Composantes de petite codimension du lieu de Noether-Lefschetz

CLAIRE VOISIN

0. Introduction - Rappels

0.1 Soit $U \subset H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(d))$ l'ouvert paramètrant les surfaces lisses, et soit $\mathcal{S}_d \subset Y$ le lieu de Noether-Lefschetz: $\mathcal{S}_d = \{F \in U | \text{la surface } S \text{ d'équation } F \text{ satisfait Pic } S \neq \mathbb{Z}\}$. \mathcal{S}_d est une union dénombrable d'ensembles algébriques; le théorème de Noether affirme que $\mathcal{S}_d \neq U$ pour $d \geq 4$.

Dans [3] et [7] il est prouvé que pour $d \ge 5$ toute composante de \mathcal{G}_d est de codimension au moins d-3, l'égalité étant réalisée seulement par la famille des surfaces contenant une droite. On prouve ici:

- 0.2. THEOREME. Les composantes de \mathcal{G}_d sont de codimension strictement supérieure à 2d-7, à l'exception de la famille des surfaces contenant une droite (codimension d-3), et de la famille des surfaces contenant une conique (codimension 2d-7).
- 0.3. Rappelons la description locale des composantes de \mathcal{G}_d (cf. [7], [9]): Pour chaque composante M de \mathcal{G}_d il existe localement une classe λ primitive entière de type (1,1) telle que M soit définie schématiquement par la condition " λ reste de type (1,1)". On notera $M=\mathcal{G}_{d,\lambda}$. Si $0\in\mathcal{G}_{d,\lambda}$, soit V un voisinage de 0 dans U; soit λ la section plate du faisceau naturel $H^2_{\mathbb{Z}}$ sur V, prolongeant la classe $\lambda_0\in H^2(S_0,\mathbb{Z})$. Soit $F^2\mathcal{H}^2\subset\mathcal{H}^2$ le sous-fibré holomorphe de $\mathcal{H}^2=H^2_{\mathbb{Z}}\otimes\mathcal{O}_V$, de fibre $H^0(\Omega^2_{S_0})\subset H^2(S_t,\mathbb{C})$ en $t\in V$. Alors λ_t est de type (1,1) équivaut à: λ_t est orthogonale à $F^2\mathcal{H}^2_{(t)}$. On en déduit que $\mathcal{G}_{d,\lambda}$ est définie localement par $r=h^{2,0}$ équations. Les travaux récents rendent plausible la conjecture suivante, proposée par J. Harris.
- 0.4. CONJECTURE. Pour chaque d il existe un nombre fini de composantes de \mathcal{G}_d qui ne sont pas de la codimension (naturelle) r.

Notons que le théorème 0.2 prouve la conjecture 0.4 en degré d = 5.

0.5. La différentiation des équations 0.3 fournit immédiatement la description suivante de l'espace tangent de Zariski $T\mathcal{S}_{d,\lambda(0)}$ en 0: Soit $H_{\lambda} \subset H^{1}(\Omega_{S_{0}})^{prim}$,

l'hyperplan orthogonal à $\lambda \in H^1(\Omega_{S_0})^{prim}$, où *prim* dénote la cohomologie primitive de S_0 . On a (tenant compte du fait que pour $d \ge 5$ toute déformation de S_0 est projective):

$$T\mathcal{G}_{d,\lambda(0)} = \{ R \in H^0(\mathcal{O}_{\mathbb{P}^3}(d)) / \rho(R) \cdot \omega \in H_{\lambda}, \forall \omega \in H^0(\Omega^2_{S_0}) \},$$

où ρ est l'application de Kodaïra-Spencer:

$$H^0(\mathcal{O}_{\mathbb{P}^3}(d)) \rightarrow H^0(\mathcal{O}_{S_0}(d)) \rightarrow H^1(T_{S_0}),$$

et "." dénote le cup-produit:

0.6. Soit F_0 le polynôme définissant la surface S_0 : notons J^k la composante de degré k de l'idéal jacobien de F_0 , $S^k = H^0(\mathcal{O}_{\mathbb{P}^3}(k))$ et $R^k = S^k/J^k$. On a des isomorphismes naturels: (cf. [10]):

$$-H^{0}(\Omega_{S_{0}}^{2}) \simeq S^{d-4} \simeq R^{d-4}$$

 $-H^{1}(T_{S_{0}}) \simeq R^{d}$
 $-H^{1}(\Omega_{S_{0}})^{prim} \simeq R^{2d-4}$,

tels que le cup-produit précédent s'identifie à la multiplication dans R, et un isomorphisme $R^{4d-8} \simeq \mathbb{C}$, tel que la forme d'intersection sur $H^1(\Omega_{S_0})$ s'identifie au produit:

$$R^{2d-4} \otimes R^{2d-4} \rightarrow R^{4d-8}$$

Notant $\tilde{H}_{\lambda} \subset S^{2d-4}$ l'image réciproque de l'hyperplan $H_{\lambda} \subset R^{2d-4}$, 0.5 se réécrit de la facon suivante:

$$T\mathcal{G}_{d,\lambda(0)} = \{ P \in S^d / P \cdot S^{d-4} \subset \tilde{H}_{\lambda} \} = [\tilde{H}_{\lambda} : S^{d-4}].$$

