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1 Introduction

If S is a smooth complex surface, the punctual Hilbert scheme (or more precisely
Douady space, in the non algebraic case) Hilbk(S)7 parametrizing 0-dimensional
subschemes Z C X of length k is by Fogarty’s theorem [7] a smooth complex variety,
and the Hilbert-Chow morphism

¢: Hilb*(S) — s

which to a subscheme associates its cycle, that is its support together with the
local multiplicities, makes it a desingularization of the symmetric product S() . The
(k)

morphism ¢ is an isomorphism over the Zariski open set S, parametrizing k-uples
of distinct points, so that Hilb*(S) is as well a smooth partial compactification of

S(()k)7 which is compact when S is compact. The fiber ¢71(2), » € S is a singular
complex projective variety, the isomorphism class of which depends only on the
multiplicities n; of the cycle z = ", n;z;, >°; n; = k, where the z;’s are distinct.

In the paper [16], we proposed two approaches for the construction of an ana-
logue of the Hilbert scheme for any almost complex fourfold (X,.J), without any
integrability assumption on J.

The first one worked only for the (open) part of the Hilbert scheme which
parametrizes cycles z which at each point of their support are either curvilinear,
i.e contained in a smooth curve, or of multiplicity at most 3, which includes the
first infinitesimal neighbourhood of a point. Although limited to an open subset of
the Hilbert scheme, this construction had the advantage of being canonical, that
is to depend only on J. In fact there is an obvious notion of pseudoholomorphic
subscheme, which is locally either curvilinear or the first infinitesimal of a point,
and we had only to put a differentiable structure on the set of such objects.

The second construction provides us with a differentiable manifold Hilb*(X) of
real dimension 4k, endowed with a continuous proper map

¢ Hilb*(X) - X®)
(k)

which is a diffeomorphism over the differentiable manifold X;"’. More generally for
cach z € X the fiber ¢=(2) C Hilb*(X) is a singular differentiable manifold,
canonically diffeomorphic to the fiber ¢;1(z), where ¢, : Hilb*(X,) — X is the

Hilbert-Chow morphism relative to an integrable complex structure I, defined in a



neighbourhood X, of Suppz C X. Hence our Hilbert scheme is a desingularization
of the symmetric product X which has its fibers over X*) as in the integrable
case. It is easy to see that our construction coincides with the complex construction
in the integrable case.

We show furthermore in that paper that Hilb*(X) can be provided with a nat-
ural stable almost complex structure (that is a complex structure on the direct sum
Tripr(xy © T, where T' is a trivial bundle), and that it is well defined up to diffeo-
morphisms isotopic to the identity. Furthermore it depends only of the deformation
class of J.

There is now a natural class of almost complex fourfolds, which is provided by
the symplectic fourfolds : given such a pair (X,w), Gromov [10] observes that the set
of almost complex structures J compatible with w, that is satisfying the conditions

w(u,v) =w(Ju, Jv), u, v € Tx 5, w(u,Ju) >0, 0# u € Ty,

is contractible. Applying the previous construction to any such almost complex
structure provides us with a differentiable 2k-fold Hilb*(X), determined by (X,w)
up to diffeomorphisms isotopic to the identity. In the case where we can impose
furthermore .J to be integrable, that is when (X,.J) is underlying a complex surface
S and w is a Kéhler form on S, we have the following result which is essentially
proved in [15]

Theorem 1 Let S be a compact Kéhler surface. Then Hilbk(S) is a Kdhler variety.

The cohomology in small degrees of the Hilbert scheme is described as follows
(cf. [1]): let B2 C Hilb*(S) be the exceptional divisor, F = ¢~1(A), where A ¢ S(¥)
is the generalized diagonal. Then the divisor F is 2-divisible in Pic Hilb*(S), hence
the class ¢;(E) is equal to 25, § € H*(Hilb*(S),Z). We have

H*(Hilb*(S),Z) = H* (S, Z) & Zs.
Now HZ(S®) R)= H%(S* R)™ contains naturally H2(S,R) by the map

oy = Zpri*oe € H*(S* R)™.
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A more precise version of theorem 1 is then

Theorem 2 Letw be a Kdhler form on the compact surface S. For 0 < A sufficiently
small, there is a Kdihler metric of Kihler class ¢*[w], — A6 on Hilb*(S).

Coming back to the symplectic or almost complex situation, one can show easily
that the description of the cohomology of the almost complex Hilbert scheme is
exactly the same as in the complex case (cf. [13], [8]). This follows from the
existence of a stratification of X(® with differentiable strata, and the fact that
over each stratum the fibers of the Hilbert-Chow morphism are the same as in
the integrable case. Hence starting with the symplectic class [w] € H*(X,R) we
get a class ¢*[w]y € H?(Hilb*(X),R). Furthermore, the codimension 2 singular
differentiable subvariety £ has a class [E] = 26, § € H?(Hilb*(X),Z). The main
purpose of this paper is to prove the following symplectic analogue of theorem 2



Theorem 3 Let (X,w) be a compact symplectic fourfold. There exists a positive real
number Ag, such that for any 0 < A < Ao, there is a symplectic form on Hilbk(X)
of cohomology class ¢*[w]r, — Ad. Furthermore, all these symplectic forms belong to
a well defined deformation class of symplectic forms on Hilbk(X).

The last section of this paper discusses potential applications of this result to
the study of symplectic fourfolds. The first section reviews the construction of [16].
The two next sections are devoted to the construction of the symplectic form.

Acknowledgements. | would like to thank Jim Bryan and Jonathan Wahl who
asked the question whether the manifolds constructed in [16] were symplectic.

2 Review of the construction of Hilb*(X)

We review in this section the construction of a punctual Hilbert scheme Hilb*(X),
for any C* almost complex fourfold (X, .J).
Let
Zc XWX, Z={(z,2), 2 €z}

be the incidence set. We shall construct a family of manifolds Hilb%(X) depending
differentiably on a parameter I. The set of such data [ is contractible, hence the fact
that all the manifolds Hilb’}(X) are canonically diffeomorphic up to diffeomorphisms
isotopic to the identity is a consequence of Ehresmann’s theorem, at least in the
compact case.

The auxiliary parameter I is the data of a relative complex structure on an open
neighbourhood W C X () x X of the incidence set Z, where “relative” is relative
with respect to the first projection pri : W — X ). That is, for each z € X, we
have a complex structure I, on a neighbourhood W, of Suppz in X, which should
depend differentiably with z, if one puts on X (¥) the quotient (singular) differentiable
structure.

We then define Hilb%(X) as follows : the relative complex structure I makes
pri: W — X g differentiable family of complex surfaces. We can then perform
the construction of the Hilbert scheme in family, and by Fogarty we get a family of
smooth complex 2k-folds

7 Hilbf(W/X W) = Uy Hilb§ (W) — X,

Furthermore we have the relative Hilbert-Chow morphism, with value in the relative
symmetric product of W over X (%)

Cret + HilbE(W/ X W)y o5 B/ XE
We note now that since W C X*) x X, there is a natural (open) inclusion
i WEXE x(B) o x(R)
which identifies 7 with pr;. We define now

Hilb%(X) := (i 0 ¢re) "' (Diayg),



where Diag ¢ X® x X*) is the diagonal. The Hilbert-Chow map
Hilbh(X) = x®)
is then defined by

C= Prioto Cpe] = Prg 010 Cpel.

By construction, the fiber ¢7'(z) identifies to ¢;'(z) for z € X® | so that as
anounced, our Hilbert scheme has its fibers over X (%) exactly as in the integrable
case.

