V ⊗ L−1(∆)).

2. The space Hk+3(Ỹ , Sk+2G ⊗ q∗(L−1(∆))(D)) is canonically isomorphic
to Sk−1H0(E)⊗H2(S, S2V ⊗ L−1(∆)).

3. The space Hk+3(Ỹ , SkG ⊗ q∗(L−1(∆))(D)) is canonically isomorphic to
Sk−3H0(E)⊗H2(S, L−1(∆)).

Proof. We use the exact sequence

0 → χ∗Sl−1H⊗ p∗OP(−l − 1) → χ∗SlH⊗ p∗OP(−l) → SlG → 0.

It implies by the associated long exact sequence that the space

Hk+3(Ỹ , SlG ⊗ q∗(L−1(∆))(D))

is isomorphic to

Ker (Hk+4(Ỹ , χ∗Sl−1H⊗ p∗OP(−l − 1)⊗ q∗(L−1(∆))(D))

→ Hk+4(Ỹ , χ∗SlH⊗ p∗OP(−l)⊗ q∗(L−1(∆))(D))).

Recalling that
p∗OP(1) = χ∗OP(F)(1)(D),
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we can rewrite this as

Ker (Hk+4(Ỹ , χ∗Sl−1H⊗ χ∗OP(F)(−1)⊗ p∗OP(−l)⊗ q∗(L−1(∆))) (3.36)

→ Hk+4(Ỹ , χ∗SlH⊗ χ∗OP(F)(−1)⊗ p∗OP(−l + 1)⊗ q∗(L−1(∆)))).

Now, we use the formula

KỸ /P(F) = p∗OP(−k)⊗ χ∗detH∗,

that is, by the exact sequence (3.29), which gives detH∗ = π∗(L(−∆)) ⊗
OP(F)(1),

KỸ /P(F) = p∗OP(−l)⊗ χ∗OP(F)(1) ⊗ q∗(L(−∆)).

It follows then by Leray spectral sequence and relative Serre duality, that (3.36)
is also equal to:

Ker (H5(P(F), Sl−1H⊗ Sl−kH⊗OP(F)(−2)⊗ π∗(L−2(2∆)))

→ H5(P(F), SlH⊗ Sl−k−1H⊗OP(F)(−2)⊗ π∗(L−2(2∆)))),

where we make the convention that negative symmetric powers are 0, and
where the map is induced by the natural map

Sl−1H⊗ Sl−kH → SlH⊗ Sl−k−1H.

We now apply again relative Serre duality and Leray spectral sequence to
conclude that this is also equal to :

Ker (Hk+4(Ỹ , p∗OP(−k − l)⊗ χ∗Sl−kH⊗ q∗(L−1(∆))(D))

→ Hk+4(Ỹ , p∗OP(−k − l − 1)⊗ χ∗Sl−k−1H⊗ q∗(L−1(∆))(D))).

We now distinguish according to the value of l.

- Case l = k. We proved that in this case we have

Hk+3(Ỹ , SkG ⊗ q∗(L−1(∆))(D)) ∼= Hk+4(Ỹ , p∗OP(−2k)⊗ q∗(L−1(∆))(D)).

Since KỸ = p∗OP(−k − 3)(3D), this is Serre dual to

H0(Ỹ , p∗OP(k − 3)⊗ q∗(L(−∆))(2D)) = Sk−3H0(E)∗ ⊗H0(S, L(−∆)).

Applying Serre’s duality on S gives then 3.

- Case l = k + 1. In this case, we have

Hk+3(Ỹ , Sk+1G ⊗ q∗(L−1(∆))(D)) ∼= (3.37)

Ker (Hk+4(Ỹ , p∗OP(−2k − 1)⊗ χ∗H⊗ q∗(L−1(∆))(D))

→ Hk+4(Ỹ , p∗OP(−2k − 2)⊗ q∗(L−1(∆))(D))).
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The right hand side is computed as before : by Serre duality on Ỹ , we get

Hk+4(Ỹ , p∗OP(−2k − 2)⊗ q∗(L−1(∆))(D)) ∼= Sk−1H0(E)⊗H2(S, L−1(∆)).(3.38)

To compute the left hand side, we use the exact sequence (3.29):

O → π∗V → H → OP(F)(−1) → 0.

