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A Counterexample to the Hodge Conjecture

Extended to Kähler Varieties

Claire Voisin

1 Introduction

If X is a smooth projective variety, it is in particular a Kähler variety, and its cohomology

groups carry the Hodge decomposition

Hk(X,C) = ⊕p+q=kH
p,q(X). (1.1)

A class α ∈ H2p(X,Q) is said to be a rational Hodge class if its image in H2p(X,C)

belongs to Hp,p(X). As is well known, the classes which are Poincaré dual to irreducible

algebraic subvarieties of codimension p of X are Hodge classes of degree 2p. The Hodge

conjecture asserts that any rational Hodge class is a combination with rational coeffi-

cients of such classes.

In the case of a general compact Kähler variety X, the conjecture above, where

the algebraic subvarieties are replaced with closed analytic subsets, is known to be

false (cf. [13]). The simplest example is provided by a complex torus endowed with

a holomorphic line bundle of indefinite curvature. If the torus is chosen general enough,

it will not contain any analytic hypersurface, while the first Chern class of the line

bundle will provide a Hodge class of degree 2.

In fact, another general method to construct Hodge classes is to consider the

Chern classes of holomorphic vector bundles. In the projective case, the set of classes

generated this way is the same as the set generated by classes of subvarieties. To see

this, one introduces a still more general set of classes, which is the set generated by the
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Chern classes of coherent sheaves on X. Since any coherent sheaf has a finite resolution

by locally free sheaves, it follows from Whitney’s formula that the set generated by

Chern classes of coherent sheaves is not larger than the set generated by Chern classes

of locally free sheaves. On the other hand, this latter set obviously contains the classes

of subvarieties (we compute for this the Chern class of degree 2p of IZ for Z irreducible

of codimension p, and we show that it is proportional to the class of Z). Finally, to

see that the Chern classes of locally free coherent sheaves can be generated by classes

of subvarieties, we first reduce, twisting by a very ample line bundle, to the case of

globally generated locally free sheaves E. Such an E is the pullback of the tautological

quotient bundle Q on a Grassmannian G by a morphism from X to G. Then we use the

fact that the Chern classes of Q are generated by classes of subvarieties, because the

whole cohomology of the Grassmannian is generated by such classes.

In the general Kähler case, none of these equalities between the three sets of

Hodge classes introduced above holds. The only obvious result is that the space gener-

ated by the Chern classes of analytic coherent sheaves contains both the classes which

are Poincaré dual to irreducible closed analytic subspaces and the Chern classes of holo-

morphic vector bundles (or locally free analytic coherent sheaves). The example above

shows that a Hodge class of degree 2 may be the Chern class of a holomorphic line

bundle, even if X does not contain any complex analytic subset. On the other hand, we

show, in the appendix, that coherent sheaves on a compact Kähler manifold X do not

need to admit a resolution by locally free sheaves (although it is true in dimension 2,

see [8]), and that more generally, X does not necessarily carry enough vector bundles to

generate the Hodge classes of subvarieties or coherent sheaves. Hence, the set Hdg(X)an

generated by the Chern classes of analytic coherent sheaves is actually larger than the

two others.

Notice that using the Grothendieck-Riemann-Roch formula (cf. [3], extended

in [7] to the complex analytic case), we can give the following alternative description of

the set Hdg(X)an: it is generated by the classes

φ∗ci(E), (1.2)

where φ : Y → X is a morphism from another compact Kähler manifold, E is a holomor-

phic vector bundle on Y, and i is any integer. Another fact which follows from iterated

applications of the Whitney formula, is that the set which is additively generated by the

Chern classes of coherent sheaves is equal to the set which is generated as a subring of

the cohomology ring by the Chern classes of coherent sheaves. Thus this set is as big

and stable as possible.
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Now, since we do not know other geometric ways of constructing Hodge classes,

the following seems to be a natural extension of the Hodge conjecture to Kähler varieties.

Are the rational Hodge classes of a compact Kähler variety X generated over Q

by rational Chern classes of analytic coherent sheaves on X?

Our goal in this paper is to give a negative answer to this question. We show the

following theorem.

Theorem 1.1. There exists a 4-dimensional complex torus X which possesses a non-

trivial Hodge class of degree 4, such that any analytic coherent sheaf F on X satisfies

c2(F) = 0. �

In the appendix, we give a few geometric consequences of a result of Bando and Siu [1],

extending Uhlenbeck-Yau’s theorem. We show in particular that for a compact Kähler

variety X, the analytic coherent sheaves on X do not need to admit finite resolutions by

locally free coherent sheaves. This answers a question asked to us by L. Illusie and the

referee.

