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Abstract

Given a smooth projective n-fold Y , with H3,0(Y ) = 0, the Abel-Jacobi
map induces a morphism from each smooth variety parameterizing codi-
mension 2-cycles in Y to the intermediate Jacobian J(Y ), which is an
abelian variety. Assuming n = 3, we study in this paper the existence
of families of 1-cycles in Y for which this induced morphism is surjec-
tive with rationally connected general fiber, and various applications of

this property. When Y itself is rationally connected with trivial Brauer
group, we relate this property to the existence of an integral cohomo-
logical decomposition of the diagonal of Y . We also study this prop-
erty for cubic threefolds, completing the work of Iliev-Markushevich-
Tikhomirov. We then conclude that the Hodge conjecture holds for
degree 4 integral Hodge classes on fibrations into cubic threefolds over
curves, with some restriction on singular fibers.

1. Introduction

The following result is proved by Bloch and Srinivas as a consequence of

their decomposition of the diagonal:

Theorem 1.1 (see [3]). Let Y be a smooth complex projective variety with

CH0(Y ) supported on a curve. Then, via the Abel-Jacobi map AJY , the group

of codimension 2-cycles homologous to 0 on Y modulo rational equivalence is

up to torsion isomorphic to the intermediate Jacobian J(Y ) of Y ,

J(Y ) := H3(Y,C)/(F 2H3(Y )⊕H3(Y,Z)).(1.1)

This follows from the diagonal decomposition principle [3] (see also [30, II,

10.2.1]). Indeed, this principle says that if Y is a smooth variety such that

CH0(Y ) is supported on some subvariety W ⊂ Y , there is an equality in

CHd(Y × Y ), d = dimY :

NΔY = Z1 + Z2,(1.2)
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where N is a nonzero integer and Z1, Z2 are codimension d cycles with

SuppZ1 ⊂ D × Y, D � Y, SuppZ2 ⊂ Y ×W.

Assuming dimW ≤ 1, the integer N appearing in this decomposition is easily

checked to annihilate the kernel and cokernel of AJY .

Note that the integerN appearing above cannot in general be set equal to 1,

and one purpose of this paper is to investigate the significance of this invariant,

at least if we work on the level of cycles modulo homological equivalence. We

will focus in this paper on the case of d-folds with CH0 group supported on a

curve. In this case, the diagonal decomposition (1.2) has a term Z2 supported

on Y × W , for subvariety W of Y of dimension ≤ 1. We will say that Y

admits a cohomological decomposition of the diagonal as in (1.2) if there is an

equality of cycle classes in H2d(Y × Y,Z) as in (1.2), with SuppZ1 ⊂ D × Y

and SuppZ2 ⊂ Y ×W . We will say that Y admits an integral cohomological

decomposition of the diagonal if one has such a decomposition with N = 1.

Recall that the existence of a cohomological decomposition of the diagonal

as above has strong consequences (see [3] or [30, II, 10.2.2, 10.2.3]). For

example, this implies the generalized Mumford theorem which says in this case

that Hi(Y,OY ) = 0 for i ≥ 2. Thus the Hodge structures on H2(Y,Q), hence

on its Poincaré dual H2d−2(Y,Q) are trivial. Furthermore the intermediate

Jacobian J3(Y ) is an abelian variety (cf. [13]) and the Abel-Jacobi map

CH2(Y )hom → J3(Y ) is surjective.

Going further and using the theory of Bloch-Ogus [2] together with the

Merkurjev-Suslin theorem, Bloch and Srinivas also prove the following:

Theorem 1.2 (see [3]). If Y is a smooth projective complex variety such

that CH0(Y ) is supported on a surface, the Griffiths group Griff2(Y ) =

CH2(Y )hom/alg is identically 0.

The last result cannot be obtained as a consequence of the diagonal de-

composition, which only shows that under the same assumption Griff2(Y ) is

annihilated by the integer N introduced above.

We finally have the following improvement of Theorem 1.1:

Theorem 1.3 (cf. [24]). If Y is a smooth complex projective variety such

that CH0(Y ) is supported on a curve, then the Abel-Jacobi map induces an

isomorphism:

AJY : CH2(Y )hom = CH2(Y )alg ∼= J(Y ).

This follows indeed from the fact that this map is surjective with ker-

nel of torsion by Theorem 1.1, and that it can be shown by delicate argu-

ments involving the Merkurjev-Suslin theorem, Gersten-Quillen resolution in
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K-theory, and the Bloch-Ogus theory [2], that in general the Abel-Jacobi map

is injective on torsion codimension 2 cycles.

The group on the left does not have a priori the structure of an algebraic

variety, unlike the group on the right. However, it makes sense to say that

AJY is algebraic, meaning that for any smooth algebraic variety B, and any

codimension 2-cycle Z ⊂ B × Y , with Zb ∈ CH2(Y )hom for any b ∈ B, the

induced map

φZ : B → J(Y ), b 	→ AJY (Zb),

is a morphism of algebraic varieties.

Consider the case of a uniruled 3-fold Y with CH0(Y ) supported on a

curve. Then it is proved in [28] (cf. Theorem 2.3) that the integral degree 4

cohomology H4(Y,Z) is generated over Z by classes of curves, and thus the

birational invariant

Z4(Y ) :=
Hdg4(Y,Z)

〈[Z], Z ⊂ Y, codimZ = 2〉(1.3)

studied in [20] and [7] (see also section 2), is trivial in this case.

One of the main results of this paper is the following theorem concerning

the group Z4 for certain fourfolds fibered over curves.

Theorem 1.4. Let f : X → Γ be a fibration over a curve with general fiber

a smooth cubic threefold or a complete intersection of two quadrics in P5. If

the fibers of f have at worst ordinary quadratic singularities, then the Hodge

conjecture holds for degree 4 integral Hodge classes on X. In other words, the

group Z4(X) is trivial.

Remark 1.5. The difficulty here is to prove the result for integral Hodge

classes. Indeed, the fact that degree 4 rational Hodge classes are algebraic for

X as above can be proved by using either the results of [8], since such an X

is swept-out by rational curves, or those of Bloch-Srinivas [3], who prove this

statement for any variety whose CH0 group is supported on a subvariety of

dimension ≤ 3, as a consequence of the decomposition of the diagonal (1.2), or

by using the method of Zucker [31], who uses the theory of normal functions,

which we will essentially follow here.

As we will recall from [7] in section 2, such a result can be obtained as a

consequence of the study of the geometric properties of the Abel-Jacobi map
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for the fibers of f . In the case of the complete intersection of two quadrics in

P5, this study was done by Reid [25] and Castravet [4], and Theorem 1.4 for

this case is then an immediate consequence of Theorem 2.4 proved in section

2 (see Corollary 2.7). I thank the referee for pointing out this application.

Another motivation for this study is the following: The conclusion of the

above mentioned theorems 1.2, 1.3 and 2.3 is that for a uniruled threefold

with CH0 supported on a curve, all the interesting (and birationally invariant)

phenomena concerning codimension 2 cycles, namely the kernel of the Abel-

Jacobi map (Mumford [23]), the Griffiths group (Griffiths [13]) and the group

Z4(X) versus degree 3 unramified cohomology with torsion coefficients (Soulé-

Voisin [26], Colliot-Thélène-Voisin [7]) are trivial. In the rationally connected

case, the only interesting cohomological invariant could be the Artin-Mumford

invariant (or degree 2 unramified cohomology with torsion coefficients, cf.

[6]), which is also equal to the Brauer group since H2(Y,OY ) = 0. Still, the

geometric structure of the Abel-Jacobi map on families of 1-cycles on such

threefolds is mysterious, in contrast to what happens in the curve case, where

Abel’s theorem shows that the Abel-Jacobi map on the family of effective

0-cycles of large degree has fibers isomorphic to projective spaces. Another

goal of this paper is to underline substantial differences between 1-cycles on

threefolds with small CH0 on one side and 0-cycles on curves on the other

side, coming from geometry of the fibers of the Abel-Jacobi map.

There are for example two natural questions (Questions 1.6 and 1.10) left

open by Theorem 1.3:

Question 1.6. Let Y be a smooth projective threefold, such that AJY :

CH1(Y )alg → J(Y ) is surjective. Is there a codimension 2 cycle Z ⊂ J(Y )×Y

with Zb ∈ CH2(Y )hom for b ∈ J(Y ), such that the induced morphism

φZ : J(Y ) → J(Y ), φZ(b) := AJY (Zb)

is the identity?

Note that the surjectivity assumption is conjecturally implied by the van-

ishing H3(Y,OY ) = 0, via the generalized Hodge conjecture (cf. [15]).

Remark 1.7. Although the geometric study of the Abel-Jacobi map will

lead to consider flat families of curves on Y , we do not ask that the cycle Z

above is a combination of codimension 2 algebraic subsets Zi ⊂ J(Y ) × Y

which are flat over J . For a cycle Z ∈ CH2(B × Y ), this would be needed to

define properly the restricted cycle Zb ∈ CH2(b×Y ) if the base B of a family

of cycles Z ⊂ B × Y was not smooth, but when it is smooth, we can use the

restriction map CH2(B × Y ) → CH2(b× Y ) defined by Fulton [10].

Remark 1.8. One can more precisely introduce a birational invariant of

Y defined as the gcd of the nonzero integers N for which there exist a variety
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B and a cycle Z ⊂ B × Y as above, with deg φZ = N . Question 1.6 can then

be reformulated by asking whether this invariant is equal to 1.

Remark 1.9. Question 1.6 has a positive answer if the Hodge conjecture

for degree 4 integral Hodge classes on Y × J(Y ) are algebraic. Indeed, the

isomorphism H1(J(C),Z) ∼= H3(Y,Z) is an isomorphism of Hodge structures

which provides a degree 4 integral Hodge class α on J(Y ) × Y (cf. [30, I,

Lemma 11.41]). A codimension 2 algebraic cycle Z on J(Y )×Y with [Z] = α

would provide a solution to Question 1.6.

The following question is an important variant of the previous one, which

appears to be much more natural in specific geometric contexts (see section

3).

Question 1.10. Is the following property (*) satisfied by Y ?

(*) There exist a smooth projective variety B and a codimension 2 cycle

Z ⊂ B × Y , with Zb ∈ CH2(Y )hom for any b ∈ B, such that the induced

morphism φZ : B → J(Y ) is surjective with rationally connected general

fiber.

This question has been solved by Iliev-Markushevich and Markushevich-

Tikhomirov ([19], [22], see also [17] for similar results obtained independently)

in the case where Y is a smooth cubic threefold in P4. The answer is also

affirmative for the intersection X of two quadrics in P5 (cf. [25]): in this case

the family of lines in X is a surface isomorphic via a choice of base point to

the intermediate Jacobian J(X).

