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Chapter 0

Introduction

The goal of this survey paper is to present results on hyperbolicity of alge-
braic complex manifolds, which appeared after the papers [46] and [40],
where a number of important and intriguing conjectures were proposed.
Since the paper puts the accent on measure hyperbolicity on one hand,
and on algebraic methods on the other hands, we hope it will not overlap
too much with the beautiful paper [20] by Demailly, except for the basic
definitions and starting points.

The basic questions asked in [40], and in a different spirit in [46] concern
the relationships between curvature properties of a given complex manifold
(or complex algebraic variety) on one hand, and the behaviour of holomor-
phic maps from disks or polydisks to them, on the other hand, or, from a
more algebraic point of view, the (non) existence of subvarieties of certain
types. The well-known statements illustrating this are the following :

1. (Analytic geometry.) A curve of genus g ≥ 2 admits a metric µ
with Ricci form i∂∂log µ > 0, and its universal cover is the unit disk.
There are no non constant holomorphic maps from C to it.

2. (Algebraic geometry.) [45], [7] A Fano variety (i.e a variety with
negative canonical bundle, or equivalently, admitting a volume form µ
with i∂∂logµ < 0) is rationally connected, that is, through any two
points, there passes a rational curve.

The first statement is classical. The second statement has been established
only recently in full generality, while it had been known classically for many
specific examples.

In the intermediate range, where the canonical bundle is trivial for ex-
ample, we meet the very intriguing phenomenon that rational curves cannot
cover the variety, as follows from the adjunction formula, and the fact that
the degree of the normal bundle of a curve, which is the generic member
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4 CHAPTER 0. INTRODUCTION

of a covering family is non negative, but, at least conjecturally, the variety
should be covered by images of non constant holomorphic maps from C.

The problems and partial results presented are obtained by generalizing
and mixing such statements. The first possible generalization of 1 above is
of course by looking at higher dimensional manifolds. The study of holo-
morphic maps from the unit disk D to X led Kobayashi to the definition
of the Kobayashi infinitesimal pseudo-metric, and the Kobayashi pseudo-
distance. Another possible generalization consists in looking at holomorphic
maps from polydisks Dn to X, n = dim X, eg at local uniformizations,
leading to the Kobayashi-Eisenman pseudo-volume form, which, as shown
by Theorem 1.29, might be to some respects easier to deal with than the
Kobayashi pseudo-metric.

The Kobayashi infinitesimal pseudo-metric is 0 on a given tangent vector
u at x ∈ X if and only if there exist holomorphic maps f : ∆ → X satisfying
: f(0) = x and f∗( ∂

∂t) is arbitrarily large, proportional to u. Similarly the
Kobayashi-Eisenman pseudo-volume form is 0 at a point x ∈ X if there exist
holomorphic maps f : Dn → X, n = dimX, f(0) = x, with arbitrarily large
Jacobian at 0.

A basic result due to Brody, ( Theorem 1.15), is the fact that for compact
X, the Kobayashi infinitesimal pseudo-metric is degenerate at some point
x ∈ X if and only if there exists a non constant holomorphic map f : C→ X.
Here “degenerate at x” means that there exists a non zero tangent vector
u ∈ TX,x, and a sequence of holomorphic maps

fk : D → X,

with limk→∞ fk(0) = x and fk∗( ∂
∂t) = µkuk, with

lim
k→∞

µk = ∞, lim
k→∞

uk = u.

The main conjectures which emerge from [46], [40], [29], are the following
(we refer to the text for the definitions needed):

Conjecture 0.1 (Kobayashi) Let X be a projective variety which is not of
general type. Then its pseudo-volume forms ΨX and/or Ψ̃X vanish almost
everywhere.

This conjecture is a kind of converse to Griffiths-Kobayashi-Ochiai Theorem
1.29, which says that the Kobayashi-Eisenman pseudo-volume form ΨX or
its Yau variant Ψ̃X is non zero on a Zariki dense open set of X, if X is of
general type.

Conjecture 0.2 (Lang) Let X be a projective variety which is not of general
type. Then X is swept out by images of non-constant rational maps from an
abelian variety to X.
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This conjecture is an attempt to understand algebraically Kobayashi’s con-
jecture above. Indeed, if X is rationally swept out by abelian varieties,
then Ψ̃X = 0 almost everywhere (cf Lemma 1.42). However, Corollary 3.33
shows that this conjecture, for general Calabi-Yau hypersurfaces in projec-
tive space, is in contradiction with Clemens’ conjecture on rational curves
in such varieties, which is based on a deformation argument.

Conjecture 0.3 (Lang) Let X be any complex algebraic variety. Then if X
is not Kobayashi hyperbolic, there exists a non-constant rational map from
an abelian variety to X.

In fact, Lang conjectures more precisely that the locus swept out by entire
curves is equal to the locus swept out by images of non constant rational
maps from an abelian variety to X, and that this locus is equal to X if and
only if X is not of general type. Note that this conjecture is not true if X is
not projective [9].

Conjecture 0.4 (Green-Griffiths) Let X be a projective complex manifold
which is of general type. Then an entire curve is not Zariski dense in X.

A more optimistic version asks whether there exists a proper algebraic subset
containing all entire curves. This conjecture is supported by the case of
subvarieties of complex tori, (Bloch’s Theorem, see also Green and Griffiths,
[29]) and by the case of surfaces where it is proved by McQuillan for surfaces
of general type satisfying c2

1 > c2 (cf [48] and Theorem 2.7). Furthermore,
for surfaces of general type, without any conditions on the Chern numbers,
Green and Griffiths show that there is an algebraic differential equation
satisfied by all the holomorphic maps from C to S.

Conjecture 0.5 (Kobayashi) Let X be a projective variety with trivial canon-
ical bundle. Then its Kobayashi pseudo-distance vanishes.

This is largely open. This is known for surfaces, using the classification and
the fact that K3 surfaces are swept out by elliptic curves. There is a more
general conjecture by Campana characterizing projective varieties for which
the Kobayashi pseudo-distance vanishes (cf section 1.3.3).

Conjecture 0.6 (Demailly) A complex projective variety is Kobayashi hy-
perbolic if and only if it is algebraically Kobayashi hyperbolic.

Here the notion of algebraic Kobayashi hyperbolicity is as follows : X is
said to be algebraically hyperbolic if the geometric genus of curves in X
grows linearly with their degree with respect to a (any) ample line bundle
on X. It is immediate to see that Kobayashi hyperbolicity implies alge-
braic Kobayashi hyperbolicity (cf Proposition 2.1). Algebraic Kobayashi
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hyperbolicity is much easier to prove (see section 3.1.1), so this conjecture
is presumably very hard. One might also ask whether it can combined with
Conjecture 0.4 : in a variety of general type, does there exist a closed alge-
braic subset containing all curves C satisfying g(C)/deg C ≤ A for A small
enough?

Conjecture 0.7 (Kobayashi) Let X be a general hypersurface of large de-
gree d in Pn+1. Then X is Kobayashi hyperbolic.

This conjecture has been solved recently by Demailly-Elgoul for surfaces, and
then by Siu in the general case. A more precise version of it asks whether the
hypersurfaces as above are Kobayashi hyperbolic when d ≥ 2n + 1, n ≥ 2.
A related problem is the (algebraic) study of Green-Griffiths conjecture in
the range n + 3 ≤ d ≤ 2n − 1 in Pn+1. Indeed, in this range we know that
the hypersurfaces are of general type but contain lines, so are not Kobayashi
hyperbolic. One important and presumably accessible question is : is the
degree of rational curves in general such hypersurfaces bounded?

The related progresses presented here are the following ;

1. (Demailly-Lempert-Shiffmann, see section 1.2.2)The Kobayashi infinites-
imal pseudo-metric of a projective algebraic variety can be computed
using algebraic curves in X, together with their Poincaré metric.

2. (Voisin, see section 2.2) Replacing holomorphic maps by K-correspondences
(cf section 2.2.1), we get a variant of the Kobayashi-Eisenman pseudo-
volume form (cf section 2.2.3). On one hand it satisfies the Griffiths,Kobayashi-
Ochiai theorem, that is, it is non-degenerate on a Zariski open set for
a variety of general type. On the other hand it vanishes for many
varieties which are not of general type.

3. (Voisin, see section 3.2.3)If X is a general Calabi-Yau hypersurface in
projective space, then X is not swept out by images of rational maps
from abelian varieties of dimension ≥ 2 to X. As a consequence,
Lang’s conjecture 0.2 and Clemens conjecture on the finiteness of ra-
tional curves of given degree in a general quintic threefold, contradict.

