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o Introduction

0.1. Let X be a complex projective variety. Then each cohomology group of X
admits a Hodge structure, that is a decomposition of H k (X, q = H k (X, Z) ® C
into a direct sum EB HNI(X), where HfJ,q(X) c:::: Hq(n~) c Hk(X, q is the set

fJ+q=k
of classes that can be represented by a closed k-form everywhere of type (p, q), ""e
will be concerned in this paper with the relations between Hodge structures and
Chow groups CH (X), where C He (X) is the group of i-cycles (= arbitrary integral
combinations of i-dimensional subvarieties) modulo rational equivalence [5].

0.2. The simplest way to go froin Chow groups to Hodge structures is to use
the cycle class map c : CHk(X) --+ H 2n-2k(X), which to a cycle r = ~ni~Vi

associates c(r) = Dnic(~Vi), where C(~Vi) is the Poincare dual of the current of
integration over ~Vi. The cycle class c(r) is easily seen to be a Hodge class; that
is, to belong to H2k(X,Z) n Hk,k(X). The famous Hodge conjecture asserts that
H 2k (X, Q) n Hk,k(X) is equal to 1m c ® Q. Not much is knmvn except for the
case k = 1 (due to Lcfschetz) and particular cases for k > 1 (see e.g. [35], [36],
[37]). But recently an important theoretical evidence for it was given by Cattani,
Deligne, and Kaplan, who proved:

()';3, THEOREM [10]. Let X --+ B be an algebmic family of smooth algebraic vari­
eties Xb pamrnetr'ized by a quasi-pTOjective variety B. Then the set {(b, ,\), b E B,
,\ E H 2k (XI" Z) n Hk,k (Xb )} is a countable union of .finite covers of algebraic sub­
varieties of B.

These sets are called Hodge loci or Noether-Lefschetz loci and were studied
in [4], [34], [IVHS,II].

The class of a cycle is sometimes a very poor invariant: for example the
class of a zero-cycle ~niPi is just its degree ~ni E Z. Of course a much deeper
relation bet\vecn CH(X) and Hodge structures on X is expected (sec [5], [28],
[30]); however, for Z a cycle in a family of varieties (Xb)bED, the Hodge class of
Z carries very much information on the family of cycles ZIXb E CH(Xb ), and this
will be the main topic of Section 1.
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0.4. One way to refine the cycle class map is to consider the Deligne cycle class CD :

CHP(X) ---> HiJ'(X, Z(p)) (Deligne cohomology) where HiJ'(X, Z(p)) = JH[2 p (O --->

Z ---> Ox ---> Ox ---> '" ---> O~~-I ---> 0) (sec [20], [17]). Its restriction to the set
of codimension p-cycles homologous to zero was first defined by Griffiths [26] and
called the Abel-Jacobi map. It takes values into the pth intermediate jacobian:

(Here and in the sequel we use the notation pkHP(X) := EB HP.f-P(X).)
p2k

0.5. Deligne cohomology groups also appear as the targets of regulator maps, which
are defined on higher Chow groups ([6]' [27]). R.egulators have the same formal
properties. from the point of view of infinitesimal variations of Hodge structure,
as Abel-Jacobi maps, and we will see in the next section that the result of [2:3]
holds as well for them. To give an idea of what they are, consider for simplicity
the case of K I (X)(p+l) ~ CHP+I (X, 1) ~ H~ar(X, K p+d. Using Bloch's definition
or using the Gersten resolution of the sheaf Kp+1 [5], this group is generated by
sums ct = L(Zi' 'Pi), where Zi C X is irreducible of codimension p and 'Pi is a
non-zero rational function on Zi, subject to the condition: Ldiv('P';) = 0 as a cycle
of codimension ]J + 1 on X. The regulator map R will s(md it to an element of the
partial torus

Modulo the image of \[Zij) ~ CC in this torus, R(ct) is constructed as follows:
let Z = U Zi, U = X\Z. Because Ldiv('P;) = 0 it follows that the one forms

1

W = ---L dcp, on Zi satisfl.r : Resz"nz,I' Wi + Resz,I,nz, 'w)' = 0, hence determine an
], 217T 'Pi .

clement Wet of
H'P,+I (X) c EB HI (Zi\ UZj n Zi).

