
A geometric application of Nori’s connectivity
theorem

Claire Voisin
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0 Introduction

Our purpose in this paper is to contribute to the study of rational maps from
r-dimensional varieties to general hypersurfaces in projective space (cf [4], [18],
[10], [3]). In the last section, we shall eventually extend this to the study of
correspondences instead of rational maps. The problem we consider is the
following : given a family Y → S of r-dimensional smooth projective varieties,
when a general hypersurface X of degree d in projective space Pn+1 is swept
out by images of rational maps from one member of this family to X?

Our approach to this problem is Hodge theoretic. Unlike [4], [18], [10], [3],
the result has nothing to do with the canonical bundle of the varieties Yt, t ∈ S.
Instead, our answer will depend only on the dimension of the moduli space S.
Roughly speaking, the idea is as follows : assume that dimS is small, but
the general X is covered by images of rational maps from one member of this
family to X ; then there is a universal dominating rational map

Φ : K 99K XU

↓ π ↓
B → U ,

where π : K → B is induced by the family Y → S, and X → U is the
universal family of hypersurfaces of degree d in Pn+1. Here U is the open set
of P(H0(Pn+1,OPn+1(d))) parameterizing smooth hypersurfaces.

If we fix a point s ∈ S, we have now Bs, which is the fiber of the map
B → S, and XBs , which is the fibered product

Bs ×U X .

The Φ above restricts to

Φs : Ys × Bs → XBs .

The point now is that if dimS is small, then the corank of the map Bs → U
is small, so that an adaptation of Nori’s connectivity theorem [16] will show
that the cohomology groups of Xs, modulo the cohomology of Pn+1 × Us, are
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0 or have small Hodge level. Studying the cohomology class of the graph of Φ
in

H2n(K ×B XB,Q)

via the Leray spectral sequence of the map

K ×B XB → S,

with fiber Ys×XBs , we will deduce a contradiction with the fact that our initial
Φ was dominating.

Let us now state our precise results :

Definition 1 Let Y → S be a family of r-dimensional smooth projective va-
rieties. We say that a n-dimensional variety X is rationally swept out by
varieties parametrized by S, if there exist a quasiprojective variety B of di-
mension n − r, a family K → B which is the pull-back of the family Y via a
morphism ψ : B → S, and a dominant rational map

φ : K 99K X,

(which is necessarily generically finite on the generic fiber Kb since dimK =
dimX).

Remark 1 One can show that this property is equivalent to the fact that the
union of the images of generically finite rational maps from a variety Yt, t ∈ S,
to X contains a Zariski open set of X.

With this definition, we show :

Theorem 1 Fix an integer 1 ≤ r ≤ n. Let γ = r−1
2

, r odd, or γ = r
2
, r

even, that is γ is the round-up of r−1
2

. Let Y → S, dimS = C, be a family
of r-dimensional smooth projective varieties. Then the general hypersurface of
degree d in Pn+1 is not rationally swept out by varieties parameterized by S if

(d + 1)r ≥ 2n + C + 2, (γ + 1)d ≥ 2n− r + 1 + C. (0.1)

(Note that except for r = 1, the second inequality implies the first.)

Remark 2 One could of course prove a similar statement for sufficiently am-
ple hypersurfaces in any smooth variety. In the case of projective space, the
estimates on d are sharp, and allow applications to the Calabi-Yau case, which
is never considered in the papers quoted above (see section 3).

So let us consider the case of Calabi-Yau hypersurfaces. Because of the
Lang conjecture that we shall recall below, we will be mainly interested into
the case where the family Y → S is a family of abelian varieties. Our theorem
1 implies in this case :
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Theorem 2 Let X be a general Calabi-Yau hypersurface in projective space
Pn+1, that is d = n + 2. Then X is not rationally swept out by r-dimensional
abelian varieties, for any r ≥ 2.

In the paper [14], Lang formulates a number of conjectures concerning smooth
projective complex varieties X. One of them is that the analytic closure of the
union of the images of holomorphic maps from C to X is equal to the union
of the images of non constant rational maps from an abelian variety to X.
Another one is that this locus is equal to X itself if and only if X is not of
general type.

Next, by a standard countability argument for Chow varieties (similar to
the one given in the beginning of section 2), we see that, according to these
conjectures, if X is not of general type, there should exist a quasiprojective
variety B, a family K → B of abelian varieties, and a dominating rational
map

φ : K 99K X,

which is non constant on the generic fiber Kb, b ∈ B.
Let us now consider the case where X is a Calabi-Yau variety, that is KX is

trivial. We claim that if a map φ as above exists, then we may assume that φ|Kb

is generically finite, for generic b ∈ B. Indeed, because H0(X,KX) 6= 0, for
generic b ∈ B, the image φ(Kb) has effective canonical bundle, in the sense that
any desingularization Zb of it has effective canonical bundle, as follows from
adjunction formula and the fact that the φ(Kb) cover X. Now it is immediate
to prove that any dominant rational map

Kb 99K Zb,

where Kb is an abelian variety and Zb has effective canonical bundle, factors
through the quotient map Kb → K ′

b, where K ′
b is an abelian variety which is

a quotient of Kb, and has the same dimension as Zb. Replacing the family of
abelian varieties (Kb)b∈B, by the family (K ′

b)b∈B gives the desired φ′.
In other words, Lang’s conjecture asserts in particular that a Calabi-Yau

variety should be rationally swept out by r-dimensional abelian varieties, for
some r ≥ 1. Hence, if Lang’s conjecture is true, such an X should be swept
out by elliptic curves.

