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0 Introduction

For a smooth complex projective variety X, Mumford has shown in [9] that the triviality of
the Chow group CH0(X), i.e. CH0(X)hom = 0, implies the vanishing of holomorphic forms
of positive degree onX. An immediate generalization is the fact that a 0-correspondence Γ ∈
CHd(Y ×X), with d = dimX, which induces the 0-map Γ∗ : CH0(Y )hom → CH0(X)hom
has the property that the maps Γ∗ : Hi,0(X) → Hi,0(Y ) vanish for i > 0.

Bloch’s conjecture is a sort of converse to the above statement, but it needs the intro-
duction of a certain filtration on CH0 groups of smooth projective varieties. The beginning
of this conjectural filtration is

F 0CH0(X) = CH0(X), F 1CH0(X) = CH0(X)hom, (1)

F 2CH0(X) = Ker (albX : CH0(X)hom → Alb(X)).

As the filtration is supposed to satisfy F kCH0(X) = 0 for k > dimX, we find that for
surfaces, the filtration is fully determined by (1).

Bloch’s conjecture for correspondences with values in surfaces is then the following:

Conjecture 0.1 Let S be a smooth projective surface, and let X be a smooth projective
variety, Γ ∈ CH2(X × S) be a correspondence such that the maps Γ∗ : Hi,0(S) → Hi,0(X)
vanish for i > 0. Then

Γ∗ : CH0(X)alb → CH0(S)

vanishes, where CH0(X)alb := Ker (albX : CH0(X)hom → Alb(X)) = F 2CH0(X).

This question can be addressed in particular to finite group actions on surfaces. A particular
case of the conjecture above is the following:

Conjecture 0.2 Let G be a finite group acting on a smooth projective complex surface S
with q = 0. Let χ : G → {1,−1} be a character. Assume that H2,0(S)χ = 0. Then
CH0(S)

χ
hom = 0.

Here
H2,0(S)χ := {ω ∈ H2,0(S), g∗ω = χ(g)ω, ∀g ∈ G},

CH0(S)
χ
hom := {z ∈ CH0(S)hom, g∗z = χ(g)z, ∀g ∈ G}.

This is indeed the particular case of the conjecture 0.1 applied to the 0-correspondence

πχ :=
∑
g∈G

χ(g)Γg ∈ CH2(S × S),

where Γg ⊂ S × S is the graph of g.
Conjecture 0.2 is proved in [13] in the situation where S is the zero set of a transverse

section of a G-invariant vector bundle on any variety X with trivial Chow groups (that is
CH∗(X)hom ⊗ Q = 0), under the assumption that E has many G-invariant sections. This
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generalizes our previous work in [12], where the case of the Godeaux action of Z/5Z on
the CH0 group of invariant quintic surfaces was solved. This also covers the case (already
considered in [12]) of the action of the involution i on P3 acting with two −1 eigenvectors
and two +1 eigenvectors on homogeneous coordinates, if we take for S a quartic surface
defined by an i-invariant equation and we look at the antiinvariant part of CH0(S).

In the paper [5], Huybrechts proved that a derived autoequivalence of a K3 surface S
acting as the identity on H∗(S,Z) acts as the identity on CH0(S). The next situation to
consider is that of a symplectic finite order automorphism g of a K3 surface S. Thus g is
by definition an automorphism of S such that g∗ω = ω, where ω is the holomorphic 2-form
on S. Such a g acts trivially on H2,0(S) so it has trivial action on the transcendental lattice
of S, so the difference

g∗ − Id ∈ AutH∗(S,Z)

is, at least over Q, induced by the cohomology class of a cycle of the form
∑

i αiCi ⊗ C ′
i.

where Ci, C
′
i are curves on S and αi are rational coefficients. It seems that if one could

take the αi to be integers, the above mentioned result of Huybrechts would apply to show
that g∗ is the identity on CH0(S). Still the problem remains open for these symplectic
automorphisms and was explicitly raised by Huybrechts in [7]. In this note, the case of a
symplectic involution i acting on a K3 surface S is considered. The fact that such symplectic
involutions act trivially on CH0(S) has been proved on one hand in a finite number of cases
in [4], [12], [13], and on the other hand (and more significantly), it has been established in
[6] for any K3 surface with symplectic involution in one of the three series introduced by
van Geemen and Sarti [3] (each series contains itself an infinite number of families indexed
by an integer d, and the three series differ first of all by the parity of this integer d, and
secondly, when d is even, by the structure of the Néron-Severi lattice of the general such
surface admitting an invariant line bundle of self-intersection 2d).