Notation. In this paper, the Chern classes considered are the rational Chern classes

ci(F) ∈ H2i(X,Q), (1.3)

for F a coherent analytic sheaf on a complex manifold X.

2 A criterion for the vanishing of Chern classes

of coherent sheaves

We consider in this section a compact Kähler variety X of dimension n ≥ 3 satisfying

the following assumptions:

(1) the Néron-Severi group NS(X) generated by the first Chern classes of holo-

morphic line bundles on X is equal to 0;

(2) X does not contain any proper closed analytic subset of positive dimension;

(3) for some Kähler class [ω] ∈ H2(X,R) ∩ H1,1(X), the set of Hodge classes

Hdg4(X,Q) is perpendicular to [ω]n−2 for the intersection pairing

H4(X,R)⊗H2n−4(X,R) −→ R. (2.1)

Our aim is to show the following result.

Proposition 2.1. If X is as above, any analytic coherent sheaf F on X satisfies c2(F) = 0.

�
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Proof. As in [2], the proof is by induction on the rank k of F. We note that because

dimX ≥ 3, the torsion sheaves supported on points on X have trivial c1 and c2. On the

other hand, assumption (2) implies that torsion sheaves are supported on points. This

deals with the case where rkF = 0. Furthermore, this shows that we can restrict to

torsion free coherent sheaves.

If F contains a nontrivial subsheaf G of rank < k, we have the exact sequence

0 −→ G −→ F −→ F/G −→ 0, (2.2)

with rkG < k and rkF/G < k. Assumption (1) and the induction hypothesis then give

c1(G) = c2(G) = 0, c1(F/G) = c2(F/G) = 0. (2.3)

Therefore Whitney’s formula implies that c2(F) = 0.

We are now reduced to study the case where F does not contain any nontrivial

proper subsheaf of smaller rank. By assumption (2), F is locally free away from finitely

many points {x1, . . . , xN} of X. We show now that there exists a variety

τ : X̃ −→ X, (2.4)

which is obtained from X by finitely many successive blowups with smooth centers (and

in particular is also Kähler), so that τ restricts to an isomorphism

X̃− ∪iEi
∼= X−

{
x1, . . . , xN

}
, (2.5)

where Ei := τ−1(xi) and such that there exists a locally free sheaf F̃ on X̃ which is

isomorphic to F on the open set X̃ − ∪iEi: indeed, the problem is local near each xi.

Choosing a finite presentation

Ol
X −→ Or

X −→ F −→ 0 (2.6)

of F near xi, we get a morphism to the Grassmannian of k-codimensional subspaces of

Cr, which is well defined away from xi, since F is free away from xi. Using the finite pre-

sentation, thismorphism is easily seen to bemeromorphic. Hence by theHironaka desin-

gularization theorem [5], this morphism can be extended after finitely many blowups.

(A priori, [5] works in the algebraic context, but since our meromorphic map takes value

in a projective variety and has an isolated point as indeterminacy locus, we can reduce

easily to the situation considered in [5].) Then the pullback of the tautological quotient

bundle on the Grassmannian will provide the desired extension.
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Note that because F does not contain any nonzero subsheaf of smaller rank, the

same is true for F̃: indeed, assuming there exists a nonzero coherent subsheaf of smaller

rank G ⊂ F̃, consider

R0τ∗G ⊂ R0τ∗F̃. (2.7)

This is a nontrivial coherent subsheaf of smaller rank. Nownote thatR0τ∗F̃ is isomorphic

to F away from the xi’s, hence it is contained in the bidual F∗∗ of F. But the natural

inclusion

F F∗∗ (2.8)

is an isomorphismaway from the xi’s, so that its cokernel T is a coherent sheaf supported

on the xi’s. The sheaf

G ′ := Ker
(
R0τ∗G −→ T

)
(2.9)

is then nontrivial of rank equal to the rank of G, hence smaller than k, and it is contained

in F, which is a contradiction.