On the other hand, the following is proved in [5], lecture 22 :

Proposition 1 If a general Calabi-Yau hypersurface of dimension ≥ 2 is ra-
tionally swept-out by elliptic curves, then it contains a divisor which is unir-
uled.

In dimension 3, this proposition combined with Theorem 2 shows that Lang’s
conjecture and Clemens’ conjecture (see loc. cit.) on the finiteness of rational
curves of fixed degree in a general quintic threefold, contradict.

In the case of hypersurfaces of general type, inequality (0.1) can be applied
to give a non trivial estimate on the minimal genus of covering families of
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curves, but the estimate is not sharp and could be obtained directly by geom-
etry. What is interesting however is that looking more precisely at the proof
of Theorem 1, we shall see that the result concerns in fact only the Hodge
structure on Hn(X)prim and not the effective geometry of X. In fact we get
as well :

Theorem 3 Let X be a general hypersurface of degree d ≥ 2n− 2 + 3g, g ≥ 2
or d ≥ 2n + 2, g = 1, in Pn+1. Then there exists no non-zero morphism of
Hodge structures

Hn(X,Q)prim → Hn(Y,Q),

where Y is rationally swept out by curves of genus g.

Combining this statement with the higher dimensional generalization of Mum-
ford’s theorem on 0-cycles on surfaces [15], this implies in particular that for
d ≥ 2n + 2, X general, there exists no correspondence Γ ∈ CHn(Y × X)
inducing a surjective map

Γ∗ : CH0(Y )0 → CH0(X)0,

where Y admits an elliptic fibration. Similarly, if g ≥ 2 and d ≥ 2n− 2 + 3g,
there exists no such correspondence Γ ∈ CHn(Y × X) where Y admits a
fibration whose generic fiber is a genus g curve. One may wonder whether
these statements are true for any such hypersurface or only for the general
one.

The paper is organized as follows : in section 1, we recall briefly the proof
of Nori’s connectivity theorem for hypersurfaces in projective space, in order
to prove a variant of it concerning families of hypersurfaces parameterized by
subvarieties of the moduli space which are of small codimension. This will
show us that for any family of hypersurfaces parameterized by a subvariety
of the moduli space which is of small codimension, the Hodge level of the
cohomology groups of the total space of the family is small.

The next section is devoted to the proof (by contradiction) of Theorem 1.
In section 3, we prove the applications of this result described above.

Acknowledgements. I would like to thank J. Harris who started me
thinking to these problems and to Herb Clemens for very interesting discussions
and comments.

This work has been essentially done at the University La Sapienza, and
I would like to thanks the organizers of the trimester “Moduli spaces, Lie
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atmosphere I found there.
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1 Nori’s connectivity theorem for hypersur-

faces

This section is devoted to an intermediate result (Theorem 4) toward the proof
of Theorem 1. This result is a variant of Nori’s connectivity theorem [16], or
more precisely of its explicit version for hypersurfaces in projective space (cf
[19], 8.1, [20]). In [1], [17], a sharper study of similar explicit bounds can be
found.

Nori’s theorem concerns the cohomology of locally complete families of
sufficiently ample complete intersections in any smooth complex projective
variety, parameterized by a smooth quasiprojective basis. The explicit ver-
sion in case of hypersurfaces in projective space makes precise how ample the
hypersurfaces must be.

Here, we consider a variant of this explicit version, where instead of locally
complete families, we consider families of hypersurfaces whose moduli are of
small codimension in the moduli space of all hypersurfaces.

We consider hypersurfaces of degree d in Pn+1, and we assume that d ≥
n + 2. Fix an integer r such that 1 ≤ r ≤ n, and let γ be the round-up
of r−1

2
. Denote by U ⊂ H0(OPn+1(d)) the open set parametrizing smooth

hypersurfaces. Let ρ : M → U be a morphism, where M is smooth quasi-
projective. We assume that Corank ρ is constant equal to C. We also assume
for simplicity that Im ρ is stable under the action of Gl(n+2). Let XU be the
universal hypersurface parameterized by U and

XM := XU ×U M.