4. (Clemens, Ein, Voisin, see section 3.1.1)Let X ⊂ Pn+1 be a general
hypersurface of degree d ≥ 2n + 1. Then X is algebraically Kobayashi
hyperbolic.

5. (Demailly-El Goul, see section 3.1.3)A general surface in P3 of degree
≥ 21 is Kobayashi hyperbolic.

6. (Siu, see section 3.1.3)A generic hypersurface of sufficiently high degree
in projective space is Kobayashi hyperbolic.
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As one can see, many problems from the above list remain open. The most
important are maybe conjectures 0.4 and 0.1, which together provide a very
nice picture of the whole subject.

From a purely algebraic point of view, the most intriguing questions
which have been mentioned here in the case of hypersurfaces, are related to
Bogomolov’s Theorem [4], saying that on a surface of general type satisfying
the inequality

c2
1 > c2

there are only finitely many families of curves of any given genus. This
theorem is obviously related to Conjecture 0.4, and should be true without
the assumptions on the Chern classes. However it is still unknown if a
smooth quintic surface in P3 can have infinitely many rational curves (see
more generally Conjecture 3.9).

A part from these results and the sketch of their proofs, the survey will
present a number of examples illustrating the conjectures. We shall also
provide the details of a few basic points, like Ahlfors-Schwarz Lemma or
Brody’s reparametrization Lemma, and their main classical consequences,
like the weak Bloch Theorem or the Griffiths-Kobayashi-Ochiai Theorem,
hoping to make the paper as useful an instructive as possible.

There has been recent important developments [27], [28] of Lang’s ideas,
which we have completely omitted here, which concerns the number theoretic
vision of these problems. Namely relate the analytic properties of a complex
variety, to the behavior of its rational points over non algebraically closed
fields.

One reason not to expose these results in this paper is the fact that
they concern rationally connected varieties, and more precisely, working over
function fields, families of them, while the crucial dichotomy here is being
of general type or not.

Thanks. I would like to thank MIT and Harvard University for inviting
me to deliver lectures at the seminar Current developments in Mathematics
2003, which led me to write-up these notes.
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Chapter 1

The analytic setting

1.1 Basic results and definitions

We introduce in this introductory section the basic definitions of the Kobayashi-
Eisenman Finsler pseudo-metrics on the spaces of holomorphic k-vectors and
state a few properties. The remainder of the text will be mainly devoted to
the two cases of the volume (k = n and the Kobayashi-Royden infinitesimal
pseudo-metric (k = 1), with emphasis on the volume case in chapter 2. We
also explain Brody’s reparametrization theorem and conclude with a simple
statement concerning the relation between volumes and metrics.

1.1.1 Definition of the pseudo-metrics/volume forms

Let X be a complex manifold. Kobayashi [39] introduces a pseudo-distance
dK,X on X, whose infinitesimal version is a Finsler pseudo-metric dinf

K,X de-
fined by Royden on the tangent space TX , and a pseudo-volume form ΨX ,
i.e, a pseudo-Hermitian norm on

∧n TX , n = dim X. These objects have
been generalized by Eisenman [26] to give p-pseudo-volume forms defined on
holomorphic decomposable p-vectors of X.

Definition 1.1 1. The Kobayashi-Royden infinitesimal pseudo-metric dinf
K,X

is defined by

dinf
K,X(u) =

1
λ

, λ = sup
φ
{| µ |, φ∗(

∂

∂t
) = µu},

for u ∈ TX,x. Here φ runs over the set of holomorphic maps from the
unit disk D to X, such that φ(0) = x.

2. The Kobayashi pseudo-volume form ΨX is the pseudo-volume form
whose associated Hermitian pseudo-norm on

∧n TX is defined by

ΨX(ζ) =
1
λ

, λ = sup
φ
{| µ |, φ∗(

∂

∂t1
∧ . . . ∧ ∂

∂t1
) = µζ},

9
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for ζ ∈ ∧n TX,x, n = dimX. Here φ runs over the set of holomorphic
maps from Dn to X, such that φ(0) = x.

3. More generally the Eisenman p-pseudo-volume form Ψp
X is defined as

in 2, replacing n = dimX by any p comprised between 1 and n. It
is then defined only on p-vectors ζ ∈ ∧p TX,x which are decomposable,
that is ζ = u1 ∧ . . . ∧ up.

We clearly have
Ψ1

X = dinf
K,X , Ψn

X = ΨX .

Example 1.2 If X = Cn, we clearly have Ψp
X = 0, ∀p ≥ 1. Indeed, there is

a polydisc Dp ⊂ Cn centered at any possible point and with arbitrary tangent
space. Using then affine maps v 7→ λv + v0 with adequate v0, and taking
λ arbitrarily large, provides such polydisk with arbitrarily large associated
p− vector at 0, passing through any point.

In the sequel we shall be mainly interested in the two extremal cases p =
1, p = n.

It is possible to introduce integrated versions of the above notions.

Definition 1.3 The Kobayashi measure is the measure defined by the pseudo-
volume form ΨX . It is well defined since ΨX can be defined locally as a
dominated supremum of differentiable volume forms.

In order to define the Kobayashi pseudo-distance, let us recall the Poincaré
metrics on the disks :

Definition 1.4 Let Dr be the disk of radius r in C. Then the Poincaré
metric || ||Pr on Dr is defined by its Kähler form :

Ωr =
i

2
r4

(r2− | z |2)2 dz ∧ dz.

Note that || ||Pr is equal to the Euclidean metric at 0. Furthermore, when
r tends to infinity, it converges uniformly on compact sets K ⊂ C to the
Euclidean metric.

For r = 1, we shall denote by || ||P the Poincaré metric and dP the
Poincaré distance on the unit disk.

Definition 1.5 The Kobayashi pseudodistance dK,X is defined by

dK,X(x, y) = inf
φi,pi,qi

∑

i

dP (pi, qi),

where the φi’s are N holomorphic maps from D to X, and the points pi, qi ∈
D satisfy :

φ1(p1) = x, φN (qN ) = y, φi(qi) = φi+1(pi+1), i < N.



1.1. BASIC RESULTS AND DEFINITIONS 11

Royden [55] proved that dK,X is the distance deduced from dinf
K,X by integra-

tion over pathes :

Theorem 1.6 (Royden) For γ : [0, 1] → X a differentiable path in X, the
length

∫
[0,1] d

inf
K,X(γ̇)dt is well defined, and one has

dK,X(x, y) = inf
γ,γ(0)=x,γ(1)=y

∫

[0,1]
dinf

K,X(γ̇)dt.

Remark 1.7 A simple but important point in the proof of the theorem above,
is the fact that for X = D, the Kobayashi pseudo-metric is equal to the
Poincaré metric || ||P , a fact which will be proved in 1.2.1.

Definition 1.8 X is said to be Kobayashi hyperbolic if dK,X is actually a
distance on X. As we shall see later on, if X is compact, it is equivalent to
the fact that dinf

K,X is equivalent to any Hermitian norm on TX .

Definition 1.9 X is said to be measure hyperbolic if the Kobayashi measure
does not vanish on any open set, or equivalently ΨX is non zero almost
everywhere.

1.1.2 First properties

The first obvious property satisfied by the pseudo-metrics or distances de-
fined in the previous section is the decreasing property under holomorphic
maps.

Lemma 1.10 Let φ : X → Y be a holomorphic map. Then for any integer
p, we have

φ∗(Ψp
Y ) ≤ Ψp

X .

This makes sense, using the maps ∧pφ∗, which send decomposable p-vectors
of X at x to decomposable p-vectors of Y at φ(x).

Let us now consider the behavior of dK and Ψ under products.

Proposition 1.11 We have

dK,X×Y = sup {pr∗1dK,X , pr∗2dK,Y }.

Proof. Let x1, x2 ∈ X, y1, y2 ∈ Y . Assume that dK,X(x1, x2) ≤ dK,Y (y1, y2).
For any ε > 0 there exists φi : D → X, pi, qi ∈ D, i = 1, . . . , N and
ψi : D → X, p′i, q′i ∈ D, i = 1, . . . , N such that

φ1(p1) = x1, φN (qN ) = x2, φi(qi) = φi+1(pi+1), i < N,

ψ1(p′1) = y1, ψN (q′N ) = y2, ψi(q′i) = ψi+1(p′i+1), i < N,
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and satisfying
dP (pi, qi) ≤ dP (p′i, q

′
i),∑

i

dP (pi, qi) ≤ dK,X(x1, x2) + ε,
∑

i

dP (p′i, q
′
i) ≤ dK,Y (y1, y2) + ε.