This definition makes Hilb%(X) only a topological space. Indeed there is a (sin-
gular) differentiable structure on WE/XY for which ¢re; 18 differentiable, but it
does not coincide with the product differentiable structure given by ¢, hence Diag
is not a differentiable subvariety for this differentiable structure. Furthermore, even
in the integrable case, the Hilbert-Chow morphism Hilb*(S) — S is not differ-
entiable for the quotient differentiable structure on S, so we do not expect the
differentiable structure on our Hilb5(X) to be compatible with the quotient differ-
entiable structure on X #). We explain now what are the supplementary conditions
we impose on [ in order to be able to put a differentiable structure on Hilb%¥(X).
These conditions are local triviality conditions on I which are summarized in the
next proposition.

Let Z C X* x X be the incidence set, that is

Z=A(21,. .., 21, 2), 3, 2 = 2.

The relative complex structure I will be induced by a relative complex structure on
a neighbourhood W of Z in X* x X, invariant under the action of the symmetric
group &y on the first factor.

For each partition S = {Sy,..., 5} of {1,...,k}, that is

{17 .. 7k} = Ui5i7

let Ag be the diagonal indexed by S, that is Ag is the set of points (21, ...,7;) € X*
such that z; = z; if for some « the indices 7 and j belong to S,.

Proposition 1 [16] There exist a relative complex structure I as above, and for
each partition S a differentiable retraction

Rs: XF — Ag
defined in a neighbourhood of Ag, satisfying the following properties :

1. Fverything is compatible with the symmetric group action : Yo € &, we have

(0,id)(W) =W, 0" I =1 and 0o Rsoo™! = Ry(g).
2. The Rg’s satisfy the condition
VS’ S such that Ag C Ag, Rgro Rs = Ry
in a neighbourhood of Agr.

3. In a neighbourhood of Ag the relative complex structure I (which one sees
locally as a family of complex structures on an open set of X parametrized by
X*) is constant along the fibers of Rs.



4. Foreach z € Ag, the fiber Rgl(z) C X’“~ is a complex subvariety of X* endowed
with the complex structure induced by I,.

If I is a relative complex structure on W/X(k) induced, by passing to the quotient,
by a relative complex structure I satisfying the properties above, we construct a
differentiable structure on Hilb%¥(X) as follows. Let z be a point of X*) and let
% € X* be a point over z. There is a smallest diagonal Ag to which Z belongs, and
denoting by &g the subgroup fixing pointwise Ag, which is also the isotropy group
of Z, we have a local identification

X~ xh/ag.

Hence by the compatibility property 1, the retraction Rg will provide locally a
retraction

R:X® 4 A

defined near z, where A = Ag is the image of Ag in X&), (In the sequel we shall
call A the minimal stratum or smooth stratum of z.) Next we know by property 3
that I is constant along the fiber of R. Denoting Wa = W N A X X and Ia = I|a
we have up to shrinking W and over a neighbourhood of z a diagram

RxId: W — Wa

prid prid
R: Xk 5 A

and the fact that I is constant along the fibers of R means that this map is a
holomorphic embedding along the fibers of pri. It follows that there is an induced
morphism of the corresponding relative Hilbert schemes

R: Hilb*(W/X®)) = Hilb*(Wa/A)
7l 7l
R: X% — A

It is clear by the definition of Hilb%¥(X) as ¢_}(Diag) that the restriction of R to
Hilb%(X) is a homeomorphism onto its image, which is equal to (i o ¢,¢;) ! (I'R),
where

Cret 2 HilbF(Wa/A) = WA

is the relative Hilbert-Chow morphism for the family of Hilbert schemes
Hilb*(Wa/A) = A,

(A ng)/A < A x X% is the natural inclusion induced by the open inclusion
Wa <= Ax X,and I'p C A x X is the graph of R. (More precisely all this is true
over the considered neighbourhood V of » € X{%).) Notice that because A is smooth
near z, Hilb*(Wa/A) is by Fogarty a smooth differentiable manifold. We show now
that the image R(Hilb5(X) N ¢~ (V) is a differentiable smooth submanifold of
Hilb*(Wa/A).

Indeed, consider the map

o R: Hilb"(X)ne ' (V) = A.



By what has been said above, its fiber over any 2 € ANV identifies via R to
Hlb}, (W) 1 (Roer,) ™ () = 71 (R7().

We use now the property 4 of proposition 1. It says that R=!1(2) ¢ X is a
complex analytic subspace of X for the complex structure induced by I, which
is the projection of an Gg-invariant smooth complex subvariety of X* transverse to
the diagonal Ag. It follows immediately from this that CE(R_l(Z’)) C Hilb’}Z/(WZ/)
is a smooth complex subvariety of Hilb’}Z/(WZ/). This complex subvariety varies
differentiably with 2 € A and this proves that R(Hilb¥(X)) C Hilb*(Wa/A) is a
submanifold of Hilb*(Wa/A).

This provides a differentiable structure on Hilb%(X) over the considered neigh-
bourhood of z. To show the compatibility of these differentiable structures, we
use now the property 2 of proposition 1. Indeed if two differentiable charts R :
Hilb*(X) — Hilb*(Wa/A) and R : Hilb*(X) — Hilb*(Wai/A") as above over-
lap over an open set U of X*)| we may assume that over this open set there is a
third chart R” : Hilb*(X) < Hilb¥(Wan/A") defined in ¢~ (U), with A” C A and
A" c A’. Hence it suffices to prove the compatibility when A’ C A. But then,
because the complex structures Ia, and Ia are related by Ia = R™Ias, there is a
differentiable map, which is even a submersion, of smooth manifolds

R Hilb"(Wa/A) — Hilb*(War/A)

which by definition sends R(Hilb*(X)) C Hilb*(Wa/A) onto R'(Hilb*(X)) C
Hilb*(Wa/A'). Tt is immediate to show that this map restricted to

R(HIV* (X)) ¢ Hilb*(Wa/A)

is an immersion, hence a diffeomorphism onto its image. This concludes the con-
struction of the differentiable structure on Hilb¥(X).

Remark 1 We already mentioned the fact that ¢ : Hilbk(X) — X ") is not a differ-
entiable map when X %) is provided with the quotient differentiable structure, which
means that in general for a differentiable function f on X% its pull-back f o ¢ will
not be differentiable on Hilb*(X). Our construction of the local charts for Hilb%(X)
shows however that foc is differentiable if the pull-back f of f to X* factors through
the retractions Rg near the diagonals Ag, or equivalently if f factors locally through
the retractions R : X®) — A on the smooth stratum.

3 Constructing the symplectic form

Recall that Hilb¥(X) is defined as a closed subset of the relative Hilbert scheme
Hilbh(W/X*)) and that the composed map

¢ Hilby(X) — Hilb¥(w/x®)) I x*)

has for fiber ¢=!(z) a complex singular subvariety of Hilb} (W.). We would like to

construct a symplectic form on Hilbk(X) by combining the restriction of a relative
Kahler form on Hilb’}(VV/X(k))7 and the pull-back c¢*wy of the “symplectic form” wy,



on X ) given by the form > _;priw on X*, which is invariant under the symmetric
group &j. However, since the map ¢ is not differentiable for the quotient differen-
tiable structure on the right, neither the pull-back of a relative Kihler form, nor the
pull-back of w will be differentiable forms on Hilbk(X)7 so that in order to apply
this construction, we have to regularize first both forms. The regularization process
will be obtained using the following proposition, which will be proven (in a much
more precise version) in the next section.

Proposition 2 There exists a differentiable map ¢ : X* — X*, which satisfies the
Sfollowing properties

1. ¢ commutes with the action of the symmetric group Sy on X*.
2. 6 is close to the identity, so that (¢,id)(Z) C W, and ¢*I = I near Z.