The present paper solves the problem in general :

Theorem 0.3 Let S be an algebraic K3 surface, and let i : S → S be a symplectic involu-
tion. Then i∗ acts as the identity on CH0(S).

The proof is elementary : It uses the fact that Prym varieties of étale double covers of
curves of genus g are of dimension g− 1. This departure point is the obvious generalization
of the starting point of Huybrechts and Kemeny’s work [6], who work with elliptic curves
and their étale double covers. This observation is applied to the étale double covers of
generic smooth ample curves C ⊂ S/i and allows us to prove in section 2 that the group
of i-antiinvariant 0-cycles on S is finite dimensional in the Roitman sense (the definition
is recalled in section 1). One then uses a mild generalization (Theorem 1.3 established in
section 1) of a fundamental result due to Roitman (cf. [10]) in order to conclude that the
group of i-antiinvariant 0-cycles on S is in fact trivial.

1 Finite dimensionality in the sense of Roitman

Let X be a smooth (connected for simplicity) projective variety over C, and let P ⊂ CH0(X)
be a subgroup.

Definition 1.1 We will say that P is finite dimensional in the Roitman sense if there exist
a (nonnecessarily connected) smooth projective variety W , and a correspondence Γ ⊂ W×X
such that P is contained in the set {Γ∗(w), w ∈ W}.

Remark 1.2 As P is a subgroup and the cycles Γ∗(w) have finitely many possible degrees
(depending on the connected component of W to which w belongs), we conclude that if P is
finite dimensional in the Roitman sense, all elements of P have degree 0 (so P ⊂ CH0(X)hom
as X is connected).
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The following result is essentially due to Roitman. (It is in fact due to Roitman in the case
where M = X and ImZ∗ = CH0(X)hom, see also [14], lecture 5). The proof we give below
is slightly different, as it makes use of Proposition 1.4, while Roitman uses only elementary
arguments. The proof given here also has the advantage that it does not need the torsion
freeness of the group Ker (albM : CH0(M)hom → AlbM)).

Let M and X be smooth connected projective varieties with X of dimension d. Let
Z ∈ CHd(M ×X) be a correspondence.

Theorem 1.3 Assume that Im (Z∗ : CH0(M) → CH0(X)) is finite dimensional in the
Roitman sense. Then the map Z∗ : CH0(M)hom → CH0(X) factors through the Albanese
morphism albM : CH0(M)hom → AlbM of M .

Proof. By definition, there exist a smooth projective variety W and a correspondence
Γ ⊂ W ×X such that ImZ∗ is contained in the set {Γ∗(w), w ∈ W}. Let C ⊂ M be a curve
which is a very general complete intersection of sufficiently ample hypersurfaces Hi ⊂ M .
Then by the Lefschetz theorem on hyperplane sections, the Jacobian J(C) maps surjectively
to Alb(M) and the kernel K(C) is an abelian variety. We will prove for completeness the
following result:

Proposition 1.4 When the Hi’s are sufficiciently ample and very general, K(C) is a simple
abelian variety.

We fix now C as above, satisfying the conclusion of Proposition 1.4 and let j : C → M be
the inclusion, which induces the morphism j∗ : J(C) = CH0(C)hom → CH0(M). We note
that by taking the Hi sufficiently ample, the dimension of K(C) can be made arbitrarily
large, so we may assume dimK > dimW .

Let R ⊂ K(C)×W be the following set:

R = {(k,w) ∈ K(C)×W, Z∗(j∗(k)) = Γ∗(w) in CH0(X)}.