This fact implies that F̃ is h̃-stable for any Kähler metric h̃ on X̃. The theorem of

existence of Hermitian-Yang-Mills connections [10] then provides F̃ with a Hermitian-

Einstein metric k̃ for any Kähler metric h̃ on X̃. This means that the curvature R̃ ∈
Γ(Hom(F̃, F̃)⊗Ω2

X̃,R
) of the metric connection on F̃ associated to k̃ is the sum of a diag-

onal matrix with all coefficients equal to µ̃ω̃ and of a matrix R̃0 whose coefficients are

(1, 1)-forms annihilated by the Λ operator relative to the metric h̃. (The connection is

then said to be Hermitian-Yang-Mills.) Here ω̃ is the Kähler form of the metric h̃ and µ̃

is a constant coefficient, equal to

2iπ
c1

(
F̃
)
[ω̃]n−1

k[ω̃]n
, (2.10)

where [ω̃] ∈ H2(X̃,R) denotes the de Rham class of the form ω̃.

We assume chosen small neighbourhoods Vi of xi in X, and closed (1, 1)-forms

ωi on X which vanish outside τ−1(Vi), and restrict to a Kähler form on the divisor

Ei = τ−1(xi). That such forms exist follows from the fact that for each i, some com-

bination
∑

j−nijEij, nij > 0, of the components Eij of the divisor Ei is ample when

restricted to Ei. It then follows that there exists a Hermitian metric on the line bundle

OX̃(−
∑

j nijEij) whose Chern form restricts to a Kähler form on Ei. We may obviously
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assume that this metric is the constant metric away from τ−1(Vi), where we use the

natural isomorphism

OX̃

(
−

∑
j

nijEij

)
∼= OX̃ (2.11)

away from Ei, and then take for ωi the Chern form of this metric.

Then we will choose for Kähler form ω̃ the form

ωλ = τ∗ω+ λ

(∑
i

ωi

)
(2.12)

which depends on λ > 0 and is easily seen to be Kähler for sufficiently small λ.

Let h̃ = hλ, k̃ = kλ, R̃ = Rλ. We denote by η0
λ the closed 4-form

η0
λ = tr

(
R0

λ

2iπ

)2

. (2.13)

We now prove that Rλ tends to 0 with λ in the L2-sense away from the Vi’s. The argu-

ment is an extension of Lübke’s inequality [6] which proves that a Hermitian-Yang-Mills

connection on a vector bundle E with c1(E)[ω]
n−1 = c1(E)

2[ω]n−2 = c2(E)[ω]
n−2 = 0,

where [ω] is the class of the Kähler form on the basis, is in fact flat. We claim the fol-

lowing proposition.

Proposition 2.2. For any differential (2n− 4)-form α on X, the integral

∫
X−∪iVi

η0
λ ∧ α (2.14)

tends to 0 with λ. �

Before proving this proposition, we show how it implies that c2(F) = 0, thus completing

the induction step.

Poincaré duality will provide an isomorphism

H4
(
X− ∪iVi,R

)
∼= H2n−4

(
X,∪iVi,R

)∗
, (2.15)

which is realized by integrating closed 4-forms defined over X − ∪iVi against closed

(2n−4)-forms vanishing on the Vi’s. Next because dimX ≥ 3we have the isomorphisms

H4(X,R) ∼= H4
(
X− ∪iVi,R

)
,

H2n−4
(
X,∪iVi,R

)
∼= H2n−4(X,R),

(2.16)
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which are compatible with Poincaré duality. Now the cohomology class of the closed

4-form η0
λ is easily computed to be

[
η0

λ

]
= −2c2

(
F̃
)
+ c1

(
F̃
)2
−
µλ

iπ

[
ωλ

] ∪ c1

(
F̃
)
+ k

(
µλ

2iπ

)2[
ωλ

]2
. (2.17)

Hence its restriction to X̃− ∪iτ
−1(Vi) ∼= X− ∪iVi satisfies

[
η0

λ

]
|X−∪iVi

=

(
− 2c2(F) + k

(
µλ

2iπ

)2

[ω]2

)
|X−∪iVi

, (2.18)

In order to show that c2(F) = 0, it then suffices by (2.15), (2.16), and (2.18) to

show that for any closed (2n− 4)-form α on X, vanishing on ∪iVi, we have

∫
X

(
η0

λ − k

(
µλ

2iπ

)2

ω2

)
∧ α = 0. (2.19)

But this integral is independent of λ and so it suffices to show that

lim
λ→0

∫
X

(
η0

λ − k

(
µλ

2iπ

)2

ω2

)
∧ α = 0. (2.20)

Nowwehave the following lemma,whichwill be also used in the proof of Proposition 2.2.