Obviously a positive answer to Question 1.6 implies a positive answer to

Question 1.10, as we can then just take B = J(X). We will provide a more

precise relation between these two questions in section 4.1. However, it seems

that Question 1.10 is more natural, especially if we go to the following stronger

version (Question 1.11) that we wish to partially investigate in this paper:

Here we choose an integral cohomology class α ∈ H4(Y,Z). Assuming

CH0(Y ) is supported on a curve, the Hodge structure on H4(Y,Q) is trivial

and thus α is a Hodge class. Introduce the torsor J(Y )α defined as follows:

the Deligne cohomology group H4
D(Y,Z(2)) is an extension

0 → J(Y ) → H4
D(Y,Z(2)) o→ Hdg4(Y,Z) → 0,(1.4)

where o is the natural map from Deligne to Betti cohomology (cf. [30, I, Corol-

lary 12.27]). Define

J(Y )α := o−1(α).(1.5)

By definition, the Deligne cycle class map (cf. [9], [30, I, 12.3.3]), restricted to

codimension 2 cycles of class α, takes value in J(Y )α. Furthermore, for any

family of 1-cycles Z ⊂ B × Y of class [Zb] = α, b ∈ B, parameterized by an
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algebraic variety B, the map φZ induced by the Abel-Jacobi map (or rather

the Deligne cycle class map) of Y , that is

φZ : B → J(Y )α, φZ(b) = AJY (Zb),

is a morphism of complex algebraic varieties. The following question makes

sense for any smooth projective threefold Y satisfying the conditions

H2(Y,OY ) = H3(Y,OY ) = 0:

Question 1.11. Is the following property (**) satisfied by Y ?

(**) For any degree 4 integral cohomology class α on Y , there is a “nat-

urally defined” (up to birational transformations) smooth projective variety

Bα, together with a codimension 2 cycle Zα ⊂ Bα × Y , with [Zα,b] = α

in H4(Y,Z) for any b ∈ B, such that the morphism φZα
: Bα → J(Y )α is

surjective with rationally connected general fiber.

By “naturally defined”, we have in mind that Bα should be determined by

α by some natural geometric construction (e.g., if α is sufficiently positive, a

main component of the Hilbert scheme of curves of class α and given genus,

or a moduli space of vector bundles with c2 = α), which would imply that Bα

is defined over the same definition field as Y .

This question is solved by Castravet in [4] when Y is the complete inter-

section of two quadrics. Let us comment on the importance of Question 1.11

in relation with the Hodge conjecture with integral coefficients for degree 4

Hodge classes, (that is the study of the group Z4 introduced in (1.3)): The

important point here is that we want to consider fourfolds fibered over curves,

or families of threefolds Yt parameterized by a curve Γ. The generic fiber of

this fibration is a threefold Y defined over C(Γ). Property (**) essentially

says that property (*), being satisfied over the definition field, which is in this

case C(Γ), holds in family. When we work in families, the necessity to look

at all torsors J(Y )α, and not only at J(Y ), becomes obvious: for fixed Y the

twisted Jacobians are all isomorphic (maybe not canonically) and if we can

choose a cycle zα in each given class α (for example, if Y is uniruled so that

Z4(Y ) = 0), we can use translations by the zα to reduce the problem to the

case where α = 0; this is a priori not true in families, for example, because

nontrivial torsors Jα may appear. We will give more precise explanations in

section 2 and explain one application of this property to the Hodge conjecture

for degree 4 integral Hodge classes on fourfolds fibered over curves.

Our results in this paper are of two kinds. First of all, we extend the re-

sults of [19] and answer affirmatively Question 1.11 for cubic threefolds. As a

consequence, we prove Theorem 1.4. Note that Castravet’s work answers af-
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firmatively Question 1.11 for (2, 2) complete intersections in P5, which implies

Theorem 1.4 for a fourfold X fibered by complete intersections of two quadrics

in P5 (see Corollary 2.7). However, many such fourfolds X are rational over

the base (that is, birational to Γ× P3): this is the case, for example, if there

is a section of the family of lines in the fibers of f . When X is rational over

the base, the vanishing of Z4(X) is immediate because the group Z4(X) of

(1.3) is a birational invariant of X.

By the results of [7], theses results can also be translated into statements

concerning degree 3 unramified cohomology withQ/Z-coefficients of such four-

folds (see section 2).

Our second result relates Question 1.10 to the existence of a cohomolog-

ical integral decomposition of the diagonal as in (1.2). Recall first (see [5])

that the intermediate Jacobian J(Y ) of a smooth projective threefold Y with

H3(Y,OY ) = 0 is naturally a principally polarized abelian variety, the polar-

ization Θ being given by the intersection form on H3(Y,Z) ∼= H1(J(Y ),Z).

Theorem 1.12. (1) Let Y be a smooth projective 3-fold. If Y admits an

integral cohomological decomposition of the diagonal as in (1.2) with dimW ≤
1, then:

(i) H4(Y,Z) is generated by classes of algebraic cycles,

(ii) Hp(Y,Z) has no torsion for any integer p.

(iii) Y satisfies condition (∗).

(2) As a partial converse, assume (i), (ii) and (iii), and furthermore h1(OY )

= 0.

If furthermore the intermediate Jacobian of Y admits a 1-cycle Γ of class
[Θ]g−1

(g−1)! , g = dimJ(Y ), then Y admits an integral cohomological decomposition

of the diagonal as in (1.2), with dimW ≤ 0.

Note that conditions (i) and (ii) are satisfied by a rationally connected

threefold with no torsion in H3(Y,Z). Hence in this case, this theorem mainly

relates Question 1.10 to the existence of a cohomological decomposition of the

diagonal.

We will also prove the following relation between Questions 1.6 and 1.10

(cf. Theorem 4.1):

Theorem 1.13. Assume that Question 1.10 has a positive answer for Y

and that the intermediate Jacobian of Y admits a 1-cycle Γ of class [Θ]g−1

(g−1)! ,

g = dimJ(Y ). Then Question 1.6 also has an affirmative answer for Y .

The paper is organized as follows: in section 3, we give a positive answer to

Question 1.10 for general cubic threefolds. We deduce from this Theorem 1.4.

Section 4 is devoted to various relations between Question 1.6 and 1.10 and
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the relation between these questions and the cohomological decomposition of

the diagonal with integral coefficients, in the spirit of Theorem 1.12.

2. Preliminaries on integral Hodge classes

and unramified cohomology

We give in this section a description of results and notation from the ear-

lier papers [28] and [7] which will be used later on in the paper. Let X

be a smooth projective complex variety. We denote Z2i(X) the quotient

Hdg2i(X,Z)/H2i(X,Z)alg of the group of degree 2i integral Hodge classes on

X by the subgroup consisting of cycle classes. The group Z2i(X) is a bira-

tional invariant of X for i = 2, d − 1, where d = dimX (cf. [26]). It is of

course trivial in degrees 2i = 0, 2d, 2, where the Hodge conjecture holds for

integral Hodge classes.

The paper [7] focuses on Z4(X) and relates its torsion to degree 3 unram-

ified cohomology of X with torsion coefficients. Recall that for any abelian

group A, unramified cohomology Hi
nr(X,A) with coefficients in A was intro-

duced in [6]. In the Betti context, the setup is as follows: Denote by XZar the

variety X (or rather, the set X(C)) endowed with the Zariski topology, while

X will be considered as endowed with the classical topology. The identity

map

π : X → XZar

is continuous and allows Bloch and Ogus [2] to introduce sheaves Hl(A) on

XZar defined by

Hl(A) := Rlπ∗A.

Definition 2.1 (Ojanguren-Colliot-Thélène [6]). Unramified cohomology

Hi
nr(X,A) of X with coefficients in A is the group H0(XZar,Hi(A)).

This is a birational invariant of X, as one can see easily using the Gersten-

Quillen resolution for the sheaves Hi proved by Bloch-Ogus [2]. We refer

to [7] for the description of other birational invariants constructed from the

cohomology of the sheaves Hi.

The following result is proved in [7], using the Bloch-Kato conjecture re-

cently proved by Voevodsky [27]:

Theorem 2.2. There is an exact sequence for any n:

0 → H3
nr(X,Z)⊗ Z/nZ → H3

nr(X,Z/nZ) → Z4(X)[n] → 0,
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where the notation [n] means that we take the n-torsion. There is an exact

sequence:

0 → H3
nr(X,Z)⊗Q/Z → H3

nr(X,Q/Z) → Z4(X)tors → 0,

where the subscript “tors” means that we consider the torsion part. Further-

more, the first term is 0 if CH0(X) is supported on a surface.

Concerning the vanishing of the group Z4(X), the following is proved in

[28]. It will be used in section 4.2.

Theorem 2.3. Let Y be a smooth projective threefold which is either unir-

uled or Calabi-Yau. Then Z4(Y ) = 0; that is, any integral degree 4 Hodge

class on Y is algebraic. In particular, if Y is uniruled with H2(Y,OY ) = 0,

any integral degree 4 cohomology class on Y is algebraic.

One of the results of [7] is the existence of smooth projective rationally

connected varieties X of dimension ≥ 6 for which Z4(X) �= 0.

We will study in this paper the group Z4(X), where X is a smooth projec-

tive 4-fold, f : X → Γ is a surjective morphism to a smooth curve Γ, whose

general fiber Xt satisfies H
3(Xt,OXt

) = H2(Xt,OXt
) = 0. For Xt, t ∈ Γ, as

above, the intermediate Jacobian J(Xt) is an abelian variety, as a consequence

of the vanishing H3(Xt,OXt
) = 0 (cf. [30, I, 12.2.2]). For any class

α ∈ H4(Xt,Z) = Hdg4(Xt,Z),

we introduced above a torsor J(Xt)α under J(Xt), which is an algebraic

variety noncanonically isomorphic to J(Xt).

Using the obvious extension of the formulas (1.1), (1.5) in the relative set-

ting, the construction of J(Xt), J(Xt)α can be done in family on the Zariski

open set Γ0 ⊂ Γ, over which f is smooth. There is thus a family of abelian

varieties J → Γ0, and for any global section α of the locally constant sys-

tem R4f∗Z on Γ0, we get the twisted family Jα → Γ0. The construction of

these families in the analytic setting (that is, as (twisted) families of complex

tori) follows from Hodge theory (cf. [30, II, 7.1.1]) and from their explicit set

theoretic description given by formulas (1.1) and (1.5). The fact that the re-

sulting families are algebraic can be proved using the results of [24], when one

knows that the Abel-Jacobi map is surjective. Indeed, it is shown under this

assumption that the intermediate Jacobian is the universal abelian quotient

of CH2, and thus can be constructed algebraically in the same way as the

Albanese variety.

