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ON A CONJECTURE OF CLEMENS ON RATIONAL
CURVES ON HYPERSURFACES

CLAIRE VOISIN

0. Introduction

In [2], H. Clemens proved the following theorem:

0.1 Theorem. Let X C P" be a general hypersurface of degree
d > 2n — 1. Then X contains no rational curve.

In [3],[4] Ein generalized Clemens theorem in two directions; he con-
sidered a smooth projective variety M of dimension n, instead of P"
(which is a mild generalization since any such M can be projected to
P"), and general complete intersections X C M of type (dy, ... ,di) and
proved:

0.2 Theorem. Ifd; +...+dy > 2n—k —1+1, any subvariety Y
of X of dimension | has a desingularisation Y which has an effective
canonical bundle; if the inequality is strict, the sections of Ky separate
generic points of Y.

In the case of divisors Y C X, this result has been improved by Xu
[11],[12], who proved:

0.3 Theorem. Let Y C X be a divisor, Y a desingularization of Y,
thenpg(Y) >n—1i>d;>n+2.

In [11], he gave more precise estimates for the minimal genus of a
curve in a general surface in IP°.

Now these results are not optimal, excepted in the case of divisors. In
fact we will prove in the case of hypersurfaces the following improvement
of Clemens and Ein’s results:

0.4 Theorem. (See 2.10.) Let X C P" be a general hypersurface
of degree d > 2n — 1 —1, 1 < | < n —3; then any subvariety Y of
X of dimension | has a desmgulamzatzon Y with an effective canonical
bundle; if the inequality is strict, the sections of Ky separate generic
points of Y.
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In particular, this proves that general hypersurfaces of degree d >
2n — 2, n > 4 do not contain rational curves, which was conjectured
by Clemens. This result is now optimal since hypersurfaces of degree
< 2n — 3 contain lines. Similarly, general hypersurfaces of degree d >
2n—3 do not contain a surface covered by rational curves, for n > 5,and
this cannot be improved since hypersurfaces of degree < 2n — 4 contain
a positive dimensional family of lines. The case n =4,d =2n—-3 =5 is
Clemens conjecture on the finiteness of rational curves of fixed degree
in a general quintic threefold and is not accessible by our method.

0.5. In the first section, we will prove a very simple proposition (1.1)
concerning the global generation of the bundle TX(1),x, where X is the
universal family of complete intersections, X C P x II;H°(Op~(d;))°,
where the last factor denotes the open set of IT; H(Opn(d;)) parametriz-
ing smooth complete intersections, and X C X is a special member
of the family. We will show how the theorems of Clemens and Ein
are deduced from this. Notice that this is only a formal simplification
of the proof of Ein, since the principle of the proof is certainly the
same. However, it allows to estimate the codimension of the sublocus
of II; H°(Op~(d;))° where the statement fails to be true. We also give
an improvement of Xu’s theorem using a refinement of Proposition 1.1.
We finally recall from [9], the following kind of applications:

0.6 Theorem. IfY . d; > 2n—k+1, and X is general, no two points
of X are rationally equivalent.

0.7.  The second section is devoted to the improvement of these
results in the case of hypersurfaces. The main technical point here is
Proposition 2.2, which concerns sections of the bundle \* TX(1) ix- In
the above mentioned papers the authors used only sections of
A*TX(2)x, (which are easily obtained using the wedge products of
sections of T'X (1)| x), which explains why their results can be improved
(by 1).

1. We will begin this section with the proof of the following propo-
sition 1.1; let §% := H°(Opn(d;)), d; > 2 and let X C P* x II,5%° be
the universal complete intersection; for ¢t = (¢1,... ,#) € H,-Sd"o, let
X, :=pry~'(t) C X be the complete intersection parametrized by t. We
assume that dim X, > 2, and that H°(T, (1)) = {0}, which is certainly
true if Kx, > Ox, (1) (with the first assumption), so is not restrictive
since this is the only case that we will consider for applications. Then
we have:

1.1 Proposition. The bundle TX(1)x, is generated by global sec-
tions.

Proof. Consider the exact sequence of tangent bundles:
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1.1.1. 0 Tx, (1) = TX(1)x, — (II;S%) @ Ox,(1) — 0.