Let
j : XM ↪→M× Pn+1

be the natural embedding. XM is a smooth quasi-projective variety, hence
its cohomology groups carry mixed Hodge structures with associated Hodge
filtration F iHk(XM,C).

Theorem 4 i) Assume that

(d + 1)r ≥ 2n + C + 2. (1.2)

Then, the restriction map

j∗ : F nH2n−r(M× Pn+1,C) → F nH2n−r(XM,C)

is surjective.
ii) If

(γ + 1)d ≥ 2n + 1− r + C, (1.3)

then for any i ≥ 1, the restriction map

j∗ : H2n−r−i(M× Pn+1,C) → H2n−r−i(XM,C)

is surjective.
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The proof mimics the proof given in [19], 8.1 (which is nothing but the original
proof of Nori, in the case of hypersurfaces of projective space). For the reader
who knows already the arguments given there, let us just say that the proof
in [19], 8.1 reduces first to showing that complexes built from the infinitesimal
variations of Hodge structures (IVHS) on the primitive part of the cohomology
of hypersurfaces are exact in a certain range. Via Carlson-Griffiths descrition
of these IVHS, using the Griffiths description of the Hodge structure of an
hypersurface via residues, these complexes are pointwise identified to Koszul
complexes of the Jacobian ring of the considered hypersurface. The exact-
ness of these Koszul complexes then uses a theorem due to M. Green on the
Koszul cohomology of projective space. Our variant is then obtained by apply-
ing Green’s refined theorem, which concerns Koszul cohomology of projective
space, with respect to a non-complete base point free linear system of small
codimension.

We try now to go a little more into the details, without reproducing the
whole proof in [19], 8.1. We refer to loc. cit. for complete proofs of the steps
sketched below.

Proof of Theorem 4.
i) One first reduces the assertion, as in [16], to proving that under the

assumption (1.2), the restriction map

j∗ : H l(Ωk
M×Pn+1) → H l(Ωk

XM)

is bijective, for l ≤ n−r, k+ l ≤ 2n−r. This step uses the mixed Hodge struc-
ture on relative cohomology and the Frölicher spectral sequence : the relative
cohomology of the pair (M× Pn+1,XM) is equal to the hypercohomology of
the complex

Ω·
M×Pn+1,XM := Ker (j∗ : Ω·

M×Pn+1 → Ω·
XM).

The Frölicher spectral sequence considered here is the spectral sequence asso-
ciated to the näıve filtration on Ω·

M×Pn+1,XM .
Denote respectively by πX , πP the natural maps

XM →M, M× Pn+1 →M.

A Leray spectral sequence argument shows that it suffices to prove that under
the assumption (1.2) one has :

The restriction map j∗ : RlπP∗(Ωk
M×Pd+1) → RlπX∗(Ωk

XM) is bijective (1.4)

for l ≤ n− r, k + l ≤ 2n− r.
Let

Hn
prim, Hp,q

prim, p + q = n,

be the Hodge bundles associated to the variation of Hodge structure on the
primitive cohomology of the family πX : XM →M. The infinitesimal variation
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of Hodge structure on the primitive cohomology of the fibers of πX is described
by maps

∇ : Hp,q
prim → Hp−1,q+1

prim ⊗ ΩM, (1.5)

and they can be extended in the obvious way to produce a complex :

. . .Hp+1,q−1
prim ⊗ Ωs−1

M
∇→ Hp,q

prim ⊗ Ωs
M

∇→ Hp−1,q+1
prim ⊗ Ωs+1

M . . . (1.6)

One shows, using the filtration of Ωk
XM by the subbundles π∗XΩs

B ∧ Ωk−s
XMand

the associated spectral sequence (cf [19], 5.2.1), that (1.4) is equivalent to the
following

The sequence (1.6) is exact at the middle for q ≤ n− r, p + s+ q ≤ 2n− r.

Note that since p + q = n, the last inequality reduces to s ≤ n− r.
It is convenient to dualize (1.6) using Serre duality, which gives :

Hq+1,p−1
prim ⊗

s+1∧
TM

t∇→ Hq,p
prim ⊗

s∧
T s
M

t∇→ Hq−1,p+1
prim ⊗

s−1∧
T s+1
M . (1.7)

We finally use Griffiths, Griffiths-Carlson description of the IVHS of hypersur-
faces ([13], [2]) to describe the complex (1.7) at the point f ∈ M as follows.
We have the map ρ∗ : TM,f → TU,f = Sd, where S is the polynomial ring in
n + 2 variables. Next the residue map provides isomorphisms

R
−n−2+d(p+1)
f

∼= Hq,p
prim(Xf ),

where Rf := S/Jf is the Jacobian ideal of f , and Rk
f denotes its degree k

component. The map ∇ in (1.5) identifies then, up to a coefficient, to the map
given by ρ∗ and multiplication :

R
−n−2+d(p+1)
f → Hom (TM,f , R

−n−2+d(p+2)
f ).

