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0 Introduction

Let X be a smooth complex projective variety and A an abelian group. Degree i unramified
cohomology H i

nr(X,A) of X with coefficients in A can be defined as the direct limit of the sets
of data

αk ∈ H i
B(Uk, A), αk|Uk∩Ul

= αl|Uk∩Ul
,

where the Uk’s are sufficiently small Zariski open sets covering X. Here the notation H i
B stands

for Betti cohomology of the underlying complex analytic space. In other words,

H i
nr(X,A) = H0(XZar,Hi(A))

where the sheaf Hi(A) on XZar is associated to the presheaf U 7→ H i
B(U,A).

We refer to section 1 for a more detailed review of Bloch-Ogus theory, which naturally leads
to the introduction of the sheaves Hi(A). The important feature of unramified cohomology is
the fact that it provides us with birational invariants of X, which vanish for projective space: in
fact, these groups are even stable birational invariants (cf. [7]), that is, they are invariant under
the relation :

X ∼= Y if X × Pr is birationally equivalent to Y × Ps for some r, s.

Unramified cohomology with torsion coefficients (that is, A = Z/nZ or A = Q/Z) plays an
important rôle in the study of the Lüroth problem, that is the study of unirational varieties
which are not rational, (sse for example the papers [1], [7], [17]). In fact, the invariant used by
Artin-Mumford, which is the torsion in the group H3

B(X,Z), is equal for rationally connected
varieties to the unramified cohomology group H2

nr(X,Q/Z). In the paper [7], the authors exhibit
unirational sixfolds with vanishing group H2

nr(X,Q/Z) but non vanishing group H3
nr(X,Q/Z).

Their example is reinterpreted in the recent paper [8], using the following groups Z2i(X) which
are proved in [20] to be birational invariants of X for i = 2 and i = dim X − 1:

Z2i(X) :=
Hdg2i(X,Z)
H2i

B (X,Z)alg
,

where Hdg2i(X,Z) is the set of integral Hodge classes of degree 2i on X and H2i
B (X,Z)alg ⊂

H2i
B (X,Z) is the subgroup generated over Z by cycle classes.

In the paper [8], we give the following comparison result between Z4(X) and H3
nr(X,Q/Z):
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Theorem 0.1. (Colliot-Thélène and Voisin 2010) For any smooth projective X, there is an
exact sequence

0 → H3
nr(X,Z)⊗Q/Z→ H3

nr(X,Q/Z) → Tors(Z4(X)) → 0.

If CH0(X) is supported on a closed algebraic subset of dimension ≤ 3, Tors(Z4(X)) = Z4(X).
If CH0(X) is supported on a closed algebraic subset of dimension ≤ 2, H3

nr(X,Z) = 0.
In particular, if X is rationally connected (so that CH0(X) = Z), we have

H3
nr(X,Q/Z) ∼= Z4(X).

We provide in this note a similar interpretation of the group H4
nr(X,Q/Z). The geometric

group which will play the role of the group Z4(X) is the group T 3(X) consisting of the image
in Griff3(X) ⊂ CH3(X)/alg of the kernel of the Deligne cycle map restricted to the torsion
subgroup of CH3(X):

T 3(X) := [Ker (clD : Tors(CH3(X)) → H6
D(X,ZD(3)))]/alg.

We will show (cf. Lemma 2.2) that T 3(X) is a birationally invariant group.

Theorem 0.2. Assume that the group H5
B(X,Z)/N2H5

B(X,Z) has no torsion. Then there is
an exact sequence

0 → H4
nr(X,Z)⊗Q/Z→ H4

nr(X,Q/Z) → T 3(X) → 0.

Here N iHj
B(X,A) is defined as the subgroup of Hj

B(X, A) consisting of cohomology classes
on X vanishing away from a Zariski closed subset Y ⊂ X of codimension ≥ i.

This theorem can as above be completed as follows:

Corollary 0.3. If CH0(X) is supported on a closed algebraic subset of dimension ≤ 3 and
H5

B(X,Z)/N2H5
B(X,Z) has no torsion, there is an isomorphism

H4
nr(X,Q/Z) → T 3(X).

Proof. Indeed, under the first assumption, it is proved in [8, Prop. 3.3] that H4
nr(X,Z) is

identically 0. Using the second assumption and Theorem 0.2, we get the desired isomorphism.

The paper is organized as follows. In section 1 we recall a few facts from Bloch-Ogus theory.
Section 2 gives the needed definitions concerning the notion of coniveau and states more precisely
the main result. The proof of Theorem 0.2 is given in section 3. Section 4 is devoted to the
description of a few non trivial examples and the construction of new ones.

Thanks. I thank the organizers of the conference “Geometry and Arithmetic” on the island
of Schiermonnikoog for the invitation to speak there and to submit a paper in the proceedings.
It is a pleasure to dedicate this paper to Gerard Van der Geer on the occasion of his sixtieth
birthday.
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1 Bloch-Ogus theory and unramified cohomology

Let X be a smooth projective complex variety. We will denote Xcl the set X(C) endowed with
its classical (or Euclidean) topology, and XZar the set X(C) endowed with its Zariski topology.

Let
π : Xcl → XZar

be the identity of X(C). This is obviously a continuous map, and Bloch-Ogus theory [4] is the
study of the Leray spectral sequence associated to this map and any constant sheaf with stalk
A on Xcl. A will be in applications one of the following groups: Z, Q, Q/Z.

We are thus led to introduce the sheaves on XZar

Hi(A) := Riπ∗A.

The Leray spectral sequence for π and A has terms

Ep,q
2 = Hp(XZar,Hq(A)).

Unramified cohomology of X with value in A is defined by the formula (cf. [7])

H i
nr(X, A) = H0(XZar,Hi

X(A)).

The main result of the paper by Bloch and Ogus [4] is the following Gersten-Quillen resolution
for the sheaves Hi

X(A). For any closed subvariety D ⊂ X, let iD : D → X be the inclusion map
and H i(C(D), A) the constant sheaf on D with stalk

lim
→

U⊂D
nonempty Zariski open

H i(U(C), A)

at any point de D. When D′ ⊂ D has codimension 1, there is a map induced by the topological
residue (on the normalization of D) (cf. [23, II, 6.1.1]) :

ResD,D′ : H i(C(D), A) → H i−1(C(D′), A).

For r ≥ 0, let X(r) be the set of irreducible closed algebraic subsets of codimension r in X.