]#i

Hf!+1 (X) carries a mixed Hodge structure [14], induced by the mixed Hodge
structure on EB HI (Zi \ U Zi n Zj ), and because Wi have a class in HI (Zi \ U Zi n

j#i j#i

Zj, Z) n F I HI (Zi \ U Zi n Zj), it follows that
#i

Consider the exact sequence:

Clearly W n vanishes in H 2p+1 (X) because FP+I H 2p+1 (X) n H 2p+1 (X, Z) = o. So
Wet admits liftings in FP+I H 2P(U) and in H 2P(U, Z), whose difference will give
R(n) E H 2P(X, CC)/ FP+I H 2P(X) @H2P(X,Z) SCC[Zi]' (We have made abstraction
here of singularities but the construction works in general [27].)
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0.6. One way to study the object,s described above is to look at their variation
when X varies in a family: suppo$e X ~ n is a smooth family of complex pro­
jective varieties parametrized by a: smooth complex variety E ; then the inclusions
FJIH'(Xb) C H'(Xb,C) determine a Coc-subbundle FJ'H~ c H~ of the bundle
H'xc with fiher H'(Xb,C). 1{~ is It fiat bundle W.r.t. the Gauss-Manin connection
\7. so in particular it has a natura'l holomorphic structure, and we will denote by
H' the sllC'af of its holomorphic sections. vVe have H k = R k 7f*C On. The most
important results of Griffiths are the following [25]:

0.7. TIIEOHElVi.

(i) FJ'H'xcis a holorrwrphic s11bbundle of H'xc ; we will denote by FPHk C H k

its sheaf of holomorphic sectIons.

(ii) (Tmnsversality) The Gauss-flanin connection \7 : H k ----> H k ,~[213 satisfies:

(iii) (Description of the di.tlerenti'al of the period map): The On-linear map

\7: FJ'/FP+1H k
-----7 FP-1/FPH k Q9[2n

II

obtained from \7 by passing to the quotient, g'ives for any bEn a map:
TEb ----> Hom(Hk-P([2J~. ),Hk-p+l([2~;l)), which identifies to the composite:

/\./! .. .'\./) "

where the last rnap is given by the interior product.

0.8. To deduce consequences of th~s theorem, one needs to know much about the
structure of the couplings H 1(1'.",/) @ H,-p(n~ ) ----> Hk-p+l(Qr~-:l). Their de-

) C\.f; ,Lh

scription is especially beautiful in the case of hypersurfaces {F = O} in projective
space JP'II (and more generally sufficiently ample hypersurfaces in any variety [22]).
In this case, the spaces considereGI (modulo the cohomology of JP'II) are hornoge­
llC~OuS pieces of the jacobian ring R(F) = qxo.... ,Xn ]/ < of/DX; of
F and the coupling is just multiplication [9]. [16], [21] provide a thorough study
of the algehraic propertics of thes~~ rings.

0.9. The Transversality Theorem 0.7 (ii) has its analog for the Abel-Jacobi maps
or regulators, known as "quasi-hOlti~ontalityof normal functions" [44], [IVHS,III],
which follows in fact from 0.7 (il) for variations of mixed Hodge structures, if
one constructs the Abel-Jacobi invariants as extension classes [8], [17] (see also
0.5). Concretely it says the following: let X -----7 E be a smooth family and let

IT
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Z C X be a codimen~ion p cycle, who~e ~upport i~ fiat over B, and ~uch that
ZIJ C XIJ is homologous to zero, 'Vb E B. The family of intermediate jacobians
(J2p-l (XIJ) )hED has a natural complex structure, for which the sheaf of holomor­
phic sections is J 2p-l = H 2p-l / FPH2p-l H~P-l. The cycle Z gives a normal
function I/z E J 2 p-l defined by I/z(b) = CJ)x/, (Zb). (The analog of 0.7 (i) is that
I/z is holomorphic.)

0.9.1. The horizontality property is the following: let i/z E H 2p-l be a local lifting
011/z. Then \7i/z E Fp- 1H 2p-l 12 13 . (Note that this is independent of the choice
of the lifting by 0.7 (ii).) A similar statement holds for the regulator.

0.10. In Section 1 we will explain how to exploit this property to study the Abel­
Jacobi map in families.

In Seetion 2, we will state a criterion due to Green for the density of the
Noether-Lcfschctz locu~ (0.:3), and describe its consequences on the Abel-Jacobi
map of certain threefolds. In Section :3, we describe briefiy J'\ori's work, which is
the most important recent contribution in the field.