Dans la suite, l'hyperplan \tilde{H}_{λ} étant donné, on notera pour tout $k \leq 2d-4$

$$E_k = [\tilde{H}_{\lambda} : S^{2d-4-k}] \subset S^k.$$

- 0.7. La proposition principale de [3] et [7] s'énonce comme suit:
- 0.8. PROPOSITION. Soient donnés des hyperplans $H_{\lambda} \subset R^{2d-4}$, $\tilde{H}_{\lambda} \subset S^{2d-4}$ comme plus haut; si codim $E_d \leq d-3$, il existe une unique droite $\Delta \subset \mathbb{P}^3$ telle que

 $E_{d-4} = I_{\Delta}(d-4) = I_{\Delta}(d-4) = I_{\Delta}(d-4) = I_{\Delta}(d-4)$ satisfait la condition suivante:

- 0.9. rang $(J^{d-1}(F_0)|_{\Delta}) = 2$.
- 0.10. Inversement, une droite Δ satisfaisant la condition 0.9 détermine uniquement un hyperplan H_{λ} de R^{2d-4} , (donc une classe $\lambda_{\Delta} \in H^1(\Omega_{S_0})^{prim}$, définie à un coefficient près), par la relation: $\tilde{H}_{\lambda} = I_{\Delta}(2d-4) + J^{2d-4}$. Les espaces E_k de 0.6 satisfont alors:

$$E_{d-4} = I_{\Lambda}(d-4)$$
 et $E_d = I_{\Lambda}(d) + J^d$.

0.11. Le texte est organisé de la façon suivante:

En paragraphe 1, on fixe une composante $\mathcal{G}_{d,\lambda}$ de codimension $\leq 2d-7$, un point générique $0 \in \mathcal{G}_{d,\lambda}$; on a: codim $T\mathcal{G}_{d,\lambda(0)} \leq \operatorname{codim} \mathcal{G}_{d,\lambda} \leq 2d-7$, d'où un hyperplan \tilde{H}_{λ} comme plus haut, satisfaisant d'après 0.5 la condition: codim $E_d \leq 2d-7$. On montre alors la proposition suivante:

PROPOSITION 1.1. On a les deux possibilités suivantes:

- (a) codim $E_d = 2d 7$, et E_d contient $I_P(d)$, la composante de degré d de l'idéal d'un plan P de \mathbb{P}^3 . Le plan P est alors uniquement déterminé par la donnée de H_{λ} , ou de E_d .
 - (b) codim $E_d = d 3$, et l'on est dans la situation décrite en 0.8, 9, 10.

D'après le théorème principal de [3], [7] le cas b) correspond d'une part à la composante de \mathcal{G}_d constituée des polynômes s'annulant sur une droite (cas codim $\mathcal{G}_{d,\lambda}=d-3$), d'autre part à d'éventuelles composantes non réduites de \mathcal{G}_d (cas codim $\mathcal{G}_{d,\lambda}>d-3$, codim $T\mathcal{G}_{d,\lambda}=d-3$ en tout point de $\mathcal{G}_{d,\lambda}$). La section 2 montre la non existence de ces composantes.

La section 3 étudie le cas a), qui correspond à des composantes réduites de \mathcal{G}_d , puisque l'on a génériquement $2d-7=\operatorname{codim} T\mathcal{G}_{d,\lambda} \leq \operatorname{codim} \mathcal{G}_{d,\lambda} \leq 2d-7$. On montre essentiellement la proposition suivante:

PROPOSITION 3.0. Soit $\mathcal{G}_{d,\lambda}$ une composante de codimension égale à 2d-7 satisfaisant a). Soit F un point générique de $\mathcal{G}_{d,\lambda}$. Soit P le plan fourni par l'énoncé a). Soit C la courbe plane d'équation $F_{|P|}$. Alors tout polynôme $G \in U$ s'annulant sur C est dans $\mathcal{G}_{d,\lambda}$.

On conclut alors par un argument semblable à celui de [2], que C est réductible, puis par un compte de dimensions, que C a une composante de degré 2.

1. Preuve de la proposition 1.1

- 1.2. L'énoncé est évident pour d = 5, du fait de l'accouplement parfait: $S^1/E_1 \otimes S^5/E_5 \rightarrow S^6/\tilde{H}_{\lambda}$; on a alors d 3 = 2, et 2d 7 = 3. On ne peut pas avoir codim $E_1 = 1$, par la proposition 0.8; on a donc les seules possibilités:
 - a) codim $E_1 = 3 = 2d 7 = \operatorname{codim} E_5$, et $E_1 = I_p(1)$ pour un plan P de \mathbb{P}^3 .
 - b) codim $E_1 = 2 = d 3$, et l'on est dans la situation de la proposition 0.8. On supposera donc dans la suite $d \ge 6$.
 - 1.3. LEMME. E_{d-4} possède une base locus de dimension positive.

La démonstration occupera les paragraphes 1.3.1-1.3.10. On aura recours aux théorèmes suivants (cf. [1], [3], [5]):

1.3.1. Fixons un entier d; pour tout entier c écrivons uniquement:

$$c = {k_d \choose d} + {k_{d-1} \choose d-1} + \cdots + {k_{\delta} \choose \delta}, \text{ avec } k_i \ge i \text{ et } k_i > k_{i-1}, \text{ l'entier } \delta$$

étant uniquement déterminé par c. Notons alors:

$$c_{\langle d \rangle} = {k_d - 1 \choose d} + {k_{d-1} - 1 \choose d-1} + \cdots + {k_{\delta} - 1 \choose \delta},$$

et

$$c^{\langle d \rangle} = {k_d + 1 \choose d + 1} + {k_{d-1} + 1 \choose d} + \cdots + {k_{\delta} + 1 \choose \delta + 1}.$$