Given a smooth algebraic variety B, a morphism g : B → Γ and a codi-

mension 2 cycle Z ⊂ B ×Γ X of relative class [Zb] = αg(b) ∈ H4(Xt,Z), the
relative Abel-Jacobi map (or rather Deligne cycle class map) gives a morphism

φZ : B0 → Jα, b 	→ AJY (Zb)
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over Γ0, where B0 := g−1(Γ0). Again, the proof that φZ is holomorphic is

quite easy (cf. [30, II, 7.2.1]), while the algebraicity is more delicate.

The following result, which illustrates the importance of condition (**) as

opposed to condition (*), appears in [7]. We recall the proof here, as we will

need it to prove a slight improvement of the criterion, which will be used in

section 3.1. As before, we assume that X is a smooth projective 4-fold, and

that f : X → Γ is a surjective morphism to a smooth curve whose general

fiber Xt satisfies H
3(Xt,OXt

) = H2(Xt,OXt
) = 0.

Theorem 2.4. Assume f : X → Γ satisfies the following assumptions:

(1) The smooth fibers Xt have no torsion in H3(Xt(C),Z).
(2) The singular fibers of f are reduced with at worst ordinary quadratic

singularities.

(3) For any section α of R4f∗Z on Γ0, there exists a variety gα : Bα →
Γ and a codimension 2 cycle Zα ⊂ Bα ×Γ X of relative class g∗αα,

such that the morphism φZα
: B → Jα is surjective with rationally

connected general fiber.

Then the Hodge conjecture is true for integral Hodge classes of degree 4 on X.

Proof. An integral Hodge class α̃ ∈ Hdg4(X,Z) ⊂ H4(X,Z) induces a

section α of the constant system R4f∗Z which admits a lift to a section of

the family of twisted Jacobians Jα. This lift is obtained as follows: The

class α̃ being a Hodge class on X admits a lift β in the Deligne cohomology

group H4
D(X,Z(2)) by the exact sequence (1.4) for X. Then our section σ

is obtained by restricting β to the fibers of f : σ(t) := β|Xt
. This lift is an

algebraic section Γ → Jα of the structural map Jα → Γ.

Recall that we have by hypothesis the morphism

φZα
: Bα → Jα

which is algebraic, surjective with rationally connected general fiber. We can

now replace σ(Γ) by a 1-cycle Σ =
∑

i niΣi rationally equivalent to it in Jα,

in such a way that the fibers of φZα
are rationally connected over the general

points of each component Σi of SuppΣ.

According to [12], the morphism φZα
admits a lifting over each Σi, which

provides curves Σ′
i ⊂ Bα.

Recall next that there is a codimension 2 cycle Zα ⊂ Bα ×Γ X of relative

class α parameterized by a smooth projective variety Bα. We can restrict

this cycle to each Σ′
i, getting codimension 2 cycles Zα,i ∈ CH2(Σ′

i ×Γ X).

Consider the 1-cycle

Z :=
∑
i

nipi∗Zα,i ∈ CH2(Γ×Γ X) = CH2(X),
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where pi is the restriction to Σ′
i of p : Bα → Γ. Recalling that Σ is rationally

equivalent to σ(Γ) in Jα, we find that the “normal function νZ associated to

Z” (cf. [30, II, 7.2.1]), defined by

νZ(t) = AJXt
(Z|Xt

)

is equal to σ. We then deduce from [13] (see also [30, II, 8.2.2]), using the Leray

spectral sequence of fU : XU → U and hypothesis (1), that the cohomology

classes [Z] ∈ H4(X,Z) of Z and α̃ coincide on any open set of the form XU ,

where U ⊂ Γ0 is an affine open set over which f is smooth.

On the other hand, the kernel of the restriction map H4(X,Z) → H4(U,Z)
is generated by the groups it∗H4(Xt,Z) where t ∈ Γ\U , and it : Xt → X is the

inclusion map. We conclude using assumption (2) and the fact that the general

fiber of f has H2(Xt,OXt
) = 0, which imply that all fibers Xt (singular or

not) have their degree 4 integral homology generated by homology classes of

algebraic cycles; indeed, it follows from this and the previous conclusion that

[Z]− α̃ is algebraic, so that α̃ is also algebraic. �
Remark 2.5. It is also possible in this proof, instead of moving the curve

σ(Γ) to a 1-cycle in general position, to use Theorem 2.9 below, which also

guarantees that, in fact, σ itself lifts to Bα.

Remark 2.6. By Theorem 2.3, if Xt is uniruled and H2(Xt,OXt
) = 0

(a geometric strengthening of our assumptions that H2(Xt,OXt
) = 0 =

H3(Xt,OXt
) = 0), then any degree 4 integral cohomology class αt on Xt

is algebraic on Xt. Together with Bloch-Srinivas results [3] on the surjectivity

of the Abel-Jacobi map for codimension 2-cycles under these assumptions, this

shows that pairs (Bα, Zα) with surjective φZα
: Bα → Jα exist. In this case,

the strong statement in assumption (3) is thus the rational connectedness of

the fibers.

Corollary 2.7. Let f : X → Γ be a fibration over a curve with general

fiber a complete intersection of two quadrics in P5. If the fibers of f have

at worst ordinary quadratic singularities, then the Hodge conjecture holds for

degree 4 integral Hodge classes on X. In other words, the group Z4(X) is

trivial.

Proof. Indeed, the assumptions Hi(Xt,OXt
) = 0, i > 0 are a consequence

of the fact that Xt is Fano in this case. Condition (1) in Theorem 2.4 is

satisfied for complete intersections in projective space by Lefschetz hyperplane

restriction theorem, and condition (3) is proved by Castravet [4]. �
In order to study cubic threefolds fibrations, we will need a technical

strengthening of Theorem 2.4. We start with a smooth projective morphism

f : X → T of relative dimension 3 with T smooth and quasi-projective. We

assume as before that smooth fibers Xt have no torsion in H3(Xt,Z) and
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have H3(Xt,OXt
) = H2(Xt,OXt

) = 0. As before, for any global section α of

R4f∗Z, we have the twisted family of intermediate Jacobians Jα → T .

Theorem 2.8. Assume that the following hold.

(i) The local system R4f∗Z is trivial.

(ii) For any section α of R4f∗Z, there exists a variety gα : Bα → T and

a family of relative 1-cycles Zα ⊂ Bα ×T X of class α, such that

the morphism φZα
: Bα → Jα is surjective with rationally connected

general fibers.

Then for any smooth quasi-projective curve Γ0, any morphism φ : Γ0 → T ,

and any smooth projective model ψ : X → Γ of X ×T Γ0 → Γ0, assuming ψ

has at worst nodal fibers, one has Z4(X) = 0.

Proof. We mimick the proof of the previous theorem. We thus only have

to prove that for any Hodge class α̃ on X, inducing by restriction to the fibers

of ψ a section α of R4ψ∗Z, the section σα̃ of JΓ,α → Γ0 induced by α̃ lifts to

a family of 1-cycles of class α in the fibers of ψ. Observe that by triviality

of the local system R4f∗Z on T , the section α extends to a section of R4f∗Z
on T . We then have by assumption the family of 1-cycles Zα ⊂ Bα ×T X
parameterized by Bα, with the property that the general fiber of the induced

Abel-Jacobi map φZα
: Bα → Jα is rationally connected. As φ∗Jα = JΓ,α,

we can see the pair (φ, σα̃) as a general morphism from Γ0 to Jα. The desired

family of 1-cycles follows then from the existence of a lift of σα̃ to Bα, given

by the following result Theorem 2.9, due to Graber, Harris, Mazur and Starr

(see also [18] for related results). �
Theorem 2.9 ([11, Proposition 2.7]). Let f : Z → W be a surjective

projective morphism between smooth varieties over C. Assume the general

fiber of f is rationally connected. Then, for any rational map g : C ��� W ,

where C is a smooth curve, there exists a rational lift g̃ : C → Z of g in Z.

3. On the fibers of the Abel-Jacobi map for the cubic threefold

The papers [22], [19], and [17] are devoted to the study of the morphism

induced by the Abel-Jacobi map, from the family of curves of small degree

in a cubic threefold in P4 to its intermediate Jacobian. In degree 4, genus 0,

and degree 5, genus 0 or 1, it is proved that these morphisms are surjective

with rationally connected fibers, but it is known that this is not true in degree

3 (and any genus), and, to our knowlege, the case of degree 6 has not been

studied. As is clear from the proof of Theorem 2.4, we need for the proof

of Theorem 3.11 to have such a statement for at least one naturally defined
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family of curves of degree divisible by 3. The following result provides such a

statement.

Theorem 3.1. Let Y ⊂ P4
C

be a general cubic hypersurface. Then the

map φ6,1 induced by the Abel-Jacobi map AJY , from the family M6,1 of el-

liptic curves of degree 6 contained in Y to J(Y ), is surjective with rationally

connected general fiber.

Remark 3.2. What we call here the family of elliptic curves is a desingular-

ization of the closure, in the Hilbert scheme of Y , of the family parameterizing

smooth degree 6 elliptic curves which are nondegenerate in P4.

Remark 3.3. As J(Y ) is not uniruled, an equivalent formulation of the

result is the following (cf. [17]): the map φ6,1 is dominating and identifies

birationally to the maximal rationally connected fibration (see [21]) of M6,1.

Proof of Theorem 3.1. Notice that it suffices to prove the statement for

very general Y , which we will assume occasionally. One can show that M6,1

is for general Y irreducible of dimension 12. It suffices for this to argue

as in [16]. One first shows that the universal variety M6,1,univ parame-

terizing pairs (E, Y ) consisting of an at worst nodal degree 6 nondegener-

ate elliptic curve in P4 and a smooth cubic 3-fold containing it, is smooth

and irreducible. It remains to prove that the general fibers of the map

M6,1,univ → P(H0(P4,OP4(3))) are irreducible. One uses for this the re-

sults of [22] to construct a subvariety D5,1,univ of M6,1,univ which dominates

P(H0(P4,OP4(3))) with general irreducible fibers. One just takes for this the

variety parameterizing elliptic curves obtained as the union of a degree 5 el-

liptic curve and a line meeting at one point. The results of [22] imply that the

map D5,1,univ → P(H0(P4,OP4(3))) has irreducible general fibers (see below

for an explicit description of the fiber D5,1), and it follows easily that the

same is true for the map M6,1,univ → P(H0(P4,OP4(3))).