1 Infinitesimal invariants

1.1. Let X ~ B be a family of smooth complex projective varieties. Let HP,q =
FPHp+q / FP+1Hp+q be the Hodge bundles and let \7 : Hlul ---+ HP-Lq+l C;y 12D be
the map of 0.7 (iii). Define \7(8): HIUI 12;,-1 ---+ HP-l,'I+ 1 nt, by \7(s)(CT et) =
\7(CT) 1\ Ct. Using the fact that \7 is obtained from \7 by passing to the quotient,
and the integrability of \7, one finds that \7 (8+ 1) 0 \7 (8) = O. So for fixed (p, q) we
get a eomplex on B:

This complex is in fact the pth graded piece of the Dc Rham eomplex of (HP+'I, \7)
for the decreasing filtration (introduced by Deligne and Zucker [44]):

J(P(DRHP+'I) :=

0---+ FPHP+'I ~ Fp-1HP+'I,:snn ~ FP-2HP+q'2;n~ ---+ ... ---+ FOHP+'I(gniJ ---+ O.

J'\ow, by the degeneracy of the Lerew spectral sequence of Jr [14]' one has
(non canonically): HII(X,CC) = EEl H'(B,H'Jr*CC) and the Hodge filtration [15]

'l'+s=n

on H"(X,CC) induces on H'(B,H'Jr*CC) = frIJ'(B,DR(HS)) a filtration that is the
one induced by J(P, if one imposes "logarithmic growth at infinity", that is if one
works with the subcomplex DR(H') (log DB).

1.2. The first infinitesimal invariant associated to a Hodge class on X is a holo­
morphic section of one of the cohomology sheaves of the complexes KP,'I. Pre­
eisely let Ct E FIIH 2n(x) : (integrality of Ct cleles not play any rule here). Assume
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a E Hk(B, R 2n - kJr*C) : so a E Fn H k(B,R2n - kJr*C) =HIk(KnDRH2n-k(logBB)).
Then the infinitesimal invariant Da E HO(B, H k(GT"'K(DRH 2n- k))) is just the
image of Ct under the composite map:

HI k(K"DRH 2n - k(log BB)) ---7HIk(Gr'KDRH2n-k (log BB))

---7 HO(Hk(GTJ(DRH2n-k)).

This is a local invariant of ct, which can be as well obtained by looking at the
image of G in HO (R"Jr * 0:1:.), and I~y studying the spectral sequence associated to
the filtration of 0A:' by the subbun(1les Jr* O~J /\ O:~--p.

Now we want to describe mote concretely these invariants and explain how
to use them:

(A) Infinitesimal invariants of norrmal functions ([23], [44], [IVHS,III]):

1.3. Let X --"-, B be as before atld let a E H 2P(X, Z) n pi'H 2p(X): assuming
H 2p-l(X) = 0, G determines Go E HFJ'(X,Z(p)), and if (tl,l'" = 0 in H 2p(Xb,Z),
aDI,l'" E ]2J1-1(Xb) C HZ]'(Xb,Z(p)), and we get a section 1/" of J 2p-l, (cf. 0.9),

defined by 1/" (b) = a 0 I,1:'" •

When G is tlw class of a cycle Z, one has 1/" = I/z. The infinitesimal invariant
of a is in the cohomology at the middle of the sequence:

and we construct now the infinitesimal invariant Iw" of 1/", which lies in the same
sheaf, as follows. Let V" be a local lifting of I/n in H 2p-l ; then by 0.9.1 Vi)" E
Fp- 1H 2p-l On. It is then easily seen that the projection of VV" in HP-l,p liB
is in Ker V (2) and well-defined modulo 1m V. It is shown in [38] that 81/" = bn.

1.4. Clearly the vanishing of Iw" is equivalent to the fact that 1/" has a local lifting
V" E H 2p-l satisfying the strongerhoriwntality condition: V V" E FPH2p--l Q9 0 n.
One can then construct a second iMinitesimal invariant [23] living in

Ker V (2) : HI' f,-l 0B ---7 HP-l,p 0t

1m V : Hp-!r l,p-2 ---7 Hp,p-l (X) 0 13

which measures the obstruction to the existence of a lifting that satisfies: Vv" E
FP+ 1H 2p-l liB. Finally, if all the cohomology sheaves involved vanish, one can
continue this process to get a flat Mting of 1/" in H 2p-l. Under mild assumptions
on the IVHS, this flat lifting will ,be unique up to a section of HiP-I. J'\ow the
necessary vanishing assumptions a~-e true for the universal family of hypersurfaces
of degree 2.: (j in lP'4, modulo isomoroc)hisms (one uses there 0.8 and the symmetrizer
lemma [16]), and a standard monodromy argument shows that flatness of normal
functions implies their triviality mod. torsion, hence we get:

1.5. THEOREM (Green [23], Voisin, unpublished). Let Xc lP'4 be a geneml hyper­
surface of degree 2.: 6. Then the Abel-Jacobi map of X is of tOTsion.
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Green proved in fact the analogous result for all dimensions.
Green and Miiller-Stach have generalized this result to any sufficiently am­

ple linear system in any even dimensional variety [24]. To be precise, they show
that for X C Y, dimY = 2n, X a general member of a sufficiently ample lin­
ear system on Y, the image of the Dcligne-Abcl-Jacobi map CD : CH"(X) ----+

H?f'(X,Z(n)) is equal, up to the torsion, to the image of the composite map
CHn(y) ----+ HJ;'(Y, Z(n)) ----+ HfJ' (X, Z(n)) and that the last restriction map is
injective.

As Bloch and ~ori mentioned to me, the same argument applies as well to
the regulator map (0.5). This gives the following:

1.6. TIIEORb:M. Let S be a general swface of degree at least five in jp:J : then the
image of R : H 1 (K2 (S)) ----+ H 2 (S, C)IF 2 H 2 (S) H 2 (S, Z) is of torsion modulo
PicS~e = (c1(Os(1))) e.

As in the previous theorem, the assumption d :.:> 5 is necessary. In the case
d = 4 (K3-surfaces), Oliva (work in progress) shows the nontriviality of R(S) mod.
torsion, using the method of [39].

Theorem 1.6 disproves a conjecture of Beilinson [27], stating that the real
Deligne cohomology is generated by the regulator.

As for the geometric content of the infinitesimal invariant 6,/, we mention the
following result of Collino and Pirola:

1.7. Let ./I//:; be the moduli space of curves of genus three and let .I~ M:J be
the associated jacobian fibration. For C E M 3 , one can choose an Abel-Jacobi
embedding C C .Ie, and the Abel-Jacobi image of the one-cycle C - (-C) in
the primitive part of the intermediate jacobian of .Ie docs not depend on the
embedding. The normal function so obtained on /I//:; has an infinitesimal invariant
defined as in 1.3. and one has:

1.8. THEOREM [13]. This infinitesimal invariant at C lives in a space naturally
isomOT]Jhic to 8 1HO(Kc )! and for C non-hypcTdliptic, it is non-zem and gives the
eqwdion of C in its canonical embedding.

(B) Infinitesimal invariants for families of zero-cycles on surfaces:

1.9. Let S ~ B be a family of smooth regular projective surfaces, and let Z C S
be a codimension two cycle, Z = l.'.,niZi, with Zi ----+ B flat andl.'.,nido Zi/B = O. The

class [Z] of Z has then an infinitesimal invariant 6[Z] in H0 2 :Y;JrfJ, IV (2) (H 1
.
1 'i'J1lI3)'

If Z satisfies the assumption: vb E B, Zb is rationally equivalent to zero in Sb, a
multiple of Z is homologous to a cycle supported over a proper Zariski dosed
subset of n, and we conclude that 6[Z] vanishes on a Zariski open set of B.

1.10. Now, using Serre's duality one finds an isomorphism:
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where N = dim B. The geometric ,content of 6 [Z] is then the following. Suppose
Z = ~niai(B), where ai : B ----+ is are sections, and ~ni = O. At b E Bone

has ai : (~l:ilsJo-i(b) ----+ 12~(b) = KB(b), and 6[Z]' as an clement of HO(rl:ils" rg;

7f* Kii 1 )*, is given by 6[Z] = ~nzrJ'; ,. which factors through the quotient HO(n~Sh@

7f* Kii 1 jOsJ by the assumption ~hi = O.

1.11. In [43] it is shown that if Sir ----+ B is the family of smooth hypersurfaces of
p:j of degree 2: 7, modulo isomorphism, the bundle n:ilsj7f* KB(b) is very ample
on 5'n Vb E B. From 1.9, 1.10, 1.1] one deduces:

1.12. THEOREM [43]. Let 5 c prj be general of degT"ee > 7. Then two distinct
points of 5 aT"e not T"ationally equ'i'lJalent.