Pulling back to Ỹ and tensoring with p∗OP(−2k − 1) ⊗ q∗(L−1(∆))(D), it
provides the exact sequence:

O → q∗V ⊗ p∗OP(−2k − 1)⊗ q∗(L−1(∆))(D) (3.39)

→ χ∗H⊗ p∗OP(−2k − 1)⊗ q∗(L−1(∆))(D)

→ χ∗OP(F)(−1)⊗ p∗OP(−2k − 1)⊗ q∗(L−1(∆))(D) → 0.

Note that, as (3.29) is (non-canonically) split along the fibers of π, the sequence
(3.39) is (non-canonically) split along the fibers of q. Hence there is an induced
exact sequence on S:

O → V ⊗ L−1(∆)⊗Rk+2q∗(p∗OP(−2k − 1)(D)) (3.40)

→ L−1(∆)⊗Rk+2q∗(χ∗H⊗ p∗OP(−2k − 1)(D))

→ L−1(∆)⊗Rk+2q∗(χ∗OP(F)(−1)⊗ p∗OP(−2k − 1)(D)) → 0.

Using the equality

KỸ = KỸ /S = p∗OP(−k − 3)(3D)

and relative Serre duality, we get :

Rk+2q∗(p∗OP(−2k − 1)(D)) ∼= R0q∗(p∗OP(k − 2)(2D))∗

= Sk−2H0(E)⊗OS.

Similarly, we get

Rk+2q∗(p∗OP(−2k − 1)⊗ χ∗OP(F)(−1)(D))

= Rk+2q∗(p∗OP(−2k − 2)(2D)) ∼= R0q∗(p∗OP(k − 1)(D))∗

= Sk−1H0(E)⊗OS.

The exact sequence (3.40) thus rewrites as :

0 → V ⊗ L−1(∆)⊗ Sk−2H0(E) → Rk+2q∗(χ∗H⊗ p∗OP(−2k − 1)(D)))

→ L−1(∆)⊗ Sk−1H0(E) → 0.

This last exact sequence is now canonically split because

H0(S,V) = H1(S,V) = 0.
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It follows that we have a canonical isomorphism :

Hk+4(Ỹ , χ∗H⊗ p∗OP(−2k − 1)(D)) = H2(S, Rk+2q∗(χ∗H⊗ p∗OP(−2k − 1)(D)))

= H2(S,V ⊗ L−1(∆))⊗ Sk−2H0(E)⊕H2(S, L−1(∆))⊗ Sk−1H0(E) .(3.41)

In conclusion, using (3.37), (3.38) and (3.41), we have found a canonical
identification :

Hk+3(Ỹ , Sk+1G ⊗ q∗(L−1(∆))(D)) ∼=
Ker (Sk−2H0(E)⊗H2(S,V ⊗ L−1(∆))⊕ Sk−1H0(E)⊗H2(S, L−1(∆))

→ Sk−1H0(E)⊗H2(S, L−1(∆))).

One checks that the second component of the map is the identity, which gives
a canonical identification :

Hk+3(Ỹ , Sk+1G ⊗ q∗(L−1(∆))(D)) ∼= Sk−2H0(E)⊗H2(S,V ⊗ L−1(∆)),

proving 1.
The isomorphism 2 is proved in the same way.

Let us now compute the spaces H2(S,V⊗L−1(∆)) and H2(S, S2V⊗L−1(∆)).
We first observe that the exact sequence

0 → V → H0(E(−∆))⊗OS → E(−∆) → 0,

and Serre duality give an isomorphism

H2(S,V ⊗ L−1(∆)) ∼= Ker c, (3.42)

where c is the contraction map

H0(E(−∆))⊗H0(S, L(−∆))∗ → H0(E(−∆))∗

induced by the determinant map

d0 :
2∧

H0(E(−∆)) → H0(S, L(−∆)).