Soit $W \subset H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(d))$ un système linéaire de codimension c. Notons c_H la codimension de $W_{|H}$, pour H hyperplan générique de \mathbb{P}^r et c_i la codimension de $H^0(\mathcal{O}_{\mathbb{P}^r}(i))$. W dans $H^0(\mathcal{O}_{\mathbb{P}^r}(d+i))$. On a:

- 1.3.2. THEOREME (Green). $c_H \leq c_{(d)}$.
- 1.3.3. THEOREME (Macaulay–Gotzmann). $c_1 \le c^{\langle d \rangle}$, et si l'égalité est réalisée, on a pour tout i, $c_i = (\cdots ((c^{\langle d \rangle})^{\langle d+1 \rangle}) \cdots)^{\langle d+i-1 \rangle}$.
- 1.3.4. Considérons l'espace $E_{d-4} \subset H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}'}(d-4))$. Par la dualité: $S^k/E_k \simeq (S^{2d-4-k}/E_{2d-4-k})^*$, on a: $c = \operatorname{codim} E_{d-4} = \operatorname{codim} E_d \le 2d-7$. Le théorème 1.3.2 entraı̂ne immédiatement: $c_H \le 2$.

Appliquons alors le Théorème 1.3.3 à la restriction $E_{d-4|H}$ pour H un plan générique dans \mathbb{P}^3 : on obtient:

- 1.3.5. $c_1^H \le 2$, avec égalité si et seulement si $c_i^H = 2$, $\forall i \in \mathbb{N}$, où $c_i^H = \operatorname{codim} H^0(\mathcal{O}_H(i)) \cdot E_{d-4|H}$.
- 1.3.6. Supposons par l'absurde que E_{d-4} a seulement des points base isolés. Alors $E_{d-4|H}$ n'a pas de point base pour H générique: on en déduit que pour k assez grand: $H^0(\mathcal{O}_H(k)) \cdot E_{d-4|H} = H^0(\mathcal{O}_H(k+d-4))$, ce qui entraı̂ne que l'égalité est impossible dans 1.3.5.

On a donc: $1 \ge \operatorname{codim} E_{d-3|H}$ et, par le même raisonnement, codim $E_{d-2|H} = 0$ pour H générique.

1.3.7. Pour chaque $Q \in S^1$, notons $\mu_Q^k : S^k/E_k \to S^{k+1}/E_{k+1}$ la multiplication par Q. Remarquons que μ_Q^k est duale de μ_Q^{2d-5-k} . La conclusion de 1.3.6 s'écrit encore: pour Q générique dans S^1 , et $k \ge d-3$, μ_Q^k est surjective. Par dualité, on en déduit

$$\mu_O^{d-3}$$
 est un isomorphisme. (*)

On a d'autre part, d'après 1.3.6, codim $E_{d-3|H} \le 1$, pour H générique, soit: corang $\mu_Q^{d-4} \le 1$, pour $Q \in S^1$ générique, et donc: dim $S^{d-3}/E_{d-3} \le 2d-6$.

1.3.8. Fixons $Q_0 \in S^1$, satisfaisant (*), et pour $Q \in S^1$, notons:

$$v_Q = (\mu_{Q_0}^{d-3})^{-1} \circ \mu_Q^{d-3} : S^{d-3}/E_{d-3} \to S^{d-3}/E_{d-3}.$$

On vérifie aisément que les v_Q forment un ensemble linéaire commutatif d'endomorphismes contenant Id. L'hypersurface \mathcal{D} de S^1 , de degré $\leq 2d-6$, définie par l'annulation du déterminant est donc une union de plans P_i comptés avec multiplicité α_i .

1.3.9. Fixons i et soit $Q \in P_i$, définissant l'hyperplan H_Q de \mathbb{P}^3 . Notons c_Q^k la codimension de $E_{k|H_Q}$; alors $c_Q^{d-2} = \operatorname{corang} \mu_Q^{d-3} = \dim \operatorname{Ker} \mu_Q^{d-3} _{\operatorname{dualité}} \operatorname{corang} \mu_Q^{d-2} = c_Q^{d-1}$, et ces nombres sont >0 par définition de P_i . Supposons $c_Q^{d-2} \le d-3$: alors $c_Q^{d-2(d-2)} = c_Q^{d-2} = (c_Q^{d-2(d-2)})^{(d-1)} = \cdots$ Le théorème 1.3.3 s'applique alors et entraîne:

$$E_{d-1|H_Q} = H^0(\mathcal{O}_{H_Q}(1)) \cdot E_{d-2|H_Q}, \quad \text{et codim } (H^0(\mathcal{O}_{H_Q}(k)) \cdot E_{d-2|H_Q}) > 0, \, \forall k \in \mathbb{N}.$$

Cela entraîne que $E_{d-1|H_Q}$ doit avoir des points base, ce qui est absurde car $J^{d-1}(F_0) \subset E_{d-1}$.

1.3.10. L'hypothèse faite en 1.3.9 est donc absurde, et l'on doit avoir $c_O^{d-3} > d-3$. Cela entraîne que la multiplicité α_i est strictement supérieure à

d-3. Comme le degré de \mathcal{D} est au plus 2d-6, on en déduit que \mathcal{D} est en fait un plan multiple P_1 .