It follows from this that the sequence (1.7) identifies to the following piece of
the Koszul complex of the Jacobian ring Rf with respect to the action of TM,f

on it by multiplication:

R−n−2+dp
f ⊗

s+1∧
TM,f

δ→ R
−n−2+d(p+1)
f ⊗

s∧
TM,f

δ→ R
−n−2+d(p+2)
f ⊗

s−1∧
TM,f .(1.8)

Now, by assumption, if W is the image of ρ∗, W ⊂ Sd is a base-point free linear
system, because it contains the jacobian ideal Jd

f , and it satisfies codimW = C.
One verifies that it suffices to check exactness at the middle of the exact

sequences (1.8) in the considered range, with TM,f replaced with W . This last
fact is then a consequence of the following theorem due to M. Green :
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Theorem 5 [12] Let W ⊂ Sd be a base-point free linear system. Then the
following sequence, where the differentials are the Koszul differentials

S−n−2+dp ⊗
s+1∧

W
δ→ S−n−2+d(p+1) ⊗

s∧
W

δ→ S−n−2+d(p+2) ⊗
s−1∧

W (1.9)

is exact for −n− 2 + dp ≥ s + codimW .

Using the fact that the Jacobian ideal is generated by a regular sequence in
degree d − 1, which provides a very simple resolution of Rf by graded free
S-modules, one then shows that the same is true when Si is replaced with Ri

f

in (1.9), at least if −n− 2 + d(p + 1) ≥ d− 1.
We now conclude the proof of i). We have just proved that (1.6) is exact

at the middle if

−n− 2 + dp ≥ s + C, −n− 2 + d(p + 1) ≥ d− 1.

Since we assumed d ≥ n + 2, the second inequality is satisfied when p ≥ 1.
Next, if q ≤ n− r, s ≤ n− r, we have

p ≥ r ≥ 1, s ≤ n− r.

Hence, the exactness of (1.6) in the range q ≤ n− r, s ≤ n− r will follow from
the inequality

−n− 2 + dr ≥ n− r + C,

that is (1.2).

ii) The proof is entirely similar, and we just sketch it in order to see where
the numerical assumption is used. Following [16], we first observe that, in
order to get the surjectivity of the restriction map :

j∗ : H2n−r−i(M× Pn+1,C) → H2n−r−i(XM,C),

it suffices to show the surjectivity of the restriction map :

j∗ : F n−r+γiH2n−r−i(M× Pn+1,C) → F n−r+γiH2n−r−i(XM,C), (1.10)

where γi is the round-up of r−i
2

.
Indeed, let K be the cokernel

H2n−r−i(XM,Q)/j∗H2n−r−i(M× Pn+1,Q).

It has a quotient mixed Hodge structure whose weights are ≥ 2n − r − i,
because XM is smooth (cf [8]). The surjectivity of

j∗ : F n−r+γiH2n−r−i(M× Pn+1,C) → F n−r+γiH2n−r−i(XM,C),
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then says that F n−r+γiKC = 0. But the round-up of 2n−r−i
2

is n − r + γi.
Applying Hodge symmetry to the weight graded pieces of K (which carry
pure Hodge structures of weight ≥ 2n− r − i), we see that

F n−r+γiKC = 0 ⇒ K = 0.

As in the previous proof, we reduce now the proof of the surjectivity of
(1.10) to showing :

The restriction map j∗ : RlπP∗(Ωk
M×Pn+1) → RlπX∗(Ωk

XM) is bijective(1.11)

for l ≤ n− i− γi, k + l ≤ 2n− r − i.
Expressing as in the previous proof the cohomology groups above with

the help of the IVHS on the primitive cohomology of the fibers of πX , this is
reduced to proving :

The sequence (1.6) is exact at the middle for q ≤ n − i − γi, p + q =
n, p + s + q ≤ 2n− r − i.

Using the Carlson-Griffiths theory, we are now reduced to prove :

the following sequence :

R−n−2+dp
f ⊗

s+1∧
TM,f

δ→ R
−n−2+d(p+1)
f ⊗

s∧
TM,f

δ→ R
−n−2+d(p+2)
f ⊗

s−1∧
TM,f .(1.12)

is exact for p ≥ γi + i, s ≤ n− r − i.

As in the previous proof, we now apply Theorem 5 and conclude that the
last statement is true if

−n− 2 + d(γi + i) ≥ C + n− r − i. (1.13)

Now it is clear that the γi + i are increasing with i, while the C + n− r− i are
decreasing with i. Hence it suffices to have (1.13) satisfied for i = 1, which is
exactly inequality (1.3).

Denoting by H2n−r(XM)prim the quotient

H2n−r(XM)prim/j∗(H2n−r(M× Pn+1)),

we shall only be interested with the pure part

W2n−rH
2n−r(XM)prim,

which is the part of the cohomology which comes from any smooth projective
compactification of XM [8]. It carries a pure Hodge structure of weight 2n− r.