Similarly the induced exact sequence

0 → S2V → S2H0(E(−∆))⊗OS → H0(E(−∆))⊗E(−∆) →
2∧

E(−∆) → 0

gives a surjective map :

H2(S, S2V ⊗ L−1(∆)) ³ Ker c′, (3.43)

where the contraction map

c′ : S2H0(E(−∆))⊗H0(S, L(−∆))∗ → H0(E(−∆))⊗H0(E(−∆))∗,
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is also induced by d0.
Using Lemma 8, we rewrite now the sequence (3.28) as follows: We first

identify
2k+1∧

H0(L)∗,
2k∧

H0(L)∗,
2k−1∧

H0(L)∗

respectively to

H0(L),
2∧

H0(L),
3∧

H0(L).

Then via the isomorphisms given in Lemma 8, and (3.42), (3.43) above, our
sequence (3.28) becomes, after replacing the first term by its quotient given in
(3.43), through which the first map factors :

H0(L)⊗ Sk−1H0(E)⊗Ker c′ →
2∧

H0(L)⊗ Sk−2H0(E)⊗Ker c (3.44)

→
3∧

H0(L)⊗ Sk−3H0(E)⊗H0(S, L(−∆))∗.

It is immediate to check that the maps of the complex are induced by the
determinant map

d : H0(E)⊗H0(E(−∆)) → H0(L)

and by the natural maps, for (i, j) = (k − 1, 2), (k − 2, 1), (k − 3, 0) :

SiH0(E)⊗SjH0(E(−∆)) → Si−1H0(E)⊗Sj−1H0(E(−∆))⊗H0(E)⊗H0(E(−∆)).

Fourth step. We now want to prove Lemma 7, which we have just proved
to be equivalent to exactness at the middle of the sequence (3.44). We do not
need at this point the K3 surface anymore. We shall use now only the map
d and do geometry on the Grassmannian of subspaces of H0(E). We believe
that this step is the only essential one in the proof of proposition 8.

Denote by G the Grassmannian of rank 2 subspaces of H0(E), and let L
be the Plücker line bundle on G, E the tautological rank 2 quotient bundle on
G. Let G̃′ be the desingularization of the hypersurface G′ ⊂ G parametrizing
the V ⊂ H0(E) meeting H0(E(−∆)), defined as

G̃′ = {(v, V ) ∈ P(H0(E(−∆)))×G, v ∈ V }.

We shall also denote by L, E the pull-backs of L, E to G̃′ by the second pro-
jection. Let

g : G̃′ → PH0(E(−∆))

be the first projection, and denote by H the line bundle g∗OPH0(E(−∆))(1).
Next, the map

d0 :
2∧

H0(E(−∆)) → H0(L(−∆))
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allows to define
I ⊂ PH0(L(−∆))∗ × PH0(E(−∆)),

I = {(σ, v), σ(d0(v ∧ ·)) = 0 in H0(E(−∆))∗}.
Let Ĩ

π→ G̃′ be the fibered product I ×PH0(E(−∆)) G̃
′. We shall denote by K the

line bundle
pr∗1OPH0(L(−∆))∗(1)

on Ĩ, and by L′, E ′, H ′ the pull-backs to Ĩ of the corresponding objects on G̃′,
that is

L′ = π∗L, E ′ = π∗E , H ′ = π∗H.

The notations are summarized in the following diagram:

I Ĩ PĨ

PH0(L(−∆))∗ PH0(E(−∆)) G̃′ P PH0(E)

G′ G

u
pr1

'
'
'
'
'')

pr2

u
g′

'
'
'
'
'
'')

π

u α

'
'
'
'
'')

hhhhhhhhhhhhhj

β

u
g

u
desing

'
'
'
'
'') u

p

w
q

y w
hypersurface

(3.45)

We shall use the following Lemma:

Lemma 9 For any positive integers p, s, t ≥ s, p ≥ s we have

H0(Ĩ , SpE ′ ⊗ L′−s ⊗H ′t ⊗K) ∼= H0(Ĩ , Sp−sE ′ ⊗H ′t−s ⊗K),

H0(Ĩ , Sp−sE ′⊗H ′t−s⊗K) ∼= Sp−sH0(E)∗⊗ [St−sH0(E(−∆))⊗H0(L(−∆))∗]∗0.