Lemma 2.3. The equality

lim
λ→0

µλ = 0 (2.21)

holds. �

Proof. Indeed this follows from formula (2.10), and from the fact that the class c1(F̃)

pushes forward to 0 in H2(X,Z) because NS(X) = 0. Then the intersection pairing

〈
c1

(
F̃
)
, τ∗[ω]n−1

〉
X̃
=
〈
τ∗c1

(
F̃
)
, [ω]n−1

〉
X

(2.22)

is equal to 0, and we conclude using the fact that limλ→0 ωλ = τ∗ω. �

Then formula (2.20), and hence Proposition 2.1 follows from (2.21) and

Proposition 2.2. �

Proof of Proposition 2.2. We first claim that

lim
λ→0

∫
X̃

η0
λ ∧ωn−2

λ = 0. (2.23)

Indeed, we know that the space Hdg4(X) is perpendicular to [ω]n−2 for the intersection



1064 Claire Voisin

pairing. Hence we have

〈
c2

(
F̃
)
, τ∗[ω]n−2

〉
X̃
=
〈
τ∗c2

(
F̃
)
, [ω]n−2

〉
X
= 0. (2.24)

On the other hand, this is equal to

lim
λ→0

〈
c2

(
F̃
)
,
[
ωλ

]n−2
〉

X̃
(2.25)

since limλ→0 ωλ = τ∗ω. Exactly by the same argument, we show that

lim
λ→0

〈
c2

1

(
F̃
)
,
[
ωλ

]n−2
〉

X̃
= 0. (2.26)

Then the result follows from formula (2.17) and from Lemma 2.3.

Next we recall that the endomorphism R0
λ of F̃, with forms coefficients is anti-

selfadjoint with respect to the metric kλ. This follows from the fact that Rλ is the curva-

ture of the metric connection with respect to kλ. In a local orthonormal basis of F̃, this

will be translated into the fact that R0
λ is represented by a matrix, whose coefficients are

differential 2-forms, which satisfies

tR0
λ = −R

0
λ. (2.27)

The second crucial property of R0
λ is the fact that its coefficients are primitive differential

(1, 1)-forms on X̃, with respect to the metric hλ. It is well known that this implies the

following equality:

∗λγ = −γ∧
ωn−2

λ

(n− 2)!
, (2.28)

where ∗λ is the Hodge ∗-operator for the metric hλ. Since hλ restricts to h on X − ∪iVi,

these forms satisfy as well

∗γ = −γ∧
ωn−2

(n− 2)!
(2.29)

on X− ∪iVi.

Now let α be a differential (2n − 4)-form on X. Then it follows from (2.29) that

there exists a positive constant cα such that for any primitive (1, 1)-form γ on X, we have
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the following pointwise inequality of pseudo-volume forms on X:

|γ∧ γ∧ α| ≤ cαγ∧ ∗γ = −cαγ∧ γ∧
ωn−2

(n− 2)!
. (2.30)

Working locally in an orthonormal basis of F̃ and using the fact that the matrix R0
λ is

anti-selfadjoint and with primitive coefficients of (1, 1)-type, we now get the pointwise

inequality of pseudo-volume forms on X− ∪iVi

∣∣∣ tr (R0
λ

)2
∧ α

∣∣∣ ≤ cα tr
(
R0

λ

)2
∧

ωn−2

(n− 2)!
. (2.31)

Therefore, we get the inequality

∣∣∣∣
∫
X−∪iVi

tr
(
R0

λ

)2
∧ α

∣∣∣∣ ≤ cα

∫
X−∪iVi

tr
(
R0

λ

)2
∧

ωn−2

(n− 2)!
. (2.32)

But by (2.23), and because η0
λ = Tr(R0

λ/2iπ)
2, we know that

lim
λ→0

∫
X̃

Tr
(
R0

λ

)2
∧ωn−2

λ = 0. (2.33)

Because the integrand is positive and ω = ωλ on X− ∪iVi, this implies that

lim
λ→0

∫
X−∪iVi

Tr
(
R0

λ

)2
∧ωn−2 = 0. (2.34)

Hence

lim
λ→0

∫
X−∪iVi

tr
(
R0

λ

)2
∧ α = 0 = lim

λ→0

∫
X−∪iVi

η0
λ ∧ α. (2.35)

Proposition 2.2 is proven. �

Remark 2.4. A. Teleman mentioned to me the possibility of using the result of [1] (see the

appendix) to give a shorter proof of the equality c2(F) = 0 for stable F. In this paper,

the results of Uhlenbeck and Yau [10] are extended to reflexive coherent stable sheaves,

and Lübke’s inequality, together with the fact that equality implies projective flatness,

is proven.