From h°(T, (1)) = 0, we deduce:

1.1.2. H°(TX(1)x,) = Ker u, where p : II;5% @ S* — H'(Tx,(1))
is the coboundary map induced by 1.1.1.

Now X; C P™ is defined by ¢t; = ... = t; = 0, so we have the exact

sequence:
1.1.3. 0 Tx, = TP}y, = IL,Ox,(d;) = 0,

where a(X;0/0X;) = (Xi0t:/0Xjx,,--. , Xi0t,0X;x,). 1.1.3 gives
then an isomorphism:
1.1.4.

Ker(H'(Tx, (1)) —)Hl(T]Pm(l)|Xt))
= I H(Ox, (d; + 1)) /a((H*(TP,).-

Now using the map pr;, between 1.1.1 and 1.1.3:
1.1.5.

0 - Tx,(1) - TX(1)x, — (ILS%)®0x(1) — 0
Id | pri,d ev |
0 = Tx,(1) - TP*(1))x, — ILOx(di+1) — 0

we see immediately that the map p of 1.1.2 takes its value in
Ker(H'(Tx, (1)) — H'(TP*(1)x,)), and via the isomorphism of 1.1.4,
is simply the map:

1.1.6. M (H,Sd') ® Sl =F HiHO(OXI (d, -+ 1))/Q(H0(TPH(1)|X¢))
obtained by composition of the product:S% ®S* — S%*!, the restriction
to X;, and the projection modulo Im(c).

1.1.7. Next let z € X; be any point; tensoring everything with Z,
we get similarly isomorphisms:

1.1.8.

Ker(H'(Tx,(1) ® T,) — H(TP"(1)x, ® I.)
= HiHO(Oxe (dl A 1) ®Ia:)/1m(az))

where a, : H*(TP*(1)x, ® Z,) — IL;H°(Ox,(d; + 1) ® ;) is the map
induced by « in 1.1.3, and

1.1.9. HY(TX(1)x, ® I,) = Ker p,,
where p, : (ILS%) ® S*, — ILH(Ox,(d; + 1) ® Z,)/Im(a,) is the
multiplication followed by restriction to X; and projection mod. Im(c,)
as in 1.1.6 ( Here S, := H°(Ox,(1) ® ,.)).

Now the proof of 1.1 is finished with the obvious observation that u
and p, are surjective: indeed, the map given by the inclusion
HY(TP"(1)x, ® I,) — H'(TP"(1)|x,) is injective since TP"(1)x, is
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generated by its sections. From H°(T%,(1)) = 0, we have the exact
sequence:

1.1.10. 0 — HO(TXt!z) = Hl(TXt(l) ®Iz) — HI(TXt(].)) — 0,
which induces an exact sequence:

1.1.11.

0— HO(Txtlm) — (Ker(H'(Tx, (1) ® Z,) - H*(TP"(1)x, ® Z.,))
— Ker(H'(Tx, (1)) = H(TP"(1),x,)) — 0,

that is:

1.1.12. 0— H%(Tx,|,) — Im(p;) — Im(p).

It then follows that Ker(u,) C Ker(u) has codimension equal to:
dim(6p, %) + h°(T'X,|,) = rank(TX(1),;). By the isomorphisms of
1.1.2, 1.1.6, 1.1.9, we conclude that H*(TX(1)x, ®Z,) C H*(TX(1)x,)
has codimension equal to the rank of T'X, which means that T'X'(1),x,
is globally generated at z.

Now Proposition 1.1 implies

1.2 Corollary. For anyl > 0 the bundle \' TX®Ox, (1) is generated
by global sections, and the bundle \'TX ® Ox, (1 + 1) is very ample (in
the sense that its global sections restrict surjectively to its sections over
any 0-dimensional subscheme of length two of X;).

Now T'X|x, has determinant equal to Kx, = Ox,(3;d; —n — 1), so
we have:

1.2.1. A'TX®Ox, () 2 AV QX %, ® Ox, (1 - 5 di + 1+ 1),
where N = dim(, S%), so N + n — k = dim X. Thus we conclude:

1.3 Corollary. QFt" %= l|x 15 generated by global sections when
l=3,di+n+1<0, and is very ample when this inequality is strict.