It is known (cf. [15, 10.1.1]) that R is a countable union of closed irreducible algebraic
subsets Ri of K(C)×W . As ImZ∗ is contained in the set {Γ∗(w), w ∈ W}, the union of the
images of the first projections p|Ri

: Ri → K(C) is equal to K(C). A countability argument
then shows that there exists an i such that

pr1|Ri
: Ri → K(C)

is dominating. It follows in particular that dimRi ≥ dimK(C) > dimW . The fibers of the
second projection

pr2|Ri
: Ri → W

are thus positive dimensional. Let w ∈ W , and Fw ⊂ K(C) be the fiber over w. Then
Fw ⊂ K(C) is positive dimensional, hence it generates K(C) as a group because K(C) is
simple. On the other hand, by definition of R, for any f ∈ Fw, we have Z∗(j∗(f)) = Γ∗(w)
in CH0(X), hence is independent of f . Thus for any 0-cycle z of Fw, we have Z∗(j∗(z)) =
deg z Γ∗(w) and it follows then from the fact that Fw generates K(C) as a group that Z∗ ◦j∗
vanishes identically on K(C).

In order to conclude that Z∗ : CH0(M)hom → CH0(X) factors through AlbM , we now
observe the following: For k large enough, there is a connected subvariety M ′ of Mk ×Mk

such that Ker albM is generated by cycles zm = z+ − z− with z+m =
∑

l≤k ml, z−m =∑
k+1≤l≤2k ml, where m = (m1, . . . ,m2k) ∈ M ′. Furthermore, if the Hi’s are taken ample

enough, a very general point m ∈ M ′ is supported on a curve C as above which is very
general. Thus the 0-cycle zm = z+m − z−m, being supported on C and annihilated by albM ,
belongs to j∗(K(C)), and applying the previous reasoning, we conclude that Z∗(zm) = 0,
for m very general in M ′.

It remains to prove that it is true for any m ∈ M ′. We can use for this the following
easy observation :
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Fact 1.5 Let Y be a connected complex projective variety. Let U ⊂ Y be the complement of
a countable union of proper closed algebraic subsets. Then any 0-cycle z of Y is rationally
equivalent in Y to a 0-cycle supported on U .

A proof of Fact 1.5 is as follows: there exists a curve C ⊂ Y which is irreducible, contains
Sup z and intersects U non-trivially. Then C \ C ∩ U is countable. It suffices to prove that
there exists a 0-cycle z′ of C supported on C ∩ U which is rationally equivalent to z on
C. We may assume that C is smooth by taking normalization if necessary. Then we write
z = z1 − z2 in PicC, where z1 and z2 are very ample divisors on C. Since [z1| and |z2| are
base-point free, there exist members z′1 ∈ |z1|, z′2 ∈ |z2| which avoid the countably many
points in C \ C ∩ U , hence are supported on C ∩ U . Then z = z′1 − z′2 in PicC = CH0(C).

We apply this observation to Y = M ′ and the subset U ⊂ M ′ where we already proved
that Z∗(zm) = 0 to conclude that m 7→ Z∗(zm) vanishes identically on V ′, hence that Z∗
vanishes on Ker albM .

Proof of Proposition 1.4. First of all, we reduce the problem to the case where M
is a surface, by replacing M by a smooth complete intersection T = H1 ∩ . . . ∩ Hm−2 of
ample hypersurfaces and recalling that due to the Lefschetz theorem on hyperplane sections
[15, 2.3.2], AlbM = AlbT . Now we take on T a Lefschetz pencil of very ample curves
Tt, t ∈ P1. Picard-Lefschetz theory has for consequence (see [15, 3.2.3] the irreducibility of
the monodromy action ρ : π1(P1

reg, t0) → AutH1(Tt0 ,Q)van, where

H1(Tt0 ,Q)van := Ker (H1(Tt0 ,Q) → H3(T,Q)).

The same proof shows as well the irreducibility of the action of any finite index subgroup
Γ ⊂ π1(P1

reg, t0).
Assume by contradiction that for the general curve Tt, the abelian variety K(Ct) is not

simple. Then there is a finite cover r : D → P1, and a proper sub-abelian fibration

A ⊂ KD,

where KD → Dreg is the pull-back to Dreg := r−1(P1
reg) of the family of abelian varieties

K(Ct), t ∈ P1
reg. This sub-abelian fibration (taken up to isogenies) corresponds to a sub-local

system L of the pull-back to Dreg of the local system on P1
reg with fiber H1(Ct,Q)van.