Now we observe that since dP (pi, qi) ≤ dP (p′i, q
′
i), there exists a holomorphic

map χi : D → D ×D sending p′i, q
′
i to (pi, p

′
i), (qi, q

′
i) respectively. But then

it follows from the definition of dK,X×Y that

dK,X×Y ((x1, y1), (x2, y2)) ≤
∑

i

dP (p′i, q
′
i) ≤ dK,Y (y1, y2) + ε.

Letting ε tend to 0, we have proved that

dK,X×Y ((x1, y1), (x2, y2)) ≤ dK,Y (y1, y2).

The reverse inequality follows from Lemma 1.10.

As for volume forms, we have the following :

Proposition 1.12 We have

ΨX×Y ≤ pr∗1ΨX ⊗ pr∗2ΨY ,

ΨX×Y ≥ Cpr∗1ΨX ⊗ pr∗2ΨY ,

for a constant C which depends only on the dimensions of X and Y .

Proof. The first inequality is obvious, since a holomorphic map φ1 : Dp →
X, p = dimX and a holomorphic map φ2 : Dq → Y, q = dimY provide
a holomorphic map φ = (φ1, φ2) : Dp+q → X × Y, p + q = dimX × Y ,
whose Jacobian determinant in product holomorphic coordinates is the ten-
sor product of the Jacobian determinants of φ1 and φ2.

As for the reverse inequality, let φ : Dn → X × Y, n = p + q be a
holomorphic map. For each partition

{1, . . . , n} = I t J,

we get two maps
φI : Dp → X, φJ : Dq → Y,

where φI is obtained by restricting φ to 0× . . .×D× . . ., where the D’s are
put in the i-th positions, and then projecting to X, and similarly for φJ .

Now, in product holomorphic coordinates, the Jacobian matrix JφI
of

φI is the matrix whose lines are the first p-lines of the one of φ, and whose
columns are the columns of indices i ∈ I. The formula
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det Jφ =
∑

I,J

εI,Jdet JφI
det JφJ

for adequate signs εI,J shows that

| det Jφ |≤
∑

I,J

| det JφI
det JφJ

|

≤ Cp
n sup

I,J
| det JφI

| · | det JφJ
| .

Hence, for some partition (I, J), we have

C−1 | det JφI
| · | det JφJ

|≥ det Jφ,

where C = 1
Cp

n
. It follows that

ΨX×Y ≥ Cpr∗1ΨX ⊗ pr∗2ΨY .

Yau’s variant.
In [69], Yau introduces an important variant of the Ψp

X that we will
denote by Ψ̃p

X .

Definition 1.13 The p-pseudo-volume form Ψ̃p
X is the semi-positive real

function defined on decomposable p-vectors u ∈ ∧p TX,x by the formula

Ψ̃p
X(u) =

1
λ

, λ = sup
φ
{| µ |, φ∗(

∂

∂t1
∧ . . . ∧ ∂

∂t1
) = µζ}.

Here φ runs over the set of meromorphic maps from Dp to X, defined near
0, and such that φ(0) = x.

Clearly, for p = 1 and X compact, Yau’s and Kobayashi’s pseudo-metrics
coincide. In general it is not clear at all whether they can be compared,
except for the obvious inequality Ψ̃p

X ≤ Ψp
X . It is obvious from the definition

that the Ψ̃ satisfy the decreasing property with respect to meromorphic
maps:

Lemma 1.14 Let φ : X → Y be a meromorphic map. Then for any p ≤
dimY we have

φ∗(Ψp
Y ) ≤ Ψp

X

away from the indeterminacy locus of φ.
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1.1.3 Brody’s theorem, applications

If there exists a non constant holomorphic map f : C → X, the Kobayashi
infinitesimal pseudometric dinf

K,X vanishes on the tangent vectors to Im f ,

because of the decreasing property and the fact the dinf
K is 0 for C. Hence it

follows that X is not Kobayashi hyperbolic. Brody’s theorem [5] provides a
converse to this :

Theorem 1.15 (Brody) If X is compact and the Kobayashi infinitesimal
pseudometric is degenerate, then there exists a non constant holomorphic
map f : C→ X.

Here “degenerate” means that there does not exist a constant C (depending
of a given Hermitian metric h on X), such that

dinf
K,X(u) ≥ C | u |h, ∀u ∈ TX .

Proof. If dinf
K,X is degenerate, there exists a sequence of holomorphic

maps φn : Drn → X, satisfying

| dφn(0)(
∂

∂t
) |h= 1, lim

n→∞ rn = ∞. (1.1.1)

The proof of the theorem uses then the following lemma :

Lemma 1.16 (Brody) There exists a sequence of holomorphic maps ψn :
Drn → X, satisfying the properties :

| dψn(0)(
∂

∂t
) |h= 1 = Supz∈Drn

|| dφn(z) ||Prn ,h . (1.1.2)

Here the norm || ||Prn ,h on Hom (TDrn ,z, TX,ψn(z)) is induced by h and
by the Poincaré metric || ||Prn

(see Definition 1.4).
Admitting the Lemma, we conclude as follows : the sequence of maps

ψn, which is defined on any compact set K ⊂ C for n large enough depend-
ing on K, is equicontinuous by the second bound in (1.1.2), and because
the Poincaré metrics || ||Prn

converge uniformly on compact sets to the Eu-
clidean metric. Hence this sequence converges uniformly on compact sets to
a holomorphic map

f : C→ X,

which is non constant, because of the first equality in (1.1.2).
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Remark 1.17 Since the Poincaré metric on Drn, which is defined on DR

for n large, converges uniformly on compact sets to the Euclidean metric on
C, the limiting map f satisfies the property that

Supz || df(z) ||E,h= 1,

where the norm || ||E,h on Hom (TC,z, TX,f(z)) is induced by h and by the
Euclidean metric on C.

Proof of the Lemma. For each t ∈ [0, 1], define

s(t) = Supz∈Drn
|| (φ ◦ t)∗ ||Prn ,h,

where the norm here is computed w.r.t the metric h on X and the Poincaré
metric || ||Prn

on Drn . We use here t to denote the multiplication by t acting
on Drn . One shows easily that s is a continuous function of t. On the other
hand, we have s(0) = 0 and s(t) ≥ 1, since the Poincaré metric is equal
to the Euclidean metric at 0, and by assumption (1.1.1). Hence for some
tn ∈ (0, 1], we have s(tn) = 1. The map ψn will then be defined as follows
: if tn = 1 one puts ψn = φn. If tn < 1, it is clear that the supremum
which defines s(tn) is realized at some point y ∈ Drn because in this case
the function || (φ ◦ t)∗ ||Prn ,h vanishes on the boundary of Drn . Then one
puts

ψn = φn ◦ tn ◦ g,

where g is an automorphism of the disk Drn sending 0 to y. Since AutD
acts preserving the Poincaré metrics, ψn satisfies the assumptions (1.1.2).

A simple application of this theorem, which is given in [31], is the fol-
lowing weak version of Bloch’s theorem :

Theorem 1.18 Let T be a complex torus, and let X ⊂ T be a closed complex
submanifold which does not contain any translate of a subtorus of T . Then
X is Kobayashi hyperbolic.

Proof. Assume X is not Kobayashi hyperbolic. Then there exists a non
constant holomorphic map f : C→ X, and we may assume by Remark 1.17
that || df ||h≤ 1 for any Hermitian metric h on X. Take a metric on X which
is the restriction of a metric on T which is itself induced by a constant metric
on the universal cover Cn of T . Then the map f lifts to a holomorphic map
f̃ : C → Cn which has bounded differential, hence must be affine linear. It
follows that the closure (for the real or analytic Zariski topology) of Imf is
a translate of a subtorus of T which is contained in X.
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Coming back to Brody’s proof of the existence of entire curves in non
Kobayashi hyperbolic compact complex manifolds, we observe that it does
not give any precision about where the curve is. For example, assume that
the sequence φn(0) converges to a point x ∈ X, where φn is as in the state-
ment of Brody’s theorem, (we will say then that the Kobayashi infinitesimal
pseudometric of X is degenerate at the point x). Then it does not follow that
one can construct f such that x lies in the closure of the image of f . Looking
a little more precisely at the proof, we can however prove the following :

Proposition 1.19 Assume that X is compact and that the Kobayashi in-
finitesimal pseudometric of X is degenerate at the point x. Then there exists
a non constant holomorphic map

f : C→ X,

such that x satisfies

dK,X(x, u) = 0, ∀u ∈ Im f.

Corollary 1.20 Let X be compact. Then for any x ∈ X, the set

Zx := {y ∈ X, dK,X(x, y) = 0}

is reduced to {x} or contains Im f for a non constant holomorphic map f
from C to X (that is an entire curve).