This gives immediately the following refinement 1.4 of Clemens and
Ein’s results (0.2): Let M C II;5%° be a subvariety, and let M 5 M
be an étale map; let ) C X be a subvariety of the family obtained by
base change to M; we assume that pr, : Y — M is dominant of generic
fiber dimension /. Then we have:

1.4 Theorem. If ) .d; > 2n —k+ 1 — 1+ codim M, then any
desingularization Y, of the generic fiber Y, of pry : Y — M has an
effective canonical bundle. If the inequality is strict, then the sections
of Ky, separate generic points of Y,.

Proof. ~ We have dimY = N + [ — codimM; by 1.3, if 3°,d; >
2n —k + 1 — 1 + codim M, then the bundle Qg% i is generated by

the global sections, for all m € M such that M is smooth at 7(m),
since the map M — M is étale. Let y be a desingularization of Y,
and j :  — X, be the natural induced map; then j is generically
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an immersion. So it follows that Qg-)imy 7 has a nonzero section, for

m

generic m € M. Since for a smooth fiber ¥,,, one has an isomorphism:

9 e v = Ky, we have proved that the canonical bundle Ky _ is

effective, for generic m € M, as we wanted. Similarly, if the inequality
is strict, then again by 1.3, the bundle Q™Y X is very ample, for any

m € M, so for a generic point m € M satisfying the conditions that
7 is an immersion generically along Y,, and that Y,, is smooth, we get
that the sections of Qg-,"“y s = Ky, separate generic points of Y.

l m

1.5. We explain now how we can obtain the following refinement of
Xu’s theorem 0.3 in the case of hypersurfaces; of course, only the case
where d = n + 2 is to be considered, since the case d > n + 2 is covered
by Ein’s theorem.

1.6 Theorem, Let X C P" be a general hypersurface of degree d =
n + 2. Then for any irreducible divisor Y C X, any desingularization
Y of X satisfies that the canonical map of Y is generically finite on its
1mage.

We consider again X C P™ x Sdo, the universal hypersurface, and
X; C X afiber of pry; we have shown that TX(1),x, is generated by the
global sections, hence gives a map:

1.6.1. ¢P(QX(—1)|X¢) Y

The proof of the Theorem 1.6 will follow from

1.7 Proposition. On the set of GL(n + 1)-invariant hyperplanes
of TX(1)x,, the positive dimensional fibers of ¢ project onto lines con-
tained in X.

Here we consider the natural action of GL(n + 1) on

X C P x 8%,

The GL(n + 1)-invariant hyperplanes are those which contain the tan-
gent vectors to this action.

1.8. Let us explain how 1.7 implies 1.6: it suffices to show that for
any étale map M — Sdo,with a lifting of the GL(n + 1) action, and any
GL(n + 1)-invariant divisor ) C Xu, ( Xpq is the family obtained by
base change to M), any desmgulanzatlon y of Y satisfies:

1.8.1. The sections of KJ-, = Ky, give a map Y- >PM generi-
cally finite on its image, for_ genemc te M.

Now, at a point y where ) — X, is an immersion, Ty,,, CTXpyy is
a GL(n + 1)-invariant hyperplane. Let ¢ € M be generic, and z,y two
points of Y;, where Y X ‘M is an immersion. If T)),, Ty,y are not in
the same fiber of ¢, then there is a section of TX(1)x, = QF+"~ 2[X¢

(since d = n + 2), which vanishes on Tjﬂ, but not on Ty|y. In other
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words, the fibers of the map 1 : Y;--- > PM” given by the image
of H(QF*™ 2 4,) in HO(QJIE)’J”"_zl?) = H°(Ky,) are contained over an

open set of ¥, in the projection of fibers of ¢.

So the positive dimensional fibers of 1, over an open set of Y; must
be lines contained in X; by 1.7. But if ¢ is generic, the family of lines
in X; has dimension n — 5, so lines in X; cannot cover a divisor of X,
which proves that 1 is generically finite on its image.