3. Locally near each Ag, & takes value in Ag and factors through Rg, that is
¢ =1 o Rg near Ag, for some differentiable map 1 : Ag — Ag.

Assuming this, we explain how to construct 2-forms on Hilb’}(X). Let ¢ : X(B)
X ) be the map induced by ¢ using the Sy-invariance. We have the following
lemma

Lemma 1 The map ¢poc: Hilb’}(X) — X ") s differentiable with respect to the
quotient differentiable structure on the right.

Notice that if j : Hilb%(X) < Hilb%(W/X () is the natural embedding, we have by
construction ¢ = 7 o j, where 7 : Hilb’}(W/X(k)) — X ) ig the structural map.

Proof. This follows from property 3 of proposition 2. It says that ¢ factors lo-
cally near each z through the local retraction R onto the smooth stratum of z,
introduced in the previous section. Hence the result follows from the remark 1. m

We will need also the following lemma

Lemma 2 Up to shrinking the open neighbourhood W of Z in X %) x X, there exists
for sufficiently large N a differentiable immersion over X (%)

h:Wes X OV
which is holomorphic on the fibers, for the relative complex structure I on the left.

Proof. The statement is local over X (%) since such an immersion is given by complex
valued differentiable functions which are I-holomorphic along the fibers : such func-
tions defined locally can be extended after multiplication by functions with small
support on X®) so that using a partition of unity on X ) we can glue such local
immersions to a global one.

As for the local situation, this is just the Newlander-Nirenberg theorem with pa-
rameters, which says that we can find local holomorphic coordinates on W, defined
near z and depending differentiably on the parameter = € A. (The fact that X ) ig
singular here is not important : we simply write locally X ) near z as the quotient
of X* by the isotropy group &; of %, and consider local relative holomorphic coor-
dinates ¢1, ¢ on Ws, defined near Supp z and varying differentiably with z € X%,

Then clearly
Y o6

ceS:

7



will also provide local relative holomorphic coordinates ¢, ¢2 on W,, defined near
Supp z and varying differentiably with z € X(k).)
|

We fix now a Kihler form 5 on Hilb*(CV). (Of course Hilb*(CV) is singular,
but by this we mean the restriction of a Kihler form on some projective space in
which Hilb*(CV) is holomorphically immersed, which exists since Hilb*(C) is a
quasi-projective variety.) The map h : W — X&) 5 CN which is holomorphic on
fibers over X (%) induces a differentiable map

b Hilt*(w/x®y - x®) s k().

The pull-back
0 = (praoh)n
is a differentiable closed 2-form on Hilb%¥(W/X #)), which restricts to a Kdhler form
on each fiber Hilb} (W.) of 7 : Hilbh(W/ X )y — x k),
Next consider the differentiable map ¢ : X*®) — X ) introduced above. Since ¢
is close to the identity, and ¢*I = I, we can shrink W to W’ so that (¢, id)(W') C W
and the map (¢,id) : W' — W is holomorphic on each fiber W/ relative to the

complex structure I.. Hence there is a commutative diagram of families of complex
varieties

O Habk(W'/X®)y  —  Hilbs W/ X R)

Tl Tl (3.1)
o X (k) — X (k)

and it follows that ®*1)' is also a relative Kahler form on Hilb*(W/X¥)). We have
now, recalling that Hilb%(X) is naturally contained in Hilb*(W’/X(*))

Lemma 3 The restriction ¥ := ®* is a differentiable (closed) 2-form.

77|/Hubl;(X)
Proof. This follows immediately from the commutative diagram (3.1), from the
fact that ' = (pry o h)*n and from lemma 1, which implies that the map

praoho®@ e xy : Hilb§(X) ¢ Hib* W'/ x®) % mib*(w/x®) P20 b (CY)

is differentiable. (By this we mean that its composition with any holomorphic em-
bedding of Hilb*(CN) in a projective space is differentiable.) |

Next let w be the symplectic 2-form on X. The invariant symplectic form }; priw

(%)

on XF* descends to a symplectic form wy, on the open set Xy ’. We have now

Lemma 4 The differentiable closed 2-form (¢ o c)*wy, defined over the open set (¢o
c)_l(Xék)) of Hilb*(X) extends naturally to a smooth closed 2-form x on Hilb*(X).

Proof. Consider the 2-form ¢*(3; priw) on X*. It is invariant under the symmetric
group. Because ¢ factors locally near z € X* through the retraction Rg, where Ag
is the minimal diagonal containing z, we have locally

(D priw) = Ry

K3



where p is a closed 2-form on Ag defined near z. But we know that the map
Roc: Hilb%(X) — A is differentiable, where R : X(¥) — A'is the local factorisation
of Ag through &g. Hence the differential form (R o ¢)*u is a closed differential 2-
form defined over an open set of Hilb*(X). It is easy to see that all these differential
forms coincide on the intersections of such open sets to give the desired extension of
(¢poc)wy. |

The symplectic form we want to construct on Hilb*(X) will be of the form
Q=xy+ ¥

for A > 0 sufficiently small. In order that such form be everywhere nondegenerate
we have to impose supplementary conditions to ¢, which will be explained in the
proof of proposition 2. We will then prove in the next section

Theorem 4 The map ¢ being constructed as in the proof of proposition 2, there
exists a positive real number \g such that the form Q = y+ AV is a symplectic form
on Hilb%(X), for any 0 < A < Xo.

4 Proof of proposition 2 and theorem 4

Proof of Proposition 2. We recall first how the retractions Rg : X* — Ag defined
in a neighbourhood of each diagonal Ag are constructed. These retractions come
from tubular neighbourhoods

is: Nagyxr = XF

defined in a neighbourhood of the zero section of the normal bundle of Ag in X*.
The retraction Rg identifies via 75 to the structural map NAS/Xk — Ag.

The diffeomorphisms ¢g are constructed starting from the following data : let
pr; + As — X be the j-th projection, and let I'; C Ag X X be the graph of
pr;. Assume given a diffeomorphism over Ag, defined in the neighbourhood of the
0-section

VY iprilx — Ag x X. (4.2)

We suppose that for fixed z € Ag, the induced diffeomorphism v;(2) : T ., = X
defined near 0 € Tx coincides with ¢ (2) if z; = 2. Furthermore, its differential
at 0 should be the identity of Tx .,

The diffeomorphisms 1); provide now a diffeomorphism over Ag

= (%) :TXk|AS >~ Ag X X*.

The diffeomorphism ig is then obtained by restricting ¢ to N /y«, which is natu-
rally contained in Tkas as the kernel of the linear projection

TstTkas —>TAS

onto the space of invariants under &g.
The relative complex structure Is on some neighbourhood Wyg of the incidence
set (i.e the union of the graphs I';) in Ag X X is defined by choosing for each j a



complex structure J; on the vector bundle priTx (it is here that the existence of
an almost complex structure on X plays a role), assuming again that the complex
structures J;(2) and Ji(2) on Tx ., = Tx ., coincide whenever z; = 2.

Then we define the complex structure Is(z) (defined on a neighbourhood of
Supp z in X) to be induced in the neighbourhood of z; € Supp z by the diffeomor-
phism t;(z) and by the complex structure J;(z) on Tx . . The relative complex
structure I defined on some neighbourhood W of the incidence set Z C X* x X will
be equal to R*ng near Ag.

It is then immediate to show that the retraction Rg and the relative complex
structure I defined near Ag constructed as above satisfy the property (essential
for our construction) that the fibers R3'(z) are complex subvarieties (obviously
transverse to Ag) of X* for the complex structure on X* (defined near z) induced
by L. Indeed, via the diffeomorphism ., : Txk, = X%, this complex structure
identifies to the constant complex structure on Txx , given by the J;(2)’s, and the
fiber Rg'(2) identifies to the complex vector subspace Kermg.