Proof of Corollary. Indeed, if Zx contains a point y 6= x, it follows that
the infinitesimal pseudometric has to be degenerate at x, since otherwise, by
Royden’s theorem, there is an estimate

d(x, x′) ≥ c dh(x, x′)

for x′ in a small neighbourhood of x, hence a lower bound

d(x, x′) ≥ Min (ε, c dh(x, x′))

for any x′.

Proof of Proposition 1.19. We observe the following: Lemma 1.16
introduces reparameterizations

ψn = φn ◦ tn ◦ gn

of the initial sequence φn. There are now two possibilities :



1.1. BASIC RESULTS AND DEFINITIONS 17

1) We have limt→∞ tn = 0 : we know that limn→∞ φn(0) = x. We may
assume that the sequence ψn(0) converges to f(0), so it suffices to show that

lim
n→∞ dK,X(ψn(0), φn(0)) = 0.

Now we have ψn(0) = φn ◦ tn(yn) and so the result follows from dK,X(φn ◦
tn(yn), φn(0)) ≤ dP (tnyn, 0) and

lim
n→∞ dP (tnyn, 0) = 0.

2)We have limt→∞ tn 6= 0 : this case is still simpler. Indeed, in this case,
instead of considering the maps ψn, we can consider the maps χn = φn ◦ tn
from Drn to X. They form an equicontinuous family which satisfies :

lim
n→∞χn(0) = x, lim inf

n→∞ | dχn(0) |6= 0.

Hence we can extract a subsequence converging uniformly on compact sets
to a non constant holomorphic map f : C→ X satisfying f(0) = x.

Another important application of Brody’s Lemma is the following theo-
rem.

Theorem 1.21 Let f : X → B be a smooth proper holomorphic map. As-
sume that a fiber X0 is hyperbolic. Then there is an open neighborhood U of
0 such that all fibers Xt, t ∈ U are hyperbolic.

Proof. Indeed, choose a relative metric on X and assume to the contrary
that there is a sequence of points tn ∈ B tending to 0, with Xtn not hyper-
bolic. By Theorem 1.15 and properness of f , there exist holomorphic maps
φn : C→ Xtn satisfying

sup
u∈C

|| dφn(u) ||=|| dφn(0) ||= 1.

By equicontinuity, using properness of f , these maps converge uniformly to
a non constant holomorphic map from C to Xt0 , which is a contradiction.

In the non compact case, Theorem 1.15 is not true anymore. However,
for hypersurface complements, the following is true :

Theorem 1.22 Let X be compact complex manifold and Y ⊂ X be an
hypersurface. If Y is Brody hyperbolic and U := X r Y is Brody hyperbolic,
then U is Kobayashi hyperbolic.



18 CHAPTER 1. THE ANALYTIC SETTING

Here, for a complex manifold Z, being “Brody hyperbolic” means that there
is no non constant holomorphic map from C to Z.

The proof uses Brody’s reparameterization Lemma for holomorphic maps
φ : ∆ → U . The point is to show that if a sequence of such maps has an
unbounded differential at 0, after rescaling and reparameterization, one can
extract a subsequence converging to a non constant holomorphic map with
value either in U or in Y .

1.1.4 Relation between volume and metric

It is natural to try to establish relations between the various Ψp
X . The only

obvious fact is the following :

Lemma 1.23 Assume ΨX vanishes at x, or more generally that there is a
sequence xn of points of X such that limn→∞ xn = x and limn→∞ΨX(xn) =
0. Then the Kobayashi pseudo-metric is degenerate at x.

Proof. By assumption, there exists a sequence of holomorphic maps

φk : Dn → X,

such that
φk(0) = xk, lim

k→∞
| Jφk

(0) |= ∞.

Here the Jacobian determinant Jφk
is computed via a choice of holomorphic

coordinates on X, and with respect to the natural coordinates of Dn at 0.
Now, if limk→∞ | Jφk

(0) |= ∞, at least one of the colums vectors ui
k of

the Jacobian matrix has a modulus which tends to infinity, with respect to
a fixed Hermitian metric h on X. But this column vector is fk∗( ∂

∂t) for some
holomorphic map fk : D → X, such that fk(0) = xk. Hence the Kobayashi
infinitesimal pseudo-metric is degenerate at x.

It seems very natural to ask conversely :

Conjecture 1.24 Assume that dinf
K,X is degenerate everywhere on X. Does

it follow that ΨX = 0 almost everywhere?

We shall come back to a similar problem in section 2.1.3.

1.2 Curvature arguments

We explain here a few basic arguments from analysis, which give sufficient
criteria for measure or distance hyperbolicity. In particular we explain the
proof of the Griffiths-Kobayashi theorem on the measure-hyperbolicity of va-
rieties of general type.
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1.2.1 Hyperbolic geometry and the Ahlfors-Schwarz lemma

Ahlfors-Schwarz Lemma (Proposition 1.25 below) is the best known tool to
relate curvature properties of a complex manifold and holomorphic maps
from disks or polydisks to it. Recall the Poincaré Kähler form

Ω1 =
i

2
dz ∧ dz

(1− | z |2)2 (1.2.3)

on the disk D. There is the associated product Kähler form

Ω =
j=n∑

j=1

i

2
dzj ∧ dzj

(1− | zj |2)2

on the polydisk Dn. The associated volume form is the hyperbolic volume
form

κn =
Ωn

n!
=

in

2n
πj=n

j=1

dzj ∧ dzj

(1− | zj |2)2 .

The Ricci form i∂∂log κn is equal to

−2i
∑

j

∂∂log (1− | zj |2) = 2i
∑

j

∂(
zj

1− | zj |2 dzj)

= 2i
∑

j

dzj ∧ dzj

(1− | zj |2)2 = 4Ω.

Hence we conclude that κn satifies the conditions :

i∂∂log κn > 0, (1.2.4)
(i∂∂log κn)n = 4nn!κn. (1.2.5)

We shall denote by cn the constant 4nn!. Ahlfors-Schwarz lemma, or rather
its n-dimensional version, says the following :

Proposition 1.25 Let µ be a mild pseudo-volume form on Dn which satis-
fies the conditions

i∂∂log µ > 0, (1.2.6)
(i∂∂log µ)n ≥ cnµ. (1.2.7)

Then

κn ≥ µ. (1.2.8)
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Here a mild pseudo-volume form is a pseudo-volume form which can be
written as | g | 1r ψ for some holomorphic function g, some non negative
integer r and C∞ volume form ψ. In other words, it vanishes mildly where
it vanishes. Its Ricci form i∂∂log µ is defined as i∂∂log ψ in the above local
form.

Proof. The proof is well known. It ultimately relies on the maximum
principle. One first replaces Dn by Dn

1−ε, and κn by the Poincaré volume
form κn,ε. Proving the inequality (1.2.8) for κn,ε on Dn

1−ε will give the result
since κn,ε converges to κn uniformly on compact sets of Dn when ε tends to
0.

Next one observes that the function f = µ
κn

is continuous and vanishes
on the boundary of Dn

1−ε and on the singular locus of µ. Hence it has a
maximum in Dn

1−ε, and if x is a point where f is maximum, f is C∞ at x.
Assume by contradiction that f(x) > 1. Then we have

µ > κn

at x. Using (1.2.5) and (1.2.7) it follows that

(i∂∂log µ)n > (i∂∂log κn)n

at x or
(i∂∂log µ)n − (i∂∂log κn)n > 0.

But this expression can be written as

(i∂∂log f)Θ > 0,

where, using the conditions (1.2.4) and (1.2.6), the (n− 1, n− 1)-form Θ is
positive.

It follows that the (1, 1)-form i∂∂log f cannot be semi-negative at x,
contradicting the fact that f has a maximum here.

There are a number of applications of Ahlfors-Schwarz lemma. We state
here the most direct ones.

Theorem 1.26 (Kobayashi) The Kobayashi pseudo-volume form ΨDn is
equal to κn. In particular, for n = 1 the Kobayashi pseudo-distance dK,D is
equal to the Poincaré distance dP .

Proof. We use the fact that Aut Dn acts transitively on Dn. Let now ψ ∈
AutDn. Applying Ahlfors-Schwarz Lemma to µ = ψ∗κn gives ψ∗κn ≤ κn,
and applying it to ψ−1, we conclude that ψ∗κn = κn. From the definition
of Ψ, the fact that Aut Dn acts transitively, and the equality above, we now
conclude that ΨDn ≤ κn.
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Next, if φ : Dn → Dn is a holomorphic map which is generically of
maximal rank, we apply Ahlfors-Schwarz lemma to µ = φ∗κn, which gives

φ∗κn ≤ κn.