1.9 Proof of Proposition 1.7. Recall from 1.1.2,1.1.6 the iso-
morphism: H°(TX(1),x,) & Kerp, where p : S?® S* — R is the
multiplication pg : S?® S* — H°(Ox,(d + 1)) followed by the projec-
tion H°(Ox,(d + 1)) — RIt! := §41/J31 where J, is the jacobian
ideal of the defining equation F; of X;. Let now H C Ker i be a hyper-
plane and let K C S ® S* be a hyperplane such that K N Kerpu = H.
A point z € X; is in the projection of ¢~!(H) iff the evaluation map
H — TX(1), is not surjective. Let K, := K NS¢ ® S.. Notice that
there is at most one point z such that K, = S?® S, so we may assume
that K, is a hyperplane of S% ® S!, since we are interested in the de-
scription of the positive dimensional fibers of ¢. Using the notation of
the ;gozof of 1.1, we have the following exact diagramm:

1.9.2.

0

I
0 0 TXg(l)z
] ¢ + ;
0 — HYTX()x,®L)NH — K, 55 S /a(HO(TP™(1)® L)
4 { {
0 — H - K 4 RA+1

Under the above assumption, K, C K has codimension equal to N :=
dim S¢. It is easy to see that the map pu is surjective, so we conclude
from 1.9.2 that

HY(TX(1))x, ®T,)NHC H

has codimension equal to rank(T'X'(1) when p, is surjective. On the
other hand, since K is a hyperplane in S?® S, u, will be surjective if
K, does not contain Ker(p? : S®S. — H°(Ox,(d+1)®Z,)). Thus the
projection to X; of the fiber ¢~ (H) is contained in the set {z/ Ker ug C
K.}, with one eventual supplementary point where K, = S?® S..
Now suppose that H contains Ker p: Using the exact sequence:
1.9.3. 0 TXyx, = TP"x, & 5°® Ox, & 0x,(d) = 0,
where dF((u, g))(z) = .F;(z)+g(z), one sees easily that T'X|x, contains
the bundle My x,, where M, is defined by the exact sequence:
1.94. 0> M,; — Si® Opn — O]pm(d) — 0.
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Furthermore one checks readily that Ker yy C Ker p identifies with
the inclusion H°(M,(1)x,) C H°(T X(1),x,) and that M,(1) is generated
by global sections. So, if H contains Ker po, then ¢~'(H) corresponds
to hyperplanes V, in TX(1),,z € X, such that My, C V,. But it is
easy to see that My, together with the vectors tangent to the infinites-
imal action of GL(n + 1) generate T'X(1),, so ¢~'(H) cannot contain a
GL(n + 1)—invariant hyperplane, when H contains Ker y.

Finally, assume that Ker po ¢ H; then we have:

1.9.5 Lemma. The set {z € X;/ Kerp: C K,} is contained in a
line.

This is elementary: it suffices to note that if z,y,z are three non-
colinear points of X;, then Ker ug, Ker uf, Ker uf generate Ker p,.

1.10. As in [9], from 1.3 we can also deduce information about
the Chow groups CHy(X;) for general X;. In fact, let M C II; 5% be a
subvariety, as in 1.4; then 1.3 gives us:

1.10.1. For 3,d; > 2n —k+ 1+ codim M, the bundle Q?‘}EMM 18

very ample, for any m € M.

Now we conclude:

1.11 Theorem. For Y, d; > 2n — k + 1 4 codim M, no two distinct
points of X,, are rationally equivalent, if m is a general point of M.

We recall from [9] how 1.11 is deduced from 1.10.1: if 1.11 is not true,
then there is an étale cover M of an open set of the smooth part of M,
and two distinct sections o, 7 : M — X such that for m € M, a(m)
is rationally equivalent to 7(m) in the fiber X,,. The cycle Z = o(M)—
7(M) is of codimension n— k in X, and the assumption implies that a
multiple of it is rationally equivalent to a cycle supported over a proper
subset of M. It follows that its class [Z] € H* *(Q%_ k) vanishes in