Theorem 1.1. ([4], Theorem 4.2) For any A, and any integer i ≥ 1, there is an exact sequence
of sheaves on XZar

0 → Hi
X(A) → iX∗H i(C(X), A) ∂→

⊕

D∈X(1)

iD∗H i−1(C(D), A) ∂→ . . .
∂→

⊕

D∈X(i)

iD∗AD → 0.

Here the components of the maps ∂ are induced by the maps ResD,D′ when D′ ⊂ D (and
are 0 otherwise). The sheaf AD on DZar identifies of course to the constant sheaf with stalk
H0(C(D), A).

Let us state a few consequences proved in [4]: First of all, denoting by CHk(X)/alg the group
of codimension k cycles of X modulo algebraic equivalence, we get the Bloch–Ogus formula:

Corollary 1.2. ([4], Corollary 7.4) If X is a smooth complex projective variety, there is a
canonical isomorphism

CHk(X)/alg = Hk(XZar,Hk(Z)). (1.1)
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Proof. Indeed, the Bloch–Ogus resolution is acyclic. It thus allows to compute Hk(XZar,Hk(Z))
by taking global sections in the above resolution, which gives

Hk(XZar,Hk(Z)) = Coker[∂ : ⊕D∈X(k−1)H1(C(W ),Z) −→ ⊕D∈X(k)Z]

The group ⊕D∈X(k)Z is the group of codimension k cycles on X, and to conclude, one has to
check that the image of the map ∂ above is the group of cycles algebraically equivalent to 0.
This follows from the fact that on a smooth projective variety W̃ , a divisor D is cohomologous
to zero (hence algebraically equivalent to zero) if and only if there exists a degree 1 cohomology
class α ∈ H1(W̃ \ SuppD,Z) such that Resα = D.

By theorem 1.1, the sheaf Hi(A) has an acyclic resolution of length ≤ i. We thus get the
following vanishing result:

Corollary 1.3. For X smooth, A an abelian group and r > i, one has

Hr(XZar,Hi
X(A)) = 0. (1.2)

Concerning the structure of the sheaves Hi(Z), we have the following result, which is a
consequence of the Bloch-Kato conjecture recently proved by Rost and Voevodsky (we refer to
[5], [8], [2] for more explanations concerning the way the very important result below is deduced
from the Bloch-Kato conjecture).

Theorem 1.4. The sheaves Hi(Z) of Z-modules over XZar have no torsion.

The following Corollary gives an equivalent formulation of this theorem, by considering the
long exact sequence associated to the short exact sequence of sheaves on Xcl

0 → Z→Q→ Q/Z→ 0

on Xcl and the associated long exact sequence of sheaves on XZar

. . . → Hi(Q) → Hi(Q/Z) → Hi+1(Z)→Hi+1(Q) → . . . .

Corollary 1.5. For any integer i, there is a short exact sequence of sheaves on ZZar

0 → Hi(Z) → Hi(Q) → Hi(Q/Z) → 0.

2 Statement of the result

Let X be a smooth complex projective variety and k, l be integers. We can consider the subgroup
N lHk

B(X,Z) ⊂ Hk
B(X,Z) of “ coniveau l cohomology”, defined as

N lHk
B(X,Z) = Ker (Hk

B(X,Z) → lim
→

codim W=l

Hk
B(X \W,Z)),

where the W ⊂ X considered here are the closed algebraic subsets of X of codimension l.
Introducing a resolution of singularities W̃ of W and its natural morphism τW : W̃ → X to X,
we have

N lHk
B(X,Q) =

∑

codim W=l

Im (τW∗ : Hk−2l
B (W̃ ,Q) → Hk(X,Q)),

as a consequence of the fact that morphisms of mixed rational Hodge structures are strict for
the weight filtration, (cf. [9], [13], [23, II, Thm. 4.20]).
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From now on, we restrict to the case k = 2l + 1. For any W ⊂ X, τW : W̃ → X as above,
the Gysin morphism τW∗ : H1

B(W̃ ,Z) → H2l+1
B (X,Z) is a morphism of Hodge structures (of

bidegree (l, l)), which induces a morphism between the intermediate Jacobians

τW∗ : Pic0(W̃ ) = J1(W̃ ) → J2l+1(X) :=
H2l+1

B (X,C)
F lH2l+1

B (X,C)⊕H2l+1
B (X,Z)/torsion

.

This map τW∗ is compatible in an obvious way with the Abel-Jacobi maps φW and φX , defined
respectively on codimension 1 and codimension l + 1 cycles of W̃ and X which are homologous
to 0.

The Deligne cycle class map

cll+1
D : CH l+1(X) → H2l+2

D (X,Z(l + 1))

restricts to the Abel-Jacobi map φl
X on the subgroup of cycles homologous to 0 (cf. [23, I,12.3.3]),

and in particular on the subgroup of cycles algebraically equivalent to 0.
If Z ∈ CH l(X) is algebraically equivalent to 0, there exist subvarieties Wi ⊂ X of codimen-

sion l and cycles Zi ⊂ W̃i homologous to 0 such that Z =
∑

i τWi∗Zi in CH l+1(X). It follows
from the previous considerations that cll+1

D induces a morphism

cll+1
D,tr : CH l(X)/alg → H2l+2

D (X,Z(l + 1))tr :=
H2l+2
D (X,Z(l + 1))

〈τW∗J1(W̃ ), codimW = l〉
.

Let T l+1(X) := Tors (Ker cll+1
D,tr).

Lemma 2.1. This group identifies to the image of the subgroup Tors (Ker cll+1
D ) in CH l+1(X)/alg.

Proof. This follows from the fact that the groups of cycles algebraically equivalent to 0
modulo rational equivalence are divisible. This implies that the natural map Tors(CH i(X)) →
Tors(CH i(X)/alg) is surjective for any i. We then use the fact that for the W̃ ’s introduced
above, the map

CH1(W̃ )alg
∼= Pic0(W̃ ) → J1(W̃ )

is an isomorphism, where CH1(W̃ )alg ⊂ CH1(W̃ ) is the subgroup of cycles algebraically equiv-
alent to 0.

We have the following lemma :

Lemma 2.2. The group T 3(X) is a birational invariant of X.