The monodromy action on P1
reg being irreducible on any finite index subgroup of π1(P1

reg, t0),
it is irreducible on the image r∗(π1(Dreg, s0)), r(s0) = t0. This contradicts the existence of
L.

In the next section, we will prove the following:

Proposition 1.6 Let S be an algebraic K3 surface, and let i : S → S be a symplectic
involution. Then the antiinvariant part CH0(S)

− = {z ∈ CH0(S), i∗(z) = −z} is finite
dimensional in the Roitman sense.

Proof of Theorem 0.3 We apply Theorem 1.3 to the case where X = S, M = S and
Z is the cycle ∆S − Graph(i). Here ∆S is the diagonal of S and Graph(i) is the graph of
i. Proposition 1.6 says that ImZ∗ is finite dimensional in the Roitman sense and Theorem
1.3 tells us then that Z∗ : CH0(S)hom → CH0(S)hom factors through AlbS = 0. Hence
Z∗ vanishes on CH0(S)hom. On the other hand, Z∗ is multiplication by 2 on CH0(S)

− ⊂
CH0(S)hom and we thus proved that CH0(S)

− is a 2-torsion group; as CH0(S) has no
torsion by [11], we conclude that CH0(S)

− = 0. Thus Z∗ = Id on CH0(S).
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2 Proof of Proposition 1.6

We start with the following lemma: Let M, X be smooth projective varieties with dimX =
d. Let Γ ∈ CHd(M ×X) be a correspondence. Each point (m1, . . . ,mk) ∈ Mk determines
an element

∑
i mi ∈ CH0(M). Hence we get a map

Γ∗ : Mk → CH0(X).

Lemma 2.1 Assume there is a point m ∈ M such that Γ∗(m) = 0 in CH0(X) and for some
integer g > 0, one has Γ∗(M

g−1) = Γ∗(M
g) as subsets of CH0(X). Then ImΓ∗ is finite

dimensional in the Roitman sense.

Proof. Since Γ∗(M
g−1) = Γ∗(M

g), it is obvious by induction that Γ∗(M
g−1) = Γ∗M

k

for any k ≥ g − 1. Any cycle z ∈ CH0(M) can be written as z+ − z−, where z+ and z−

are effective cycles, of degree k+, k−. Up to adding the adequate multiples of m to z+

and z−, which does not change Γ∗z, we may assume that k+ = k− ≥ g. Thus Γ∗(z) =
Γ∗(z

+) − Γ∗(z
−), where Γ∗(z

+) and Γ∗(z
−) belong to Γ∗(M

k) = Γ∗(M
g−1). Hence we

proved that the correspondence Γ′ ∈ CHd(M2g−2 ×X), defined as

Γ′ =
∑

i≤g−1

(pri, pX)∗Γ−
∑

g≤i2g−2

(pri, pX)∗Γ

satisfies
ImΓ∗ = Γ′

∗(M
2g−2).

According to Definition 1.1, ImΓ∗ is finite dimensional in the Roitman sense.

Proof of Proposition 1.6. Let S be aK3 surface endowed with a symplectic involution
i. The quotient surface Σ = S/i is a singular K3 surface. (By blowing-up its singular
points, which correspond to the fixed points of i, it becomes a honest K3 surface.) The
canonical bundle of Σ (or rather Σreg) is trivial. Let L ∈ PicΣ be very ample, and let
2g − 2 = deg c1(L)

2. By triviality of KΣreg , g is the genus of the smooth curves in |L|.
Furthermore, we have dim |L| = g, due to the exact sequence

0 → C → H0(Σ, L) → H0(C,L|C) = H0(C,KC) → 0,

which comes from the similar exact sequence on the desingularization Σ̃ of Σ, which has
H1(Σ̃,OΣ̃) = 0.