Since in our case we have a much stronger assumption than stability, namely

stability of any desingularization of F with respect to any Kähler metric, we could avoid

the reference to the technically hard result of [1] and content ourselves with an argument

which appeals only to [10] and elementary computations.
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3 Constructing an example

Our example will be of Weil type [12]. The Hodge classes described below have been con-

structed by Weil in the case of algebraic tori, as a potential counterexample to the Hodge

conjecture for algebraic varieties. In the case of a general complex torus, the construc-

tion is even simpler. These complex tori have been also considered in [13] by Zucker,

who proves there some of the results stated below. (I thank P. Deligne and C. Peters for

pointing out this reference to me.)

A complex 4-dimensional torus X with underlying lattice Γ (a lattice of rank 8),

is determined by a 4-dimensional complex subspace

W ⊂ ΓC := Γ ⊗ C (3.1)

satisfying the condition

W ∩ ΓR = {0}, (3.2)

where ΓR = Γ ⊗ R, by the formula

X =
ΓC

W ⊕ Γ
. (3.3)

We start now with a Z[I]-module structure, where I2 = −1, on such a lattice Γ ,

which makes Γ isomorphic to Z[I]4. Then

ΓQ := Γ ⊗ Q (3.4)

has an induced structure of K-vector space, where K is the quadratic field Q[I].

Let

ΓC = C4
i ⊕ C4

−i (3.5)

be the associated decomposition into eigenspaces for I. A 4-dimensional complex torus

X with underlying lattice Γ and inheriting the I-action is determined as above by a 4-

dimensional complex subspace W of ΓC, which has to be the direct sum

W =Wi ⊕W−i (3.6)

of its intersections with C4
i and C4

−i.
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We will choose W so that

dimWi = dimW−i = 2. (3.7)

Then W, hence X is determined by the choice of the 2-dimensional subspaces

Wi ⊂ C4
i , W−i ⊂ C4

−i, (3.8)

which have to be general enough so that condition (3.2) is satisfied.

We have the isomorphisms

H4(X,Q) ∼= H4(X,Q) ∼=

4∧
ΓQ. (3.9)

Consider the subspace

4∧
K

ΓQ ⊂
4∧
ΓQ. (3.10)

It is defined as follows: note that we have the decomposition

ΓK := ΓQ ⊗ K = ΓK,i ⊕ ΓK,−i (3.11)

into eigenspaces for the I action. Then (3.10) is defined as the image of
∧4

K ΓK,i ⊂
∧4

K ΓK

under the trace map

4∧
K

ΓK =

4∧
Q

ΓQ ⊗ K −→ 4∧
ΓQ. (3.12)

Since ΓQ is a 4-dimensional K-vector space,
∧4

K ΓQ is a 1-dimensional K-vector

space, and its image is a 2-dimensional Q-vector space. We include for the convenience

of the reader a proof of the following lemma.

Lemma 3.1 (Weil [12]). The subspace
∧4

K ΓQ ⊂ H4(X,Q) consists of Hodge classes, that

is, it is contained in the subspace H2,2(X) for the Hodge decomposition. �

Proof. Notice that under the isomorphisms (3.9), tensorized by C,H2,2(X) is equal to the

image of

2∧
W ⊗

2∧
W (3.13)

in
∧4

ΓC.
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To prove the lemma, we note that we have the natural inclusion

ΓK ⊂ ΓC (3.14)

and the equality

ΓK,i = ΓK ∩ C4
i . (3.15)

The space ΓK,i is a 4-dimensional K-vector space which generates over R the space C4
i .

It follows that the image of
∧4

K ΓK,i in
∧4

ΓC generates over C the line
∧4

C4
i .

But we know that C4
i is the direct sum of the two spaces Wi and W−i which are

2-dimensional. Hence

4∧
C4

i =

2∧
Wi ⊗

2∧
W−i (3.16)

is contained in
∧2

W ⊗∧2
W, that is in H2,2(X). �

To conclude the construction of an example satisfying the conclusion of

Proposition 2.1, and hence the proof of Theorem 1.1, it remains now only to prove that

a general X as above satisfies the assumptions stated at the beginning of Section 2.