D'autre part, pour $Q \in P_1$, on a:dim Ker $\mu_Q^{d-3} > d-3$; on en déduit que le polynôme minimal de v_Q , pour $Q \in P_1$, est de la forme X^k , avec $k \le d-3$. Or ceci nous mène encore à une contradiction: en effet, soit $x_0 \in \mathbb{P}^3$ le point correspondant au plan $P_1 \subset S^1$; on vérifie facilement que $v_Q^k = 0$, pour $Q \in P_1$ entraîne: $I_{x_0}^k \cdot S^{d-3} \subset E_{d-3+k}$, et comme $k \le d-3$, $I_{x_0}^{d-3} \cdot S^{d-1} \subset \tilde{H}_{\lambda}$. Mais \tilde{H}_{λ} contient également $S^{d-3} \cdot J^{d-1}$, et J^{d-1} est sans point base. Comme dans [7], on voit facilement que $I_{x_0}^{d-3} \cdot S^{d-1} + S^{d-3} \cdot J^{d-1} = S^{2d-4}$, ce qui est absurde.

L'hypothèse 1.3.6 mène donc à une contradiction, et le lemme 1.3 est donc démontré.

- 1.4. LEMME. On a seulement les deux possibilités suivantes:
- i) $E_{d-4} \subset I_C(d-4)$, où C est une conique de \mathbb{P}^3 ;
- ii) Il existe une droite $\Delta \subset \mathbb{P}^3$, unique, telle que $E_{d-4} \subset I_{\Delta}(d-4)$.

DEMONSTRATION. Comme $d \ge 6$, il est facile de voir que E_{d-4} , étant de codimension $\le 2d-7$, ne peut pas s'annuler sur une surface de \mathbb{P}^3 . Donc son base locus contient une courbe; comme codim $E_{d-4} \le 2d-7$ le lemme de [8], p. 115 montre que cette courbe doit être plane, et il est facile de voir que cette courbe ne peut être qu'une droite ou une conique (ici courbe signifie courbe réduite).

- 1.5. Notons que dans le cas i) on a nécessairement l'égalité par codim $E_{d-4} \le 2d-7$, et que E_{d-4} contient $I_P(d-4)$ pour une plan P uniquement déterminé. La proposition 1.1 est donc prouvée dans ce cas. Il reste donc à étudier le cas ii).
- 1.6. On procéde exactement comme dans [7]; esquissons seulement les étapes de la démonstration: on a $E_{d-4} \subset I_{\Delta}(d-4)$, avec codim $E_{d-4} \leq 2d-7$, et codim $I_{\Delta}(d-4) = d-3$; notant β_k la codimension de E_k dans $I_{\Delta}(k)$, pour $k \leq d-4$, (l'inclusion $E_{d-4} \subset I_{\Delta}(d-4)$ entraîne $E_k \subset I_{\Delta}(k)$, pour $k \leq d-4$), on a: $\beta_{d-4} \leq d-4$. Si $S^d \cdot E_{d-4} = I_{\Delta}(2d-4)$, alors on a $I_{\Delta}(2d-4) \subset \tilde{H}_{\lambda}$, d'où en fait $E_{d-4} = I_{\Delta}(d-4)$, puisque $E_{d-4} = [\tilde{H}_{\lambda} : S^d]$; sinon, on montre que l'on doit avoir: $\beta_{k-1} < \beta_k$, $k \leq d-4$. Il vient donc: $\beta_1 \leq 1$, et si $\beta_1 = 0$, on a $E_1 = I_{\Delta}(1)$, d'où comme précédemment $E_{d-4} = I_{\Delta}(d-4)$. De plus, si $\beta_1 = 1$, on doit en fait avoir $d-4=\beta_{d-4}$, soit codim $E_{d-4}=2d-7$. Le cas $E_{d-4}=I_{\Delta}(d-4)$ correspond au cas b) de la proposition 1.1, le cas $\beta_1 = 1$ correspond au cas a) de la proposition 1.1, puisque l'on a alors: dim $E_1 = 1$ et il existe un unique plan $P \subset \mathbb{P}^3$ tel que $I_P(d) \subset E_d$, et de plus: codim $E_{d-4} = 2d-7 = \operatorname{codim} E_d$. La proposition 1.1 est donc prouvée.
- 1.7. REMARQUE. J'ignore si l'on peut prouver que dans le cas a), E_{d-4} est en fait l'idéal d'une conique. Comme c'est évidemment faux pour d=5, et que

l'argument donné en paragraphes 3, 4 paraît plus intéressant du point de vue de la conjecture 0.4, je n'ai pas poursuivi mes investigations dans ce sens.

2. Non-existence de composantes non réduites de codimension $\leq 2d-7$

- 2.1. On montre dans cette section que le cas b) de la proposition 1.1 ne se produit que pour la composante de \mathcal{G}_d constituée des surfaces contenant une droite. On raisonnera par l'absurde; pour alléger les notations, on appellera M une composante $\mathcal{G}_{d,\lambda}$ de \mathcal{G}_d , de codimension $\leq 2d-7$, satisfaisant la proposition 1.1 b), différente de la famille des surfaces contenant une droite. On notera $M_{\text{red}} \subset M$ la variété réduite sous-jacente à M. Soit 0 un point générique de M_{red} . D'apres 0.8-0.10, on a: Il existe une droite $\Delta_0 \subset \mathbb{P}^3$, uniquement déterminée, telle que:
 - i) rang $(J^{d-1}(F_0)|_{\Delta_0}) = 2$, où F_0 est le polynôme correspondant au point 0.
 - ii) L'hyperplan \tilde{H}_{λ} défini en 0.5-0.6 est égal à $I_{\Delta_0}(2d-4)+J^{2d-4}(F_0)$.
- iii) $TM_{(0)} = I_{\Delta_0}(d) + J^d(F_0)$, et évidemment $TM_{\text{red }(0)} \subset TM_{(0)}$, avec codim $TM_{\text{red }(0)} \leq 2d 7$.
- 2.2. Fixons une droite $\Delta \subset \mathbb{P}^3$, et notons $M_{\Delta, \text{ red}}$ la sous-variété de M_{red} (clairement de codimension $4 = \dim \text{Grass}(2, 4) \text{ dans } M_{\text{red}}$), qui satisfait i), ii) et iii) avec $\Delta_0 = \Delta$.