Proof. It suffices to check invariance under blow-up. The Manin formulas (cf. [14], [23,
II,9.3.3]) for groups of cycles modulo rational or algebraic equivalence and for Deligne cohomol-
ogy of a blow-up imply that it suffices to prove that the groups T i(Y ) are trivial for i ≤ 2 and
Y smooth projective. However this is an immediate consequence of the definition, of Lemma
2.1, and of the fact that the Deligne cycle class map clD : CH i(X) → H2i

D (X,Z(i)) is injective
on torsion cycles of codimension i ≤ 2 (cf. [15]).

The main result proved in this paper is the following interpretation of degree 4 unramified
cohomology with finite coefficients:

Theorem 2.3. Assume that the group H5
B(X,Z)/N2H5

B(X,Z) has no torsion. Then the quo-
tient of H4

nr(X,Q/Z) by H4
nr(X,Z)⊗Q/Z identifies to the group T 3(X).

Equivalently, there is an exact sequence

0 → H4
nr(X,Z)⊗Q/Z→ H4

nr(X,Q/Z) → Tors (CH3(X)/alg)
cl3D,tr→ H6

D(X,Z(3))tr.
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Remark 2.4. The torsion part of the group H5
B(X,Z)/N2H5

B(X,Z) is also a birational invariant
of X. Looking again at what happens under a blow-up, this follows from the fact that the
torsion part of the group H3

B(Y,Z) for Y smooth and projective is of coniveau ≥ 1, which is a
consequence of the fact that the sheaf H3

Y (Z) has no torsion by Theorem 1.4.

3 Proof of the main result

Proof of theorem 2.3. Recall the Bloch-Ogus formula (1.1) in section 1

CH l+1(X)/alg = H l+1(XZar,Hl+1(Z)). (3.3)

Recall next the short exact sequence of sheaves on XZar from Corollary 1.5:

0 → Hl+1(Z)→Hl+1(Q) → Hl+1(Q/Z) → 0 (3.4)

Combining the associated long exact sequence with (3.3), we get an exact sequence

H l(XZar,Hl+1(Q)) → H l(XZar,Hl+1(Q/Z))
γl→ Tors (CH l+1(X)/alg) → 0. (3.5)

Let us now consider the Bloch-Ogus spectral sequence with coefficients in Q/Z. Taking into
account the vanishing results (1.2) of section 1, the deepest term of the associated filtration on
H2l+1(XZar,Q/Z) is the term El,l+1∞ which is a sub-quotient of El,l+1

2 = H l(XZar,Hl+1(Q/Z)).
But, still by the vanishing (1.2), no nonzero differential dr in this spectral sequence can start
from El,l+1

r , r ≥ 2, hence the graded piece El,l+1∞ is in fact a quotient of El,l+1
2 . We denote by

fl,Q/Z : H l(XZar,Hl+1(Q/Z)) → H2l+1
B (X,Q/Z)

the map which is obtained by composing the quotient map El,l+1
2 → El,l+1∞ and the inclusion

El,l+1∞ ↪→ H2l+1
B (X,Q/Z).

The analysis of the Bloch-Ogus spectral sequence with coefficients in Z or Q produces in a
similar way maps

fl,Q : H l(XZar,Hl+1(Q)) → H2l+1
B (X,Q),

fl,Z : H l(XZar,Hl+1(Z)) → H2l+1
B (X,Z).

It is known (cf. [11]) that the image of fl,Z is nothing but N lH2l+1
B (X,Z). We will denote

f l,Q : H l(X,Hl+1
X (Q)) →→ H2l+1(X,Q/Z) (3.6)

the map which is the composition of fl,Q and of the natural map H2l+1
B (X,Q) → H2l+1

B (X,Q/Z).
The exact sequence (3.5) thus provides us with a map

cll,tors,tr : Tors (CH l(X)/alg) ∼= H l(XZar,Hl+1(Q/Z))
Im [H l(XZar,Hl+1(Q))]

→ H2l+1
B (X,Q/Z)

Im f l,Q
, (3.7)

Let us now consider the case where l = 2, so 2l + 1 = 5. By the vanishing (1.2), the only
nonzero differential dr which could arrive in E2,3

r is

d0,4
2 : H0(XZar,H4(Q/Z)) → H2(XZar,H3(Q/Z)).
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Furthermore, we have

Ker d0,4
2 = Im (H4

B(X,Q/Z) → H0(XZar,H4(Q/Z))),

since, again by the vanishing (1.2), the higher dr’s starting from E0,4
r are 0.

It follows that we have an exact sequence

H4
B(X,Q/Z) → H0(XZar,H4(Q/Z)) d2→ H2(XZar,H3(Q/Z)) → H5

B(X,Q/Z), (3.8)

and similarly with coefficients Z and Q. To summarize, we have the following commutative
diagram where all lines and arrows are exact, the lines being induced by the short exact sequence
0 → Z→Q→ Q/Z→ 0 of sheaves on Xcl and the induced short exact sequences (3.4) on XZar,
and the columns being given by the exact sequences (3.8) with various coefficients :

H4
B(X,Z) //

²²

H4
B(X,Q) //

²²

H4
B(X,Q/Z)

²²
H0(XZar,H4(Z)) //

d2

²²

H0(XZar,H4(Q)) //

d2

²²

H0(XZar,H4(Q/Z))

d2

²²
H2(XZar,H3(Z)) //

f2,Z
²²

H2(XZar,H3(Q)) //

f2,Q
²²

f2,Q/Z

))TTTTTTTTTTTTTTT
H2(XZar,H3(Q/Z)) // //

f2,Q/Z
²²

Tors (H3(XZar,H3(Z)))

H5
B(X,Z) // H5

B(X,Q) // H5
B(X,Q/Z)

(3.9)

From this exact diagram, we deduce using the last column and (3.7) a surjective map

H0(X,H4(Q/Z)) → Ker (cl3,tors,tr : Tors (CH3(X)/alg) → H5
B(X,Q/Z)/Im f2,Q/Z) (3.10)

whose kernel identifies to the quotient of the group

Γ := {α ∈ H0(XZar,H4(Q/Z)), d2(α) ∈ Im (H2(XZar,H3(Q))→H2(XZar,H3(Q/Z))} (3.11)

by the image of the group H4
B(X,Q/Z).

Recall that we assumed that H5
B(X,Z)/N2H5

B(X,Z) has no torsion. Let us show the follow-
ing consequence:

Lemma 3.1. If H5
B(X,Z)/N2H5

B(X,Z) has no torsion, the image of the natural map

H4
B(X,Q/Z) → H0(XZar,H4(Q/Z))

is contained in the image of the map

H0(XZar,H4(Q)) → H0(XZar,H4(Q/Z)).