The property Rg: o Rs = Rg near Agr when Agr C Ag is translated as follows:
near Ags the diffeomorphism

i i Nayxr = X*

sends the vector subbundle Ny_ /o, onto the diagonal Ag. Because there is a
natural splitting

Nagyxr = Nagjas® Nagyxr s,

given by the linear projection onto the space of invariants under &g, there is a nat-
ural tubular neighbourhood of Na_, /A, in Nayxr hence via 15/ we get an induced
tubular neighbourhood of Agin X* defined near A’;. We ask that it coincides there
with 75. This condition is not satisfied if one takes for 7); the exponential map with
respect to some fixed metric on X. We can take for ¢; the exponential map away
from the smaller diagonal contained in Ag, but we have to modify it near the smaller
diagonals. Of course everything is supposed to be equivariant with respect to the
action of the symmetric group.

We explain now how we shall construct the map ¢ using these tubular neighbour-
hoods. We choose for each .5 a metric hg on the vector bundle Ny _,x«, compatible
with the symmetric group action in the obvious way, and we ask that near Agr C Ag,
hs is induced by hgs, by the tubular isomorphism ¢/ and by the linear invariant
projection

NAS//Xk — NAS/Xk|AS, =~ Ag.

We consider now the open sets

ns
2 1

VS: {U € NAS/Xk7 hS(U) < 775}7

where the ng are sufficiently small positive real numbers. We then see these open

Us ={u € Nagyxn, hs(u) <

sets as open sets of X*,
Let now p : RT — RT be a € function satisfying

1

pt) =0t < gop(t) =1,1> 1L

10



We define then ¢g : X* — X* to be the identity outside Vs and to be given by the
formula

1
¢s(u) = p(—hs(u))u (4.3)
s
in Vg. We note that ¢g identifies to Rg in Ug. Furthermore ¢g satisfies the following
compatibility condition with the action of &
gopgoot = @5(s), Vo € & (4.4)
We suppose now the ng have been choosen so that

VenVe CUg.s (4.5)

if As ¢ Agi, Agr ¢ Ag, where S -5’ is the partition (or equivalence relation)
generated by S and 57, so that we have

Agg = AgNAgi.

Indeed it is clear that this will be true once ng < ng: for any pair of diagonals such
that Agr C Ag.

It then follows that we have ¢g.¢s = Rg.g/ at a point z such that ¢g(z) # z and
¢s1(z) # z, when none of the diagonals Ag and Ag is contained in the other.

We then define ¢ as follows : let z € X* and suppose that z ¢ Ug for any S.
Then it follows from (4.5) that the set of partitions

W, :={S, 2 € Vs}
is totally ordered by the inclusion of the corresponding diagonals
W, ={Ag, C...Ag}.
We then define

(b(z) = (bso © ¢Sl <..0 ¢Sl (Z)

More generally, consider the set of partitions
W!:={S, 2 € Us}
It has a minimal element S, by property (4.5). We introduce now the set of partitions
W, :={S, As C As., z € Vs}.

By the minimality property of S, and by property (4.5), this set is totally ordered
by the inclusion of the corresponding diagonals

W, = {ASO C "'ASZ}

and we then define

O(2) = ¢s, 0 ¢s, ... 0 ¢s5,(2) 0 Rg_ (2).
One checks easily that the map ¢ : X* — X* so constructed is differentiable and it
is clear by definition that it factors locally through the retractions Rg. Furthermore,
since each ¢g preserves the relative complex structure I, (because it preserves the
fibers of Rg along which T is constant,) the same is true of é. The fact that ¢
commutes with the action of the symmetric group follows from the relation (4.4).
Hence proposition 2 is proven. [ |

11



In order to prove theorem 4 we will need to impose supplementary conditions to
our tubular neighbourhoods ¢g and to our metrics hg, in order to take into account
the symplectic structure of X.

First of all we ask that the local diffeomorphisms

¢j :pr;TX = Agx X

introduced in (4.2) pull-back the symplectic form w on X to a 2-form on the vector
bundle pr]*TX which is the constant symplectic form W, on each fiber Tx .,

Furthermore we ask that the complex structure .J; on the vector bundle priTx
is compatible with the symplectic form induced by ¢w on the fibers. This 2-form
together with the complex structure J; determine then a hermitian metric on priTx.
We will choose then as metric kg the restriction to the subbundle Ny _/xx C Tiyna
of the product of these hermitian metrics on Tkas = 1priTx.

Now by definition, via the diffeomorphism

¢z = (¢j,z) : TXk,z = ka

the complex structure induced by jg(Z) on X* near z coincides with the complex
structure @.J; . on II;Tx . ; furthermore, by construction the 2-form 7 (3", pr]*w)
and the fiber R5'(z) is the

image under 1. of the vector subspace N5 _;x« .. In conclusion, X% endowed with

restricts to a constant form on the vector space Tk« ,,
the complex structure induced on X* near z by I,, and the 2-form djpriwis a

K#hler variety and the fiber R3'(2) C X* is a Kihler subvariety of it. We shall
prove the following version of theorem 4

Theorem 5 If ¢ is constructed as above, the metrics hg are the Kéihler metrics and
the ng are adequately choosen, (namely ns < ns when Ag C Ag,) there exists a
positive real number Ao such that the form

Q=xy+ ¥
is a symplectic form on Hilb5(X) for any 0 < XA < Ao.

The end of this section is devoted to the proof of this theorem. We note to start
with that this is in fact a local statement, by compactnesss of Hilb’}(X).

We note now the following lemma : let u € Hilb%5(X) ; denote by K, the kernel
of the 2-form v, on THilbI;(X),u and let k, be its dimension; denote also by N = 2k

the complex dimension of Hilb¥(X). Then

Lemma 5 In order to prove that there exists a neighbourhood U of v and a real
number Ay such the form Q = x + AV is non degenerate on U for 0 < XA < Ag, it
suffices to check the following.

1. We have YN —Fuqku > 0,

2. For any integer | such 0 <1 < k,, we have xN='W! > 0 in a neighbourhood of

Uu.
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Here the sign of the 2N-forms YN ='W! is computed with respect to the canonical
orientation (compatible with the stable almost complex structure) of Hilb5(X). In
the local charts

Hilbh(X) 87 A
which make Hilb*(X) a family of complex manifolds parametrized by A, this ori-
entation is induced by the complex orientation on the fibers and the symplectic

orientation on the basis A, which is an open set of some X".

Proof. Consider the function

(AT + )V

fhu) = p

where 11 is a volume form on Hilb5(X). We want to show that it is positive in some
open set |0, Ag[xU where u € U. We have

s

fOvu) = 3 Ciol

Z\I}ZX K3

.
o

The second assumption of the lemma is that the first terms up to ¢ = k, — 1 are non
negative near u. Hence we have

=N 1. N—1
R}
) > 3 cigni=2

1=kqy

=N i N—1
W
— /\ku § :CJZV/\z—ku X )
1=kqy H

On the other hand, by the first assumption, we know that the function

=N i N—1
i yieke YOX
g(/\,U): ZCN/\ Fu 1
1=kqy

is strictly positive at (0, u) hence in a neighbourhood | — €, Ao[xU of of (0,u). But
then f(A,u) > Aug(\, u) is strictly positive in ]0, Ao[xU. [

We now prove that assumptions 1 and 2 of lemma 5 are satisfied.