Notons par ailleurs $G_{\Delta} \subset U$ la clôture de la famille des polynômes F tels que: rang $(J^{d-1}(F)|_{\Delta}) = 2$, $F|_{\Delta} \neq 0$.

Notons $G^1_{\Delta} \subset G_{\Delta}$, la clôture de la famille des polynômes $F \in U$ tels que: rang $(J^{d-1}(F)_{|\Delta}) = 2$, et: $\exists A \neq 0 \in H^0(\mathcal{O}_{\Delta}(1))$, avec $F_{|\Delta} = A^d$.

Notons enfin $G_{\Delta}^2 \subset G_{\Delta}$ l'intersection de G_{Δ} avec la famille des polynômes $F \in U$, tels que $F_{|\Delta} = 0$. On a $G_{\Delta}^2 \subset G_{\Delta}^1$.

L'hypothèse 2.1 donne une inclusion $M_{\Delta, \text{ red}} \subset G_{\Delta}$, $M_{\Delta, \text{ red}} \not\subseteq G_{\Delta}^2$. On a alors: (cf. [7]).

- 2.3. LEMME. En tout point de $G_{\Delta}\backslash G_{\Delta}^2$, G_{Δ} est lisse de codimension 2(d-2).
- 2.4. LEMME. En tout point F de $G_{\Delta} \backslash G_{\Delta}^1$, la codimension de $TG_{\Delta(F)} \cap (I_{\Delta}(d) + J^d(F))$ dans $TG_{\Delta(F)}$ est au moins deux.

La démonstration de ces lemmes est facile (on a des équations explicites pour G_{Δ}), et ne sera pas donnée ici.

2.5. Supposons $M_{\Delta, \text{ red}} \not\subseteq G^1_{\Delta}$. Soit 0 un point générique de $M_{\Delta, \text{ red}}$; comme

codim $M_{\text{red}} \le 2d - 7$, on a codim $M_{\Delta, \text{ red}} \le 2d - 3$, et d'après le lemme $2 M_{\Delta, \text{ red}}$ doit s'identifier au voisinage de F_0 à une hypersurface de $G_{\Delta} \setminus G_{\Delta}^1$ ou à un ouvert de $G_{\Delta} \setminus G_{\Delta}^1$, selon que codim $M_{\Delta, \text{ red}} = 2d - 3$ ou 2d - 4 (les autres possibilités étant exclues par l'inclusion $M_{\Delta, \text{ red}} \subset G_{\Delta}$). Or cela contredit le lemme 2.4 puisque cela entraînerait: la codimension de $TM_{\Delta, \text{ red}}(0)$ dans $TG_{\Delta, (F_0)}$ est au plus 1, avec, par 2.1 iii): $TM_{\Delta, \text{ red}}(0) \subset I_{\Delta}(d) + J^d(F_0)$.

2.6. L'hypothèse 2.5 est donc contradictoire, et l'on a: $M_{\Delta, \text{ red}} \subset G_{\Delta}^1$. Etudions G_{Δ}^1 .

2.7. LEMME. $G_{\Delta}^{1}\backslash G_{\Delta}^{2}$ est irréductible de codimension 2d-3.

La preuve ne présente aucune difficulté et sera omise ici.

2.8. Du lemme 2.7, et de codim $M_{\Delta, \text{red}} \leq 2d - 3$, $M_{\Delta, \text{red}} \subset G_{\Delta}^1$, on déduit:

 $M_{\Delta, \text{ red}}$ est ouvert dans G_{Δ}^1

Par ailleurs, d'après 0.10, en tout point F de G_{Δ} , on a une classe $\lambda_{\Delta} \in H^{1}(\Omega_{s})^{prim}$ définie à un coefficient près. Il est facile de voir que le sous-ensemble E suivant de $G_{\Delta}^{1}: E = \{F \in G_{\Delta}^{1}/\lambda_{\Delta} \text{ est proportionnelle dans } H^{1}(\Omega_{s})^{prim} \text{ à une classe entière de type } (1, 1), (vue dans <math>H^{1}(\Omega_{s})^{prim}$) est une union dénombrable de fermés analytiques. Comme E contient un ouvert de G_{Δ}^{1} , par ce qui précède, on en déduit:

- 2.9. Pour toute droite $\Delta \subset \mathbb{P}^3$, et pour tout polynôme $F \in U$, tels que:
- i) rang $(J^{d-1}(F)|_{\Delta}) = 2$
- ii) $\exists A \neq 0 \in H^0(\mathcal{O}_{\Delta}(1))$, avec $F_{|\Delta} = A^d$, on a: la classe $\lambda_{\Delta} \in H^1(\Omega_S)^{prim}$, définie en 0.10, est proportionnelle à une classe entière primitive de type (1, 1).
- 2.10. Il est aisé de voir que 2.9 est faux; (je remercie le rapporteur pour m'avoir signalé que ma démonstration initiale etait trop compliquée):
- 2.11. En effet, pour toute surface lisse S, il existe dans $\mathbb{P}(H^1(\Omega_S)^{prim})$ au plus un ensemble dénombrable de classes proportionnelles à une classe entière; or, considérons la surface de Fermat, d'équation $F = X_0^d + X_1^d + X_2^d + X_3^d$; soit $\zeta \in \mathbb{C}$ tel que $\zeta^d = -1$, et pour tout $\alpha \in \mathbb{C}$, soit Δ_α la droite d'équations: $X_1 = \alpha X_0$, $X_3 = \zeta X_2$. On a: $F_{|\Delta_\alpha|} = (1 + \alpha^d) X_0^d$ et rang $J^{d-1}(F)_{|\Delta_\alpha|} = 2$. Les droites Δ_α déterminent dans $\mathbb{P}(H^1(\Omega_S)^{prim})$ des classes λ_{Δ_α} distinctes, et comme α parcourt \mathbb{C} , il existe un α tel que λ_{Δ_α} n'est pas proportionnel à une classe entière. Le couple (Δ_α, F) ne satisfait donc pas à 2.9. Cette contradiction montre la non-existence de la composante M de 2.1.

2.12. REMARQUE. La rapporteur suggère par ailleurs l'argument suivant: on peut construire un pinceau de Lefschetz dans $\overline{G_{\Delta}^1}$, la clôture de G_{Δ}^1 ; on peut donc appliquer le principe d'irréductibilité de l'action de monodromie pour un tel pinceau et en déduire que Pic $\Sigma = \mathbb{Z}$ pour en élément générique Σ de G_{Δ}^1 , puisque $h^{2,0}(\Sigma) > 0$ pour $\Sigma \in G_{\Delta}^1$; ceci contredit évidemment 2.8.

3. Preuve de la proposition 3.0

3.1. Il reste à étudier les composantes M de \mathcal{S}_d de codimension 2d-7 et satisfaisant le cas a) de la proposition 1.1. Une telle composante est réduite et on appellera $M^0 \subset M$ l'ouvert de lissité de M.

On a par hypothèse une application $\Phi: M^0 \to \mathbb{P}(S^1)$, évidemment holomorphe, qui à un point $t \in M^0$ associe l'unique plan $P \subset \mathbb{P}^3$, tel que $\tilde{P} \cdot S^{d-1} \subset TM^0_{(t)}$, où \tilde{P} est une équation de P. Par ailleurs, soit $0 \in M$, et soit V un voisinage de 0 dans U tel qu'il existe sur V une section λ de H^2_Z , avec λ_0 de type (1,1), et que $M^0 \cap V = \mathcal{G}_{d,\lambda}$, comme en 0.3. Alors, avec les notations du paragraphe 0, on a sur $M^0 \cap V$:

- 3.1.1. $\Phi(t) = A \Leftrightarrow \tilde{A} \cdot S^{2d-5} \subset \tilde{H}_{\lambda}$, où $\tilde{A} \in S^1$ relève A.
- 3.2. Soit γ_0 un deux cycle dans S_0 , égal, via la dualité de Poincaré, à λ_0 . Soit un voisinage tubulaire de S_0 dans \mathbb{P}^3 , contenant S_t pour $t \in V$, qui existe à condition de supposer V assez petit. L'interprétation topologique de l'isomorphisme $R_{(t)}^{2d-4} \simeq H^1(\Omega_{S_t})^{prim}$ permet d'écrire 3.1.1 sous la forme:
- 3.2.1. Pour $t \in M^0 \cap V$, $\Phi(t) = A \Leftrightarrow \int_{\text{Tub } \gamma_0} (\tilde{A}P)/F_t^2 \cdot \Omega = 0$, $\forall P \in S^{2d-5}$, où Ω est la section canonique de $K_{\mathbb{P}^3}(4)$, et Tub γ_0 est le tube sur γ_0 (homologue dans $\mathbb{P}^3 \setminus S_t$ au tube sur γ_t).
- 3.3. On notera $M_A^0 = \Phi^{-1}(A)$, pour $A \in \mathbb{P}(S^1)$. Remarquons que Φ commute avec l'action de PGl(3), de sorte que M_A^0 est lisse, de codimension 2d-4 dans U; 3.2.1 se différencie aisément et donne la description suivante de l'espace tangent $TM_{A(0)}^0$ à M_A^0 en 0:
- 3.3.1. $TM_{A(0)}^0 = \{S \in TM_{(0)}^0/\int_{\text{Tub }\gamma_0} (\tilde{A}SP)/F_0^3 \cdot \Omega = 0, \forall P \in S^{2d-5}\}.$ On consacrera les paragraphes 3.4.1–3.4.8 à la démonstration du lemme suivant:

3.4. LEMME.
$$\tilde{A} \cdot S^{d-1} \subset TM_{A(0)}^0$$
.

DEMONSTRATION. Par construction, $\tilde{A} \cdot S^{d-1} \subset TM^0_{(0)}$. Au vu de 3.3.1 il suffit donc de prouver:

3.4.1.
$$\forall Q \in S^{d-1}, \forall P \in S^{2d-5}, \int_{\text{Tub } \gamma_0} (\tilde{A}^2 P Q) / F_0^3 \cdot \Omega = 0.$$