Proof. Indeed, the analysis of the spectral sequence converging to H5(Xcl,Z) = H5
B(X,Z)

shows that H5
B(X,Z)/N2H5

B(X,Z) contains the subgroup E1,4∞ = Ker d2 of H1(XZar,H4(Z)).
Under our assumption,

Ker (d2 : H1(XZar,H4(Z)) → H3(XZar,H3(Z))),
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being contained in H5
B(X,Z)/N2H5

B(X,Z), is without torsion. We deduce from this that the
composite map

H4
B(X,Q/Z) → H0(XZar,H4(Q/Z)) → H1(XZar,H4(Z)),

whose image is both of torsion and contained in Ker d2, is identically zero, which implies the
result by the exact sequence

H0(XZar,H4(Q)) → H0(XZar,H4(Q/Z)) → H1(XZar,H4(Z)).

We prove now:

Lemma 3.2. The group Γ of (3.11) identifies to the image of H0(XZar,H4(Q)) in H0(XZar,H4(Q/Z)).

Proof. This is diagram chasing in the diagram (3.9). Let α ∈ Γ ⊂ H0(XZar,H4(Q/Z)), so
that by definition d2α = β for some β ∈ H2(XZar,H3(Q)). The class β is annihilated by f2,Q/Z
and thus, the image of the class β under the map f2,Q is an element of H5

B(X,Q) which vanishes
in H5

B(X,Q/Z). We thus have
f2,Q(β) = Im γ,

for some γ ∈ H5
B(X,Z), which is clearly of torsion in H5

B(X,Z)/Im f2,Z = H5
B(X,Z)/N2H5

B(X,Z).
But by assumption the group H5

B(X,Z)/N2H5
B(X,Z) has no torsion; hence there exists

β′′ ∈ H2(XZar,H3(Z)) such that f2,Z(β′′) − f2,Q(β) = 0 in H5
B(X,Q). The second vertical

exact sequence in the diagram (3.9) then shows that f2,Z(β′′) − f2,Q(β) = d2(δ) for some δ ∈
H0(XZar,H4(Q)). Denoting by δ the image of δ in H0(XZar,H4(Q/Z)), the class α − δ is
then annihilated by d2 : H0(XZar,H4(Q/Z)) → H2(XZar,H3(Q/Z)) and thus comes from
H4

B(X,Q/Z) as it follows from the third vertical exact sequence of the diagram (3.9). It then
also comes from an element of H0(XZar,H4(Q)) by Lemma 3.1.

From (3.10) and the above description of Γ, we thus established, under the assumption that
H5(X,Z)/N2H5(X,Z) is without torsion, the following exact sequence

H4
nr(X,Z)⊗Q/Z→ H4

nr(X,Q/Z) → Ker cl3,tors,tr → 0.

The proof of Theorem 2.3 is then concluded using Proposition 3.4 below, which implies that we
have the equality

Ker cl3,tors,tr = Ker (cl3D,tr |Tors (CH3(X)/alg)
) =: T 3(X).

In order to state Proposition 3.4, we will need the following Lemma.

Lemma 3.3. For any smooth complex projective variety X, there is a canonical isomorphism

ιl : Tors (H2l+2
D (X,Z(l + 1))tr) ∼=

H2l+1
B (X,Q/Z)
Im f l,Q/Z

, (3.12)

where the map f l,Q/Z was introduced in (3.6).
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Proof. We have an exact sequence

0 → J2l+1(X)alg → H2l+2
D (X,Z(l + 1)) → H2l+2

D (X,Z(l + 1))tr → 0, (3.13)

where
J2l+1(X)alg = 〈τW∗J1(W̃ ), codim W = l〉

is the algebraic part of the intermediate Jacobian J2l+1(X). The group J2l+1(X)alg being
divisible, (3.13) induces an exact sequence of torsion subgroups:

0 → Tors (J2l+1(X)alg) → Tors (H2l+2
D (X,Z(l + 1))) → Tors (H2l+2

D (X,Z(l + 1))tr) → 0.(3.14)

The torsion subgroup of H2l+2
D (X,Z(l+1)) is easy to analyze : indeed,we have the exact sequence

of complexes of sheaves on Xcl

0 → ZD(l + 1)→QD(l + 1) → Q/Z→ 0, (3.15)

where ZD(l + 1) is the Deligne complex 0 → Z → OX → . . . → Ωl
X → 0, where Z is put in

degree 0, which satisfies by definition H2l+2(Xcl,ZD(l +1)) = H2l+2
D (X,Z(l +1)), and QD(l +1)

is defined similarly, replacing Z by Q.
The exact sequence (3.15) of complexes of sheaves on Xcl induces by taking cohomology the

exact sequence

H2l+1(X,QD(l + 1)) → H2l+1
B (X,Q/Z) → Tors (H2l+2

D (X,Z(l + 1))) → 0. (3.16)

But, as X is projective and smooth, one immediately sees, using the exact sequence of complexes

0 → Ω•≤l
Xan

[1] → QD(l + 1) → Q→ 0 (3.17)

that the map
H2l+1(X,QD(l + 1)) → H2l+1

B (X,Q)

is zero. Indeed, the long exact sequence associated to (3.17) writes

H2l+1(X,QD(l + 1)) → H2l+1
B (X,Q) → H2l+1(X,Ω•≤l

Xan
),

where the last term is equal by [23, I,8.3.3] to H2l+1
B (X,C)/F l+1H2l+1

B (X,C), where F i stands for
the Hodge filtration. Now, by Hodge symmetry, the map H2l+1

B (X,Q) → H2l+1
B (X,C)/F l+1H2l+1

B (X,C)
is injective.

A fortiori the map
H2l+1(X,QD(l + 1)) → H2l+1

B (X,Q/Z)

is zero. We thus get from (3.16) an isomorphism H2l+1(X,Q/Z) ∼= Tors (H2l+2
D (X,Z(l + 1))).