Proof of the assumption 1 in lemma 5. We recall the constructions of the
form ¥ and y. We have the diagramm
Hilbk(X) < mikw/x®y S mapkw/x®)
7l 7l
X (k) 4 X (k)
where the map 7 is a fibration in complex varieties and the map & is holomorphic
on the fibers. Then ¢ = 7o j and

X = (poc)wg, U= (Poj)y

13



where 7 is a relative Kahler form on the fibration .

Now, if z € X®) we have the local retraction R : X*) — A onto the smooth
stratum containing z and we can look at the diagram above locally in the charts
Roc: Hilb’}(X) — A, using the fact that ¢ factors locally through the retractions
R. The diagramm above then becomes

Hilbk(X) 23 Hibk(Wa/A) S Hilbk(Wa/A)
7l ~ 7l
A 4 A

which has the main advantage that all the differentiable manifolds considered are
smooth. Here we view A as an open set of a diagonal Ag of X* so that ¢ (rather
than ¢) is actually defined on A. We then have 7o jo = Roc and

X=(doRoc)wy U= (Poja)7n", (4.6)

where wy, is the restriction to A of the form >~, priw; and 5" is the restriction to the
family Hilb5(Wa/A) of the relative Kihler form n'.

Recall now the local form of the map ¢ (or qgm): there exists diagonals Ay C
...} C A close to z such that near z, the relative complex structure I factors
through the retractions R;’s on the diagonals A;’s and ¢ takes the form

Pgo...0P

where the ¢;’s are the contractions onto the diagonals A;’s given in tubular neigh-
bourhoods by the formula (4.3).

But this last formula shows immediately that at any point 2z’ € X¥*, either the
differential ¢; . is invertible, or we have ¢;(2') = R;(%") and ¢; .(2') = R; «(2'). Using
the fact that the retractions R;’s satisfy the property R; o R; = R; if A; C A;, we
deduce from this that at the point z there is one diagonal A; among those considered
above, such that

(/B(z) e A;, Ker (/3*72 =KerRiu., ImR; .= TA,',JS(z)'

It follows from this that for any point u € Hilb5(X) such that Roc(u) = z, we have

Ker(¢oRoc¢)uy=Ker (R;io)un., Im(poRocC)ey = T, a2)
The first equation in (4.6) and the fact that wy is non degenerate on A; implies
then that .
Kerx, =1 K, =Ker(¢oRoc)., =Ker(R;oc)y.

Next we note that by construction, the map R; o c: Hilb¥(X) — A; (defined on an
open set ¢~ (U) C Hilb5(X), where U is a neighbourhood of A;, is a submersion
whose fibers have naturally the structure of complex varieties. It follows that the
vector space K, = Ker R; o c,, has a complex structure. We have now

Lemma 6 The form W, restricts to a Kdhler form on K, endowed with this complex
structure.

14



Assuming this we conclude as follows: it will be clear from the proof of the in-
equality 2 that the 2-form Y, which is equal to (¢; o R; o ¢)*w* on Trapr(x)u0
where t; : T, p;(z) — TAi,é(z) is an diffeomorphism, induces the same orienta-
tion on Ty x),u/Ku = Ta, Rry(-) as the form (R; o ¢)*wy. Since the orientation
on Txipk(x),. s compatible with the complex orientation on K and the symplec-
tic orientation on TH”bk(XM/Ku, it follows immediately that ¥ %«Wk« > 0 at u,

which proves 1. [ |

Proof of lemma 6. The effect of the map
& : Hilb*(W/X ) = Hilo*(w/ X ®)

on a fiber (¢poe)~(2) of the map ¢poc: Hilb*(X) — X *) is the following : since the
relative complex structure 7, is equal to the complex structure .., with 2’ = ¢(z),
and ¢(z) C W, for any z € X&) the identity map, from an open subset of W,
to an open subset of W, containing z, is holomorphic with respect to the complex
structures I, and I.,. Hence we can identify an open set of Hilb’}Z(Wz) to an open
set of Hilb§ (W./) and this identification is holomorphic. The effect of @ is precisely
to send ’
(¢oc) M (2') = U,ggm o Hilb} (W.) N e (2)

in Hilb’}Z/(WZ/) via this identification.

Next assume that for some diagonal A, a fiber (co R;)™! (") is contained in the
fiber (¢ oc)™t(z’); then we know that (co R;)™1(z"”) has a complex structure, (being
equal to cf;/ (Rj_l(z”))7 with Rj_l(z”) a complex analytic subspace of X*) for the
complex structure induced by I,» on X’“)7 and it is obvious from the above descrip-
tion that via ®, (co R;)71(z") is sent holomorphically onto a complex subvariety of
Hilby (W.i).

Here we just have the infinitesimal version of thie assumption above, namely
that the tangent space to the fiber (c o R;)71(2"), 2" = R; o c¢(u) is contained in
(and even equal to) the tangent space of the fiber (¢ o c)™!(2’), 2/ = ¢(2). But the
conclusion is obviously the same, namely that the inclusion

¢* . I(@T‘ (RZ o C)*,’U, — THZlblIc /(WIZ/)7q>(u)

is complex linear and is the inclusion of a complex subspace.

Now this is finished because the form 7 is a relative K&hler form on the family
Hilb*(W/X®)). Hence the form W, = @*néb(u) restricts to a Kdhler form on K,
endowed with its complex structure. [ |

Proof of the assumption 2 of lemma 5. We use here the notations introduced
at the beginning of the section. Hence A is the smooth stratum of z, and Ay C
...C A; C A are the diagonals such that ¢ = ¢go...o0 ¢ near z, with z € Vi, V7.

We have proved above that the form W restricts to a Kihler form on K, endowed
with its complex structure coming from the identification

K, = Ker(R;oc¢)wy.

In particular, since Ker (R oc)., is a complex subspace of Ker (R;o0¢).,, ¥ also
restricts to a Kéhler form on Ker (Ro¢),,. Now recall formula (4.6).

x = (o Roc)wy.

15



It follows immediately that in a neighbourhood of u, Ker (Roc), is contained in the
kernel of x. On the other hand, ¥ gives the complex orientation on Ker (R o c¢),.
Using a local splitting of T (x)

THilbk(X) = Ker (R o C)* @ W

(so that W is naturally isomorphic to T'a), which is orthogonal for ¥, we can write
in this decomposition ¥ = W¥; + W, with ¥; a K&hler form on Ker (R o ¢),, and
X = X2. Furthermore, W is isomorphic to Ta via (Ro¢), and x3 identifies to P*wy.
It follows that if ¢ = dimcKer (R o c)x one has

AN = G

Furthermore at any point u’ close to u, the form W, is close to a form Wy = Wy,
which restricts to a Kdhler form on Ker xz,u = Ker R;, ..

We conclude from this that it suffices to prove the following : consider the
differentiable map

A= A

Let z € A, and let )
K, =Ker¢,, CTa_.

(We know that K, = Ker R, . is a complex subspace of T . endowed with the
complex structure determined by I;)

Fact.Fork = dim K, and N = dim A, and for any 2-form 1 on Ta close enough
to a given form g which restricts to a Kdhler form on K., we have near z

GO Tt > 0,V <k, = dim K,

for the natural (symplectic) orientation of Ta.

Next we recall that the map ¢ = ¢g o . ..o ¢ satisfies the property

Ropo¢=¢.

So ¢ acts along the fibers of the submersion Ry : A — Ag. An argument similar
as above shows now that it suffices to prove the fact above along the fibers of the
map Ry, which by the explicit description of the ¢;’s will take the form of lemma
7 below. We have arranged that the fibers of the map Ry identify by the tubular
neighbourhoods map ig to a complex vector space on which the form wy restricts to a
constant Kahler form. Furthermore the R;’s identify to linear projections. Because
of the action of the symmetric group &a,, preserving the form wy it is clear that
these projections, which are invariant projections with respect to smaller groups, are
orthogonal with respect to the Kdhler form. Hence we are in the following situation.