Note also that for a smooth ample curve C ⊂ Σ, the inverse image C̃ ⊂ S is smooth,
connected, and is an étale double cover of C. (Only the connectedness is to be proved,

and this follows from the fact that otherwise each component C1, C2 of C̃ ⊂ S has positive
self-intersection and C1 · C2 = 0 since C̃ is smooth. This contradicts the Hodge index
theorem.)

Let Γ ∈ CH2(S×S) be the correspondence ∆S−Graph(i). We prove now the following,
where cS is the effective 0-cycle of degree 1 introduced in [1]:

Claim 2.2 We have Γ∗(cS) = 0 and Γ∗(S
g) = Γ∗(S

g−1).

According to Lemma 2.1, this proves Proposition 1.6, since CH0(S)
− = ImΓ∗. (The last

fact follows from the fact that Γ∗ acts as −2 Id on CH0(S)
−, which is a divisible group.

Proof of the claim. The cycle cS is obviously i-invariant since it is the class of any
point of S belonging to a rational curve D ⊂ S, and if x ∈ D then i(x) ∈ i(D) also belongs
to a rational curve in S.

Let s = (s1, . . . , sg) be a general point of Sg. Then if we denote by σi the image of si
in Σ = S/i, the g-uple (σ1, . . . , σg) is generic in Σg and there exists a unique curve Cs ∈ |L|
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containing all the σi’s. The curve Cs being general in |L|, it is smooth and thus we have the

étale double cover C̃s → Cs, with C̃s ⊂ S containing the points si. Consider the 0-cycle

zs =
∑
l

sl − i(
∑
l

sl) = Γ∗(
∑
l

sl) ∈ CH0(S).

This cycle clearly depends only on the Abel image

alb
C̃s

(
∑
l

sl − i(
∑
l

sl)),

which is an antiinvariant element of J(C̃s) or, up to 2-torsion, an element of the Prym

variety P (C̃s/Cs) which is a g − 1-dimensional abelian variety.
In other words, we find that, on a Zariski open set U of Sg, the map

Sg → CH0(S)
−, (s1, . . . , sg) 7→ zs,

factors through the morphism

f : U → P(C̃/C), (s1, . . . , sg) 7→ alb
C̃s

(s1 + . . .+ sg − i(s1)− . . .− i(sg)),

where C → |L|0 is the universal smooth curve over the Zariski open set |L|0 of |L| parameter-

izing smooth curves, C̃ → |L|0 is the universal family of double covers, and P(C̃/C) → |L|0
is the corresponding Prym fibration.

The total space of the Prym fibration P(C̃/C) has dimension 2g−1, while U has dimension
2g, so the morphism f has positive dimensional fibers. It follows that for s ∈ U , there is a
curve Fs ⊂ Sg such that the 0-cycle zt =

∑
l tl − i(

∑
l tl) is rationally equivalent to zs in S

for any (t1, . . . , tl) ∈ Fs. Choose an ample curve D ⊂ S whose irreducible components are
rational (the existence of such a curve is well-known and due to Mori-Mukai, cf. [8]). The
curve Fs meets the ample divisor

∑
l pr

−1
l (D), where prl : S

g → S is the l-th projection.
Hence the 0-cycle zs is rationally equivalent to a 0-cycle of the form zt =

∑
l tl − i(

∑
l tl),

where we have tl0 ∈ D for some l0. We have seen already that the 0-cycle tl0 −i(tl0) vanishes
in CH0(S) and it follows that zs is rationally equivalent to the cycle

∑
l ̸=l0

tl − i(
∑

l tl ̸=l0).

Thus zs ∈ Γ∗(S
g−1) for s = (s1, . . . , sg) ∈ U .

To conclude the proof, we have to show that the above result is true for any (s1, . . . , sg) ∈
Sg. This follows from the statement in Fact 1.5, which we apply to Y = Sg to conclude
that the cycles zs for s = (s1, . . . , sg) ∈ U fill-in the image Γ∗(S

g). Proposition 1.6 is thus
proved.
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Case 247, 4 Place Jussieu,
75005 Paris, France
voisin@math.jussieu.fr

7