For any irreducible subvariety W ⊂ X of codimension l, with desingularization τW : W̃ →
X, the description of Pic0(W̃ ) as the torus J1(W̃ ) identifies Tors (Pic0(W̃ )) to the image of
H1(W̃ ,Q) in H1(W̃ ,Q/Z). It follows that

Tors (J2l+1(X)alg) = 〈Im (τW∗ : H1(W̃ ,Q) → H2l+1(X,Q/Z))〉,
which implies the desired result since we also have

〈Im (τW∗ : H1(W̃ ,Q) → H2l+1(X,Q/Z))〉 = Im f l,Q/Z

by definition of f l,Q/Z (cf. (3.6)).
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We now have the following interpretation of the maps cll,tors,tr :

Proposition 3.4. The map cll,tors,tr of (3.7) identifies via the isomorphism ιl of (3.12) to
the restriction of cll+1

D,tr to the torsion subgroup Tors (CH l+1(X)/alg), with value in the torsion
subgroup of H2l+2

D (X,Z(l + 1))tr.

Proof. Looking at the arguments given in the beginning of the proof of Theorem 2.3, it
suffices to show that for any β ∈ H l(X,Hl+1(Q/Z)), we have:

fl,Q/Z(β) mod. Im f l,Q/Z = ιl(cll+1
D,tr(γl(β))), (3.18)

where γl : H l(X,Hl+1(Q/Z)) → Tors(CH l+1(X)/alg) was introduced in the exact sequence
(3.5).

The equality (3.18) can be shown in the following way using the construction of the Deligne
cycle class map involving the Cheeger-Simons differential characters (cf. [23, I,12.3.3]).

The class β is represented according to the results of section 1 (the Bloch-Ogus resolution of
the sheaf Hl+1(Q/Z)) by the data of subvarieties Wi of X of codimension l, of smooth Zariski
open sets W 0

i ⊂ Wi, and of classes βi ∈ H1(W 0
i ,Q) satisfying the condition:

∑

i

∂βi = 0 in Z l+1(X)⊗Q/Z, (3.19)

where ∂ is the last differential of the Bloch-Ogus resolution (cf. Theorem 1.1) of Hl+1(Q/Z).
Let W = ∪iWi, ∂Wi := Wi \ W 0

i and ∂W := ∪i∂Wi. We can assume that the W 0
i are

disjoint, and then the equality (3.19) allows to describe the classes γl(β) and fl,Q/Z(β) in the
following way. First of all we have a cycle Z ′ :=

∑
i ∂βi ∈ Z l+1(X) with integral coefficients

which clearly represents γl(β), because γl is nothing but the connecting map associated to the
short exact sequence (3.4).

On the other hand, the classes βi on W 0
i give by Poincaré duality relative homology classes

Bi ∈ H2d−2l−1,B(Wi, ∂Wi,Q), d := dim X which have the property that the sum of their bound-
aries vanishes in H2d−2l−2,B(∂W,Q/Z). Hence the data of the Bi’s determine a homology class
in H2d−2l−1,B(W,Q/Z), which provides via the inclusion of W in X a class

B ∈ H2d−2l−1,B(X,Q/Z) ∼= H2l+1
B (X,Q/Z),

where the last isomorphism is given by Poincaré duality on X. A look at the construction of
the Gersten type resolution by Bloch-Ogus shows that B is in fact equal to fl,Q/Z(β).

It thus remains only to show that clD(Z ′) = B in H2l+1
B (X,Q/Z) ∼= Tors(H2l+2

D (X,Z(l+1))).
One has an inclusion

H2l+1
B (X,Q/Z) ↪→ Hom (H2d−2l−1,B(X,Z),Q/Z). (3.20)

According to [23, I,12.3.2], a Deligne cohomology class e ∈ H2l+2
D (X,Z(l + 1)) is represented

by a homomorphism C2l+1,c → R/Z, (which takes values in Q/Z if e is of torsion,) where C2l+1,c

is the group of closed integral singular chains of dimension 2l +1 of Xcl. Given a cycle z of X of
dimension d− l− 1 whose rational cohomology class [z] vanishes in H2l+2

B (X,Q), one constructs
such a representative φz : C2l+1,c → R/Z for clD(z) in the following way (cf. [23, I,12.3.3]): one
chooses a differential form φ of type (l + 1, l) on X with singularities (of prescribed type) only
along Supp z, such that the following equality of currents holds:

∫

z
= dφ.
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For any closed chain Γ of dimension 2l + 1 of X, one writes

Γ = Γ′ + ∂T,

where T is a chain of dimension 2l + 2 of X and Γ′ is another chain of dimension 2l + 1 of X
not intersecting Supp z. One then sets

φz(Γ) =
∫

Γ′
φ, (3.21)

where the value of the right hand side modulo Z is easily shown not to depend on Γ′, T .
Coming back to the cycle Z ′ introduced above, up to modifying the βi’s by classes coming

from H1(W̃i,Q) (which won’t change the result after passing to the transcendental part of the
Deligne cycle class), one can choose 1-forms β̃i on W 0

i representing the βi’s, with logarithmic
singularities along ∂Wi, and then one can take for φ a form of the following type :

φ =
∑

i

ji∗β̃i

where ji∗β̃i is a singular form obtained by extending β̃i to a closed form defined in a neighborhood
TεWi of Wi, singular along ∂Wi, and by taking its cup-produit with a compactly supported form
in this neighborhood, representing along W 0

i the Thom class of (TεWi, ∂TεWi). It then only
remains to show that one has for any closed chain Γ not meeting this neighborhood of ∂Wi and
meeting transversally the W 0

i s:

〈B, Γ〉 =
∫

Γ
φ mod.Z,

where the contraction on the left is induced by (3.20). But by the construction of φ and by the
fact that Γ does not meet the locus ∂Wi where βi is singular, the term on the right is equal to

∑

i

∫

Γ∩Wi

β̃i ∈ Q (3.22)

while the term on the left is equal to
∑

i

](Γ ∩Bi) =
∑

i

](Γ ∩Wi ∩Bi) ∈ Q, (3.23)

where ] is the sum of the local intersection numbers (with coefficients in Q, as the Bi’s) counted
with the signs given by the orientations, these local intersection numbers being well-defined as
each Γ ∩Wi is supported in W 0

i .
As β̃i represents βi ∈ H1

B(W 0
i ,Q), and the closed 1-chain Γ ∩Wi is supported on W 0

i , the
equality of (3.22) and (3.23) in Q/Z is simply obtained as the sum of equalities of intersection
numbers between H1,B(W 0

i ,Z) and H1
B(Wi, ∂Wi,Q).