H°(R™ *pr, Q% '“) over an open set of M. On the other hand, for

me M, H"" ’“(Xm,Q";4 ) is dual ofHO(Xm,Qd"“M ® K ™') by

Serre duality, and one checks the following:(see [9])
1.11.1.  The class (az)m € Hom(HO(Xm,Q‘jxﬁzj‘;1

tained as the image of [Z] by the composite:

[Xm

|Xm), KM,m) 0b-

H™ Q5 F) & "™ (X, Q3F ) 2 (H (X, Q40 @ K 7))

=~ Hom(HO(Xm, Q%;Mlxm)7KM,m)

15 equal to o* — T*
Here o*, 7* are the pull-back maps of holomorphic forms by the sec-

tions o, 7: M — Xj; 't~ Now this is finished since by 1.10.1, Qd‘“‘Mlx
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is very ample, when ), d; > 2n — k 4+ 1 + codim M, which implies im-
mediately that for o(m) # 7(m), the map o* — 7* cannot be zero at m,
in contradiction with (az),, = 0.

2. In this section we will consider the case where k£ = 1, that is
hypersurfaces of degree d in P*. Let X C P" x (59)° be the universal
hypersurface; the main point in the previous section was to get the
global generation of \' TX (!)|x,> using global sections of TX(1)y,. I
do not know the answer to the following question:

2.1 Question. When is \? TX(1)|X, generated by global sections, at
least for generic t?

(This should be true when Ky is ample.)

However, for our applications, the following proposition will suffice
to improve the results of Section 1: view H°(A>TX(1)x,) as a space of
sections of a certain line bundle over the grassmannian of codimension-
two subspaces of TX(1) x,. Assume n >4 and Kx > Ox(1); then we
have:

2.2 Proposition. For generic t, H°(\® TX(1),y,) has no base point
on the set of GL(n + 1)-invariant codimension-two subspaces of TX|x,.

Here we are considering the natural action of GL(n + 1) on

X CP* x 8%: g(z,F) = (g(x), (g7")"(F));

by invariant subspace, we mean subspaces containing the vectors tan-
gent to the orbits of GL(n + 1).

Proof. Consider the inclusion j : X < P" x §¢; it gives the exact
sequence:

2.2.1. 0 TXjx, & TP"x, & S*® Ox, % Ox,(d) = 0,
where dF ((u, H)) ) = dFy()(u) + H(z) if F; is the equation of X; in
P". Let M, be the bundle on P defined by the exact sequence:

2.2.2. 0— My;— S4® Opn — Opa(d) — 0.

From 2.2.2, we get an inclusion My x, C T'X|x, and an exact sequence:

2.2.3. 0 Myx, > TXx, = TP"x, = 0.

In particular, we obtain an inclusion:

2.2.4. H°(A* Ma(1)1x,) € HO(A*TX(1)x,).

Now we have the following lemma:

2.3 Lemma. H°(A\* M,(1)), viewed as a set of sections of a certain
line bundle on the grassmannian of codimension-two subspaces of the
bundle My, has for base points the set {(z,T),z € P*",T C Mgy(,such
that T contains the ideal of a line A through z}.

Proof. The exact sequence defining M, gives an isomorphism:
H°(A? My(1)) = Ker u', where p' : \>S?®5* — 5¢®S5%+! is the Koszul
map defined by: p'(PAQ)® A) = PQ AQ — Q ® AP. Now Ker p'
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contains the elements: PAAPB®C—-PAAPCQB+PBAPCQ® A, for
Pe S A B,C € S'. It follows that the image of the restriction map:
HO(A? My(1)) = A? My(1);, € A>S? contains the elements PA A PB,
for P € S ', A, B € S, where S := H(Op~(1)®Z,). Let T C My, :=
H°(Op~(d)®Z,) be of codimension two, and suppose H°(A\* My(1)) van-
ishes on it. Then for any P € S ,[T: P], :== {A € S} /| PA € T} must
be an hyperplane, that is, the map mp : S; — S¢/T of multiplication
by P is not surjective. If [T : P], = S} for generic P, then T = S,
which is not true; otherwise mp has generic rank one. Differentiating
this condition at a generic point P € S*7!, we find [T": P, - S** C T,
so 2.3 is proved since [T : P|, is the component of degree 1 of the ideal
of a line A containing x. The converse follows from the fact that if T
contains the ideal of a line A containing z, the composite map:

2.3.1. H°(A? Mu(1)) = A* May(1);e > A*(May,/T)
factors through the restriction map:

2.3.2. H(\* My(1)) — H°(N\* M2 (1)),
where M2 is defined by the exact sequence:

2.3.3. 0— M2 — H°(Oa(d)) = Oa(d) = 0.