We showfirst of all that theHodge classes in
∧4

K ΓQ constructed above are perpen-

dicular to [ω]2 for a Kähler class [ω] ∈ H1,1(X). To see this, note that with the notations

as above, these classes lie in
∧2

Wi ⊗
∧2

W−i, with

Wi ⊂W,W−i ⊂W. (3.17)

Via the natural isomorphism H1(X,C) ∼= ΓC, the space H1,0(X) identifies to W
∗

and

accordingly the space H1,1(X) identifies to W
∗ ⊗ W∗. For [ω] ∈ W

∗ ⊗ W∗, the pairing

〈[ω]2, H2,2(X)〉, restricted to
∧2

Wi ⊗
∧2

W−i, is obtained by squaring [ω] to get an ele-

ment of

2∧
W

∗ ⊗
2∧
W∗ ∼=

2∧
W∗ ⊗

2∧
W

∗
(3.18)

and by projecting to
∧2

W∗
i ⊗∧2

W−i
∗
.

Now choose

[ω] ∈Wi
∗ ⊗W∗

i ⊕W−i
∗ ⊗W∗

−i. (3.19)

Since W
∗
=Wi

∗ ⊕W−i
∗
, we can find a Kähler class [ω] in this space. On the other hand,
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we see that [ω]2 belongs to the space

2∧
Wi

∗ ⊗
2∧
W∗

i ⊕Wi
∗ ⊗W−i

∗ ⊗W∗
i ⊗W∗

−i ⊕
2∧
W−i

∗ ⊗
2∧
W∗
−i. (3.20)

Hence its projection (after switching the factors in the tensor product) to
∧2

W∗
i ⊗∧2

W−i
∗
is equal to 0.

Concerning assumption (2), namely the fact that X does not contain any proper

positive dimensional analytic subset, we note that, since X is a complex torus, this

property will be satisfied if NS(X) = 0 and X is simple. Indeed, it is known that if Y ⊂ X is

a proper positive dimensional subvariety of a simple complex torus, then Y has positive

canonical bundle. But X being simple, Y must generate X as a group, and then Xmust be

algebraic, contradicting the fact that NS(X) = 0.

In conclusion, the assumptions at the beginning of Section 2 will be a conse-

quence of the following facts.

Proposition 3.2. For a general X as above, the following hold.

(1) NS(X) = 0;

(2) X is simple;

(3) the space Hdg4(X) is equal to the space

4∧
K

ΓQ ⊂
4∧
ΓQ = H4(X,Q) ∼= H4(X,Q). (3.21)

�

Proof. The analogues of these statements have been proven in the algebraic case in [12]

(see also [11]). The result is that for a general abelian 4-fold of Weil type, the Néron-

Severi group is of rank 1, generated by a class ω, and the space Hdg4(X) is of rank 3,

generated over Q by the space
∧4

K ΓQ and by the class ω2. Furthermore, property (2) is

true for the generic abelian variety X of Weil type.

Property (2) for the general complex torus of Weil type follows immediately,

since this is a property satisfied away from the countable union of closed analytic sub-

sets of the moduli space of complex tori of Weil type.

As for properties (1) and (3), we prove them by an infinitesimal argument, start-

ing from an abelian 4-fold of Weil type X satisfying the properties stated above. Assume

we can show that for some first order deformation u ∈ H1(TX), tangent to the moduli

space of complex tori of Weil type (which is smooth), we have

int(u)(ω) 
= 0 in H2
(
OX

)
, (3.22)
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where the interior product here is composed of the cup product

H1
(
TX

)⊗H1
(
ΩX

) −→ H2
(
TX ⊗ΩX

)
(3.23)

and of the map induced by the contraction

H2
(
TX ⊗ΩX

) −→ H2
(
OX

)
. (3.24)

Then from the general theory of Hodge loci [4], it will follow that for a general complex

torus of Weil type, we have NS(X) = 0. Furthermore, it will also follow that

int(u)
(
ω2
) 
= 0 in H3

(
ΩX

)
, (3.25)

because it is equal to 2ω∪ int(u)(ω) and the cup product withω from H2(OX) to H3(ΩX)

is injective because ω is a Kähler class on X. But as before this will imply by the theory

of Hodge loci that for a general complex torus of Weil type we have rkHdg4(X) = 2 so

that Hdg4(X) =
∧4

K ΓQ.