Corollary 1 Under the assumptions of Theorem 4, the Hodge structure on
W2n−rH

2n−r(XM)prim is of Hodge level ≤ r − 2.
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Proof. Recall that the Hodge level of a pure Hodge structure H, HC = ⊕Hp,q

is
Max {p− q, Hp,q 6= 0}.

Since we know that F nW2n−rH
2n−r(XM)prim = 0, we have

Hp,q(W2n−rH
2n−r(XM)prim) = 0, for p ≥ n.

Since Hp,q = 0 for p + q 6= 2n − r, it follows that the Hodge level is ≤
n− 1− (2n− r − (n− 1)) = r − 2.

2 Proof of Theorem 1

We prove Theorem 1 by contradiction. So assume the assumptions (0.1) are
satisfied, but that the general X of degree d in Pn+1 is rationally swept-out by
varieties from the family Y .

Using Chow varieties, or relative Hilbert schemes, we see that there exist
countably many quasi-projective varieties Bk parameterizing triples (t, f, φs),
where t ∈ S, f ∈ U , and φs is a rational map φs : Ys 99K Xf which is generically
finite onto its image. Indeed, such a φs can be identified to its graph, which is
a r-dimensional subvariety of the product Ys ×Xf , which has to be of degree
1 over the first factor.

For fixed generic f , our assumption implies that the images of such φs fill-in
Xf .

For each k, let
πk : Kk → Bk

be the family which is pulled-back via the first projection Bk → S from the
family Y → S. By definition of Bk as a Hilbert scheme, there is the universal
rational map

Φk : Kk 99K XU ,

where, as in the previous section, XU is the universal hypersurface parameter-
ized by U . Note that Φk makes the following diagram commutative :

Φk : Kk 99K XU

↓ πk ↓
pr2 : Bk → U .

(2.14)

Our assumption implies that the union of the images of Φk contains a subset
of XU which is the complementary set of a countable union of proper closed
algebraic subsets. By Baire, it follows that for some k0, Φk0 is dominating.
In the sequel, we shall use the notations π, B, K, Φ, for πk0 , Bk0 , Kk0 , Φk0

respectively.
We shall denote by Bf the (generic) fiber of the second projection B → U

and πf : Kf → Bf the induced family. By taking desingularizations, we may
assume that B is smooth, and since by assumption the map π is smooth, K

10



is smooth too. Since f is generic, Bf and Kf are then also smooth. Finally,
we may, up to replacing B by a closed subvariety, assume that the restriction
Φf : Kf 99K Xf of Φ to Kf is generically finite and dominating. (This is
because the restriction of Φ to the generic fibers of π is generically finite.) In
particular, dimBf = n− r.

We fix now a generic point t ∈ Im pr1 ⊂ S. We let

Bt := pr−1
1 (t), Kt := π−1(Bt).

We observe that Kt is naturally isomorphic to Yt × Bt. Furthermore, since

dim Im pr1 ≤ dimS ≤ C,

we have codim (Bt ⊂ B) ≤ C.
The second projection pr2 : B → U is dominating, so can be assumed to

be submersive, after shrinking B. It follows that the corank of pr2|Bt
is ≤ C,

and after shrinking Bt, we may assume it is constant and ≤ C on Bt.
Let XBt := XU ×U Bt. The map Φ : K 99K XU lifts to a map

Φ̃ : K 99K XB,
because of the commutativity of the diagram (2.14). Φ̃ takes the value φs over
the point (t, f, φs) of B.

This map restricts in turn to a map

Φ̃t : Kt 99K XBt ,

which is over Bt.
The graph of Φ̃t provides then a codimension n subvariety in the fibred

product
Kt ×Bt XBt

∼= Yt ×XBt .

The desired contradiction will come from the following :

Proposition 2 Let γt ∈ H2n(Yt ×XBt ,Q) be the rational cohomology class of

the graph of Φ̃t. Then γt induces a morphism of mixed Hodge structures

γt∗ : Hr(Yt,Q) → H2n−r(XBt ,Q)prim, (2.15)

whose image has Hodge level r.

Remark 3 The mixed Hodge structure on Hr(Yt,Q) is pure as is the mixed
Hodge structure on Im γt∗. Hence it makes sense to speak of the Hodge level
of the image.

Remark 4 The fact that Im γt∗ has Hodge level r is equivalent to the fact that
γt∗ does not vanish identically on Hr,0(Yt), or more generally on the subspace
Hr(Yt,Q)tr introduced later on in the proof.

Admitting the proposition, the proof concludes as follows : we know that the
map Bt → U is of constant corank ≤ C, and by assumption, the inequality
(1.2) needed in Corollary 1 is satisfied, so Corollary 1 holds. On the other
hand Proposition 2 clearly contradicts Corollary 1.
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Proof of Proposition 2. The graph of Φ̃ lies in K ×B XB and is of
codimension n there. Let γ ∈ H2n(K ×B XB,Q) be its rational cohomology
class. Of course

γt = γ|XBt
.