By the definition of Ψ, this implies that

ΨDn ≥ κn.

The next immediate application concerns projective varieties with cur-
vature conditions :

Theorem 1.27 Let X be a compact variety with ΩX ample. Then X is
Kobayashi hyperbolic.

Recall that a vector bundle E on X is said to be ample if the line bundle
OP(E∗)(1) is ample on P(E∗).

Proof. The assumption implies the existence of a Hermitian metric
h on the line bundle OP(TX)(−1) on P(TX), which satisfies the condition
that i∂∂log h > 0. After rescaling if necessary, one may assume that h
satisfies the following inequality (1.2.9): for any non constant holomorphic
map f : D → X, with tangent lift f̃ : D → P(TX), h provides a metric
on f̃∗OP(TX)(−1), hence a pseudo-metric f̃∗h on TD, using the natural map
TD → f̃∗OP(TX)(−1). Then for a constant c1 > 0, we have :

f̃∗i∂∂log h ≥ c1f̃
∗h, (1.2.9)

where on the right we see f̃∗h as a real semi-positive (1, 1)-form. Rescaling if
necessary, we may assume that c1 = 4. Now if f : D → X is a non constant
holomorphic map with tangent lifting f̃ , the inequality (1.2.9), together with
the fact that f̃∗i∂∂log h is the Ricci form of f̃∗h because f̃ is the tangent
lifting, and Ahlfors-Schwarz lemma, imply that f̃∗h ≤ Ω1. This says exactly
that the infinitesimal pseudo-metric of X satisfies

dinf
K,X ≥| |h .

Remark 1.28 The last inequality is an inequality of Finsler pseudo-metrics
on TX , that is of Hermitian pseudo-norms on the line bundle OP(TX)(−1)
on P(TX).
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To conclude this section, we have the following “main Theorem” ([42], [41],
[33], [69]) concerning the pseudo-volume forms ΨX , Ψ̃X .

Theorem 1.29 If X is a projective variety of general type, Ψ̃X > 0 on a
Zariski dense open set of X.

Remark 1.30 The proof shows that in fact Ψ̃X ≥ µ for some mild pseudo-
volume form on X.

Proof. Let us restrict for simplicity to working with ΨX and in the case
where the canonical bundle of X is ample (this is the case considered by
Griffiths). In this case, there exists a volume form µ on X which satisfies
i∂∂log µ > 0. Rescaling, and using compactness, we may assume that

i∂∂log µ > 0, (i∂∂log µ)n ≥ cnµ.

If φ : Dn → X is holomorphic and generically of maximal rank n = dimX,
we can then apply Ahlfors-Schwarz lemma to φ∗µ, which gives

φ∗µ ≤ κn.

By the definition of ΨX , this implies that

ΨX ≥ µ. (1.2.10)

1.2.2 Another definition of the Kobayashi infinitesimal pseudo-
metric

It is interesting, having in mind to relate algebraic geometry and analytic
geometry as will be done at least conjecturally in next chapter, to note that
Demailly, Lempert, and Shiffman [22] have an alternative way to compute
the Kobayashi infinitesimal pseudo-metric for projective varieties, which uses
only algebraic curves, together with their Poincaré metric. This is based on
their approximation theorem, which is stated below.

Definition 1.31 A holomorphic map φ : D → X is said to be Nash alge-
braic, if there exist an algebraic curve C, and a correspondence

f : C → X
r ↓
P1

,

such that r−1(D) has one component D′ which is isomorphic to D via r, and

φ = f ◦ r−1
|D′ .
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Here we see D as naturally imbedded in P1. The theorem of [22], (which we
state here only for the disk) is the following :

Theorem 1.32 Any holomorphic map φ : D → X, where X is projective,
can be approximated uniformly on compact sets by Nash algebraic maps.
Furthermore we can approximate f by Nash algebraic maps g such that
g(0) = f(0) and f∗ is proportional to g∗ at 0.

As a corollary we get the following way of computing the Kobayashi infinites-
imal pseudo-metric of a projective complex manifold. The Poincaré metric
|| ||P on the disk D induces the Poincaré metric || ||P,C on each smooth
curve C of genus g ≥ 2, since D is the universal cover of C, and Aut D acts
preserving || ||P . We have the following (see [22]:

Proposition 1.33 For x ∈ X, u ∈ TX,x we have

dinf
K,X(u) = inf

C,φ,v
|| v ||P,C ,

where C is a smooth projective curve, φ : C → X is a morphism, v ∈
TC,c, φ(c) = x, φ∗(v) = u.

Here we make the convention that || v ||P,C= 0 if C has genus ≤ 1.

Proof. The inequality ≤ is immediate. Indeed, if C, φ are as above,
let s : D → C be the universal covering map, and let ψ = φ ◦ s. We have
ψ∗( ∂

∂t) = λu, and since φ∗(v) = u, we have ψ∗(λ−1 ∂
∂t) = u. Hence | λ |

satisfies
|| v ||P,C=|| λ−1 ∂

∂t
||P =| λ−1 | .

By the definition of the Kobayashi infinitesimal pseudo-metric, we then con-
clude that

|| v ||P,C≥ dinf
K,X(u).

In the other direction, let x ∈ X, u ∈ TX,x and let φ : D → X be a
holomorphic map, with φ(0) = x, φ∗( ∂

∂t) = λu. We know by Theorem 1.32
that φ can be approximated uniformly on compact sets by Nash algebraic
maps f ◦ r−1, where f : C → X is a morphism from an algebraic curve C,
f(c) = x, r(c) = 0 and f ◦ r−1∗ , φ∗ are proportional at 0. We identify via r
the disks D′ and D. We have f∗( ∂

∂t) = (λ + ε)u, where ε can be assumed
arbitrarily small. By Ahlfors-Schwarz Lemma 1.25, we have

|| ||P,C |D ≤|| ||P .

It follows that
|| ∂

∂t
||P,C ≤ 1,
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hence, since v = 1
λ+ε

∂
∂t , we have

|| v ||P,C ≤| 1
λ + ε

|≤ 1
| λ | − | ε | .

Since dinf
K,X(u) is the inf of the above 1

|λ| , the inequality ≥ is proved.

1.2.3 Jet differentials

The most immediate application of Ahlfors-Schwarz Lemma 1.25 (case n =
1) to the Kobayashi pseudo-metric is Theorem 1.27. This theorem uses un-
fortunately very strong assumptions, which are not satisfied in many cases
where it is conjectured, and even sometimes proved, that the variety is
Kobayashi hyperbolic, for example high degree hypersurfaces in projective
space (see section 3.1.3).

Green and Griffiths [29] show how to apply Ahlfors-Schwarz Lemma
to much softer objects than Hermitian metrics, namely jet pseudo-metrics,
which led to important applications (Theorems 2.7, 3.14, 3.17). The general
idea is as follows : for a complex manifold X, consider the jet space Jk(X)
which is the space of morphisms

φ : SpecC[t]/(tk+1) → X,

or order k jets of germs of holomorphic maps D → X defined near 0. This
space is a vector bundle over X of rank nk, n = dimX, as one sees by
taking local coordinates on X. There is a natural compact version Pk(X) of
Jk(X), which is the quotient of Jk(X)r0−section by the C∗-action given by
rescaling. The interest of these spaces lies in the fact that any holomorphic
map f : D → X admits a canonical lift fk : D → Jk(X), which associates to
each point t the k-jet of f at t. If f is non-constant, there is also a canonical
lift fk : D → Pk(X) obtained by projecting the previous one.

k-jet differentials of degree m are defined as sections of the bundleOPk
(m),

where one sees Pk as a weighted projective bundle over X. In other words
a k-jet differential is a polynomial function σ on Jk(X) which satisfies the
condition

σ(λ · fk) = λmσ(fk),

where for λ ∈ C∗, λ· denotes the action of λ on Jk(X) by rescaling. Jet dif-
ferentials can be used to define jet pseudo-metrics, which generalize Finsler
pseudo-metrics on tangent space. A Finsler pseudo-metric on TX is a func-
tion | | on TX which satisfies the condition

| λu |=| λ || u |, u ∈ TX,x, λ ∈ C.
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In other words, it is a Hermitian pseudo-norm on the line bundle O(−1) on
P(TX). The Kobayashi infinitesimal pseudo-metric is an example.

More generally a k-jet pseudo-metric is a function | | on Jk(X), which
satisfies the condition

| λ · uk |=| λ || uk |, uk ∈ Jk(X), λ ∈ C.

Equivalently, this is a pseudo Hermitian norm on the line bundle O(−1)
on Pk. If σ1, . . . , σN are jet differentials of degree m on Pk(X), one can
construct the jet pseudo-metric

| fk |= (
∑

i

| σi |2)
1

2m .