Let E ⊂ Y be a general nondegenerate smooth degree 6 elliptic curve.

Then there exists a smooth K3 surface S ⊂ Y , which is a member of the linear

system |OY (2)|, containing E. The line bundle OS(E) is then generated by

two sections. Let V := H0(S,OS(E)) and consider the rank 2 vector bundle

E on Y defined by E := F∗, where F is the kernel of the surjective evaluation

map V ⊗OY → OS(E). We have the exact sequence

0 → F → V ⊗OY → OS(E) → 0.(3.1)

One verifies by dualizing the exact sequence (3.1) thatH0(Y, E) is of dimension

4, and that E is recovered as the zero locus of a transverse section of E .
Furthermore, the bundle E is stable when E is nondegenerate. Indeed, E
is stable if and only if F is stable. As detF = OY (−2), rank E = 2, the

stability of F is equivalent to H0(Y,F(1)) = 0, which is equivalent by taking
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global sections in (3.1) to the fact that the product V ⊗ H0(S,OS(1)) →
H0(S,OS(E)(1)) is injective. By the base-point free pencil trick, the kernel

of this map is isomorphic to H0(S,OS(−E)(1)).

The vector bundle E so constructed does not in fact depend on the choice

of S, as it can also be obtained by the Serre construction starting from E (as

is done in [22]), because by dualizing (3.1) and taking global sections, one sees

that E is the zero set of a section of E .
Using the fact that Hi(Y, E) = 0 for i > 0, as follows from (3.1), one

concludes that, denoting M9 the moduli space of stable rank 2 bundles on Y

with Chern classses

c1(E) = OY (2), deg c2(E) = 6,

M9 is of dimension 9 and one has a dominating rational map

φ : M6,1 ��� M9

whose general fiber is isomorphic to P3 (more precisely, the fiber over [E ]
is the projective space P(H0(Y, E))). It follows that the maximal rationally

connected (MRC) fibration of M6,1 (cf. [21]) factorizes through M9.

Let us consider the subvariety D3,3 ⊂ M6,1 parameterizing the singular

elliptic curves of degree 6 consisting of two rational components of degree 3

meeting in two points. The family M3,0 parameterizing rational curves of

degree 3 is birationally a P2-fibration over the Theta divisor Θ ⊂ J(Y ) (cf.

[16]). More precisely, a general rational curve C ⊂ Y of degree 3 is contained

in a smooth hyperplane section S ⊂ Y , and deforms in a linear system of

dimension 2 in S. The map φ3,0 : M3,0 → J(Y ) induced by the Abel-Jacobi

map of Y has its image equal to Θ ⊂ J(Y ) and its fiber passing through

[C] is the linear system P2 introduced above. This allows to describe D3,3

in the following way: the Abel-Jacobi map of Y , applied to each component

C1, C2 of a general curve C1 ∪ C2 parameterized by D3,3 takes value in the

symmetric product S2Θ and its fiber passing through [C1 ∪ C2] is described

by the choice of two curves in the corresponding linear systems P2
1 and P2

2.

These two curves have to meet in two points of the elliptic curve E3 defined

as the complete intersection of the two cubic surfaces S1 and S2. This fiber

is thus birationally equivalent to S2E3.

Observe that the existence of this subvariety D3,3 ⊂ M6,1 implies the sur-

jectivity of φ6,1 because the restriction of φ6,1 to D3,3 is the composition of

the above-defined surjective map

χ : D3,3 → S2Θ

and of the sum map S2Θ → J(Y ). Obviously the sum map is surjective.
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We will show more precisely:

Lemma 3.4. The map φ introduced above is generically defined along D3,3

and φ|D3,3
: D3,3 ��� M9 is dominating. In particular, D3,3 dominates the

base of the MRC fibration of M6,1.

Proof. Let E = C3 ∪ C ′
3 be a general elliptic curve of Y parameterized

by D3,3. Then E is contained in a smooth K3 surface in the linear system

|OY (2)|. The linear system |OS(E)| has no base point in S, and thus the

construction of the vector bundle E can be done as in the smooth general

case; furthermore, it is verified in the same way that E is stable on Y . Hence

φ is well defined at the point [E]. One verifies that H0(Y, E) is of dimension

4 as in the general smooth case. As dimD3,3 = 10 and dimM9 = 9, to show

that φ|D3,3
is dominating, it suffices to show that the general fiber of φ|D3,3

is

of dimension ≤ 1. Assume to the contrary that this fiber, which is contained

in P(H0(Y, E)) = P3, is of dimension ≥ 2. Recalling that D′
3,3 is not swept-out

by rational surfaces because it is fibered over S2Θ into surfaces isomorphic

to the second symmetric product of an elliptic curve, this fiber should be a

surface of degree ≥ 3 in P(H0(Y, E)). Any line in P(H0(Y, E)) should then

meet this surface in at least 3 points counted with multiplicities. For such a

line, take the P1 ⊂ P(H0(Y, E)) obtained by considering the base-point free

pencil |OS(E)|. One verifies that this line is not tangent to D3,3 at the point

[E] and thus should meet D3,3 in another point. Choosing a component for

each reducible fiber of the elliptic pencil |OS(E)| provides two elements of

PicS of negative self-intersection, which are mutually orthogonal. Taking

into account the class of E and the class of a hyperplane section, it follows

that the surface S should thus have a Picard number ρ(S) ≥ 4, which is easily

excluded by a dimension count for a general pair (E, S), where E is an elliptic

curve of type (3, 3) as above and S is the intersection of our general cubic Y

and a quadric in P4 containing E. Namely, the conclusion is that the image

of this space in the corresponding moduli space of K3 surfaces of type (2, 3)

in P5 has codimension 2, and the study of the period map for K3 surfaces

guarantees then that a general surface in this image has ρ ≤ 3. �
To construct other rational curves in M6,1, we now make the following

observation: if E is a nondegenerate degree 6 elliptic curve in P4, let us choose

two distinct line bundles l1, l2 of degree 2 on E such that OE(1) = 2l1 + l2
in PicE. Then (l1, l2) provides an embedding of E in P1 × P1, and denoting

hi := pr∗iOP1(1) ∈ Pic (P1 × P1), the line bundle l = 2h1 + h2 on P1 × P1 has

the property that l|E = 2l1 + l2 = OE(1) and the restriction map

H0(P1 × P1, l) → H0(E,OE(1))
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is an isomorphism. The original morphism from E to P4 is given by a base-

point free hyperplane in H0(E,OE(1)). For a generic choice of l2, this hy-

perplane also provides a base-point free hyperplane in H0(P1 × P1, l), hence

a morphism φ : P1 × P1 → P4, whose image is a surface Σ of degree 4. The

residual curve of E in the intersection Σ ∩ Y is a curve in the linear system

|4h1 + h2| on P1 × P1. This is thus a curve of degree 6 in P4 and of genus 0.

Let us now describe the construction in the reverse way: We start from

a smooth general genus 0 and degree 6 curve C in P4, and want to describe

morphisms φ : P1 ×P1 → P4 as above, such that C ⊂ φ(P1 ×P1) is the image

by φ of a curve in the linear system |4h1 + h2| on P1 × P1.

Lemma 3.5. For a generic degree 6 rational curve C, the family of such

morphisms φ is parameterized by a P1.

Proof. Choosing an isomorphism C ∼= P1, the inclusion C ⊂ P4 provides

a base-point free linear subsystem W ⊂ H0(P1,OP1(6)) of dimension 5. Let

us choose a hyperplane H ⊂ H0(P1,OP1(6)) containing W . The codimension

2 vector subspace W being given, such hyperplanes H are parameterized by

a P1, which will be our parameter space. Indeed we claim that, when the

hyperplane H is chosen generically, there exists a unique embedding C →
P1 × P1 as a curve in the linear system |4h1 + h2|, such that H is recovered

as the image of the restriction map

H0(P1 × P1, 2h1 + h2) → H0(P1,OP1(6)).

To prove the claim, notice that the embedding of P1 into P1 × P1 as a curve

in the linear system |4h1+h2| is determined up to the action of AutP1 by the

choice of a degree 4 morphism from P1 to P1, which is equivalent to the data

of a rank 2 base-point free linear system W ′ ⊂ H0(P1,OP1(4)). The condition

that H is equal to the image of the restriction map above is equivalent to the

fact that

H = W ′ ·H0(P1,OP1(2)) := Im (W ′ ⊗H0(P1,OP1(2)) → H0(P1,OP1(6))),

where the map is given by multiplication of sections. Given H, let us set

W ′ :=
⋂

t∈H0(P1,O
P1 (2))

[H : t],

where [H : t] := {w ∈ H0(P1,OP1(4)), wt ∈ H}. Generically, one then has

dimW ′ = 2 and H = W ′ · H0(P1,OP1(2)). This concludes the proof of the

claim, and hence of the lemma. �
If the curve C is contained in Y , the residual curve of C in the intersection

Y ∩ Σ is an elliptic curve of degree 6 in Y . These two constructions are

inverse of each other, which provides a birational map from the space of pairs

{(E,Σ), E ∈ M6,1, E ⊂ Σ} to the space of pairs {(C,Σ), C ∈ M6,0, C ⊂ Σ},
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where Σ ⊂ P4 is a surface of the type considered above, and the inclusions of

the curves C, E is Σ are in the linear systems described above.

This construction thus provides rational curves RC ⊂ M6,1 parameterized

by C ∈ M6,0 and sweeping-out M6,1. To each curve C parameterized by M6,0,

one associates the family RC of elliptic curves Et which are residual to C in

the intersection Σt ∩ Y , where t runs over the P1 exhibited in Lemma 3.5.

Let Φ : M6,1 ��� B be the maximal rationally connected fibration of M6,1.

We will use later on the curves RC introduced above to prove the following

Lemma 3.6. Consider the divisor D5,1 ⊂ M6,1 parameterizing singular elliptic

curves of degree 6 contained in Y , which are the union of an elliptic curve

of degree 5 in Y and of a line Δ ⊂ Y meeting in one point. If E is such

a generically chosen elliptic curve and S ∈ |OY (2)| is a smooth K3 surface

containing E, the linear system |OS(E)| contains the line Δ in its base locus,

and thus the construction of the associated vector bundle E fails. Consider

however a curve E′ ⊂ S in the linear system |OS(2−E)|. Then E′ is again a

degree 6 elliptic curve in Y and E′ is smooth and nondegenerate for a generic

choice of Y , E, and S as above. The curves E′ so obtained are parameterized

by a divisor D′
5,1 of M6,1, which also has the following description: the curves

E′ parameterized by D′
5,1 can also be characterized by the fact that they have

a trisecant line contained in Y (precisely the line Δ introduced above).