Hence it remains only to find such u, which is equivalent to prove that if for

any u tangent to the moduli space of complex tori of Weil type, int(u)(ω) = 0 in H2(OX),

then ω = 0 in H1(ΩX). Here the notations are as in the beginning of this section. The

tangent space to the deformations of the complex torus X is equal to

Hom
(
W, ΓC/W

)
= Hom

(
W,W

)
=W∗ ⊗W. (3.26)

The tangent space to the deformations of X as a complex torus of Weil type is then the

subspace

Hom
(
Wi,C

4
i /Wi

)⊕Hom
(
W−i,C

4
−i/W−i

)
=W∗

i ⊗W−i ⊕W∗
−i ⊗Wi. (3.27)

Via the identification (3.26), the interior product

H1
(
X, TX

)⊗H1
(
X,ΩX

) −→ H2
(
X,OX

)
=

2∧
W∗ (3.28)

is equal to the contraction followed by the wedge product

W∗ ⊗W ⊗W
∗ ⊗W∗ −→ 2∧

W∗. (3.29)



A Counterexample to the Hodge Conjecture for Kähler Varieties 1071

We now write

ω = ω1 +ω2 +ω3 +ω4, (3.30)

where

ω1 ∈Wi
∗ ⊗W∗

i , ω2 ∈Wi
∗ ⊗W∗

−i,

ω3 ∈W−i
∗ ⊗W∗

i , ω4 ∈W−i
∗ ⊗W∗

−i.
(3.31)

Then clearly for u1 ∈W∗
i ⊗W−i we have

int
(
u1

)(
ω1

)
= int

(
u1

)(
ω2

)
= 0,

int
(
u1

)(
ω3

) ∈ 2∧
W∗

i , int
(
u1

)(
ω4

) ∈W∗
i ⊗W∗

−i.

(3.32)

Similarly, for u2 ∈W∗
−i ⊗Wi we have

int
(
u2

)(
ω3

)
= int

(
u1

)(
ω4

)
= 0,

int
(
u2

)(
ω2

) ∈ 2∧
W∗
−i, int

(
u2

)(
ω1

) ∈W∗
i ⊗W∗

−i.

(3.33)

The condition

int
(
u1

)
(ω) = 0 = int

(
u2

)
(ω) = 0 (3.34)

for any u1, u2 then implies that

int
(
u1

)(
ω3

)
= 0 in

2∧
W∗

i , int
(
u1

)(
ω4

)
= 0 in W∗

i ⊗W∗
−i,

int
(
u2

)(
ω1

)
= 0 in W∗

i ⊗W∗
−i, int

(
u2

)(
ω2

)
= 0 in

2∧
W∗
−i,

(3.35)

for any u1, u2. But it is obvious that it implies ω1 = ω2 = ω3 = ω4 = 0. �

Hence Proposition 3.2 is proven, which together with Proposition 2.1 completes

the proof of Theorem 1.1.

Appendix

Our goal in this appendix is to give a few geometric consequences of the following result,

due to Bando and Siu (the second statement given below is only a particular case of [1,

Corollary 3], namely the case where the considered sheaf has trivial rational first Chern

class).
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Theorem A.1. Let X be a compact Kähler variety, endowed with a Kähler metric h and

let F be a reflexive h-stable sheaf on X. Then there exists a Hermite-Einstein metric on

F relative to h. It follows that if we have 〈c2(F), [ω]
n−2〉X = 0 and c1(F) = 0, F is locally

free and the associated metric connection is flat. �

Here [ω] is the Kähler class of the metric h.

Remark A.2. Once we know that the metric connection is flat away from the singular

locus Z of F, the fact that F is locally free is immediate. Indeed, the flat connection is

associated to a local system on X − Z. But since codimZ ≥ 2, this local system extends

to X. Hence there exists a holomorphic vector bundle E on X, which admits a unitary flat

connection and is isomorphic to F away from Z. But since F is reflexive, the isomorphism

E ∼= F on X− Z extends to X.

We assume now that X is compact Kähler and satisfies the condition that the

group NS(X)⊗Q = Hdg2(X) of rational Hodge classes of degree 2 vanishes, and that the

group Hdg4(X) is perpendicular for the intersection pairing to [ω]n−2 for some Kähler

class ω on X. Under these assumptions, X does not contain any proper analytic subset

of codimension less than or equal to 2, and any coherent sheaf F satisfies the conditions

c1(F) = 0,
〈
c2(F), [ω]

n−2
〉

X
= 0. (A.1)

We now prove the following proposition.