It vanishes on the base-locus of the σi’s. A jet pseudo-metric as above
has a curvature on holomorphic disks (along which it is not everywhere
degenerate), defined as follows : If f : D → X is a holomorphic map, with
lift fk : D → Jk(X), consider the function

| fk |= (
∑

i

| σi(fk) |2)
1

2m

on D. Assuming it is non zero, the (1, 1)-form

−i∂∂log | fk |2

is C∞ on D and the curvature will be the ratio

R = − i∂∂log | fk |2
| fk |2 idz ∧ dz

.

This ratio is a function on D. Note that if f is replaced with f ◦ λ for some
λ ∈ C∗, the curvature is not changed.

Ahlfors-Schwarz lemma applied to the case n = 1 shows the following :

Lemma 1.34 (Green-Griffiths) If for some A > 0, the jet pseudo-metric
constructed as above has curvature ≤ −A on a given disk f : D → X, then
one has

| fk |2 idz ∧ dz ≤ 4A−1Ω1,

where Ω1 is the Kähler form of the Poincaré metric (Definition 1.4).

As a corollary, one gets :

Corollary 1.35 If for a given A > 0 the jet pseudo-metric constructed as
above has curvature ≤ −A on disks whose lifts are not contained in a given
proper algebraic subset B ⊂ Jk(X), then any holomorphic map f : C → X
must have its canonical lift contained in B.

Indeed, we apply the lemma to disks contained in C and centered at 0, noting
that the Poincaré metric || ||P on them converges uniformly on compact sets
to 0, when the radius tends to infinity.
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Green and Griffiths deduce from this :

Theorem 1.36 Assume that L is an ample line bundle on X, and that

σ ∈ H0(Pk,OPk
(m)⊗ π∗L−1),

where π : Pk → P is the structural map. Then for any non constant holo-
morphic map f : C→ X, σ vanishes on the lift fk.

Assume for simplicity that L is very ample, and let αi, i = 1, . . . , N be a basis
of H0(X,L). The theorem is proved by computing the sectional curvature
of the jet pseudo-metric associated to the degree m jet differentials σαi.

Finally a Riemann-Roch estimate shows the following :

Theorem 1.37 (Green-Griffiths) If X is a surface of general type, and L
is any ample line bundle, there exists a non-zero k-jet differential of degree
m, for m, k large enough.

Remark 1.38 Instead of k-jet differentials for possibly large orders k, one
could content ourselves with sections of SmΩX , which are degree m 1-jet
differentials. This is done by Bogomolov (see Theorem 2.6) in a more alge-
braic context where algebraic curves are studied, and McQuillan (Theorem
2.7) to study entire curves on surfaces. The advantage of doing this is that
one is looking at first order jets, so that in this case, the proper subset B
in Theorem above can be seen as a multifoliation on X. The disadvantage
however comes from the fact that the Riemann-Roch estimate works then
only if c1(X)2 > c2(X), an assumption which is not satisfied eg by surfaces
in P3. A different notion of jet differentials allows Demailly and Elgoul to
have a better Riemann-Roch estimate, working for high degree surfaces in
P3, (see section 3.1.3).

1.3 Conjectures, examples

1.3.1 Kobayashi’s conjecture on volumes

There are several versions of a possible converse to the Griffiths-Kobayashi-
Ochiai Theorem 1.29. The most ambitious one is the following :

Conjecture 1.39 Let X be a smooth projective manifold which is not of
general type. Then ΨX = 0 on a dense Zariski open set of X.

The following example provides evidences for this :

Lemma 1.40 [29] If X is either uniruled, or rationally swept out by elliptic
curves, then X satisfies conjecture 1.39.
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Recall that X is uniruled if there exists a dominant rational map

φ : Y × P1 → X,

where dimY = n − 1, n = dimX, and that X is rationally swept out by
elliptic curves if there exists a dominant rational map

φ : E → X,

where E is a n-dimensional variety which admits a fibration π : E → Y over
a smooth quasi-projective variety Y , whose fiber is a smooth elliptic curve.

Proof. In both case the indeterminacy locus of φ is of codimension ≥ 2,
hence does not meet the fiber of pr1 in the first case, or π in the second case.
So there is a dense Zariski open set U ⊂ Y over which φ is defined. Denote
by φU the restriction of φ to U × P1 or to EU := π−1(U) in the second case.
Then the decreasing volume property says that

φ∗UΨX ≤ ΨU×P1

and we have the similar inequality in the second case. But it is easy to
see that for EU and for U × P1, the Kobayashi-Eisenman pseudo-volume
form vanishes. Indeed, for the last one, this follows from Lemma 1.12, and
for the first one, it suffices to show that for small open sets V ⊂ U , the
Kobayashi-Eisenman pseudo-volume forms of EV vanishes. But for small
V , the universal cover of EV is isomorphic to V × C, so again Lemma 1.12
applies.

It follows that in both cases we have

φ∗UΨX = 0,

and this implies that ΨX = 0 away from the branch locus of φ.

Yau’s variant (Definition 1.13) of the Kobayashi-Eisenman pseudo-metrics
allows to weaken conjecture 1.39 as follows :

Conjecture 1.41 Let X be a smooth projective manifold which is not of
general type. Then Ψ̃X = 0 on a dense Zariski open set of X.

We have then the following example, which generalizes the previous ones :

Lemma 1.42 Assume there exist a family π : A → Y of smooth abelian
varieties, and a dominating rational map

φ : A 99K X,

which is non constant on the generic fiber of π. Then Ψ̃X = 0 on a dense
Zariski open set of X.
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Proof. Let n = dimX. The Kobayashi-Eisenman-Yau n-pseudo-volume
form Ψ̃n

A is equal to π∗Ψ̃n
Y , as shows the local uniformisation of A over Y by

products V × Cr. The decreasing volume property says that

φ∗Ψ̃X ≤ Ψ̃n
A,

where φ is defined. Hence we have the inequality

φ∗Ψ̃X ≤ π∗Ψ̃n
Y ,

where φ is defined. But this inequality clearly implies that Ψ̃X = 0 at any
point x ∈ X such that, for some point y ∈ A where φ is defined, φ(y) = x,
φ is of maximal rank n, and φ∗ does not vanish identically in the vertical
tangent space of π. It is easy to see that the set of such x’s contains a dense
Zariski open set of X.

Another case where conjecture 1.41 can be checked is the following :

Lemma 1.43 Let X be a K-trivial projective manifold. Assume that X
admits a rational map

φ : X 99K X

which is of degree d > 1. Then Ψ̃X = 0.

Proof. Let η be a generator of H0(X,KX). Then φ∗η ∈ H0(X, KX) must
be proportional to η:

φ∗η = λη, λ ∈ C.

Hence
φ∗η ∧ η =| λ |2 η ∧ η.

Integrating both sides over X, we conclude that | λ |2= d > 1. Now there
exists a complex valued function χ on X which is uppersemicontinuous and
such that

Ψ̃X = χη ∧ η.

Combining the inequality
φ∗Ψ̃X ≤ Ψ̃X

and the equality
φ∗η ∧ η = d η ∧ η,

we now conclude that
d | φ∗χ |≤| χ | .

But this obviously implies that | χ |= 0 since χ has a maximum.
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This example leads to the following question which was asked to me by
K. Amerik and S. Cantat: (a negative answer would provide a deceptively
simple proof of Kobayashi’s conjecture 1.41 for Calabi-Yau varieties!)

Question. Are there K-trivial varieties which do not admit a rational
self-map of degree > 1?

Here are examples of such rational self-maps :

Example 1.44 [62] Consider again the Fano variety of lines F of a cu-
bic fourfold X ⊂ P5. This is a holomorphically symplectic variety, but us-
ing higher dimensional cubics, one can construct as well Calabi-Yau similar
examples, that is K-trivial varieties Z satisfying the vanishing condition
hi(OZ) = 0, 0 < i < dimZ.

These varieties always admit a self-rational map of degree > 1. The
construction is as follows : if l ∈ F is a generic line in X, there is a unique
plane P ⊂ P5 which is everywhere tangent to X along l. The intersection
P ∩X equals 2l + l′ for another line l′ ⊂ X. The rational map will be l 7→ l′.
It has degree 16.

Example 1.45 If X is a projective variety which admits a rational fibration

π : X 99K Y

whose generic fiber is an abelian variety, X admits a self-rational map of
degree d > 1. Indeed, let L be an ample line bundle on X. We construct φ as
follows : for x ∈ X generic, let A be the fiber π−1(π(x)). Let N := L2

|A ∈ N.
To x, φ associates the unique point y ∈ A such that

AlbA(L2
|A − (N − 1)x− y) = 0,

where AlbA is the Albanese map of A, which is well defined on cycles of
degree 0 on A.