Lemma 3.6. The restriction of Φ to D′
5,1 is surjective.

Proof. We will use the following elementary principle 3.7: Let Z be a

smooth projective variety, and Φ : Z ��� B its maximal rationally connected

fibration. Assume given a family of rational curves (Ct)t∈M sweeping-out Z.

Principle 3.7. Let D ⊂ Z be a divisor such that, through a general point

d ∈ D, there passes a curve Ct, t ∈ M, meeting D properly at d. Then

Φ|D : D ��� B is dominating.

We now apply Principle 3.7 to Z = M6,1 and to the previously constructed

family of rational curves RC , C ∈ M6,0. It thus suffices to show that for

general Y , if [E] ∈ D′
5,1 is a general point, there exists an (irreducible) curve

RC passing through [E] and not contained in D′
5,1. Let us recall that D′

5,1

is irreducible, and parameterizes elliptic curves of degree 6 in Y admitting a

trisecant line contained in Y . Starting from a curve C of genus 0 and degree 6

which is nondegenerate in P4, we constructed a one parameter family (Σt)t∈P1

of surfaces of degree 4 containing C and isomorphic to P1×P1. For general t,

the trisecant lines of Σt in P4 form at most a 3-dimensional variety and thus,

for a general cubic Y ⊂ P4, there exists no trisecant to Σt contained in Y .

Let us choose a line Δ which is trisecant to Σ0 but not trisecant to Σt for t

close to 0, t �= 0. A general cubic Y containing C and Δ contains then no

trisecant to Σt for t close to 0, t �= 0. Let E0 be the residual curve of C in
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Σ0∩Y . Then E0 has the line Δ ⊂ Y as a trisecant, and thus [E0] is a point of

the divisor D′
5,1 associated to Y . However the rational curve RC ⊂ M6,1(Y )

parameterizing the residual curves Et of C in Σt ∩ Y, t ∈ P1, is not contained

in D′
5,1 because, by construction, no trisecant of Et is contained in Y , for t

close to 0, t �= 0. �
Remark 3.8. It is not true that the map φ|D′

5,1
: D′

5,1 ��� M9 is dominat-

ing. Indeed, the curves E′ parameterized by D′
5,1 admit a trisecant line L in

Y . Let E be the associated vector bundle. Then because det E = OY (2) and

E|L has a nonzero section vanishing in three points, E|L ∼= OL(3) ⊕ OL(−1).

Hence, the corresponding vector bundles E are not globally generated and

thus are not generic.

The proof of Theorem 3.1 is now concluded in the following way:

Lemma 3.4 says that the rational map Φ|D3,3
is dominating. The dominat-

ing rational maps Φ|D3,3
and Φ|D′

5,1
, taking values in a non-uniruled variety,

factorize through the base of the MRC fibrations of D3,3 and D′
5,1, respec-

tively. The maximal rationally connected fibrations of the divisors D′
5,1 and

D5,1 have the same base. Indeed, one way of seeing the construction of the

correspondence between D5,1 and D′
5,1 is by liaison: By definition, a general

element E′ of D′
5,1 is residual to a element E of D5,1 in a complete intersection

of two quadric hypersurfaces in Y . This implies that a P2-bundle over D5,1

(parameterizing a reducible elliptic curve E of type (5, 1) and a rank 2 vector

space of quadratic polynomials vanishing on E) is birationally equivalent to

a P2-fibration over D′
5,1 defined in the same way.

The MRC fibration of the divisor D5,1 is well understood by the works

[19] and [22]. Indeed, these papers show that the morphism φ5,1 induced by

the Abel-Jacobi map of Y on the family M5,1 of degree 5 elliptic curves in Y

is surjective with general fiber isomorphic to P5: more precisely, an elliptic

curve E of degree 5 in Y is the zero locus of a transverse section of a rank 2

vector bundle E on Y , and the fiber of φ5,1 passing through [E] is for general

E isomorphic to P(H0(Y, E)) = P5. The vector bundle E , and the line L ⊂ Y

being given, the set of elliptic curves of type (5, 1) whose degree 5 component

is the zero locus of a section of E and the degree 1 component is the line L

identifies to ⋃
x∈L

P(H0(Y, E ⊗ Ix)),

which is rationally connected. Hence D5,1, and thus also D′
5,1, is a fibration

over J(Y ) × F with rationally connected general fiber, where F is the Fano

surface of lines in Y . As the variety J(Y )× F is not uniruled, it must be the

base of the maximal rationally connected fibration of D′
5,1.
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From the above considerations, we conclude that B is dominated by J(Y )×
F and, in particular, dimB ≤ 7.

Let us now consider the dominating rational map Φ|D3,3
: D3,3 ��� B,

which will be denoted by Φ′. Recall that D3,3 admits a surjective morphism

χ to S2Θ, the general fiber being isomorphic to the second symmetric product

S2E3 of an elliptic curve of degree 3. We postpone the proof of the following

lemma:

Lemma 3.9. The rational map Φ′ factorizes through S2Θ.

This lemma implies that B is rationally dominated by S2Θ, hence a fortiori

by Θ × Θ. We will denote Φ′′ : Θ × Θ ��� B the rational map obtained by

factorizing Φ′ through S2Θ and then by composing the resulting map with

the quotient map Θ×Θ → S2Θ. We have a map φB : B → J(Y ) obtained as

a factorization of the map φ6,1 : M6,1 → J(Y ), using the fact that the fibers

of Φ : M6,1 ��� B are rationally connected, hence contracted by φ6,1. Clearly,

the composition of the map φB with the map Φ′′ identifies to the sum map

σ : Θ × Θ → J(Y ). Its fiber over an element a ∈ J(Y ) thus identifies in a

canonical way to the complete intersection of the ample divisors Θ and a−Θ

of J(Y ), where a − Θ is the divisor {a − x, x ∈ Θ} of J(Y ), which will be

denoted Θa in the sequel. Consider the dominating rational map fiberwise

induced by Φ′′ over J(Y ):

Φ′′
a : Θ ∩Θa ��� Ba,

where Ba := φ−1
B (a) has dimension at most 2 and is not uniruled. The proof

of Theorem 3.1 is thus concluded with the following lemma:

Lemma 3.10. If Y is very general, and a ∈ J(Y ) is general, any domi-

nating rational map Φ′′
a from Θ ∩ Θa to a smooth nonuniruled variety Ba of

dimension ≤ 2 is constant.

Indeed, this lemma tells that Φ′′
a must be constant for very general Y and

general a, hence also for general Y and a. This implies that B is in fact

birationally isomorphic to J(Y ). �
To complete the proof of Theorem 3.1, it remains to prove Lemmas 3.9 and

3.10.

Proof of Lemma 3.9. Assume to the contrary that the dominating rational

map Φ′ : D3,3 ��� B does not factorize through S2Θ. As the map χ : D3,3 →
S2Θ has for general fiber S2E3, where E3 is an elliptic curve of degree 3 in

P4, and B is not uniruled, Φ′ factorizes through the corresponding fibration

χ′ : Z ��� S2Θ, with fiber Pic2E3. Let us denote Φ′′ : Z ��� B this second

factorization. Recall that dimB ≤ 7 and that B maps surjectively onto

J(Y ) via the morphism φB : B ��� J(Y ) induced by the Abel-Jacobi map

φ6,1 : M6,1 → J(Y ). Clearly the elliptic curves Pic2E3 introduced above are
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contracted by the composite map φB ◦Φ′′. If these curves are not contracted

by Φ′′, the fibers Ba := φ−1
B (a), a ∈ J(Y ), are swept-out by elliptic curves. As

the fibers Ba are either curves of genus > 0 or nonuniruled surfaces (because

dimB ≤ 7 and B is not uniruled), they have the property that there pass

at most finitely many elliptic curves in a given deformation class through a

general point b ∈ Ba. Under our assumption, there should thus exist:

(1) A variety J ′, and a dominating morphism g : J ′ → J(Y ) such that

the fiber J ′
a, for a general point a ∈ J(Y ), has dimension at most 1 and

parameterizes elliptic curves in a given deformation class in the fiber Ba.

(2) A family B′ → J ′ of elliptic curves, and dominating rational maps:

Ψ : Z ��� B′, s : S2Θ ��� J ′, r : B′ ��� B

such that Z is up to fiberwise isogeny birationally equivalent via (χ′,Ψ) to

the fibered product S2Θ ×J′ B′, r is generically finite, and Φ′′ = r ◦ Ψ. We

have just expressed above the fact that χ′ : Z → S2Θ is an elliptic fibration,

and that, if the map Φ′′ does not factor through χ′, there is another elliptic

fibration B′ → B which sends onto B via the generically finite map r, and a

commutative diagram of dominating rational maps

Z
Ψ ��

χ′

��

B′

��

r �� B

φB

��

S2Θ
s �� J ′ g

�� J(Y )

where the first square is Cartesian up to fiberwise isogeny.

To get a contradiction out of this, observe that the family of elliptic curves

Z → S2Θ is also birationally the inverse image of a family of elliptic curves

parameterized by G(2, 4), via a natural rational map f : S2Θ ��� G(2, 4).

Indeed, an element of S2Θ parameterizes two linear systems |C1|, respectively
|C2| of rational curves of degree 3 on two hyperplane sections S1 = H1 ∩ Y ,

respectively S2 = H2 ∩ Y of Y . The map f associates to the unordered pair

{|C1|, |C2|} the plane P := H1 ∩ H2. This plane P ⊂ P4 parameterizes the

elliptic curve E3 := P ∩Y , and there is a canonical isomorphism E3
∼= Pic2E3

because deg E3 = 3.