Let π̃ : K ×B XB → XB be the second projection. Let L be a relatively ample
line bundle on Y → S, and let L̃ be its pull-back to K ×B XB via the natural
composite map

K ×B XB → K → Y .

Then L̃ is relatively ample w.r.t. π̃.
The hard Lefschetz theorem provides isomorphisms

c1(L)i∪ : Rr−iπ̃∗Q ∼= Rr+iπ̃∗Q, i ≥ 0,

and correspondingly isomorphisms :

c1(L)i∪ : H2n−r−i(XB, Rr−iπ̃∗Q) ∼= H2n−r−i(XB, Rr+iπ̃∗Q), i ≥ 0.

These isomorphisms are isomorphisms of mixed Hodge structures. Further-
more, by Deligne’s theorem [7], the Leray spectral sequence of π̃ degenerates
at E2, so that the above groups are graded pieces of

H2n−2i(K ×B XB,Q), H2n(K ×B XB,Q)

respectively. It follows that we can write

γ = γ′ +
∑

r≥i>0

c1(L̃)i ∪ γi, (2.16)

where γ′ ∈ H2n(K×BXB,Q) lies in the r-th level of the Leray filtration relative
to π̃, and γi ∈ H2n−2i(K ×B XB,Q). By strictness of the morphisms of mixed
Hodge structures with respect to both filtrations, we may even assume that γ′

and γi are Hodge classes, that is lie respectively in

W2nH2n(K ×B XB,Q) ∩ F nH2n(K ×B XB,Q),

W2n−2iH
2n−2i(K ×B XB,Q) ∩ F n−iH2n−2i(K ×B XB,Q).

Restrict now everything to

Kt ×Bt XBt
∼= Yt ×XBt . (2.17)

Since L̃ is the pull-back of a line bundle on Y , its restriction L̃t to Kt ×Bt XBt

is of the form pr∗1L, for some line bundle L on Yt, where pr1 is defined using
the isomorphism (2.17). It follows that each

γi,t := c1(L̃)i ∪ γi|Kt×BtXBt
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induces a morphism of mixed Hodge structures

Hr(Yt,Q) → H2n−r(XBt ,Q),

which factors through the map c1(L)i∪ : Hr(Yt,Q) → Hr+2i(Yt,Q). So, since
dimYt = r, each such morphism has an image which is of Hodge level < r for
i > 0.

We observe now the following : γ′ lies in the r-th level of the Leray filtration
of H2n(K ×B XB,Q) relative to π̃, hence, using the degeneracy at E2 of this
Leray spectral sequence, it projects to an element γ′′ in

H2n−r(XB, Rrπ̃∗Q),

which is the Er,n−r
2 = Er,n−r

∞ term of the Leray spectral sequence of π̃.
Denote by ψ the composite map

XB → B → S.

Observe that the family
π̃ : K ×B XB → XB

is pulled-back via ψ from the family Y → S. It follows that the local system
is also pulled-back :

Rrπ̃∗Q = ψ−1Hr,

for some local system Hr of Q-vector spaces on S. Hence the E2 terms of the
Leray spectral sequence relative to ψ and to the sheaf Rrπ̃∗Q on XB are

H i(S, R2n−r−iψ∗Q⊗Q Hr).

From now on we assume that the map pr1 : B → S is surjective, and topo-
logically locally trivial, which we can do, replacing S by a Zariski open set in
Im pr1. The local system Hr contains a sub-local system which via Poincaré
duality is also canonically a direct summand, whose fiber at the general point
of S is the maximal sub-Hodge structure of Hr(Yt,Q) which is not of maximal
Hodge level. Let us denote this sub-local system by Hr

<r, and the quotient by
Hr

tr. Hr
tr can also be defined as the minimal sub-variation of Hodge structure of

Hr whose corresponding (r, 0)-part contains the whole bundle Hr,0 with fiber
Hr,0(Yt) at t ∈ S. So we have an orthogonal decomposition :

Hr = Hr
<r ⊕Hr

tr.

Let Rrπ̃∗Qtr := ψ−1Hr
tr. With these notations, we have the component γ′′tr of

γ′′, which lies in
H2n−r(XB, Rrπ̃∗Qtr),

and as above, the spectral sequence abutting to this last group has E2-term

H i(S, R2n−r−iψ∗Q⊗Q Hr
tr). (2.18)

13



We apply now Theorem 4, ii). The fibers of the maps ψ are the XBt hence
they satisfy the vanishing

H2n−r−i(XBt ,Q)prim = 0.

Formula (2.18) allows then to conclude that for i > 0, we have

H i(S, R2n−r−iψ∗Qprim ⊗Q Hr
tr) = 0.