Now it is easy to see that H°(A*> M2 (1)) = {0}.

From 2.3 and 2.2.3, 2.2.4, we conclude immediately:

2.4 fact. Let V C TAX), be a codimension-two subspace which is a
base point of H(\® TX(1)x,).- Then V N My, must be a hyperplane of
My, or must contain the ideal of a line A containing z.

To deal with the first case, we show:

2.5 Lemma. Let P be the quotient \> TX(1)x,)/ N> Ma(1)|x,. Then
the map HO(A*TX(1)x,)) — H°(P) is surjective, and P is generated
by global sections.

Proof. The first assertion comes from the vanishing:(see[6])

2.5.1. H'(A* My(1)x,) = {0}.

In fact consider the exact sequence:

2.5.2. 0= A°M,(1)x, = A’ S¢®0x,(1) = M;®Ox,(d+1) — 0.

It follows that:

2.5.3.

Hl(;\ Md(1)|X¢) = HO(Md ® Oxt (d + 1))/Im(/\ Sd ® Sl),
and this is equal to
Ker(S? ® H°(Ox,(d + 1)) = H°(Ox,(2d + 1)))/Im(\ $* ® S*).

But it is shown by M. Green in [6] that the following sequence is exact
at the middle:
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2.5.4. A’5?® 8" - §¢® 5it! - S
where the first map is the Koszul map u' of 2.3. Since Ker(5?® S4t! —
S?4+1) surjects onto Ker(S¢® H°(Ox,(d+1)) = H°(Ox,(2d +1))), we
conclude immediately, as in [5], that 2.5.4 remains exact after restriction
to X, that is, by 2.5.3, that H'(A> M4(1),x,) = {0}

As for the first statement, we have an exact sequence:

2.5.5. 0— M, ®TP"(1)x, > P — N’ TP"(1)|x, = 0.

Again H'(M,; ® TP*(1)x,) = {0} by the exact sequence:

2.5.6.

0— M;®TP"(1)x, = S*®TP"(1),x, = TP*(d+ 1)x, = 0,
| | |

the equality H'(TP"(1))x,) = {0} (»n > 4), and the fact that
H(TP*(d + 1)x,) is generated by H°(TP"(1)x,)-

Finally A>TP"(1)x, is generated by global sections, as is
M, ® TP*(1),x,, which follows from the Euler sequence and the fact
that My(2) is generated by global sections. This last fact is seen as
follows: we have H°(M,(2)) = Ker(S¢ ® §? ™4" §%+2); this contains
the elements PA® B — PB® A, for P € S%%, A, B € S%. Evaluating
these elements in M;(2)|,, we get forA(z) = 0, B(z) # 0 the elements
PA,A(z) = 0,P € S%2, of My(2), = H°(Opn(d) ® ;). Clearly, they
generate H°(Opx(d) ® Z,).

Now 2.4 and 2.5 show:

2.6 Corollary. If V C TX), is a codimension-two subspace which is
a base point of H(AN>TX(1)|x,), then V N My, must contain the ideal
of a line A containing x.

Indeed, if V' N My, is a hyperplane of Mj,, the map

HYA\TX(1)x,) = NTX/V)

factors through the map: H°(A>TX(1)x,) — P, which is surjective by
2.5.

2.7. To finish the proof of Proposition 2.2, we now specialize to the
case of the Fermat variety X defined by the equation F = Y, X¢ = 0.
We may do it because of the following lemma:

2.7.1 Lemma. h°(\’TX(1)x,) is independant of t € 5e°,

Proof. Using the exact sequence (see 2.5) defining P:

2 2
0— A Mi(1)x, > NTX(1)x, = P =0,
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and 2.5.1, it suffices to prove that h°(A® M4(1)x,) and h°(P) are inde-

pendant of ¢t € S' 4 For the first one, this comes from the exact sequence
(see 2.5.2, 2.5.4)
2.7.2.