4 Discussion of geometric examples

There are two interesting groups involved in Theorem 0.2, and especially its corollary 0.3, namely
unramified cohomology with torsion coefficients H4

nr(X,Q/Z) and the subgroup T 3(X) of the
torsion group of the Griffiths group which is annihilated by the “transcendental part” of the
Deligne cycle class. They are isomorphic under two conditions : CH0(X) is supported on a three
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dimensional subvariety, and (this is the second assumption in Corollary 0.3) there is no torsion
in H5(X,Z)/N2H5(X,Z). We will discuss below examples showing the non triviality of one of
these two groups. As we will see, it is hard to guarantee also that the second assumption in
Corollary 0.3 is satisfied, in order that the non-vanishing of one group implies the non-vanishing
of the other one.

Remark 4.1. For certain types of varieties, the absence of torsion in H5(X,Z)/N2H5(X,Z)
is easy to check: for example those for which H5(X,Z) = 0 (eg a general complete intersec-
tion of dimension > 5 of ample hypersurfaces in a smooth projective variety Y also satisfying
H5(Y,Z) = 0). If one considers a general complete intersection X of dimension 5 of ample
hypersurfaces in a variety Y satisfying H5(Y,Z) = 0, then it is known by the Lefschetz the-
orem on hyperplane sections that H5(X,Z) has no torsion. To guarantee that the quotient
H5(X,Z)/N2H5(X,Z) has no torsion, it suffices of course that N2H5(X,Z) = 0, which can be
done usually by monodromy considerations. But it is not easy to construct examples of this
type which have a non trivial T 3(X) or H4

nr(X,Q/Z) group.

The article [16] provided the first known examples of cycles which are non trivial modulo
algebraic equivalence but are annihilated by the Deligne cycle class. In fact, the first non trivial
elements in the Griffiths group of cycles homologous to zero modulo algebraic equivalence had
been found by Griffiths [12] and proved to be non algebraically equivalent to zero using their
Abel-Jacobi invariants. Later on, Schoen [18] produced torsion elements in the Griffiths group,
but still used the Abel-Jacobi map to prove that they are non zero.

Nori’s examples in [16] do not provide torsion elements in the Griffiths group. They are
obtained by restricting a cycle non homologous to zero but with primitive class (for example the
difference Z of two rulings in an even dimensional quadric of dimension ≥ 6) to a very general
complete intersection of at least two hypersurfaces of sufficiently large degree. If we start from a
quadric Q of dimension 6, and take for X a very general complete intersection of two high degree
hypersurfaces in it, Nori’s theorem says that the cycle Z|X is non trivial in Griff3(X), and it
is of course annihilated by the Abel-Jacobi map, since the corresponding intermediate Jacobian
J5(X) is trivial. This cycle is obtained as Z|X where Z is the difference of the two rulings of
Q. A crucial point is Nori’s proof is the fact that the class of Z in H6(X,Q) is nonzero. One
could of course in the above construction start from an ambient sixfold carrying a torsion cycle
Z with nonzero cohomology class, but it is unlikely that Nori’s connectivity theorem, which
concerns cohomology with rational coefficients and is used in the proof of the nontriviality of
Z|X in the previous situation, is true for integral coefficients. Note also that in Nori’s theorem,
the complete intersections X have to be ample enough, so that they do not satisfy the condition
that CH0(X) is supported on a threefold.

Concerning unramified cohomology with torsion coefficients, Peyre constructs in [17] exam-
ples of unirational varieties X (for example over K = Q) with nonzero group H4

nr(X,Q/Z).
Unfortunately, while the construction of the function field K(X) is explicit, the smooth projec-
tive models X are not easy to describe, and it is not clear whether they satisfy our assumption
that H5

B(X,Z)/N2H5
B(X,Z) is nonzero. So we cannot use Corollary 0.3 to conclude that these

X’s have some torsion element in Griff3(X) which is annihilated by the transcendental cycle
class cl3D,tr.

In the paper [20], torsion codimension 3 cycles which are not algebraically equivalent to 0
and are annihilated by the Abel-Jacobi map are constructed as follows. Let p ≥ 5 be a prime
integer. Let X be a hypersurface of degree p3 in P4. We assume that X contains a rational
curve C of degree p, and is very general otherwise. Let S be a surface which admits a copy of
Z/pZ as a direct summand in H2(S,Z). Let c be a generator of the torsion of H2(S,Z) and
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write c̃ := c1(L) ∈ PicS, where L is a p-torsion line bundle on S.
Let W = S ×X and consider the codimension 3 cycle

pr∗1 c̃ · pr∗2C

on W . It is clearly of torsion as c̃ is, and it is annihilated by the Abel-Jacobi map because the
Deligne cycle class of c̃ is of p-torsion, while the Deligne cycle class of C is divisible be p.

We have now:

Theorem 4.2. (Soulé-Voisin [20]) For a very general X containing C, the cycle pr∗1 c̃ · pr∗2C is
not divisible by p in CH3(W ), and in particular is not algebraically equivalent to 0.

This example however does not necessarily correspond to a non zero element in H4
nr(W,Q/Z)

because the group H5(W,Z)/N2H5(W,Z) has some p-torsion in this case.
Our final goal is to exhibit an example of smooth projective variety W for which the group

T 3(W ) is non zero, the group CH0(W ) is supported on a subvariety of dimension ≤ 3, and
which also satisfies the property that H5(W,Z)/N2H5(W,Z) has no torsion. (In fact we only
have “potential” examples, as the proof that H5(W,Z)/N2H5(W,Z) has no torsion depends on
the generalized Hodge conjecture [13].) For these varieties, we will conclude (again under GHC)
that T 3(W ) ∼= H4

nr(W,Q/Z) 6= 0 by Corollary 0.3.
We will apply for this a product construction similar to the one described above with X

replaced by the threefolds Y constructed in [8, Section 5.7].
These examples differ from Kollár’s example by the fact that they satisfy H3(Y,OY ) = 0,

and thus their degree 3 cohomology is conjecturally of coniveau 1 by the generalized Hodge
conjecture (cf. [13]), although we were not able to prove this.

The examples are constructed as follows: Let G = Z/5Z. Let us choose a non trivial 5-
th root ζ of the unity and a generator g of G, and let G act on P1

xy = ProjC[x, y] and on
P3 = ProjC[x0, x1, x2, x3] in the following way:

g∗x = x, g∗y = ζy,

g∗xi = ζixi, i = 0, . . . , 3.