- 3.4.2. Mais λ fournit un morphisme $m_{\lambda}: S^{d-4} \otimes \mathcal{O}_{M^0} \to (S^d)^* \otimes \mathcal{O}_{M^0}$, défini ponctuellement par: $m_{\lambda(t)}(B) = (c \mapsto \int_{\text{Tub } \gamma_0} BC/F_t^2 \cdot \Omega)$, pour $B \in S^{d-4}$ et $C \in S^d$. Par hypothèse, m_{λ} est de rang 2d-7 au voisinage de 0.
- 3.4.3. En général, si l'on a un morphisme f entre deux faisceaux localement libres E et F sur une variété lisse S, on en déduit une application linéaire $df_{(0)}$: $\operatorname{Ker} f_0 \to (\operatorname{Coker} f_0) \otimes \Omega_{S(0)}$, en chaque point 0 de S, qui s'annule au point 0 si et seulement si f est de rang constant au premier ordre en 0. Dans une trivialisation locale de E et F, $df_{(0)}$ est simplement donnée par la différentielle de la matrice de f, composée avec la restriction à $\operatorname{Ker} f_0$ et la projection sur $\operatorname{Coker} f_0$.
- 3.4.4. Dans notre situation les faisceaux $E = S^{d-4} \otimes \mathcal{O}_{M^0}$ et $F = (S^d)^* \otimes \mathcal{O}_{M^0}$ sont triviaux; de plus, avec les notations du paragraphe 0, on a: Ker $m_{\lambda,0} = E_{d-4}$ et Coker $m_{\lambda,0} = E_d^*$. Enfin, $\Omega_{M(0)}$ est isomorphe à E_d^* . Il est alors facile de voir, à l'aide de la règle décrite en 3.4.3, que:

$$(3.4.5) dm_{\lambda,0}(B)(P \otimes Q)$$

$$= -2 \int_{\text{Tub } \gamma_0} (B.P.Q)/F_0^3 \cdot \Omega, \text{ pour } B \in E_{d-4}, P, Q \in E_d.$$

D'après 3.4.2-3.4.5 on a donc:

(3.4.6)
$$\forall B \in E_{d-4}, \forall P, Q \in E_d, \int_{\text{Tub } \gamma_0} (BPQ) / F_0^3 \cdot \Omega = 0.$$

Comparant avec 3.4.1 on voit que le lemme 3.4 est démontré si l'on a:

3.4.7.
$$\tilde{A}^2 \cdot S^{3d-6} \subset E_{d-4} \cdot E_d \cdot E_d$$
.

Mais on a: $\tilde{A} \cdot S^{d-5} \subset E_{d-4}$, et $\tilde{A} \cdot S^{d-1} \subset E_d$; il suffit donc de prouver 3.4.8. $S^{3d-6} \subset E_d \cdot S^{2d-6}$.

- Or E_d est sans point base, de codimension 2d-7. 3.4.8 résulte alors de ([6], théorème 2.16), (M. Green a maintenant supprimé la condition sur la codimension du système linéaire considéré cf. [4], §4). Le Lemme 3.4 est donc prouvé.
- 3.5. La preuve de la proposition 3.0 est maintenant facile. En effet, considérons l'application $\Psi_A: M_A^0 \to H^0(\mathcal{O}_A(d))$ définie par $\Psi_A(t) = F_{t|A}$. Le Lemme 3.4 donne immédiatement:
 - 3.5.1. Corang $(\Psi_A) = \operatorname{codim}(TM_A^0)$ en tout point de M_A^0 .

On en déduit que l'image de Ψ_A dans $H^0(\mathcal{O}_A(d))$ est de codimension égale à celle de M_A^0 dans S^d , ce qui entraı̂ne évidemment:

3.5.2. La fibre de Ψ_A en F_0 contient un ouvert de Zariski de l'ensemble

 $\{G \in U/G|_A = F_{0|A}$. Ce qui est le contenu de la proposition 3.0 compte tenu du fait que si $F \in M$, $\alpha F \in M$ pour $\alpha \in \mathbb{C}^*$.

4. Preuve du théorème 0.2

4.1. Soit M une composante de \mathcal{S}_d comme en paragraphe 3; soit 0 un point générique de M; soit $A = \Phi(0)$, et soit C la courbe plane d'équation $F_{0|A}$. D'après la proposition 3.0, toute surface lisse S de degré d contenant C satisfait Pic $S \neq \mathbb{Z}$.

Une adaptation de l'argument donné par Griffiths et Harris dans [2] va alors nous donner la proposition suivante:

4.2. PROPOSITION. Une courbe plane C réduite satisfaisant cette hypothèse est réductible.

DEMONSTRATION. On rappelle que \tilde{A} est l'équation du plan A et que C est définie par l'équation $F_{0|A}$. Soit G un polynôme de degré d-1 définissant une surface lisse Q, telle que $Q \cap A$ soit lisse et coupe C transversalement en d(d-1) point p_i . Soit Δ un disque, et soit $X \subset \mathbb{P}^3 \times \Delta$ l'hypersurface d'équation $\tilde{A}G + tF_0 = 0$.