Assume V is a complex vector space of dimension n, w is a constant Kahler form
on V., and h is the associated hermitian metric on V.

Let 0 =V, C ... C V; C V be complex subspaces, and let 7; : V — V; be the
orthogonal projection. Let ¢; : V — V be given by the formula

h(v)
UL

¢i(v) = p(—=)(1 = ) (v) + 7i(v)

where the function p is strictly increasing between 1/2 and 1 and takes the value 0
in [0,1/2] and 1 in [1,00[, and the 7;’s are constant positive numbers.
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Let ¢ = ¢po...¢;:V =V, and let v € V. Let K, = Ker ¢,, and k, = dim K,.
(K, identifies to the kernel of some 7; hence is a complex vector subspace of Ty,,.)
Let g be a 2-form on V which restrict to a Kihler form on K.

Lemma 7 If the n;’s satisfy n;11 > n;, Vi, for any i close enough to g, and v’
close to v, we have
W >0, Vs < ky,

with respect to the complex orientation of V.

Proof. We shall content ourselves with the case where [ = 1, the general case being
exactly similar. We have a decomposition

V=View

orthogonal with respect to the Kihler form w : with respect to this decomposition
we shall write an element z of V' as (z,y). We denote by X;(t) the function u(t/n;),
so that

o(x,y) = dol| (x,9) ) (2, y), é1(2,y) = Mall 2 [z, y).

It is then immediate to compute
Grw = Adw +2iX M | 2 P NI | 2 |2 . (4.7)

This follows immediately from the fact that for adequate coordinates on V; and Vi,
we have

de]/\dx]—l—Zdy] Adg;i), Zx wZ—I—Zy] Yoy (4.8)

J 7!

and from
doda; = Nodz; + AoMyaid | z |2 (4.9)
and similarly for the y;/’s. Formula (4.8) gives a splitting

W=wy+ Wy, Wp = Z(Z de; N dT;),wy = Z(Z dy; N dy;r) (4.10)

J 7
and exactly as before we get
Prw = Muw, +wy +2i0N0 |z |2 A0 |z |2 (4.11)
From (4.7) we deduce
o= N 1 2000M61 (@ | = P AT | = ), (4.12)
and since the form ¢5(0 | z |2 Ad | z |?) has rank 2, we find that
0= = N2 grpnms 4o — AN T g n s A k(9] 2 2 AT | 2 )

where at v, Ag denotes Ag(| ¢1(v) |?) and Ay = Ay(] v |?). So it suffices to prove that
near v

1. ¢t Ab® > 0, Vs < k,
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2. T TN 2 P AT | 2 |P) A >0, Vs < ky,

where k = dim K, and for ¢ close to ¢ such that g, is Kéhler.

We have to distinguish three cases.

a) A1 does not vanish at v, and Ao does not vanish at v. In this case the result
is obvious. Indeed, ¢ is then a local diffeomorphism at v and similarly ¢q is a local
diffeomorphism at ¢;(v) so that ¢ is a local diffeomorphism at v. Hence we have
k, = 0 and we need only to prove that ¢*w” > 0. But this is obvious since by
formulas (4.7) and (4.11) both ¢; and ¢y are orientation preserving at the points
where they are local diffeomorphisms.

b) A1 vanishes at v but Mg does not vanish. In this case we have ¢;(v) =
T1(0); P1uy = Tisp and ¢p is a diffeomorphism near ¢;(v), hence

Ky, = Kermi., = VlL

and the assumption is that ¢0|V1J_ is Kéhler.
Notice that in this case, if 77; < 1o the second component v, of v cannot be 0,
so that the semi-positive real (1, 1)-form

W0y PAd |y ?

is non-zero at v.
We first prove the inequality 1. By formula (4.11) we get

ST = (Mwp +w) "+ 2(n — )M A (MNwe +w,)" A0 |2 |2 AD | 2 P
It is enough to show that
(Mwe + @) FAY* >0, (MNwe+w,)" *PAGEI |2 P A0 |2 D) AYE >0

near v. But each expression can be developped as a polynomial in Aq. It is clear
that the non-zero coeflicient of smallest degree in this polynomial is equal to

CReswkems fwp=he g e
for the first expression and to

Cho—s—1 pho=s=1 w;_k” ANid |z |2 AT |z |* Ap®

n—s—1 z

for the second, and since A vanishes at v, it suffices to show that in each expression
the non-zero coefficient of smallest degree is strictly positive at v for 1 = 1pp. But
this follows immediately from the fact that the restriction 1, of ¥ to Vit is a Kihler
form, and from the fact that we may assume that the component v, of v is non zero
since otherwise the function A; is identically 0 near v and the result is then obvious.
Then the 2-form id | z |2 Ad | = |? is semi-positive non zero at v and we have

NG |2 AT | P AvR() =

Wk A IR N GD | [P AT | P A () > 0,

Wh T AW A g (0) = Wl AWl A (o) > 0.
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We show next the inequality 2. We note that up to a term in Ay we have
$1(i0 |z P A0z P)=id |y [P A0y |*.

We do now exactly the same computation as before with * replaced with 9 | y |2
AD |y |2 A%, and we conclude that

Hr" T T NGRT(O | 2 P AD | 2 ) AT >0, Vs < ky

near v.

¢) It remains to consider the case where A\g vanishes at v. In this case the
differential ¢, , vanishes so that K, = V and the form g is a Ké&hler form on V.
The inequality 1 : ¢7w™ ™ Apg > 0, Vs < n is then obvious since by formula (4.11)
¢jw is a semi-positive (1,1)-form. With a small supplementary work, one shows
that this remains in fact true for 1 close enough to 1g. It remains now to study the
inequality 2: ¢jw™ s~ A (D] 2 |2 AD | 2 [2) Ap® > 0, Vs < n.

Recall that

Prw = Nw, +w, + 2000 |z [P AT |2 |? (4.13)
and that
@12 ) =0y P +20 |« [P +]X |z [P d] | (4.14)
It follows from this that
1w = (Nwptw, ) T T 2 (n—s— 1) (Mwedw, )" TEAGMAN O | 2 P AT | 2 P,

G0 2P A0 2= i@y P+Ao P+ [a Pd]e]?)  (4.15)
ANO Ly PHAIO 2 P M e P d e ?)

= W01y P+Mo |z A @ |y P +210 | 2 |?)
HMA 2 POy P+ |2 P =9y -Af0 | a P)Ad]a]?.
Hence we get
Gr" TN (O 2 P AT | 2 |P) At = (Nwy +wy) T2 A (4.16)
[i{(Aws + @) A @y [P +A70 [ P) A (@ |y P +A10 |2 [?) A 9?
HMAL 2 2 (Mwe +w) A [y P+A10 [ e 2 =0 |y P =220 |2 ) Ad | e | Ag®
+2i(n —s— AN |2 |2 A0 | 2 |2 AGD |y |2 AD |y |?) A®).
We first assume that Ay # 0 at v, and that ¢ = 1 is Kdhler.

Then the first term in this sum is strictly positive, the last term is positive or 0
and the only non positive term in the developpement of the second term is

iIMAL 2 | (Nwe +w) " TEAG A @ |y P A0 2 P =0y |?Ad ] P).