Here, the term [St−sH0(E(−∆)) ⊗H0(L(−∆))∗]0 has the following meaning:
the map d0 provides a contraction map

H0(E(−∆))⊗H0(L(−∆))∗ → H0(E(−∆))∗

and more generally a contraction map

ci : SiH0(E(−∆))⊗H0(L(−∆))∗ → Si−1H0(E(−∆))⊗H0(E(−∆))∗.

Then we denote

[SiH0(E(−∆))⊗H0(L(−∆))∗]0 := Ker ci.

Note that with the previous notations, we have c′ = c2, c = c1.

Proof of Lemma 9. These facts are proved using the exact sequence on
G̃′:

0 → L⊗H−1 → E → H → 0,
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or, pulling-back via π:

0 → L′ ⊗H ′−1 → E ′ → H ′ → 0

on Ĩ. Taking symmetric powers gives exact sequences

0 → Sl−1E ′ ⊗ L′ ⊗H ′−1 → SlE ′ → H ′l → 0 (3.46)

on Ĩ. Take l = p and tensor (3.46) with L′−s ⊗ H ′t ⊗ K. Observing that if

s > 0, H0(Ĩ ,L′−s⊗H ′p+t⊗K) = 0 because the restriction of this line bundle to
the fibers of g′ is O(−s) on a projective space of dimension > 0, we conclude
that

H0(Ĩ , SpE ′ ⊗ L′−s ⊗H ′t ⊗K) ∼= H0(Ĩ , Sp−1E ′ ⊗ L′−s+1 ⊗H ′t−1 ⊗K),

which proves the first equality by iteration.
The second equality follows from the following observation : denoting by

PĨ

(α,β)→ Ĩ ×P(H0(E)) the pull-back to Ĩ of the tautological P1-bundle P on G,
(see diagram (3.45),) there is a natural map

PĨ

(g′◦α,β)−→ I × P(H0(E))

which is immediately seen to be birational. Furthermore, we have SlE ′ ∼=
R0α∗(β∗O(l)) on Ĩ, so that

H0(Ĩ , H ′i ⊗ SjE ′ ⊗K) = H0(PĨ , α
∗(H ′i ⊗K)⊗ β∗O(j))

= H0(PĨ , (g
′ ◦ α)∗(pr∗2O(i)⊗K))⊗ β∗O(j)).

Because the map (g′ ◦ α, β) is birational, this is also equal to

H0(I × P(H0(E)), pr∗2O(i)⊗K £O(j)) = H0(I, pr∗2O(i)⊗K)⊗ SjH0(E)∗.

To conclude, it thus suffices to show the following equality:

H0(I, pr∗2O(i)⊗K) = [SiH0(E(−∆))⊗H0(L(−∆))∗]∗0.

This last fact follows from the fact that by definition of I and K, the vector
bundle

Q := R0pr2∗K
on PH0(E(−∆)) fits into the exact sequence

0 → O(−2) → O(−1)⊗H0(E(−∆))
d0→ H0(L(−∆))⊗O → Q→ 0. (3.47)

It follows from this exact sequence, using the fact that rk H0(E(−∆)) = k+1 ≥
3 and vanishing on PH0(E(−∆)), that

H0(I, pr∗2O(i)⊗K) = H0(PH0(E(−∆)),O(i)⊗R0pr2∗K)

= H0(PH0(E(−∆)),O(i)⊗Q)

is equal to the cokernel of the map induced by d0

Si−1H0(E(−∆))∗ ⊗H0(E(−∆)) → SiH0(E(−∆))∗ ⊗H0(L(−∆)),

that is to [SiH0(E(−∆))⊗H0(L(−∆))∗]∗0.
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This Lemma will provide in particular canonical identifications:

H0(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−1) = Sk−3H0(E)∗ ⊗H0(L(−∆)), (3.48)

H0(Ĩ , Sk−2E ′ ⊗K ⊗H ′) = (3.49)

Sk−2H0(E)∗ ⊗ [H0(E(−∆))⊗H0(L(−∆))∗]∗0
= Sk−2H0(E)∗ ⊗ (Ker c)∗,

an inclusion

H0(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′) ⊂ H0(Ĩ , Sk−1E ′ ⊗K ⊗H ′2) (3.50)

and an identification:

H0(Ĩ , Sk−1E ′ ⊗K ⊗H ′2) = (3.51)

Sk−1H0(E)∗ ⊗ [S2H0(E(−∆))⊗H0(L(−∆))∗]∗0
= Sk−1H0(E)∗ ⊗ (Ker c′)∗.

They are used as follows: The determinant map d : H0(E) ⊗H0(E(−∆)) →
H0(L) provides dually a linear system

H0(L)∗ =: W ⊂ H0(G′,L) ⊂ H0(Ĩ ,L′)
which has no base-point by Proposition 2. This provides an exact Koszul
complex on Ĩ :

0 →
2k+2∧

W ⊗ L′−2k−2 → . . . → W ⊗ L′−1 → OĨ → 0. (3.52)

We twist by Sk−2E ′ ⊗ L′⊗2 ⊗ H ′ ⊗ K and take global sections. The relevant
piece of this complex of global sections is:

. . . →
3∧

W ⊗H0(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−1) →(3.53)

2∧
W ⊗H0(Ĩ , Sk−2E ′ ⊗K ⊗H ′) → W ⊗H0(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′) → . . .

Using the inclusion (3.50), this sequence has the same cohomology at the
middle as the sequence:

. . . →
3∧

W ⊗H0(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−1) →(3.54)

2∧
W ⊗H0(Ĩ , Sk−2E ′ ⊗K ⊗H ′) → W ⊗H0(Ĩ , Sk−1E ′ ⊗K ⊗H ′2) → . . .

Finally, using the identifications (3.48), (3.49), (3.51) above, we see that the
three terms of this last sequence are canonically dual to the three terms of
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the sequence (3.44). We leave to the reader to verify that this last sequence is
indeed dual to (3.44). Hence, the exactness at the middle of (3.44) is equivalent
to the exactness at the middle of the Koszul sequence (3.53), and we claim
that this is implied by the following statement :

Lemma 10 For 1 ≤ i ≤ 2k − 1 we have the vanishing

H i(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−i−1) = 0. (3.55)

Indeed, the Koszul complex (3.52) twisted by Sk−2E ′⊗K⊗H ′⊗L′2 reads

0 →
2k+2∧

W ⊗ Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−2k → . . . →
2∧

W ⊗ Sk−2E ′ ⊗K ⊗H ′

→ W ⊗ Sk−2E ′ ⊗K ⊗H ′ ⊗ L′ → . . . .

In particular, this provides by truncation a resolution

0 →
2k+2∧

W⊗Sk−2E ′⊗K⊗H ′⊗L′−2k → . . . →
4∧

W⊗Sk−2E ′⊗K⊗H ′⊗L′−2 →M→ 0,

of the sheaf M on Ĩ which fits in the exact sequence:

0 →M→
3∧

W ⊗ Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−1 (3.56)

→
2∧

W ⊗ Sk−2E ′ ⊗K ⊗H ′ → W ⊗ Sk−2E ′ ⊗K ⊗H ′ ⊗ L′ . . . .
Now the exactness at the middle of the sequence (3.53) is implied by the

vanishing H1(Ĩ ,M) = 0. By the above resolution, this space is isomorphic to
the hypercohomology group

H1(Ĩ , 0 →
2k+2∧

W ⊗ Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−2k → . . . (3.57)

→
4∧

W ⊗ Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−2 → 0),

where the last term on the right is put in degree 0. The terms Ep,q
1 of the

spectral sequence associated to the naive filtration of this complex are equal
to

4−p∧
W ⊗Hq(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′p−2)

in degree p + q, that is, for p + q = 1, to

q+3∧
W ⊗Hq(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−q−1), q ≥ 1.