Proposition A.3. If X is as above, for any torsion free coherent sheaf F on X, there exist

a holomorphic vector bundle E on X, whose all rational Chern classes ci(E), i > 0 vanish,

and an exact sequence

0 −→ F −→ E −→ T −→ 0 (A.2)

where T is a torsion sheaf on X. �

Before proving the proposition, we state the following corollaries.

Corollary A.4. If E is a holomorphic vector bundle on X, then all rational Chern classes

ci(E), i > 0, vanish. �

Proof. Indeed, we know that there exists an inclusion

E E ′, (A.3)
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where E ′ is a vector bundle of the same rank as E and satisfies the property that all

rational Chern classes ci(E
′), i > 0, vanish. Now since Hdg2(X) = 0, X does not contain

any hypersurface, and it follows that the inclusion above is an isomorphism. �

Corollary A.5. If X is as above and Z ⊂ X is a nonempty proper analytic subset, the ideal

sheaf IZ does not admit a finite free resolution. �

Proof. Indeed, if such a resolution

0 −→ En −→ · · · −→ Ei −→ Ei−1 −→ E0 −→ IZ −→ 0 (A.4)

would exist, then we would get the equality

c
(
IZ

)
= Πic

(
Ei

)εi (A.5)

with εi = (−1)
i. But the left-hand side does not vanish identically in positive degrees

since its term of degree r = codimZ is a nonzero multiple of the class of Z. On the other

hand, the right-hand side vanishes in positive degrees by Corollary A.4. �

Note that the assumptions are satisfied by a general complex torus of dimension

at least 3. Taking for Z a point, we get an explicit example of a coherent sheaf which

does not admit a finite locally free resolution.

Proof of Proposition A.3. We use again induction on the rank. Let F be a torsion free

coherent sheaf of rank k on X, and assume first that F does not contain any nonzero

subsheaf of smaller rank. There is an inclusion

F F∗∗ (A.6)

whose cokernel is a torsion sheaf, where the bidual F∗∗ of F is reflexive. Then F∗∗ does

not contain any nonzero subsheaf of smaller rank and hence is stable with respect to

the given Kähler metric h on X. The theorem of Bando and Siu [1] together with the fact

that

c1

(
F∗∗) = 0,

〈
c2

(
F∗∗), [ω]n−2

〉
X
= 0 (A.7)

implies that F∗∗ is a holomorphic vector bundle which is endowed with a flat connection,

hence has trivial rational Chern classes and the result is proved in this case.

Assume, otherwise, that there is an exact sequence

0 −→ G −→ F −→ H −→ 0, (A.8)
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where the ranks of G and H are smaller than the rank of F, and G and H are without

torsion. This exact sequence determines (and is determined by) an extension class

e ∈ Ext1(H,G). (A.9)

(Here and in the following, all the extension groups refer to extensions as OX-modules.)

Now, by induction on the rank we may assume that we have inclusions

G E1, H E2, (A.10)

whose cokernels Ti are of torsion and where the Ei’s are holomorphic vector bundles

with vanishing Chern classes. The extension class e gives first an extension class f ∈
Ext1(H, E1), which provides a sheaf E ′ containing F in such way that E ′/F is of torsion,

and fitting into an exact sequence

0 −→ E1 −→ E ′ −→ H −→ 0. (A.11)

Next, because the torsion sheaf T2 is supported in codimension ≥ 3, the restriction map

provides an isomorphism

Ext1
(
E2, E1

)
∼= Ext1

(
H, E1

)
. (A.12)

Indeed, this is implied using the long exact sequence of Ext’s by the vanishing

Ext1
(
T2, E1

)
= Ext2

(
T2, E1

)
= 0. (A.13)

By the local-to-global spectral sequence for Ext’s, this in turn is implied by the vanishing

Exti
(
T2, E1

)
= 0, i ≤ 2. (A.14)

Since E1 is locally free, and the statement is local, this follows now from the vanishing

Exti
(
T,OX

)
= 0, i ≤ j, (A.15)

for any torsion sheaf T supported in codimension ≥ j+ 1.

The surjectivity of (A.12) implies that f is the image under the restriction map of

a class g ∈ Ext1(E2, E1). Hence it follows that there is a holomorphic vector bundle E on

X, which is an extension of E2 by E1, and which contains E ′ as a subsheaf, such that the

quotient E/E ′ is of torsion. The vector bundle E has vanishing rational Chern classes,

because Ei satisfy this property for i = 1, 2, and contains F as a subsheaf such that the

quotient E/F is of torsion. This completes the proof by induction. �
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