But we may assume that the number 7, is very small and that the function
A1 (] @ 1) is not identically 0 near v (otherwise the two last terms vanish identically).
Since it is identically 0 near v for | v, [*> 1/ny, this forces | v, |* to be very small.
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Similarly, since we may assume that Ao is not identically 0 near v (otherwise ¢ is
identically 0 near v and the result is trivial), v, cannot be very small. Then noting
that we can change 7; without changing the supremum of the function A;\] | = |?,
we find easily that the term

LML | @ 12 (Mea 0" A A (@ [y 28 @ |2 =8 |y 240 @[3 |
is much smaller than
(Mwe +w)" T A0 [y PHAAO 2 HA@ |y |2 +230 | 2 [*) A,

at a point v in a neighbourhood of which A} and Ay do not vanish identically. This
implies that ¢7w"*~Y A ig}(d | z |2 AD | 2z |*) A 9® is strictly positive near such v
for ¥ = 1y hence also for any 1 close .

To conclude we consider the case where Ay also vanishes at v. Then we note that
the function A\; A} | = |? is very small, say < € at v. We expand then into powers of
A1 the two polynomials

(Mwe +wy)" 7A@ Ty P A e YA @ |y [P +A10 [ 2 [P) A e
te(Mwe +w)" T A@ [y P e [P =0 [y [P =MD e ) Ad | [P Ap?,
in—s—10 2> Ad |z > A(Ajws +w,)" 2N 0 |y [P AT |y |2) A

We find that for each of them, the non zero coeflicient of smallest degree is strictly
positive for @ = 9. Hence we conclude that it will remain strictly positive for @
close to 9y and that ¢jw™ >~ A gt (0 | 2 |2 AD | z |*) A ¥* will remain positive in
a neighbourhood of v since A; remains positive. Hence lemma 7 is proven, and we
have shown that the inequality (2) of lemma 5 is satisfied. |

By lemma 5, this concludes the proof of theorem 5. [ |

5 Some remarks and questions

The theorem proven here leads to several problems which might be of interest for
symplectic and complex algebraic geometry.

We have shown that given a compact symplectic fourfold (X, w), we can construct
for each integer k a compact symplectic manifold Hilb*(X) of dimension 4k. Up to
isotopy it depends only of the deformation class of w, and the deformation class of
the symplectic structure on Hilb*(X) is also determined by that of X.

It would be interesting to understand these symplectic varieties from a more
symplectic point of view. Is it for example possible to construct them by surgery
starting with simpler ones? Are they new examples of symplectic manifolds (eg
exhibiting new features). The algebrogeometric analogue of this is the discovery
by Beauville [1] of compact irreducible hyperkdhler (or holomorphically symplectic
and Ké&hler) varieties of any even (complex) dimension, using the punctual Hilbert
schemes of K 3-surfaces.

Another natural question is whether these manifolds, which depend canonically
on our symplectic fourfold, can be used to construct new invariants of symplectic
fourfolds. Indeed, we can describe the cohomology of our varieties Hilb*(X) start-
ing with the cohomology of X, exactly in the same way as in the integrable case
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(cf. [9], [11], [13]). This is because our manifolds admit the same fibers over X *)
as in the complex case, and furthermore the natural stratification of X *) given by
the multiplicities pulls-back to a stratification of Hilb*(X) by singular differentiable
submanifolds. Hence the same argument as in [9] applies and shows that the coho-
mology of Hilb*(X) is canonically isomorphic to a direct sum of tensor products of
the cohomology of X with shifts of degree.

The simplest example is the case of H?(Hilb*(X),Z). Tt contains ¢*H?*(X ¥, Z),
which is equal to the direct sum

H*(X,Z)3 N*HY (X, Z).

On the other hand, denoting by A = X ) — Xék) the big diagonal of X*) which
is of codimension 4 in X(¥), one sees immediately that £ = ¢~'(A) is a singular
differentiable submanifold of real codimension 2 of Hilb*(X), which admits a coho-
mology class [F] € H*(Hilb*(X),Z). To see this, we note that the singular locus of
F is of codimension at least 4 in Hilb*(X), so that

HA*(Hilb*(X),Z) = H*(Hilb*(X) — Sing E, Z),

and that F/ — Sing F is canonically oriented. (Notice that all the spaces considered,
including X () are stratified by smooth differentiable manifolds, which gives senses
to the codimensions considered above.)

Next one checks easily that this class [F] is 2-divisible, that is

[E] =26, 6 € H*(Hilb"(X), Z)
and one has now, using the diffeomorphism Hilb*(X) — E =~ X _ A
H?(Hilb*(X),Z) = ¢H*(X W, Z) & Zs.

What has been proven in the previous section is that, given a deformation class
of a symplectic structure on X of fixed class [w] € H?(X,R), there is a well defined
deformation class of symplectic forms on Hilb*(X) of class ¢*[w]p — A5, 0 < A < Ao,
for some Ag sufficiently small, where pi € HQ(X(’“),R) denotes the image of u €
H?(X,R) via the composed map

HA (X, R) =L 2 (xF Ry = (X M) R),
Indeed, with the notations of the previous sections, the form € = y + AV has for
class [w]r — Aad for some fixed . This is because the de Rham class [x] of x is
equal to (¢ o ¢)*[w]r and ¢ being close to the identity acts as the identity on the
cohomology of X (%), Next recall that W is the pull-back via a differentiable map
Hilb*(X) — Hilb*(CV) of a Kihler form 5 on Hilb*(CV). But this differentiable

map takes value in the (smooth) open set Hilb*(C" ), ; made of subschemes locally
contained in a smooth complex surface, and it is easy to show that

H*H(HibN(CY gy, Z) = 7

generated as before by a class 8’ such that 26 is the class of the exceptional divisor
in Hilbk(CN)swf. So the class of 7 is equal to —ad’ for some a > 0 and to conclude
it suffices to see that the pull-back of §’ is equal to &, which is easy.
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The first potentially interesting invariant of the deformation class {w} of a sym-
plectic structure on X with fixed class [w] is the following

Ae(X,w) =maz K

where K is the set of real numbers Ag such that for any 0 < A < Ag there is a
symplectic form of class ¢*[w]y — Ad in the same deformation class of symplectic
structures on Hilb*(X) already constructed. We shall compute below this invariant
in the case where X is the projective space P2, the deformation class of symplectic
form being given by the Kéhler forms of class H = ¢1(Op2(1)).

Other invariants of (X, {w}) can be constructed using the Gromov-Witten invari-
ants of Hilb*(X) endowed with its symplectic structure. Indeed the Gromov-Witten
invariants of Hilb*(X) are defined once a deformation class of symplectic form on
Hilb*(X) is fixed. They provide for each pair of integers (g,7n), n > 0, (with n > 3
if ¢ = 0) and for each integral homology class A € Hy(Hilb*(X),Z) a polynomial
invariant

g yn: H(HIVH(X), Q%" - Q.

Since H*(Hilb*(X),Q) is itself a sum of copies of tensor products of H*(X,Q),
the ®4,, provide as well polynomial invariants on H*(X), depending on A €
Hy(X,Z)® N*H{(X,Z) & Z.

Hence we are faced to the following alternative : either the invariants above
are new, that is they can be used to distinguish symplectic fourfolds for which the
previously constructed invariants are equal, or they are not and one should be able
to compute them in terms of older ones.

In particular, one natural question, which might be very interesting to under-
stand even in the algebrogeometric context is the following : is it possible to compute
the Gromov-Witten invariants of Hilb*(X) as a function of the Gromov-Witten in-
variants of X7

Notice that in order to understand the Gromov-Witten invariants of genus g
of Hilb*(X), the Gromov-Witten invariants of genus different of g are obviously
necessary. For example, in the complex case, a smooth genus ¢ curve C' on a surface
S provides a smooth subvariety j : C'%) — Hilb*(X). Assuming k is large enough
so that the Brill-Noether number (predicting the dimension of the sets of g}’s on C)
is positive or zero, there will be rational curves D ¢ C'®), which contribute to the
Gromov-Witten invariants of C'%)| (see [2]), and if the Gromov-Witten invariants
of X associated to the class [C] and the genus g are non-zero, it is likely that the
Gromov-Witten invariants in genus 0 associated with the class j.([D]) will be non-
zero.