Les hypothèses impliquent, si Δ est suffisamment petit, que X a pour seules singularités des noeuds aux points $(p_i, 0)$. On désingularise X en éclatant ces points, puis en contractant chaque quadrique exceptionnelle suivant le réglage défini par la droite exceptionnelle de \tilde{Q} , le transformé strict de Q. La fibre centrale est alors constituée de la réunion $\tilde{\mathbb{P}}^2U_DQ$ où $\tilde{\mathbb{P}}^2$ est l'éclatement du plan A aux points p_i et $D \subset \tilde{\mathbb{P}}^2$ est le transformé strict de la courbe $Q \cap A \subset A$. Toutes les fibres \tilde{X}_i , $t \neq 0$, contiennent la courbe C et satisfont donc: il existe $\lambda \neq 0 \in \operatorname{Pic}(\tilde{X}_t)^{prim} = H^2(\tilde{X}_t, \mathbb{Z})^{prim} \cap H^{1,1}(\tilde{X}_t)$. Supposons pour simplifier que la monodromie autour de 0 agisse trivialement sur la classe λ . Il existe alors un faisceau inversible \mathcal{L} sur \tilde{X} qui satisfait: $c_1(\mathcal{L}_{|\tilde{X}_t}) = \lambda$, pour $t \neq 0$. Suivant [2], on montre alors que si $\operatorname{Pic}\tilde{X}_0 = \mathbb{Z}u \oplus \mathbb{Z}v$, ou u est le diviseur qui vaut $\mathcal{O}(1)$ sur chaque composante, et v est le diviseur qui vaut 0 sur Q et $\mathcal{O}(d) - \sum_i E_i$ sur $\tilde{\mathbb{P}}^2$, alors on doit avoir $\mathcal{L}_{|\tilde{X}_i|} = \mathcal{O}_{X_i}(k)$, pour un $k \in \mathbb{Z}$. L'hypothèse implique donc: $\operatorname{Pic}\tilde{X}_0 \neq \mathbb{Z}u \oplus \mathbb{Z}v$. Or si $\operatorname{Pic}Q = \mathbb{Z}$, comme on peut le supposer puisque deg $(Q) \geq 4$, on a: $\operatorname{Pic}\tilde{X}_0 = \mathbb{Z}u \oplus \operatorname{Ker}(\operatorname{Pic}\tilde{\mathbb{P}}^2 \to \operatorname{Pic}D)$. On doit donc avoir:

$$\operatorname{Ker}\left(\operatorname{Pic}\tilde{\mathbb{P}}^{2}\to\operatorname{Pic}D\right)\neq\mathbb{Z}v,$$

ou encore:

$$\operatorname{Ker}\left(\bigoplus_{i=1}^{d(d-1)} \mathbb{Z}p_i \oplus \mathbb{Z}h \to \operatorname{Pic}D\right)$$

n'est pas engendré par $dh - \sum_{i=1}^{d(d-1)} p_i$, où h est la classe du diviseur $\mathcal{O}_D(1)$. La courbe D décrit un ouvert de Zariski dans la famille des courbes planes de degré d-1; l'existence d'une relation non triviale entre les p_i autre que la relation évidente $\sum_{i=1}^{d(d-1)} p_i = dh$ interdit que la monodromie agisse comme le groupe symétrique sur l'ensemble $\{p_i\}$. Cela entraîne que C est réductible ([8], p. 111).

Dans le cas où la monodromie agit de façon non triviale sur la classe λ , il est montré dans [2] qu'après un changement de base et une désingularisation, on obtient une variété \tilde{X}' dont le groupe de Picard diffère de celui de \tilde{X} essentiellement de la même façon que celui de la fibre centrale \tilde{X}'_0 diffère de celui de \tilde{X}_0 ; de sorte que l'argument reste le même.

4.3. Comme C est réductible, M est contenue dans l'un des ensembles suivants $T_k = \{F \in U/S \text{ possède une section plane réductible } C_k \cup C_{d-k}, \text{ avec deg } (C_k) = k \le d-k\}$. Comptant les dimensions, on voit immédiatement que codim $T_k \le 2d-7 \Rightarrow k=1$ ou 2, et donc M est la famille des surfaces contenant une droite ou la famille des surfaces contenant une conique, ce qui achève la preuve du théorème 0.2.

BIBLIOGRAPHIE

- [1] GOTZMANN, G., Eine Bedingung für die Flachheit und das Hilbert polynom eines Graduierten Ringes. Math. Z. 158 (1978), 61-70.
- [2] GRIFFITHS, P. and HARRIS, J., On the Noether-Lefschetz theorem and some remarks on codimension two cycles. Math. Ann. 271 (1985) 31-51.
- [3] Green, M., Components of maximal dimension in the Noether-Lefschetz locus. A paraître dans J. Differential Geometry.
- [4] GREEN, M., Koszul cohomology and geometry. Preprint.
- [5] GREEN, M., Macaulay representations and hyperplane restrictions. Preprint.
- [6] GREEN, M., Koszul cohomology and the geometry of projective varieties II. J. Differential Geometry 20 (1984), 279-288.
- [7] VOISIN, C., Une précision concernant le théorème de Noether. Math. Ann. 280 (1988), 605-611.
- [8] Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of algebraic curves. Vol. I, Springer Verlag (1984).
- [9] GRIFFITHS, P. and HARRIS, J., Infinitesimal variations of Hodge structures II: an infinitesimal invariant of Hodge classes. Compo. Math. Vol. 50, (1983).
- [10] CARLSON, J. and GRIFFITHS, P., Infinitesimal variations of Hodge structure and the global Torelli problem. Géométrie Algébrique, Angers, Sijthoff and Nordhoff (1980), 51-76.
- [11] GRIFFITHS, P. and HARRIS, J., Algebraic geometry and local differential geometry. Ann. Scient. Ec. Norm. Sup. 4ème série, t. 12, (1979), 355-342.
- [12] HARRIS, J., Galois groups of enumerative problems. Duke Math. J. 46 No. 4 (1979), 685-724.

Département de Mathématiques Centre d'Orsay, Université de Paris-Sud 91405 ORSAY CEDEX

Reçu le 7 avril 1988