0— HO(/Z\ Md(l)lXt) — /z\Sd ®HO(OX: (1))
— Sd ®HO(OXt (d+ 1)) — HO(OXt (2d+ 1)) — 0,

where all spaces, starting from the second one have constant rank.
For the second one, this follows from the exact sequence 2.5.4, with
H'(M; @ TP"(1)|x,) = {0}. So it suffices to know that H°(M; ®
TP*(1)x,) and H°(A\’TP"(1)x,) have ranks independant of ¢. But
this is immediate for the second one by Bott vanishing theorem, and for
the first one by the exact sequence:

2.7.3.

0 — H(M; ® TP*(1)x,) — S% ® hO(TP" (1) x.)
— HY(TP"(d + 1)1x,) = 0,

where all terms starting from the second one have constant rank by Bott
vanishing theorem.

2.8. So let X be the Fermat variety, + € X and V C T4, be
a codimension-two subspace, which is a base point of HO(\* TX (1)1x),
and is invariant under the infinitesimal action of GL(n+1), which means
that it contains:

2.8.1. J, = {(u(z),—aF)} CTX, C TP", x 5%,
where u € H°(TP"), and 4 is a lifting of u in the Lie algebra of GL(n+1),
sotu=Y,A;0/0X;,A; € H(Opx(1)) and zF = Y, A,0F/0X,.

We know by 2.6 that V' contains the ideal of a line A containing z:
In(d) C My, C TA),. Let TXI? = TX,/Ir(d), and let J be the
image of J, in TX@. Since V contains J, and Ix(d), the map:

2

HY(A\TX(1)x) = H(\TX(1).) = \N(TX/V)

factors through the map:

2.8.2. B: H(N*TX(1)x) = N(TX3 /),
and it suffices to show that [ is surjective, to conclude that V cannot
be a base point of HO(A\* TX(1)x).

Now we do the following: We can choose two coordinates X;, X,
which give independant coordinates on A; also, we may assume that
not all coordinates X,k # ,j vanish at z, because there are at least
two nonvanishing coordinates at any z € X. Let A4, := X; — AX}, for
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A €Cand let Py := (X{' = X1 X771 /(X; — AX;) € S92, Recall from
1.1.2, 1.1.6 the isomorphism:

2.8.3. H(TX(1)x) = Ker(u: S*® S* — R,
it follows that for any T' € S*:

2.8.4. TP,® A\ € H(TX(1)x), since

TPy - Ay =T(X}' = 1xEY € J(F).

Now we have:

2.8.5. TP\® A\ANSP\® A, € H'(\’TX(2)x) vanishes on {A, = 0}
forany T,S € S

To see this, note that along {A), = 0},7P, ® A, gives a vertical
vector, that is an element of TX C TX, since in the exact sequence:

2.86. 07X, —»TX, > S*—0,
one has w(T'Py ® Ay) = TP, - Ax(y), which vanishes when Ay(y) = 0.
This vertical vector is easy to compute, retracing through the con-
struction of the isomorphism: H°(TX(1),x) = Ker(u); in fact we have
TP, - Ay =T(X{' = X71X/71) in %, and this is equal to

(1/d)T(8F/0X; — N19F/9X;).

Then we have the following:
2.8.7. For Ax(y) =0, one has

(TP ® Ay), = (1/d)T(y)(8/0X; — X*~10/0X;)
e TX(1), C TP™(1),,.

So clearly TP, ® A, and SP, ® A, are proportional along {4, = 0},
which proves 2.8.5.

It follows that, after dividing by A, we get a section
(TP, ® Ay A SP, ® A)) /A, of N’ TX(1)x. Clearly, if W C TAj, is the
subspace generated by the TPy, ® Ay, when T and X vary, the sections
(TPA® AxASP,®A,)/A, generate the subspace A’ W (1) C A>T X(1)},
since for generic A, A,(z) # 0 (we have assumed that X;, X, are inde-
pendant on A).