Hence we conclude that up to classes coming from

H2n−r(Pn+1 × B, Rr(Id× π)∗Qtr,

the class γ′′tr is determined by its 0-th Leray component, namely

γ′′′ ∈ H0(S, R2n−rψ∗Qprim ⊗Q Hr
tr).

Note that the value of γ′′′ at the general point t ∈ S is, (using Poincaré
duality on Yt,) nothing but the restriction of the map γ′t∗ or γt∗ of (2.15) to
the transcendental part Hr(Yt,Q)tr.

Let us now conclude the proof by contradiction : assume the γ′t∗ has
an image which is of Hodge level < r for general t. Then equivalently,
its restriction to Hr(Yt,Q)tr vanishes. This means that γ′′′ = 0, and by
the reasoning above, this implies that γ′′tr = 0 modulo classes coming from
H2n−r(Pn+1 × B, Rr(Id× π)∗Qtr).

We now observe that XB contains Bf ×Xf , K contains Kf , and that corre-

spondingly K×B XB contains Kf ×Xf . The restriction of Φ̃ to Kf is the map

(πf , Φf ) : Kf 99K Bf ×Xf and so the graph of Φ̃ in K ×B XB restricts to the
graph of Φf in Kf ×Xf . The class γ restricts to the class γf of this graph.

Denote by γ′f , γ′′f , γ′′f,tr the restrictions of the classes γ′, γ′′, γ′′tr respectively
to Kf ×Xf . The vanishing γ′′tr = 0 implies the vanishing γ′′f,tr = 0. Retracing
through the definitions, this implies that the map

γ∗f : Hn(Xf ,Q)prim → Hn(Kf ,Q),

where the subscript “prim” here means “the orthogonal part to H∗(Pn+1,Q)|Xf
”,

decomposes as

γ∗f =
∑
i>0

li ∪ γ∗i,f + γ′f
∗
,

where l is the first Chern class of the line bundle on Kf induced by L via the
map Kf → Y . Here the γi,f , γ′ are the restriction to Kf × Xf of the classes
γi, γ′ of (2.16). The map γ′f

∗ takes value in the r-th level of Hn(Kf ,Q) with
respect to the Leray filtration relative to the map πf : Kf → Bf , and our
conclusion is that its projection in

Hom (Hn(Xf ,Q)prim, Hn−r(Bf , R
rπf ∗Q))

lies in Hom (Hn(Xf ,Q)prim, Hn−r(Bf , R
rπf ∗Q)<r).
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The contradiction now comes from the fact that since Φf is a dominating
rational map, and the Hodge structure on Hn(Xf ,Q)prim has Hodge level n,
(because d ≥ n + 2,) the associated map γ∗f has an image which is of Hodge
level n.

On the other hand, the maps of the form li ∪ γ∗i,f have images of Hodge
level < n, as do the maps γ∗i,f . Next, the only Leray piece of Hn(Kf ,Q) whose
weight n part is of Hodge level n is Hn−r(Rrπf ∗Q), because dimBf = n − r,
and inside it Hn−r(Rrπf ∗Q<r) has Hodge level < n.

3 Rational maps from abelian varieties to Calabi-

Yau hypersurfaces and other applications

Proof of Theorem 2. We want to show that for r ≥ 2, the general Calabi-
Yau hypersurfaces, that is hypersurfaces of degree d = n + 2 in Pn+1 are not
rationally swept-out by r-dimensional abelian varieties. We apply Theorem
1 : the family Y → S we consider is any locally universal family of abelian
varieties. The moduli space of r-dimensional abelian varieties with given polar-
ization type is of dimension r(r+1)

2
. Hence the inequalities needed in Theorem

1 become in this case :

(n + 3)r ≥ 2n +
r(r + 1)

2
+ 2, (γ + 1)(n + 2) ≥ 2n− r + 1 +

r(r + 1)

2
.

It is not hard to check that this is satisfied for 2 ≤ r ≤ n.

When r = 1, inequality (0.1) is never satisfied so that our argument def-
initely does not apply to the study of elliptic curves in Calabi-Yau hyper-
surfaces. In fact we could adapt our proof of Theorem 2 to work as well for
Calabi-Yau hypersurfaces in a product of projective spaces. On the other hand,
certain generic Calabi-Yau hypersurfaces in a product of projective spaces are
swept out by elliptic curves, eg the hypersurface of bidegree (3, 3) in P2 × P2.
This shows that for r = 1, a different argument has to be found. Note how-
ever that Theorem 2 has the following corollary, which says that Lang’s and
Clemens’ conjecture contradict :

Corollary 2 If Lang’s conjecture is true, any Calabi-Yau hypersurface X of
dimension ≥ 2 has a divisor which is uniruled.