The contradiction then comes from the following fact: for j ∈ P1, let us

consider the divisor Dj of Z which is swept-out by elliptic curves of fixed

modulus determined by j, in the fibration Z ��� S2Θ. This divisor is the

inverse image by f ◦ χ′ of an ample divisor on G(2, 4) and, furthermore, it

is also the inverse image by Ψ of the similarly defined divisor of B′. As r

is generically finite and B is not uniruled, B′ is not uniruled. Hence, the

rational map Ψ : Z ��� B′ is “almost holomorphic”; that is well defined
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along its general fiber. One deduces from this that the divisor Dj has trivial

restriction to a general fiber of Ψ. This fiber, which is of dimension ≥ 2

because dimZ = 9 and dimB′ ≤ 7, must then be sent to a point in G(2, 4)

by f ◦ χ′ and its image in S2Θ is thus contained in a union of components of

fibers of f . Observing, furthermore, that the general fiber of f is irreducible

of dimension 2, it follows that the rational dominating map s : S2Θ ��� J ′

factorizes through f : S2Θ ��� G(2, 4). As G(2, 4) is rational, this contradicts

the fact that J ′ dominates rationally J(Y ). �

Proof of Lemma 3.10. Observe that, as dimSingΘ = 0 by [1], the general

intersection Θ∩Θa is smooth. Assume first that dimBa = 1. Then either Ba

is an elliptic curve or H0(Ba,ΩBa
) has dimension ≥ 2. Notice that, by Lef-

schetz hyperplane restriction theorem, the Albanese variety of the complete

intersection Θ ∩Θa identifies to J(Y ). The curve Ba cannot be elliptic, oth-

erwise J(Y ) would not be simple. But it is easy to prove by an infinitesimal

variation of Hodge structure argument (cf. [30, II, 6.2.1]) that J(Y ) is simple

for very general Y . If dimH0(Ba,ΩBa
) ≥ 2, this provides two independent

holomorphic 1-forms on Θ ∩ Θa whose exterior product vanishes. These 1-

forms come, by Lefschetz hyperplane restriction theorem, from independent

holomorphic 1-forms on J(Y ), whose exterior product is a nonzero holomor-

phic 2-form on J(Y ). The restriction of this 2-form to Θ∩Θa vanishes, which

contradicts Lefschetz hyperplane restriction theorem because dimΘ∩Θa = 3.

This case is thus excluded. (Note that we could also argue using the fact

that the fundamental group of Θ∩Θa is abelian, which prevents the existence

of a surjective map to a curve of genus ≥ 2. In both cases, an argument of

Lefschetz type is needed.)

Assume now dimBa = 2. Then the surface Ba has nonnegative Kodaira

dimension, because it is not uniruled. Let L be the line bundle Φ′′
a
∗
(KBa

)

on Θ ∩ Θa. The Iitaka dimension κ(L) of L is nonnegative and there is

a nonzero section of the bundle Ω2
Θ∩Θa

(−L) given by the pullback via Φ′′
a

of holomorphic 2-forms on Ba (as Φ′′
a is only a rational map, this pullback

morphism Φ′′
a
∗
(KBa

) → Ω2
Θ∩Θa

is first defined on the open set where Φ′′
a is

well defined, and then extended using the smoothness of Θ ∩ Θa and the

fact that the indeterminacy locus has codimension ≥ 2. Notice that by the

Grothendieck-Lefschetz theorem [14], L is the restriction of a line bundle on

J(Y ), hence must be numerically effective, because one can show, again by

an infinitesimal variation of Hodge structure argument, that NS(J(Y )) = Z,
for very general Y .

We claim that any such section is the restriction of a section of

Ω2
J(Y )|Θ∩Θa

(−L). Indeed, the conormal exact sequence of Θ ∩ Θa in J(Y )
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writes

0 → OΘ∩Θa
(−Θ)⊕OΘ∩Θa

(−Θa) → ΩJ |Θ∩Θa
→ ΩΘ∩Θa

→ 0.(3.2)

The exact Koszul complex associated to (3.2) twisted by −L gives a four

terms exact sequence:

0 → Sym2(OΘ∩Θa
(−Θ)⊕OΘ∩Θa

(−Θa))(−L) →(3.3)

ΩJ |Θ∩Θa
⊗ (OJ (−Θ− L)⊕OJ (−Θa − L)) →

ΩJ
2
|Θ∩Θa

(−L) → Ω2
Θ∩Θa

(−L) → 0.

Using the fact that ΩJ is trivial, L is numerically effective and dimΘ ∩Θa ≥
3, Kodaira’s vanishing theorem and the splitting of (3.3) into short exact

sequences imply the surjectivity of the restriction map

H0(Θ ∩Θa,ΩJ
2
|Θ∩Θa

(−L)) → H0(Θ ∩Θa,Ω
2
Θ∩Θa

(−L)),

which proves the claim.

As κ(L) ≥ 0 and the fact that ΩJ |Θ∩Θa
is trivial, a nonzero section of

ΩJ |Θ∩Θa
(−L) can exist only if L is trivial. Notice that, up to replacing

(Θ ∩ Θa,Φ
′′
a, Ba) by its Stein factorization (or rather, the Stein factorization

of a desingularized model of Φ′′
a), one may assume that Φ′′

a has connected

fibers. We claim that h0(Ba,KBa
) = 1. Indeed, choose a desingularization:

Φ̃′′
a : Θ̃ ∩Θa → Ba

of the rational map Φ′′
a. Then we know that the line bundle Φ̃′′

a

∗
KBa

has

nonnegative Iitaka dimension and that it is trivial on the complement of the

exceptional divisor of the desingularization map

Θ̃ ∩Θa → Θ ∩Θa,

since it is equal to L on this open set. This is possible only if Φ̃′′
a

∗
KBa

has

exactly one section with zero set supported on this exceptional divisor. (We

use here the fact that if a divisor supported on the exceptional divisor of a

contraction has a multiple which is effective, then it is effective.) But then

this unique section comes from a section of KBa
, because we assumed that

fibers of Φ̃′′
a are connected. This proves the claim.

Having this, we conclude that the Hodge structure on H2(Θ ∩ Θa,Z) ∼=
H2(J(Y ),Z) has a Hodge substructure with h2,0 = 1. But this can be also

excluded for very general Y by an infinitesimal variation of Hodge structure

argument. �
This concludes the proof of Theorem 3.1.
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3.1. Application: Integral Hodge classes on cubic threefolds fi-

brations over curves. The main concrete application of Theorem 3.1 con-

cerns fibrations f : X → Γ over a curve Γ with general fiber a cubic three-

fold in P4 (or the smooth projective models of smooth cubic hypersurfaces

X ⊂ P4
C(Γ)).

Theorem 3.11. Let f : X → Γ be a cubic threefold fibration over a smooth

curve. If the fibers of f have at worst ordinary quadratic singularities, then

Z4(X) = 0 and H3
nr(X,Z/nZ) = 0 for any n.

Note that the second statement is a consequence of the first by Theorem

2.2 and the fact that for X as above, CH0(X) is supported on a curve.

Theorem 3.11 applies in particular to cubic fourfolds. Indeed, a smooth

cubic hypersurface X in P5 admits a Lefschetz pencil of hyperplane sections.

It thus becomes, after blowing-up the base-locus of this pencil, birationally

equivalent to a model of a cubic in P4
C(t) which satisfies all our hypotheses.

Theorem 3.11 thus provides Z4(X) = 0 for cubic fourfolds, a result first proved

in [29].

Proof of Theorem 3.11. We only need to show that the conditions of The-

orem 2.8 are satisfied by the universal family X → T of cubic threefolds.

Here T ⊂ P(H0(P4,OP4(3))) is the open set parameterizing smooth cubic

threefolds, and X j
↪→ T × P4 is the universal hypersurface.

Cubic hypersurfaces in P4 do not have torsion in their degree 3 cohomology

by Lefschetz hyperplane restriction theorem. They furthermore satisfy the

vanishing conditions Hi(Xt,OXt
) = 0, i > 0, since they are Fano.

It thus suffices to prove that condition (ii) of Theorem 2.8 is satisfied.

The fibers of f being smooth hypersurfaces in P4, R4f∗Z is the trivial local

system isomorphic to Z. A section α of R4f∗Z over T is thus characterized

by a number, its degree on the fibers Xt with respect to the polarization

c1(OXt
(1)). When the degree of α is 5, one gets the desired family B5 and

cycle Z5, using the results of [19], in the following way: Iliev and Markushe-

vich prove that if Y is a smooth cubic threefold, denoting M5,1 a desingu-

larization of the Hilbert scheme of degree 5, genus 1 curves in Y , the map

φ5,1 : M5,1 → J(Y ) induced by the Abel-Jacobi map of Y is surjective with

rationally connected fibers. Taking for B5 a desingularization M5,1 of the

relative Hilbert scheme of curves of degree 5 and genus 1 in the fibers of f ,

and for cycle Z5 the universal subscheme, the hypothesis (ii) of Theorem 2.8

is thus satisfied for the degree 5 section of R4f∗Z.
For the degree 6 section α of R4f∗Z, property (ii) is similarly a consequence

of Theorem 3.1. Indeed, it says that the general fiber of the morphism φ6,1 :

M6,1 → J(Y )6 induced by the Abel-Jacobi map of Y on the family M6,1 of

degree 6 elliptic curves in Y is rationally connected for general Y . We thus
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take as before for family B6 a desingularization M6,1 of the relative Hilbert

scheme of curves of degree 6 and genus 1 in the fibers of f , and for cycle Z6

the universal subscheme.

To conclude, let us show that property (ii) for the sections α5 of degree 5

and α6 of degree 6 imply property (ii) for any section α. To see this, let us

introduce the codimension 2 cycle h2 on X , where h = j∗(pr∗2OP4(1)) ∈ PicX .

The codimension 2 cycle h2 ∈ CH2(X ) is thus of degree 3 on the fibers of f .

The degree of a section α is congruent to 5, −5 or 6 modulo 3, and we can

thus write α = ±α5 + μα3, or α = α6 + μα3 for some integer μ. In the first

case, consider the variety Bα = B5 and the cycle

Zα = ±Z5 + μ(B5 ×Γ h2) ⊂ B5 ×Γ X.

In the second case, consider the variety Bα = B6 and the cycle

Zα = Z6 + μ(B6 ×Γ h2) ⊂ B6 ×Γ X.

It is clear that the pair (Bα,Zα) satisfies the condition (ii) of Theorem 2.8. �

4. Structure of the Abel-Jacobi map and decomposition

of the diagonal

4.1. Relation between Questions 1.6 and 1.10. We establish in this

subsection the following relation between Questions 1.6 and 1.10:

Theorem 4.1. Assume that Question 1.10 has an affirmative answer for

Y and that the intermediate Jacobian of Y admits a 1-cycle Γ such that Γ∗g =

g! J(Y ), g = dimJ(Y ). Then Question 1.6 also has an affirmative answer

for Y .

Here we use the Pontryagin product ∗ on cycles of J(Y ) defined by

z1 ∗ z2 = μ∗(z1 × z2),

where μ : J(Y ) × J(Y ) → J(Y ) is the sum map (cf. [30, II, 11.3.1]). The

condition Γ∗g = g! J(Y ) is satisfied if the class of Γ is equal to [Θ]g−1

(g−1)! , for some

principal polarization Θ. This is the case if J(Y ) is a Jacobian.