So, to show that 3 (2.8.2) is surjective, it suffices to show:

2.8.8. The composite map: W — TX|, — T)\f'lﬁ/JzA 1§ surjective, or
equivalently:

2.8.9. Wa+J2 = TX@, where W s the projection of W in T)\_’lﬁ.

But W (1), viewed as a subspace of TP*(1),, ®S?®0, (1) is generated
by the elements (—(1/d)T'(z)(0/0X; — A\*10/0X;, TPy - Ax(x)), for X €
¢, T € S% with Py := (X{™' = X1 X{ 1) /(X; — AX;). Clearly, when
A, T move, the restrictions to A of the elements T'Py - A)(z)) generate
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H°(Oa(d)), since X;, X; are independant on A. Finally the kernel of
the projection Wa — H®(Oa(d)) is generated by the vertical vector
(1/d)T(z)(8/0X; — A\*"19/0X;) for T(z) # 0 and Ay(z) = 0. It follows
that, as a subspace of TP"(1)|, ® H°(Oa(d)) ® O,(1), Wa is equal to:

2.8.10. {(u,9), u €< 9/9X;,0/0X; > ®0,(2)/ dF (u) + g(z) = 0}.

So Wh is of codimension n — 2 in TX(1),, since 8/0X;, 0/0X; are
independant in TP*(—1)},. To prove that Wa + J* = TA% , it suffices
to verify that J» N W, is of codimension n — 2 in J2.

But by 2.8.1 and 2.8.10, we find:

2.8.11.

JANWa = {(u(z), —aF)/u(z) €< 8/8X;,8/0X; > ®0,(2)},

where the equality holds in TX(1),, C TP*(1);, @ H°(Oa(d)) ® O,(1),
and this is clearly of codimension n — 2 in J2, since the projection
J& — TP is surjective, and 98/0X;, 0/0X; are independant in
TP*(-1)|, gthis follows from the assumption that not all coordinates
Xy, k # 1,7 vanish at z). So the proof of Proposition 2.2 is finished.

2.9. Although it should be clear from the reasoning in the proof of
Theorem 1.4, we repeat the argument which gives the next result:

2.10 Theorem. Letd>2n—1—-1,1<1[1<n—3; then for X C P
general of degree d and Y C X a subvariety of dimension l, Ky 1is
effective, where Y is any desingularization of Y. If the inequality is
strict, the canonical map of Y is of degree one on its image.

Proof. 1t suffices to show that for any étale map M — (5§%)°, and
for any GL(n + 1)-invariant subvariety J C X, dominating M, with
generic fiber dimension [, if ) is a desingularization of )/, H O(Ki’n"t ) #0,
(resp. HO(Ki’lf’t)
inequality is strict), for ¢ generic in M.

But for ¢ generic in M and y generic in Y;, ) is smooth at y and
TY,y, C TXp, is a space of codimension n — 1 — [, invariant under
GL(n + 1). Now we have by Proposition 1.1 that T'Xx(1),x, is gener-
ated by global sections, and by Proposition 2.2 that H(A*TX, m(L)x,)
has no base point on the set of GL(n + 1)-invariant codimension two
subspaces of TX(1)x, for ¢ generic in M. Let y be generic in Y,
as above and let oyyy,...,0,_3 be sections of TXM(1)|X,v such that
< TYy,(0i)1=1,... n—3 > is a codimension two G L(n + 1)-invariant sub-
space V of TXu(1),,; there exists w € HO(\? TXpm(1)x,) which does
not vanish on V; now

separates the points of an open set of Y, when the

wV)=wAo A... Non_3(TY,),
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and w Aoy A...\o,_3 is a section of

n—1-—1

N TXu(n—2-10),) = szllxt(n -2-1-Ky,).

So if Kx, > Ox,(n — 2 — 1), that is, when d > 2n — [ — 1, there is a

section of QQ’;’I x, Which does not vanish in Qg +’|}., = K33, Similarly,
t

if the inequality is strict, there is a section of ngjl x,(—1) which does
not vanish in QgHm(_l) 2= Kl"ll"t(_l); hence the canonical map of Y,

is of degree one on its image in this case.
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