Proof. Indeed, if Lang’s conjecture is true, then by Theorem 2, the general
X is rationally swept out by elliptic curves. One then applies the following
result, which is proved in the three dimensional case in [5], lecture 22 (the
proof however applies to any dimension ≥ 2 ) :

Proposition 3 If a general Calabi-Yau hypersurface is rationally swept-out
by elliptic curves, then it contains a divisor which is rationally swept-out by
rational curves.
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For completeness, we sketch here the argument for the proof of Proposition
3. The first step is to prove :

Lemma 1 If X is a general Calabi-Yau hypersurface of dimension ≥ 2, X is
not rationally swept out by elliptic curves of fixed modulus.

Proof. Indeed, fixing otherwise the modulus of the elliptic curve, we would
get, for at least one elliptic curve E, an hypersurface ME in the moduli space
M of X consisting of Xf ’s which are rationally dominated by some E×B. For
such an Xf , there must be an inclusion of rational Hodge structures induced
by the dominant rational map φ : E ×B 99K Xf :

φ∗ : Hn(Xf )prim ↪→ H1(E)⊗Hn−1(B), (3.19)

because the Hodge structure on Hn(X)prim is simple for general X.
If we now let f vary in ME, only B deforms with f , not E, and it follows

that the infinitesimal variation of Hodge structure on H1(E)⊗Hn−1(B)

∇ : Hp,q(H1(E)⊗Hn−1(B)) → Hp−1,q+1(H1(E)⊗Hn−1(B))⊗ ΩME

has the following form at the point f ∈ME :

∇(α⊗ β) = α⊗∇B(β)

for α ∈ Hr,s(E), β ∈ Hp−r,q−s(B), where ∇B is the infinitesimal variation of
Hodge structure on Hn−1(B). Hence the Yukawa couplings of the IVHS on
H1(E)⊗Hn−1(B), that is the iterations of ∇, have the following property:

∀η ∈ Hn,0(H1(E)⊗Hn−1(B)), the map

∇n
(η) : SnTME ,f → H0,n(H1(E)⊗Hn−1(B))

vanishes.

If there is along ME an injective morphism of Hodge structures (3.19),
it follows that the same property is true for the IVHS of the family of Xf ’s
parameterized by ME, namely the Yukawa couplings of Xf vanish on the
hyperplane K := TME ,f ⊂ Sn+2. The Carlson-Griffiths theory [13], [2] shows
easily that this is not the case. Indeed, these Yukawa couplings identify to the
multiplication map

Sn(Sn+2) → R
n(n+2)
f .

Assume they vanish on K. Since K is a hyperplane in Sn+2, the subspace

K ′ := [K : S1] ⊂ Sn+1

has codimension ≤ n + 2. It is without base-point, since TME ,f contains Jf .
It follows then from [11], that Sn+3K ′ = S2n+4. But K2 contains S1K ′ ·K =
K ′ · S1K = K ′ · Sn+3 = S2n+4. Hence K2 = S2n+4 and similarly Kn = Sn(n+2)

contradicting the fact that Kn ⊂ J
n(n+2)
f .
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The second step is then following

Lemma 2 Assume a variety is rationally swept-out by elliptic curves, but not
by elliptic curves with constant modulus. Then it admits a divisor which is
rationally swept out by rational curves.

Proof. By assumption there is a diagram

K̃ φ→ X
π ↓
B̃ ,

where we may assume that K̃ and B̃ are smooth, projective, where K̃ is a
smooth projective model of the family K → B on which φ is defined, and that

the map j : B̃ → P1 is defined and non constant. Now, since φ is generically

finite, for generic t ∈ P1, the divisor K̃t := (j ◦ π)−1(t) must be sent by φ
onto a divisor of X, and it follows that for any t the image by φ of the divisor

K̃t := (j ◦π)−1(t) must contain a divisor of X. Taking t = ∞, and noting that

any component of K̃∞ has a normalization which is uniruled, gives the result.

Proof of Theorem 3. We simply note for this that in the proof of Theo-
rem 1, we used the dominating rational map

φ : K 99K X

only to deduce that there is a corresponding inclusion

φ∗f : Hn(Xf )prim → Hn(Kf )

of Hodge structures. The Chow argument we used would work equally with
graphs of rational maps replaced with cycles in the product

Yt ×X.

Hence we conclude that everywhere in the paper, we could replace “dominating
rational maps” by “cycles in CHd(K × X) inducing a non-zero morphism of
Hodge structures”

Hn(X)prim → Hn(K).

(Note that such a non-zero morphism should be in fact injective because the
Hodge structure on Hn(X)prim is simple for generic X.)

Using the fact that the moduli space of curves of genus g ≥ 1 has dimension
3g − 3, g ≥ 2 or 1, g = 1 , we see that theorem 3 is then a consequence of
theorem 1, where we replace dominating rational maps with correspondences
inducing a non zero morphism of Hodge structure.
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19 (1986), 629-636.

[5] H. Clemens, J. Kollár, S. Mori. Higher dimensional complex geometry,
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