Proof of Theorem 4.1. There exist by assumption a variety B, and a codi-

mension 2 cycle Z ⊂ B × Y cohomologous to 0 on fibers b× Y , such that the

morphism

φZ : B → J(Y )

induced by the Abel-Jacobi map of Y is surjective with rationally connected

general fibers. Consider the 1-cycle Γ of J(Y ). We may assume by a moving
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lemma, up to changing the representative of Γ modulo homological equiva-

lence, that Γ =
∑

i niΓi where, for each component Γi of the support of Γ, the

general fiber of φZ over Γi is rationally connected. We may furthermore as-

sume that the Γi’s are smooth. According to [12], the inclusion ji : Γi ↪→ J(Y )

has then a lift σi : Γi → B. Denote Zi ⊂ Γi × Y the codimension 2-cycle

(σi, IdY )
∗Z. Then the morphism φi : Γi → J(Y ) induced by the Abel-Jacobi

map is equal to ji.

For each g-uple of components (Γi1 , . . . ,Γig ) of SuppΓ, consider Γi1 × . . .×
Γig , and the codimension 2-cycle

Zi1,...,ig := (pr1, IdY )
∗Zi1 + . . .+ (prg, IdY )

∗Zig ⊂ Γ1 × . . .× Γg × Y.

The codimension 2-cycle

Z :=
∑

i1,...,ig

ni1 . . . nigZi1,...,ig ⊂ (�Γi)
g × Y,(4.1)

where �Γi is the disjoint union of the Γi’s (hence, in particular, is smooth),

is invariant under the symmetric group Sg acting on the factor (�Γi)
g in

the product (�Γi)
g × Y . The part of Z dominating over a component of

(�Γi)
g (which is the only one we are interested in) is then the pullback of a

codimension 2 cycle Zsym on (�Γi)
(g) × Y . Consider now the sum map

σ : (�Γi)
(g) → J(Y ).

Let ZJ := (σ, Id)∗Zsym ⊂ J(Y )×Y . The proof concludes with the following:

Lemma 4.2. The Abel-Jacobi map:

φZJ
: J(Y ) → J(Y )

is equal to IdJ(Y ).

Proof. Instead of the symmetric product (�Γi)
(g) and the descended cycle

Zsym, consider the product (�Γi)
g, the cycle Z and the sum map

σ′ : (�Γi)
g → J(Y ).

Then we have (σ′, Id)∗Z = g!(σ, Id)∗Zsym in CH2(J(Y )×Y ), so that writing

Z ′
J := (σ′, Id)∗Z, it suffices to prove that φZ′

J
: J(Y ) → J(Y ) is equal to

g! IdJ(Y ).

This is done as follows: let j ∈ J(Y ) be a general point, and let {x1, . . . , xN}
be the fiber of σ′ over j. Thus each xl parameterizes a g-uple (il1, . . . , i

l
g) of

components of SuppΓ, and points γl
i1
, . . . , γl

ig
of Γi1 , . . . ,Γig respectively, such

that: ∑
1≤k≤g

γl
ik

= j.(4.2)
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On the other hand, recall that

γl
ik

= AJY (Zilk,γ
l
ik

).(4.3)

It follows from (4.2) and (4.3) that for each l ∈ {1, . . . , N}, we have:

AJY (
∑

1≤k≤g

Zl
ik,γl

ik

) = AJY (Zil1,...,i
l
g ,(γ

l
i1

,...,γl
ig

)) = j.(4.4)

Recall now that Γ =
∑

i niΓi and that (Γ)∗g = g!J(Y ), which is equivalent to

the following equality:

σ′
∗(

∑
i1,...,ig

ni1 . . . nigΓi1 × . . .× Γig) = g!J(Y ).

This exactly says that
∑

1≤l≤N

∑
il1,...,i

l
g
nil1

. . . nilg
= g! which together with

(4.1) and (4.4) proves the desired equality φZ′
J
= g! IdJ(Y ). �

The proof of Theorem 4.1 is now complete. �
Remark 4.3. When NS J(Y ) = ZΘ, the existence of a 1-cycle Γ in J(Y )

such that Γ∗g = g! J(Y ), g = dimJ(Y ) is equivalent to the existence of a

1-cycle Γ of class [Θ]g−1

(g−1)! . The question whether the intermediate Jacobian of

Y admits a 1-cycle Γ of class [Θ]g−1

(g−1)! is unknown even for the cubic threefold.

However, it has a positive answer for g ≤ 3 because any principally polarized

abelian variety of dimension ≤ 3 is the Jacobian of a curve.

4.2. Decomposition of the diagonal modulo homological equiva-

lence. This section is devoted to the study of Question 1.6 or condition (*)

of Question 1.10.

Assume Y is a smooth projective threefold such that CH0(Y ) is supported

on a curve. The Bloch-Srinivas decomposition of the diagonal (1.2) says that

there exists a nonzero integer N such that, denoting ΔY ⊂ Y ×Y the diagonal:

NΔY = Z + Z ′ in CH3(Y × Y ),(4.5)

where the support of Z ′ is contained in Y ×W for a curve W ⊂ Y and the

support of Z is contained in D × Y , D � Y .

We wish to study the invariant of Y defined as the gcd of the nonzero

integers N appearing above. This is a birational invariant of Y . One can

also consider the decomposition (4.5) modulo homological equivalence, and

our results below relate the triviality of this invariant, that is the existence

of an integral cohomological decomposition of the diagonal, to condition (*)

(among other things).

Theorem 4.4. Let Y be a smooth projective 3-fold. Assume Y admits a

cohomological decomposition of the diagonal as in (4.5). Then we have:

(i) The integer N annihilates the torsion of Hp(Y,Z) for any p.

(ii) The integer N annihilates Z4(Y ).
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(iii) Hi(Y,OY ) = 0, ∀i > 1 and there exists a codimension 2 cycle Z ⊂
J(Y )× Y such that φZ is equal to N IdJ(Y ).

Corollary 4.5. If Y admits an integral cohomological decomposition of the

diagonal, then:

(i) Hp(Y,Z) is without torsion for any p.

(ii) Z4(Y ) = 0.

(iii) Question 1.6 has an affirmative answer for Y .

Remark 4.6. That the integral decomposition of the diagonal as in (4.5),

with N = 1, and in the Chow group CH(Y × Y ) implies that H3(Y,Z) has

no torsion was observed by Colliot-Thélène. Note that when H2(X,OX) = 0,

the torsion of H3(Y,Z) is the Brauer group of Y .

Proof of Theorem 4.4. There exist by assumption a proper algebraic subset

D � Y , which one may assume of pure dimension 2, and Z ∈ CH3(Y × Y )

with support contained inD×Y , a curveW ⊂ Y and a cycle Z ′ ∈ CH3(Y ×Y )

with support contained in Y ×W , such that

N [ΔY ] = [Z ′] + [Z] in H6(Y × Y,Z).(4.6)

Codimension 3 cycles z of Y × Y act on Hp(Y,Z) for any p and on the

intermediate Jacobian of Y , and this action, which we will denote

z∗ : Hp(Y,Z) → Hp(Y,Z), z∗ : J(Y ) → J(Y ),

depends only on the cohomology class of z. As the diagonal of Y acts by the

identity map on Hp(Y,Z) for p > 0 and on J(Y ), one concludes that

N IdHp(Y,Z) = Z ′∗ + Z∗ : Hp(Y,Z) → Hp(Y,Z), for p > 0,(4.7)

and similarly for the action on J(Y ). It is clear that Z ′∗ acts trivially on

J(Y ) since Z ′ is supported over a curve in Y . We thus conclude that

N IdJ(Y ) = Z∗ : J(Y ) → J(Y ).(4.8)

Let τ : D̃ → Y be a desingularization of D and i
˜D = iD ◦ τ : D̃ → Y .

Similarly, let W̃ → W be a desingularization of W , and i
˜W

: W̃ → Y be the

natural morphism. The part of the cycle Z which dominates D can be lifted

to a cycle Z̃ in D̃ × Y , and the remaining part acts trivially on Hp(Y,Z) for
p ≤ 3 for codimension reasons. Thus the map Z∗ acting on Hp(Y,Z) for p ≤ 3

can be written as

Z∗ = i
˜D∗ ◦ Z̃

∗.(4.9)

Similarly, we can lift Z ′ to a cycle Z̃ ′ supported on Y ×W̃ . We note now that

the action of Z̃∗ on cohomology sends Hp(Y,Z), p ≤ 3, to Hp−2(D̃,Z), p ≤ 3.

The last groups have no torsion. It follows that Z̃∗ annihilates the torsion of
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Hp(Y,Z), p ≤ 3. On the other hand, the morphism Z ′∗ factors as Z̃ ′∗ ◦ i∗
˜W
,

and, as the integral cohomology of a smooth curve has no torsion, it follows

that i∗
˜W
, hence Z ′∗, annihilate the torsion ofHp(Y,Z) for p ≤ 3. Formula (4.7)

implies then that the torsion of Hp(Y,Z) is annihilated by N Id for p ≤ 3.

To deal with the torsion of Hp(Y,Z) with p ≥ 4, we rather use the actions

Z∗, Z
′
∗ of Z, Z ′ on Hp(Y,Z), p = 4, 5. This action again factors through

Z̃∗, Z̃ ′∗. Now, Z̃∗ factors through the restriction map:

Hp(Y,Z) → Hp(D̃,Z),

while Z̃ ′∗ factors through the Gysin map

i
˜W,∗ : Hp−4(W̃ ,Z) → Hp(Y,Z).

Again, the integral cohomology of the curve W̃ having no torsion, we con-

clude that Z̃ ′∗ annihilates the torsion of Hp(Y,Z). On the other hand, as

dimD̃ ≤ 2, Hp(D̃,Z) has no torsion for p = 4, 5. It follows that we also have

Z∗(H
p(Y,Z)tors) = 0 for p = 4, 5, and as Z∗ acts as N Id = Z∗ on these

groups, we conclude that N Hp(Y,Z)tors = 0 for p = 4, 5. This proves (i).

To prove (ii), let us consider again the action Z∗ = N Id − Z ′
∗ on the

cohomology H4(Y,Z). Observe again that the part Z ′ of Z not dominating

Z has a trivial action on H4(Y,Z), while the dominating part lifts as above

to a cycle Z̃ in D̃×Y . Then we find that N IdH4(Y,Z)−Z ′
∗ factors as Z̃∗ ◦ i∗

˜D
;

hence, through the restriction map i∗
˜D
: H4(Y,Z) → H4(D̃,Z). As dim D̃ = 2,

the group on the right is generated by classes of algebraic cycles, and thus

(N Id − Z ′
∗)(H

4(Y,Z)) is generated by classes of algebraic cycles on Y . On

the other hand, ImZ ′
∗ is contained in

Im i
˜W,∗ : H0(W̃ ,Z) → H4(Y,Z),

hence consists of algebraic classes. It follows that N H4(Y,Z) is generated by

classes of algebraic cycles on Y ; that is, N Z4(Y ) = 0.