2 Green's infinitesimal criterion and the nontriviality of the Abel-Jacobi map

2.1. Consider a family of surfaces 51 ----+ B. Inside B, we have the Noethcr-Lefschctz
loci, characterized by the existenoe of a certain Hodge class in H 2 of the fiber;
that is, by the Lefschetz theorem, by the presence of an "extra" line bundle on
the fiber. It is better to consider as in 0.3, the N L loci as contained in the Coo
vector bundle Hf,/, with fiber H]'~(5b) n H 2 (5b ,ITJ{) at bE B. The NL locus will
be then defined as the set {('\, b) j'\ E Hl.l (5b ) nH 2 (5b , OM. Green's lemrmi gives
the following purely algebraic critnrion for the density of this locus:

2.2. LEMMA (Green, [29]). Sv,ppose that faT" some b E B, ,\ E H 1 (l2 sJ, the map
\7('\) : TB Cb ) ----+ H 2 (OsJ is surjective. Then the NoetheT"-Lefschetz locus is dense
. '1..J 1.1
zn I LIR .

2.3. In [40]' the criterion was checked for sufficiently ample hypersurfaces in Calabi­
Yau threefolds.

2.4. Now this lemma gives a way to produce interesting cycles in threefolds: if

8'----+ X and'\ E Hl,l(8) nKer(H~(8,Z)~ H 4 (X,Z)),'\ determines an clement
.7

of Pic 5 (assuming 5 regular), hence a one-cycle on 8, which will be homologous to
zero in X. The next question is to; decide whether the cycles Z.\ so obtained have
non-trivial Abel-Jacobi invariants. Uthe expected dimension of the components S.\
of the N L locus is strictly positive, it is possible to study formally the differential
of the Abel-Jacobi map <I> : S.\ ----+ J X, <I>(8,'\) = <I> x (Z.\), and to show that it is
nonzero. This method was used in [41] to solve the generalized Hodge-Grothendieck
conjecture for certain sub-Hodge !structures on certain threcfolds. (Sec [2] for a
more geometric solution of a simil~lf example.)

2.5. In the case of a Calabi-Yau threefold, the expected dimension of the N L locus
is zero. but one can deform X together with the zero-dimensional components
of this N L locus. Using the same construction as above, this will now give nor­
mal functions on the family of deformations of X, and the nonvanishing of their
infinitesimal invariants gives:



Variation~ of Hodge Structure and Algebraic Cycle~

2.6. THEOREM [40]. Let X be a Calabi- Yau threefold that is nonrigid; then a
geneml deformation of X has a non-tm'sion Abel-Jacobi map.

This theorem was known previously for the quintic threefold (sec [26] and
[12] for a much stronger statement) hut the cycles in [26] were easy to get. They
arc the lines on X.

3 Nori's theorem

3.1. TIle essential point in 1.4, 1.5 was the vanishing of some cohomology sheaves of
the complexes KP,q, on the family of all hypersurfaces of sufficiently large degree.
Nori realihed that these vanishing statements and their generalizations to the case
of complete intersections of large degree in any variety arc partial aspects of a deep
vanishing theorem for the cohomology of the universal hypersurfaces or complete
intersections, which is the following:

:1.2. CO:.JJ',ECTIVITY THEOREl\1 [:12]. Let X be pmjective of dimension n + k. Let
A-

L l , ... ,L,.. be ample rine blLndles, and fOT nl, ... ,nA- EN, let S := TI H()(X, L;';).
1

Let Y~S' c X x S be thclmiveTsal complete inteTsection. Then for ni large enough,
and for any sltlnnersive map T -7 S, one has HI" (X X T, YT ) = 0, k: = O.... ,2n.

The most striking application of this theorem is the proof of the existence
of cycles homologous and Abel-Jacobi equivalent to zero but not algebraically
equivalent to zero:

:3.:3. THEORE~1 [:32]. Using notation as above. let Z be a cycle on X of codimension
d < n: suppose that [Z] fc 0 in H 2d (X,Q), or that the Abel-Jacobi image of Zis
not contained in the alycln'Uic paTt of J X. Then fOT ni such that the conclusion of
:1.2 holds. ZWs is not algebraically equivalent to zcro, fOT geneml s.

3.4. Griffiths in [26] proved the existence of cycles homologous to zero but not
algebraically equivalent to zero, but he used the Abel-Jacobi invariant. which van­
ishes on cycles algebraically equivalent to zero when the intermediate jacobians do
not contain a nontrivial algebraic part.

Albano and Collino [1] have even shown that the kernel of the Abel-Jacobi
map can be nonfinitely generated modulo algebraic equivalence. This was obtained
as a consequence of 3.:3, and of the following result (an analog of Clemens' theo­
rem [12]):

3.5. THEOREM [1]. Let X c]]JJs be a geneml cubic sevenfold; then J7 (X) has no
algebmic part and the image of the Abel-Jacobi map <Px : CH:3(X)ltolll -7 J7(X)
is a c01Lntable injinitcly genemted group.
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