To conclude this section, we note that the two types of invariants mentioned
above are related, leading to the computation of the invariant Ay in the case of
(P2, H). The relation is the following. Assume the Gromov-Witten invariants
Dy gn of Hilb*(X) are non-zero for a class A # 0. By definition, this implies
that for any symplectic form € on Hilbk(X) in the deformation class considered,
and any almost complex structure J on Hilb*(X) compatible with © there exist
J-pseudoholomorphic curves f:C — Hilbk(X) of class A. But then we must have

< A, 9] >:/Of*£2 > 0.
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If [Q] = [w]x — Ad and < A,8 > > 0, this gives the inequality

< A, [w]g >

“AdS (5.17)

<

We apply this observation to get
Proposition 3 The invariant \p(P%, H) is equal to 1/(k — 1).

Proof. First of all let us denote by /\Zlg([F’Q, H) the largest real number such that for

any A < /\Zlg([F’Q, H) there exists a Kéhler form of class Hy — A8 on Hilb*(IP?). Since
the Kihler forms are in the deformation class of symplectic forms we constructed
above on Hilb*(P?), we find that for A < /\Zlg([F’Q, H) there exists a symplectic form
on Hilb*(P?) in the deformation class considered, it follows that

N9(P? H) < A(P% H).

(This inequality will be true as well for any K&hler surface S.)
Next we use the following result which is due to Catanese and Gottsche [3]

Fact. We have .
(P2 H) > ——.
For completeness, we sketch the argument of [3]. Let Z C Hilb*(P?) x P? be the
incidence subscheme. The first projection pry : Z — Hilb®(IP?) is flat and if L is a

line bundle on P2, one has a vector bundle of rank & on Hilb*(P?) defined as
Ly = pri.(pr3L).
One has now
Lemma 8 [3] ¢1(Ly) = [L]x — &, where [L] = ¢1(L) € H*(P% Z).
If now L is k-generated, that is the restriction map
H(P* L) — H°(L|z)

is surjective for any 0-dimensional subscheme Z C X of length &, the natural map

HO(L) ® Op> — Ly,

is surjective, hence we find that det L} is generated by sections. Now it is easy to
see that (k—1)H is k-generated on P2, hence we find that the class (k —1)Hy, —§ is
the class of a line bundle generated by sections. The same argument shows that for
any positive numbers a,b € N* such that a/b > k — 1 the class aHy — bd is the class
of an ample divisor on Hilb*(P?). Hence it is represented by a Kéhler form, and we

conclude that A" (P2 H) > T ]

So we have proved that

1
Me(P2H) > A99(P2 H > =
It remains now to show the reverse inequality
1
M(PLH) < ——.

We use for this
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Lemma 9 Let A C P2 be a line, and let P* ¢ A¥) 2 Pk be a pencil of degree k on
A. Then denoting by j : A®) — Hilb*(P?) we have

< J«[PY, Hi] >=1
< ju[PY, 6] >=k — 1.

Proof. We may assume that the pencil is base point free hence gives a map ¢ :
P! — P! of degree k. The intersection number < j.[P!],d] > is then equal to the
degree of the ramification of ¢, which is given by Hurwitz formula.

As for the first equality, consider the quotient map

g: A" = A
Then we have
kY < . [PY, Hy] >=<[¢~"(P")], ¢ Hy, > .
But we now that

¢ Hy, = Zper

where H = ¢1(0a(1)), A = P Next since ¢7!(P!) is the curve parametrizing an
element of the pencil together with an ordering of the k-points of the corresponding
divisor on A, the map pr; : ¢71(P') — A has degree (k — 1)! for every i, so that

i=k
kU< P H) >= (k= 1) = k!

=1
which gives < j.[PY], Hg] >= 1. |

In order to prove that A,(P?% H) < lel it suffices, using this lemma and the

inequality (5.17), to show that the Gromov-Witten invariants in genus 0 of Hilb*(IP?)
associated to the class A = j,[IP1] are non-zero. For this we prove

Lemma 10 1. Every curve of class A is of the form j(PY) for some line in P?
and for some pencil of degree k on it.

2. The family M of such curves has the expected (complex) dimension
dm'mt(A) - Qk‘ - 3— < (8] (I(Hilbk(]fm))? A > .

Proof. We first prove 2. We fix as before A and the pencil P!. Using the fact
that A% C Hilb*(P?) is the zero set of a section of the vector bundle #; associated
to the line bundle O(1) on P2, we can write the exact sequence

0= Thwm L T p2) ip1 — Lgp1 — 0.

We know by lemmas 8 and 9 that the term on the right has degree 1—(k—1) = —k+2
on P!, hence
- < (I(Hilbk(]P’2))7 A>= dOTA(k) Pt~ k+2.

On the other hand, since A(¥) =~ Pk,
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and we conclude that the virtual dimension dy;+(A) of the family of holomorphic
maps of genus 0 and class A is equal to 2k.

On the other hand, an element of M is exactly determined by the data of a line
A in P? and a line in A®) = P* The line A depends on two parameters and the
Grassmannian of lines in P¥ has dimension 2k — 2. Hence dim M = 2k. This proves
2.

To prove 1, let D C Hilb*(P?) be a curve of class A. Since < A, Hy >= 1 one
sees immediately that there is a line A C P? together with a pencil of degree [ < k
on A isomorphic to a component D’ of D and a cycle z of degree k —1[ such that the
generic scheme a; parametrized by D’ consists of the disjoint union of a member 7,
of the pencil and of a subscheme of length k — [ which has zp for associated cycle,
while the union D' of the other components of D parametrizes schemes with fixed
support. Hence we get maps f; : D' — Hilb!(P?), f, : D' — Hilb"*~(P?) where f;
is an isomorphism onto a pencil of degree [ in a line, and f; takes value in a fiber of
the Hilbert-Chow morphism. Furthermore, if we consider the rational map

o Hilb'(P?) x Hilb*~'(P?) — Hilb*(P?)

which to (z1, z2) associates z; U zg, one has oo (f1, f2) = idp.
Next it is easy to see that denoting &; and d9 the é-classes of the Hilbert schemes
Hilb (P?) and Hilb*=(P?) respectively, one has

< [D/L(S >= D/7f1*51 >4 < D/7f2*($2 > +m,

where the integer m is defined as follows : Let 73 — D’ and Zy — D’ be the
respective pull-back via f; and f; of the incidence schemes. There is a natural
morphism

((]17(]2) : Zl X Dt Z2 — [FDQ X [FDQ

and one has m = length (¢1,q2) "' (Diag). One shows now easily that m < d%z =
k — [, using the fact that 7, is a family of cycles with constant support and 7 is
given by a base point free pencil on the line A.

We already computed that < D', ffé; >= [ — 1. On the other hand, because
co fy is constant, one has d°f}d, < 0 with equality only if f; is constant. Finally
we have < D" § >< 0 with equality only if D" is empty. Hence we conclude that

<[D,d><l—-14+d%y=k—1 (5.18)

and the equality implies that f; is constant and D" is empty. But since [D] = A we
have the equality < [D],6 >= k—1. Hence f; is constant, that is a; = constant = «
and D" is empty. Finally the equality in (5.18) implies also that m = d% =
length(a), and it is easy to see that this implies that « is supported on A. Hence
D is in fact a pencil of degree k in A.

|
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