(iii) The vanishing Hi(Y,OY ) = 0, ∀i > 1, is a well-known consequence

of the decomposition (4.5) of the diagonal with dimW ≤ 1 (cf. [3], [30,

II,10.2.2]). This is important to guarantee that J(Y ) is an abelian variety.

It is well known, and this is a consequence of the Lefschetz theorem on

(1, 1)-classes applied to Pic0(D̃) × D̃ (see Remark 1.9), that there exists a

universal divisor D ∈ Pic(Pic0(D̃) × D̃), such that the induced morphism:

φD : Pic0(D̃) → Pic0(D̃) is the identity. On the other hand, we have the

morphism

Z̃∗ : J(Y ) → J1(D̃) = Pic0(D̃),

which is a morphism of abelian varieties.
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Let us consider the cycle

Z := (IdJ(Y ), i ˜D)∗ ◦ (Z̃∗, Id
˜D)∗(D) ∈ CH2(J(Y )× Y ).

Then φZ : J(Y ) → J(Y ) is equal to

i
˜D∗ ◦ φD ◦ Z̃∗ : J(Y ) → J1(D̃) → J1(D̃) → J(Y ).

As φD is the identity map acting on Pic0(D̃) and i
˜D∗ ◦ Z̃∗ is equal to N Id

acting on J(Y ) according to (4.8) and (4.9), one concludes that the endomor-

phism φZ of J(X) is equal to N IdJ(Y ). �
Recall from section 2 that for any smooth projective complex variety Y ,

Z4(Y ) is a quotient of H3
nr(Y,Q/Z), if Z4(Y ) is of torsion (which is always

the case in dimension 3). We can now get a result better than (ii) if instead

of considering the decomposition of the diagonal modulo homological equiva-

lence, we consider it modulo algebraic equivalence. For example, we have the

following statement, which improves (iii) above:

Proposition 4.7. Let Y be a smooth projective 3-fold. Assume Y admits a

decomposition of the diagonal as in (4.5), modulo algebraic equivalence. Then

the integer N annihilates H3
nr(Y,A) = 0 for any abelian group A.

Proof. We use the fact that correspondences modulo algebraic equivalence

act on cohomology groups Hp(XZar,Hq). We refer to the appendix of [7] for

this fact which is precisely stated as follows:

Proposition 4.8. If X, Y are smooth projective and Z ⊂ X×Y is a cycle

defined up to algebraic equivalence, satisfying dimY − dimZ = r, then there

is an induced morphism

Z∗ : Hp(XZar,Hq(A)) → Hp+r(YZar,Hq+r(A)).

These actions are compatible with the composition of correspondences.

Assume now that Y admits a decomposition of the diagonal of the form

NΔY = Z1 + Z2 in CH(Y × Y )/alg,

where Z1 ⊂ D × Y for some D � Y and Z2 ⊂ Y ×W , with dimW ≤ 1. The

diagonal acts on H3
nr(Y,A) as the identity. Thus we get

N IdH3
nr(Y,A) = Z1∗ + Z2∗ : H3

nr(Y,A) → H3
nr(Y,A).

We observe now (by introducing again a desingularization D̃ of D) that Z1∗ =

0 on H3
nr(Y,A), because Z1∗ factors through the restriction map

H3
nr(Y,A) → H3

nr(D̃, A)

and the group on the right is 0, because dim D̃ ≤ 2. Furthermore, Z2∗ also

vanishes on H3
nr(Y,A) = H0(YZar,H3(A)) because ImZ2∗ factors through
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i
˜W∗ which shifts Hp(Hq), p ≥ 0, q ≥ 0, to Hp+2(Hq+2). Thus Z1∗ + Z2∗ =

N IdH3
nr(Y,A) = 0 and H3

nr(Y,A) = 0. �
A partial converse to Theorem 4.4 is as follows.

Theorem 4.9. Assume the smooth projective threefold Y satisfies the fol-

lowing conditions.

(i) Hi(Y,OY ) = 0 for i > 0.

(ii) Z4(Y ) = 0.

(iii) Hp(Y,Z) has no torsion for any integer p and the intermediate Jaco-

bian of Y admits a 1-cycle Γ of class [Θ]g−1

(g−1)! , g = dimJ(Y ).

Then condition (∗) on Y implies the existence of an integral cohomological

decomposition of the diagonal as in (4.5) with dimW = 0.

Remark 4.10. The condition Z4(Y ) = 0 is satisfied if Y is uniruled. Con-

dition (i) is satisfied if Y is rationally connected. For a rationally connected

threefold Y ,
⊕

p H
p(Y,Z) is without torsion if H3(Y,Z) is without torsion.

Proof of Theorem 4.9. When the integral cohomology of Y has no torsion,

the class of the diagonal [ΔY ] ∈ H6(Y × Y,Z) has an integral Künneth de-

composition,

[ΔY ] = δ6,0 + δ5,1 + δ4,2 + δ3,3 + δ2,4 + δ1,5 + δ0,6,

where δi,j ∈ Hi(Y,Z)⊗Hj(Y,Z). The class δ0,6 is the class of Y × y for any

point y of Y . By assumption (i), we have

H1(Y,OY ) = 0, H2(Y,OY ) = 0.(4.10)

The first condition implies that the groups H1(Y,Q) and H5(Y,Q) are trivial;

hence, the groups H1(Y,Z) and H5(Y,Z) must be trivial since they have no

torsion by assumption. It follows that δ5,1 = δ1,5 = 0.

Next, the condition (i) implies that the Hodge structure onH2(Y,Q), hence

also on H4(Y,Q) by duality, is trivial. Hence, H4(Y,Z) and H2(Y,Z) are

generated by Hodge classes, and because we assumed Z4(Y ) = 0, it follows

that H4(Y,Z) and H2(Y,Z) are generated by cycle classes. From this one

concludes that δ4,2 and δ2,4 are represented by algebraic cycles whose support

does not dominate Y by the first projection. The same is true for δ6,0 which

is the class of y × Y . The existence of a decomposition as in (4.6) is thus

equivalent to the fact that there exists a cycle Z ⊂ Y × Y , such that the

support of Z is contained in D × Y , with D � Y , and Z∗ : H3(Y,Z) →
H3(Y,Z) is the identity map. This last condition is indeed equivalent to the

fact that the component of type (3, 3) of [Z] is equal to δ3,3.

Let now Γ =
∑

i niΓi be a 1-cycle of J(Y ) of class [Θ]g−1

(g−1)! , where Γi ⊂ J(Y )

are smooth curves in general position. If (*) is satisfied, there exist a variety

B and a codimension 2 cycle Z ⊂ B×Y homologous to 0 on the fibers b×Y ,
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such that φZ : B → J(Y ) is surjective with rationally connected general fiber.

By [12], φZ admits a section σi over each Γi, and (σi, Id)
∗Z provides a family

Zi ⊂ Γi×Y of 1-cycles homologous to 0 in Y , parameterized by Γi, such that

φZi
: Γi → J(Y ) identifies to the inclusion of Γi in J(Y ).

Let us consider the cycle Z ∈ CH3(Y × Y ) defined by

Z =
∑
i

niZi ◦ tZi.

The proof that the cycle Z satisfies the desired property is then given in the

following Lemma 4.11. �
Lemma 4.11. The map Z∗ : H3(Y,Z) → H3(Y,Z) is the identity map.

Proof. We have

Z∗ =
∑
i

ni
tZi

∗ ◦ Z∗
i .

Let us study the composite map

tZ∗
i ◦ Z∗

i : H3(Y,Z) → H1(Γi,Z) → H3(Y,Z).

Recalling that Zi ∈ CH2(Γi × Y ) is the restriction to σ(Γi) of Z ∈
CH2(Γi × Y ), one finds that this composite map can also be written as:

tZ∗
i ◦ Z∗

i = tZ∗ ◦ ([σ(Γi)]∪) ◦ Z∗,

where [σ(Γi)]
⋃

is the morphism of cup-product with the class [σ(Γi)]. One

uses for this the fact that, denoting ji : σ(Γi) → B the inclusion, the compo-

sition

ji∗ ◦ j∗i : H1(B,Z) → H2n−1(B,Z), n = dimB

is equal to [σ(Γi)]∪.
We thus obtain:

Z∗ = tZ∗ ◦ (
∑
i

ni[σ(Γi)]∪) ◦ Z∗.

But we know that the map φZ : B → J(Y ) has rationally connected fibers,

and thus induces isomorphisms:

(4.11)

φ∗
Z : H1(J(Y ),Z) ∼= H1(B,Z), φZ∗ : H2n−1(B,Z) ∼= H2g−1(J(Y ),Z).

Via these isomorphisms, Z∗ becomes the canonical isomorphism

H3(Y,Z) ∼= H1(J(Y ),Z)

(which uses the fact that H3(Y,Z) is torsion free) and tZ∗ becomes the dual

canonical isomorphism

H2g−1(J(Y ),Z) ∼= H3(Y,Z).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

172 CLAIRE VOISIN

Finally, the map
∑

i ni[σ(Γi)]∪ : H1(B,Z) → H2n−1(B,Z) identifies via

(4.11) to the map
∑

i ni[Γi]∪ : H1(J(Y ),Z) → H2g−1(J(Y ),Z). Recalling

that
∑

i ni[Γi] =
[Θ]g−1

(g−1)! , we identified Z∗ : H3(Y,Z) → H3(Y,Z) to the com-

posite map

H3(Y,Z) ∼= H1(J(Y ),Z)
[Θ]g−1

(g−1)!
∪

→ H2g−1(J(Y ),Z) ∼= H3(Y,Z),

where the last isomorphism is Poincaré dual of the first, and using the defini-

tion of the polarization Θ on J(Y ) (as being given by Poincaré duality on Y :

H3(Y,Z) ∼= H3(Y,Z)∗) we find that this composite map is the identity. �
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Éc. Norm. Supér., IV. Sér. 7, 181-201 (1974). MR0412191 (54:318)
[3] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J.

of Math. 105 (1983), 1235-1253. MR714776 (85i:14002)
[4] A-M. Castravet. Rational families of vector bundles on curves, International Journal

of Mathematics, Vol. 15, No. 1 (2004), 13-45. MR2039210 (2005i:14038)
[5] H. Clemens, P. Griffiths. The intermediate Jacobian of the cubic Threefold, Ann. of

Math. 95 (1972), 281-356. MR0302652 (46:1796)
[6] J.-L. Colliot-Thélène, M. Ojanguren. Variétés unirationnelles non rationnelles: au-delà
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