Let X ⊂ P1 × P3 be an hypersurface of bidegree (3, 4) defined by an equation f = 0, where
f ∈ H0(P1 × P3,OP1×P3(3, 4)) is invariant under G. Such an X is not smooth but has ordinary
quadratic singularities at the fixed points of the action. Let Y be a desingularization of X/G.
The following result is proved in [8]:

Proposition 4.3. Let X, Y be as above. If X is very general, then :
(i) One has the vanishing H i(Y,OY ) = 0 for i > 0.
(ii) The group Z4(Y ) := Hdg4(Y,Z)/ < [Z], Z ⊂ Y,dimZ = 1 > is nonzero.

The proof of (ii) involves the following specialization X0 of X (similar to those introduced
first by Starr in [21]): Consider the G-equivariant degree 4 morphism

φ : P1
uv → P1

xy (4.24)

defined by φ∗x = u4, φ∗y = v4, where u, v are homogeneous coordinates on P1, with the following
linearized action of G: g∗u = u, g∗v = ζ4v. We choose a generic G-invariant section Q of
H0(P1 × P3,OP1×P3(3, 1)).

Such a Q has the following form:

Q = u3x0 + u2vx1 + uv2x2 + v3x3. (4.25)
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Let Γ ⊂ P1 × P3 be the divisor of Q, and let X0 := (φ, Id)(Γ). As the degree of φ is 4, X0

is a member of the linear system | OP1×P3(3, 4) |. Furthermore X0 is defined by a G-invariant
equation.

The non normal locus Σ of X0 is the following surface : Write Γ as ∪t∈P1Ht where Ht ⊂ P3

is an hyperplane. Then if
Σ′ := ∪t 6=t′,φ(t)=φ(t′)Ht ∩Ht′

(or rather its Zariski closure in Γ, as the above locus is not closed) we have Σ = (φ, Id)(Σ′) ⊂ X0.
As φ : P1

uv → P1
xy is a Galois cover of group Z/4Z, the above locus Σ′ has two components Σ′0

and Σ′1: let σ be the unique element of order 2 in Z/4Z. Then

Σ′0 = ∪t∈P1
uv

Ht ∩Hσ(t)

Σ′1 = ∪t∈P1
uv ,g 6=σ,IdHt ∩Hg(t). (4.26)

Both Σ′0 and Σ′1 map via a morphism of degree 2 to their image Σ0, resp. Σ1 in X0. The
surface Σ′0 ⊂ P1

uv × P3 is a P1-bundle over P1
uv which is invariant under the involution (σ, Id).

Consider a section of this P1-bundle which is invariant under (σ, Id), for example the intersection
of Σ′0 with the inverse image pr−1

2 (P ) where P ⊂ P3 is a plane.
The image of this curve in Σ0 is thus a curve C0 ⊂ X0 which has degree 2 over P1

xy.
Choose now C0 as before (where the plane P is generic), and let X be a general G-invariant

deformation of X0 containing C0. One checks that the singularities of X are generic. It follows
that if Y is a desingularization of X/G, Y satisfies as in Proposition 4.3 the vanishing condition
H i(Y,OY ) = 0 for i > 0. In particular H3(Y,OY ) = 0, so the Hodge structure on H3(Y,Q) has
coniveau 1 and the generalized Hodge conjecture [13] predicts that H3(Y,Q) is supported on a
proper closed algebraic subset of Y .

Let S be a smooth projective surface satisfying CH0(S) = Z and Tors(H2
B(S,Z)) = Z/2Z.

For example, we can take for S an Enriques surface. Let

W = Y × S.

Since CH0(S) is supported on a point s ∈ S, CH0(W ) is supported on the threefold s×Y ⊂ W .

Proposition 4.4. Assume the generalized Hodge conjecture is satisfied by the coniveau 1 Hodge
structure H3(Y,Q). Then W satisfies the property that H5(W,Z)/N2H5(W,Z) has no torsion.
Furthermore, if X is very general as above,

T 3(W ) ∼= H4
nr(W,Q/Z) 6= 0.

Proof. We first check that H5
B(W,Z)/N2H5

B(W,Z) has no torsion. It suffices for this to
show that H5

B(W,Z)/N2H5
B(W,Z) = 0. Recall that Y is a desingularization of a quotient of X

by G which is a group of order 5. There is thus a blow-up X̃ → X, and a surjective morphism
of degree 5:

ψ : X̃ → Y.

As X has a small number of ordinary quadratic singularities, one can check using monodromy
and vanishing cycles arguments that for any smooth birational model Z of X, H∗

B(Z,Z) has no
torsion (cf. [6]). Hence H∗

B(X̃,Z) has no torsion and the existence of ψ, with ψ∗◦ψ∗ = 5IdH∗(Y,Z)

show that the possible torsion of H∗
B(Y,Z) has order 5. Because the torsion of H∗

B(S,Z) has
order 2, we conclude that we have the surjectivity of the Künneth map:

H∗
B(Y,Z)⊗H∗

B(S,Z) → H∗
B(W,Z).
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In degree 5, we thus get that H5
B(W,Z) is a quotient of

H5
B(Y,Z)⊕H3

B(Y,Z)⊗H2
B(S,Z)⊕H2

B(Y,Z)⊗H3
B(S,Z).

The cohomology group H5
B(Y,Z) = H1,B(Y,Z) has coniveau 2 by Lefschetz theorem on hyper-

plane sections: Any smooth curve j : D ↪→ Y complete intersection of ample surfaces in Y has
the property that j∗ : H1,B(D,Z) → H1,B(Y,Z) is surjective. H2

B(S,Z) has coniveau 1, and
H3

B(Y,Q) has been assumed to have coniveau 1 (as predicted by the Grothendieck generalized
Hodge conjecture). This implies that H3

B(Y,Z) has coniveau 1 because the sheaf H3
Y (Z) has no

torsion by Theorem 1.4. Finally H2
B(Y,Z) has coniveau 1 by Lefschetz theorem on (1, 1) classes

and H2
B(Y,OY ) = 0 (cf. [8, Prop. 5.7]), and H3

B(S,Z) has coniveau 1 again by the Lefschetz
hyperplane section theorem.

Thus the two summands H3
B(Y,Z)⊗H2

B(S,Z) and H2
B(Y,Z)⊗H3

B(S,Z) also have coniveau
2, and thus H5

B(W,Z) = N2H5
B(W,Z).