The last weakening of the conjectures above is the following :

Conjecture 1.46 Let X be a projective manifold which is not of general
type. Then Ψ̃X = 0 almost everywhere on X. Equivalently the associated
measure is 0.

The following example generalizes the one considered previously :

Lemma 1.47 Let X be a projective manifold. Assume that X admits a
rational map

φ : X 99K X

which is of degree d > 1. Then Ψ̃X = 0 almost everywhere.
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Proof. Indeed we know that

φ∗Ψ̃X ≤ Ψ̃X .

Integrating over X gives :
∫

X
φ∗Ψ̃X = d

∫

X
Ψ̃X ≤

∫

X
Ψ̃X ,

which gives
∫
X Ψ̃X = 0 since d > 1.

Note that there are examples of varieties which are not of general type
but do not admit a self rational map of degree d > 1. Indeed, let S be a K3
surface which is a double cover of P2 ramified along a smooth sextic curve.
Let C → C ′ be an étale double cover, where C ′ is a curve which admits no
other automorphism than the identity. Denote by i the involution acting
on S and by j the involution acting on C over C ′. Let X := S × C/(i, j).
Since g(C ′) ≥ 1, any self rational map φ : X 99K X should preserve the
fibration π : X → C ′, whose fiber is isomorphic to S. Since AutC ′ = Id, φ
would have in fact to act over C ′. Since the self-rational maps of S form a
discrete set, the induced rational map φc : S 99K S (which is well defined up
to conjugacy by i) has to be constant. It follows immediately that φ lifts to
S × C as a product map

(φc, Id)

and that φc has to satisfy i ◦ φc ◦ i = φc. Now it is quite easy to see that S
does not admit a self-rational map φc of degree d > 1 satisfying the condition
i ◦ φc ◦ i = φc.

1.3.2 Conjectures on metrics

In [40], Kobayashi makes the following conjecture :

Conjecture 1.48 Let X be a K-trivial projective variety. Then dK,X = 0.

Remark 1.49 The conjecture is stated for those K-trivial complex varieties
admitting a Ricci flat Kähler metric. By Yau’s theorem, this gives all Kähler
K-trivial compact manifolds.

Evidences for this conjecture are provided by the following known cases.

Example 1.50 Abelian varieties and more generally complex tori satisfy
the conjecture, since they are uniformized by affine spaces.

Another known case is the following :
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Lemma 1.51 If X is an algebraic K3 surface S or one of its Hilbert schemes
S[k] (see [3]), then dK,X = 0.

Proof.It suffices obviously to do the case of S. It is known that curves
of geometric genus 1 in any complete ample linear system on S form a 1-
dimensional family. Of course, two points x, y lying on such a curve satisfy
dK,S(x, y) = 0. On the other hand, Since the curves are ample, any two such
curve meet so have 0 Kobayashi distance. Hence dK,S = 0.

The next example is more interesting, since it concerns also non hy-
perkähler varieties.

Lemma 1.52 Let r : X → Pn be a double cover ramified along a smooth
hypersurface Σ of degree 2n + 2. Then KX = 0 and dK,X = 0.

Proof. One notes that X is swept out by elliptic curves. Indeed, consider
lines l ⊂ Pn meeting Σ along a 0-cycle of the form x+y+z + t+2(

∑n−1
1 xi).

One shows easily that these lines cover Pn. But the normalization Ẽl of the
curve El := r−1(l) has generically genus 1.

To conclude the proof, let us for simplicity assume that n = 3. If l is
a line as above, one shows by a cohomological computation that the locus
Sl in P3 covered by the lines l′ meeting l, is a surface. For any two points
x, y of X such that r(x), r(y) ∈ Sl, dK,X(x, y) = 0 because there are two
meeting elliptic curves Ex and Ey in X passing through x, y respectively.
Finally, Sl meets any line l′ as above, so that, by the same argument, any
point of X is at the 0 Kobayashi distance of r−1(Sl).

The general case will need more steps, introducing S2
l := the set of

points through which there is a line l′ as above meeting Sl, and so on, until
we filled-in Pn.

In the opposite direction, Green-Griffiths [29] and later Lang, made a
number of conjectures concerning varieties of general type. The most im-
portant one might be the following :

Conjecture 1.53 Let X be a projective variety of general type. Then the
union of entire curves in X is not Zariski dense.

By Brody’s theorem, this is obviously related to the Kobayashi pseudodis-
tance dK,X for such a variety. The following is a stronger form of the Green-
Griffiths conjecture.

Conjecture 1.54 Let X be as above. Then the Zariski closure of the set

{(x, y) ∈ X ×X, x 6= y, dK(x, y) = 0}

does not project onto X.
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It seems that interest in the Kobayashi distance for varieties of general type
has more focused on the problem of whether they are Kobayashi hyperbolic
or not. We shall come back to this in section 3.1.3, where we shall consider
hypersurfaces of degree d in projective space Pn+1. Recent progresses show
Kobayashi hyperbolicity of generic hypersurfaces for large d, n fixed. How-
ever, it seems that nothing is known in the range n + 2 < d < 2n, where the
canonical bundle is ample, while X is known to be not Kobayashi hyperbolic.

1.3.3 Campana’s construction and conjectures

Campana [8] found recently a very interesting class of varieties enlarging
the class of varieties with semi-negative canonical bundles, which he calls
“special”. Their definition uses the notion of “morphism of general type”
introduced by Campana :

Definition 1.55 For φ : X → Y a dominant morphism between smooth
projective manifolds, define the discriminant divisor ∆ ∈ Pic Y ⊗Q to be

∆ =
∑

i

αiDi,

where Di runs over the set of reduced irreducible divisors or Y which have a
non reduced inverse image under φ, and αi is determined as 1 − 1

mi
, where

mi is the gcd of the multiplicities of the components of φ−1(Di).

Definition 1.56 A morphism φ as above is said to be of general type if the
Q-divisor KY + ∆ is big.

Recall that L is said to be “big” if the global sections of L⊗N for N large
enough provide a generically finite rational morphism to projective space.

Definition 1.57 A variety X is said to be of general type if it does not
admit a morphism of general type to a positive dimensional variety.

(Here we are giving only a rough version, since the correct final definition
will involve rational maps instead of morphisms.)

Example 1.58 Let X → Pr be a family of Calabi-Yau varieties with no
multiple fibers. Then X is special.

Campana [8] proves the existence of a universal rational morphism φ : X 99K
B which is of general type and whose fibers are special. He makes the
following :

Conjecture 1.59 The Kobayashi pseudodistance dK,X is pulled-back from
a pseudo-distance on B.



Chapter 2

Algebraic versions, variants,
Lang’s conjectures

2.1 Subvarieties and hyperbolicity

This section is devoted to the description of a number of algebrogeometric
substitutes for the analytic notions of hyperbolicity presented in chapter 1.
The general idea, due to Lang, is that these analytic properties should be
detected via algebraic geometry.

2.1.1 Algebraic hyperbolicity

Let C be a smooth projective curve of genus g ≥ 2. Then the universal cover
of C is the disk D, on which the group π1(C) acts by automorphisms, which
preserve the Poincaré metric (1.2.3). Hence this metric descends to a metric
on C, whose Kähler form ωhyp is determined by the condition

i∂∂log ωhyp = 4ωhyp. (2.1.1)

Note that the left hand side is also 2π times the Chern form of the induced
metric ω−1

hyp on the canonical bundle KC , hence it is a de Rham representative
of the class c1(KC), so that we have the Gauss-Bonnet formula :

4
∫

C
ωhyp = 2π(2g − 2). (2.1.2)

One deduces from this :

Proposition 2.1 [20] Let X be a compact complex manifold which is Kobayashi
hyperbolic. Let h be a Hermitian metric on X, with corresponding (1, 1)-
form ωh. Then there exists a constant A > 0 such that for any non constant
holomorphic map

φ : C → X

33
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from a smooth projective curve of genus g to X, we have

2g − 2 ≥ A

∫

C
φ∗ωh.

Proof. Since X is Kobayashi hyperbolic and compact, there exists a
constant B such that for any x ∈ X, u ∈ TX,x, we have

dK,inf (u) ≥ B || u ||h .

By definition of the Kobayashi infinitesimal metric, this means that for any
holomorphic map

ψ : D → X,

we have the inequality

Ω1 ≥ B2ψ∗ωh. (2.1.3)

Since X is Kobayashi hyperbolic, there is no non constant holomorphic map
from P1 or from an elliptic curve to X. So for any non constant holomorphic
map

φ : C → X

we know that g = g(C) ≥ 2. Let π : D → C be the universal cover, and let
us apply (2.1.3) to ψ := φ ◦ π. Since π∗ωhyp = Ω1, we conclude that

ωhyp ≥ B2φ∗ωh.