Hence the vanishings (3.55) say that the terms Ep,q
1 , p + q = 1 of this spectral

sequence are 0 for 1 ≤ q ≤ 2k− 1 and they are also obviously 0 for q > 2k− 1,
since then

∧q+3 W = 0. Thus (3.57) vanishes and so does H1(Ĩ ,M).
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Proof of Lemma 10. Consider the Cartesian diagram (see diagram (3.45):

Ĩ G̃′

PH0(L(−∆))∗ I PH0(E(−∆))

wπ

u u
g

u
pr1

w
pr2

(3.58)

We have
R0π∗K = g∗(R0pr2∗(pr∗1O(1))) = g∗Q,

where the bundle Q on PH0(E(−∆)) admits the resolution (see (3.47)):

0 → O(−2) → O(−1)⊗H0(E(−∆))
d0→ H0(L(−∆))⊗O → Q→ 0.

Since E ′, L′, H ′ are pull-backs via π of the corresponding objects on G̃′, we
have:

H i(Ĩ , Sk−2E ′ ⊗K ⊗H ′ ⊗ L′−i−1) = H i(G̃′, Sk−2E ⊗H ⊗ L−i−1 ⊗ g∗Q).

The bundle g∗Q admits the resolution:

0 → H−2 → H−1 ⊗H0(E(−∆))
d0→ H0(L(−∆))⊗OG̃′ → g∗Q → 0,

and it follows that the desired vanishing

H i(G̃′, Sk−2E ⊗H ⊗ L−i−1 ⊗ g∗Q) = 0, 1 ≤ i ≤ 2k − 1

is a consequence of the following:

H i(G̃′, Sk−2E ⊗H ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 1, (3.59)

H i+1(G̃′, Sk−2E ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 1,

H i+2(G̃′, Sk−2E ⊗H−1 ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 2,

and of the following fact:

Lemma 11 The map

H i+2(G̃′, Sk−2E ⊗H−1 ⊗ L−i−1) → H0(E(−∆))⊗H i+2(G̃′, Sk−2E ⊗ L−i−1)

induced by the natural inclusion

H−1 ⊂ H0(E(−∆))⊗OG̃′

is injective for i = 2k − 1.
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Let us first prove (3.59): We use the fact that we can see G̃′ as the complete
intersection of two members of | H | on the tautological P1-bundle P on G.
Indeed, let P ⊂ G × PH0(E) be the tautological subbundle, and denote by
p : P → G the first projection, q : P → PH0(E) the second projection (see
diagram (3.45)). Denote by H the line bundle q∗O(1) on P , and by E , L the

pull-backs via p of the corresponding bundles on G. Then by definition, G̃′

identifies to q−1(PH0(E(−∆))), and the bundles H, E , L are the restrictions

to G̃′ of the corresponding objects on P .
Hence there is a Koszul resolution of OG̃′ which has the form:

0 →
2∧

R⊗H−2 → R⊗H−1 → OP → OG̃′ → 0,

where R is a rank 2 vector space.
Using this resolution, we see that the vanishing statements (3.59) are a

consequence of the following ones:

1. H i(P, Sk−2E ⊗H ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 1,

2. H i+1(P, Sk−2E ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 1,

3. H i+2(P, Sk−2E ⊗H−1 ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 1,

4. H i+3(P, Sk−2E ⊗H−2 ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 1,

5. H i+4(P, Sk−2E ⊗H−3 ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 2.

Recall now the following statement proven in the Appendix of [12]:

Proposition 10 For q > 0, q′ ≥ 0, Hp(G,L−q⊗Sq′E) = 0 if p 6= k+1, 2k+2.
For p = k + 1, Hp(G,L−q ⊗ Sq′E) = 0 if −q + q′ + 1 < 0 or q ≤ k + 1.

(Note the shift of notation from k there to k + 1 here, which is due to the fact
that we are now working with a space H0(E) of rank k + 3 instead of k + 2.)