The fact that CH0(W ) is supported on a threefold then implies by Corollary 0.3 that
T 3(W ) ∼= H4

nr(W,Q/Z).
It thus only remains to show that T 3(W ) 6= 0.
We consider the variety X̃ × S. W is birationally equivalent to a quotient of X̃ × S by

G = Z/5Z. We claim that it suffices now to exhibit an element z of T 3(X̃ × S) which is non
zero, of order 2 and G-invariant. Indeed, let ψ : X̃ × S → W be the morphism induced by
φ : X̃ → Y . we conclude from birational invariance and from the invariance of z under G that
ψ∗(ψ∗z) = 5z, which is nonzero since z is of order 2. Thus ψ∗z 6= 0 in T 3(W ).

Let us exhibit a 2-torsion element z ∈ Ker cl3D ⊂ CH3(X̃ × S). The variety X̃ contains the
curve C0 which does not pass through the exceptional divisors over the singular points of X.

Lemma 4.5. There exists a G-invariant 1-cycle C ′
0 of X̃ such that

C ′
0 =

∑

g∈G

g(C0) + D0,

with D0 supported in the fibers of p : X̃ → P1
xy, and such that the class [C ′

0] ∈ H4(X̃,Z) is
divisible by 2.

Proof. As we discussed above, H∗(X̃,Z) has no torsion, and furthermore H2(X,OX) = 0.
It follows that there is a perfect pairing between H4(X̃,Z) and H2(X̃,Z), the latter being
isomorphic to Pic X̃. It thus suffices to show that there is a curve C ′

0 =
∑

g∈G g(C0) + D0 with
D0 supported in the fibers of p : X̃ → P1

xy such that the degree of C ′
0 with respect to any divisor

of X̃ is even. But by [6] and the independence of the double points of X, Pic X̃ is generated by
PicX = Pic (P1 × P3) and by the exceptional divisors of the desingularization X̃ → X.

By construction, C0 does not meet the exceptional divisors and p∗c1(OP1
xy

(1)) has even degree
on C0. If it has odd degree on the remaining generator p∗2c1(OP3(1)), we just add to C0 an odd
degree curve ∆ in one fiber not passing through the singular points of X (recall that X is a one
parameter family of K3 surfaces, so the fibers containing an odd degree curve are topologically
dense in the base P1). At this point, the constructed curve C0 ∪∆ is not G-invariant, but if we
let D0 = ∪g∈Gg(∆), we find that C ′

0 =
∑

g∈G g(C0) + D0 satisfies the desired conclusion.

Let now η be the generator of the 2-torsion of H2(S,Z). As PicS = NS(S) = H2
B(S,Z), η

can be seen as a 2-torsion element of CH1(S). Let

pr1 : X̃ × S → X̃, pr2 : X̃ × S → S
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be the two projections.

Lemma 4.6. The element z := pr∗1C
′
0 · pr∗2η ∈ CH3(X̃ × S) is of 2-torsion and has vanishing

Deligne cycle class.

Proof. The cycle z is of 2-torsion because η is. It is annihilated by the Deligne cycle class
of X̃ × S for the following reason: The Betti cycle class of C ′

0 is divisible by 2 by Lemma 4.5,
which implies that the Deligne cycle class of C ′

0 is divisible by 2 because the kernel of the map

H4
D(X̃,Z(2)) → H4

B(X̃,Z)

is a divisible group. As η is of 2-torsion, so is clD(η), and it follows that

clD(z) = pr∗1(clD(C ′
0)) · pr∗2(clD(η)) = 0 in H6

D(X̃ × S,Z(2)).

In order to conclude, it remains to prove the following:

Lemma 4.7. The cycle z ∈ CH3(X̃ × S) is nontrivial in Griff3(X̃ × S).

Proof. First of all, it obviously suffices to show that the cycle pr∗1C
′
0 · pr∗2η ∈ CH3(X × S)

(that we will also denote z) is nontrivial in Griff3(X × S). As in [20], we note that it suffices to
prove that z is not divisible by 2, as the group of cycles algebraically equivalent to 0 is divisible.
As X is very general, the pair (X, C ′

0) specializes to the pair (X0, C
′
0), and it suffices by [20,

Lemma 3] to show that the cycle

z0 := pr∗1(C
′
0) · pr∗2η ∈ CH2(X0 × S)

is not divisible by 2. Note that the product here is well defined by [10, 2.3], as pr∗2η belongs to
Pic (X0 × S).

We now observe the following: the variety X0 ⊂ P1
xy × P3 is the image via a morphism

(φ′, Id) : P1 × P3 → P1
xy × P3

of an hypersurface X ′
0 ⊂ P1 × P3 of bidegree (3, 2), and furthermore the curve C ′

0 comes from a
curve C ′′

0 ⊂ X ′
0. To see this, it suffices to recall that

X0 = (φ, Id)(Γ)

where Γ ⊂ P1
uv × P3 is an hypersurface of bidegree (3, 1), and φ : P1

uv → P1
xy is a Galois cover

of group Z/4Z. We thus factor φ as φ′ ◦ φ′′, where both φ′ : P1 → P1
xy and φ′′ : P1

uv → P1 are
of degree 2. Denoting X ′

0 := (φ′′, Id)(Γ), it just suffices to remember that the curve C0 was
precisely defined as the image via (φ′, Id) of a curve contained in Σ0, the later being naturally
contained in X ′

0.
The cycle z′0 := pr∗1(C

′′
0 ) · pr∗2η ∈ CH2(X ′

0×S) is not divisible by 2 in CH2(X ′
0×S). Indeed,

X ′
0 admits a morphism p′ : X ′

0 → P1, and the degree of p′|C′′0 : C ′′
0 → P1 is 5. It follows that

pr2∗(z′0 · p′∗c1(OP1(1)) = 5η = η in CH1(S), (4.27)

and as η is not divisible by 2 in CH1(S), z′0 is not divisible by 2 in CH2(X ′
0×S). The morphism

(φ′, Id) : X ′
0 → X0 is two-to-one on the image Σ′′1 ⊂ X ′

0 of the surface Σ′1 ⊂ X0 introduced in
(4.26), and otherwise one-to-one. It is easy to see that any curve Z ⊂ Σ′′1 has degree divisible
by 2 over P1. It follows that for any 2-cycle Z of X ′

0 × S supported on S × Σ1, we have

pr2∗(Z · p′∗c1(OP1(1)) = 0 in CH1(S)⊗ Z/2Z. (4.28)

Now, if z0 was divisible by 2 in CH2(X0×S), z′0 would be divisible by 2 in CH2(X ′
0×S)/CH2(S×

Σ′′1) and this contradicts (4.27) and (4.28).
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The proof of Proposition 4.4 is finished.
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