The vanishing 2 follows directly from this Proposition. The vanishing 3
follows from the fact that H−1 has trivial cohomology along the fibers of p :
P → G. For the vanishing 1, we use the exact sequence on P :

0 → L⊗H−1 → E → H → 0.

It provides the exact sequence:

0 → L⊗H−1 ⊗ Sk−3E → Sk−2E → Hk−2 → 0.

Hence we see that 1 is implied by the vanishings:

H i(P, Sk−3E ⊗ L−i) = 0, 1 ≤ i ≤ 2k − 1,

H i(P, Hk−1 ⊗ L−i−1) = H i(G,Sk−1E ⊗ L−i−1) = 0, 1 ≤ i ≤ 2k − 1,
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and they are both consequences of Proposition 10.
For the vanishing 4, one notes that KP/G is equal to H−2 ⊗ L. Hence we

have

H i+3(P, Sk−2E ⊗ L−i−1 ⊗H−2) = H i+2(G,Sk−2E ⊗ L−i−1 ⊗R1p∗H−2)

= H i+2(G,Sk−2E ⊗ L−i−2).

This vanishes for 1 ≤ i ≤ 2k − 1 by Proposition 10.
To conclude, 5 is proved as follows: We have as above:

H i+4(P, Sk−2E ⊗ L−i−1 ⊗H−3) = H i+3(G,Sk−2E ⊗ L−i−1 ⊗R1p∗H−3)

= H i+3(G,Sk−2E ⊗ L−i−2 ⊗ E∗),
using relative Serre duality and R0p∗H = E on G. Since E∗ = E ⊗ L−1, the
last term is equal to

H i+3(G,Sk−2E ⊗ E ⊗ L−i−3).

By the exact sequence

0 → L⊗ Sk−3E → Sk−2E ⊗ E → Sk−1E → 0,

we see that the vanishing H i+3(G,Sk−2E ⊗ E ⊗ L−i−3) = 0 for 1 ≤ i ≤ 2k − 2
is a consequence of the vanishings

H i+3(G,Sk−3E ⊗ L−i−2) = 0,

H i+3(G,Sk−1E ⊗ L−i−3) = 0,

for 1 ≤ i ≤ 2k − 2, which both follow from Proposition 10.
This concludes the proof of (3.59) and the proof of Lemma 10 will then be

concluded with the proof of Lemma 11.

Proof of Lemma 11.
Since the map

H2k+1(G̃′, Sk−2E ⊗H−1 ⊗ L−2k) → H0(E(−∆))⊗H2k+1(G̃′, Sk−2E ⊗ L−2k)

is induced by the inclusion

H−1 ⊂ H0(E(−∆))⊗OG̃′ ,

which is dual to the evaluation map, where H0(E(−∆))∗ is identified to H0(G̃′, H),
we see that its dual is equal to the multiplication map:

H0(E(−∆))∗⊗H0(G̃′, KG̃′⊗Sk−2E∗⊗L2k) → H0(G̃′, KG̃′⊗H⊗Sk−2E∗⊗L2k).

The canonical bundle of G̃′ is equal to L−k−2, because G̃′ is the complete
intersection of two members of | H | in P and KP = L−k−2 ⊗H−2.
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Thus we have to prove that the multiplication map

H0(E(−∆))∗ ⊗H0(G̃′, Sk−2E∗ ⊗ Lk−2) → H0(G̃′, H ⊗ Sk−2E∗ ⊗ Lk−2)

is surjective.
Since E∗⊗L ∼= E , this is equivalent to the surjectivity of the multiplication

map
H0(E(−∆))∗ ⊗H0(G̃′, Sk−2E) → H0(G̃′, H ⊗ Sk−2E).

This follows from the surjectivity of the multiplication map

H0(P,H)⊗H0(P, Sk−2E) → H0(P, H ⊗ Sk−2E),

and of the restriction map

H0(P, H ⊗ Sk−2E) → H0(G̃′, H ⊗ Sk−2E).
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