Integrating this inequality over C and applying formula (2.1.2), we get

π(g − 1) ≥ B2

∫

C
φ∗ωh.

This result led Demailly to the following definition :

Definition 2.2 A compact complex manifold X is said to be algebraically
hyperbolic if the conclusion of theorem 2.1 holds, that is, for any Hermitian
metric h on X there exists a constant A such that for any holomorphic map

φ : C → X

from a curve of genus g to X, we have

2g − 2 ≥ A

∫

C
φ∗ωh.

Remark 2.3 By compactness of X, it suffices to check this for one h.
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Remark 2.4 The definition is coherent with other notions of hyperbolicity
only for projective varieties. Indeed, general complex tori do not contain
any algebraic curve, hence would be algebraically hyperbolic in the above
sense! When X is algebraic, one usually choose for ωh the Chern form of
an Hermitian metric on a ample line bundle L on X, so that the integral∫
C φ∗ωh is the degree d = deg φ∗L.

Proposition 2.1 says that compact Kobayashi hyperbolic complex manifolds
are algebraically hyperbolic. The following can be found in [20].

Conjecture 2.5 For projective complex manifolds, the two notions coin-
cide.

Proposition 1.33 provides some evidence for conjecture 2.5, since it says that
for projective X, the infinitesimal Kobayashi pseudo-metric can be computed
via algebraic curves in X. However it just says that if X is not Kobayashi
hyperbolic, there is a sequence of triples (Cn, xn, φn), where Cn is a projective
curve, xn is a point of Cn and φn is a holomorphic map from Cn to X, such
that

lim
n→∞ || dφn,xn ||= ∞,

where the norm is computed w.r.t. the hyperbolic metric on Cn and any
fixed metric on X. The problem is that this is only a pointwise information
at xn, while in order to prove the conjecture, one would need to have a
similar statement either everywhere along Cn or in an integrated form.

An earlier important result, where a notion close to algebraic hyperbol-
icity is implicitely studied, is due to Bogomolov [4]. Some of the arguments
introduced in his paper are also useful in the analytic context of entire curves.

Theorem 2.6 (Bogomolov) Let S be a surface of general type satisfying the
condition

c1(S)2 > c2(S). (2.1.4)

Then for any fixed genus g, there are finitely many algebraic varieties pa-
rameterizing all curves of geometric genus g on S.

Let us sketch the proof. Using Riemann-Roch theorem for the vector bundles
SiΩS on S, inequality (2.1.4) and the fact that S is of general type, imply
that for some constant c > 0, one has the inequality, for all i > 0 :

H0(S, SiΩS) ≥ ci3. (2.1.5)

We can view sections of SiΩS as sections of the line bundle OP(1) on P :=
P(TS). Inequality (2.1.5) then implies that for i large enough, sections of
OP(i) provide a rational map

ψ : P(TS) 99K PN
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which is generically 1− 1 onto its image.
Now let C ⊂ S be a curve of geometric genus g and i : C̃ → S the natural

map, where C̃ is the normalization of C. There is a tangent lifting

j : C̃ → P(TS)

of the map i, which to a point c ∈ C̃ associates the line i∗(T eC,c
). The map

j satisfies

j∗(OP(TS)(1)) = K eC(−D), (2.1.6)

where D is the divisor of C̃ where i is not an immersion.
Let B ⊂ P(TS) be the subset where ψ is not a morphism, or is not an

isomorphism onto its image (i.e. where ψ−1(ψ(x)) 6= {x}). Let us decompose
B as B1 ∪ B2, where B1 is the union of components not dominating S, B2

is the union of components dominating S. There are clearly only finitely
many curves whose tangent lift lies in B1. Next, curves whose tangent lift
lies in B2 satisfy a first order non linear equation, which becomes linear after
passing to the finite covering B2. Bogomolov then proves that there are only
finitely many families of solutions of such a differential system (see also [36]).

The remaining curves have their tangent lift not contained in B. But for
such a curve, the map ψ ◦ j is generically defined and 1 − 1 on its image.
On the other hand, relation (2.1.6) shows that for such curves, we have the
inequality

deg ψ ◦ j(C̃) ≤ 2g − 2.

One uses then the finiteness of Chow varieties of curves in PN to conclude.

Much more recently, McQuillan [48] extended such arguments in the con-
text of entire curves, thus proving the Green-Griffiths conjecture for surfaces
with c2

1 > c2.

Theorem 2.7 (McQuillan) Let S be a surface of geberal type, such that

c1(S)2 > c2(S).

Then any entire curve in S is algebraically degenerate, i.e. is contained in
an algebraic curve C ⊂ S.

The Green-Griffiths conjecture for such surfaces follows :

Corollary 2.8 Let S be as above. Then there are finitely many curves C ⊂
S such that any non constant holomorphic map from C to S takes value in
one of these curves.
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Proof. Indeed, Bogomolov’s theorem says that there are finitely many fam-
ilies of rational or elliptic curves on S (that is, curves whose normalization
has genus 0 or 1). But Lemma 2.19 below shows that rational and elliptic
curves do not deform in a surface of general type. Hence there are finitely
many rational or elliptic curves.

On the other hand, McQuillan theorem says that entire curves are con-
tained in irreducible curves C ⊂ S, whose normalization must be rational or
elliptic. This concludes the proof.

The proof of McQuillan’s theorem uses Theorem 1.36 and the compu-
tation of the Euler characteristic of SiΩS(−H), where i is arbitrarily large,
and H is an ample line bundle on S. This allows to show the existence of a
non-zero section σ of this bundle for large i. Theorem 1.36 then shows that
for any non constant holomorphic map f : C→ S, its tangent lift

f∗ : C→ P(TS)

is contained in the zero locus of σ.
Now, the heart of the proof of McQuillan is the following see [48] :

Theorem 2.9 Consider a (maybe singular) algebraic foliation on a surface
of general type. Then any parabolic leaf of this foliation is algebraically
degenerate.

Here parabolic means uniformized by C. One applies this theorem to the
natural foliation on the surface Σ := V (σ). (A point of Σ over s ∈ S deter-
mines a tangent direction on S at s, and one uses the generic isomorphism
TΣ

∼= π∗TS , where π is the restriction to Σ of the structural morphism, to
lift this tangent direction to one on Σ.) This shows that the tangent lifts of
entire curves in S are algebraically degenerate in Σ, hence that entire curves
in S are algebraically degenerate.

2.1.2 Lang’s conjectures

There are two main conjectures by Lang [46]. We start with the obvious
observation that any variety Y which is birationally equivalent to an abelian
variety (or more generally a complex torus), is swept out by images of non-
constant holomorphic maps

f : C→ Y.

Furthermore, if Y
ψ→ X is a non-constant holomorphic map, the same is true

for the variety Im ψ. Lang’s amazing conjecture is the following converse to
this last statement :
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Conjecture 2.10 Let X be a smooth projective variety. Then the union of
all non-constant holomorphic maps f : C → X is equal to the union of the
images of non-constant rational maps from an abelian variety to X.

It would be presumably more reasonable to replace these sets with their
analytic or even Zariski closure, but then much of the spirit of this conjecture
is lost. Note that Bloch’s Theorem says that the conjecture is true if X is a
subvariety of an abelian variety.

Remark 2.11 As shown by Cantat [9], the conjecture cannot be extended
to compact complex manifolds, replacing abelian varieties by complex tori.
General non algebraic K3 surfaces do not admit any non constant rational
map from a complex torus to them.

The second important conjecture concerns the locus described above (the
exceptional locus):

Conjecture 2.12 The exceptional locus is equal to X if and only if X is
not of general type.

Note that this last conjecture would imply Kobayashi’s conjecture 1.41. In-
deed, Kobayashi’s conjecture says that if X is not of general type, its pseudo-
volume form Ψ̃X is equal to 0 on a Zariski open set. On the other hand, if
we combine the two conjectures of Lang, we get the following :

Conjecture 2.13 If X is not of general type, the union of the images of
non-constant rational maps φ : A 99K X from a abelian variety to X cover
X.

If the conjecture above is true, one uses next a countability argument
for families parametrizing abelian varieties A together with non-constant
rational map φ to X, and a Baire argument to deduce that there should
exist a quasi-projective variety B, and a family of abelian varieties

A → B

parametrized by B, together with a dominating rational map φ : A 99K X
which is non-constant on the fibers of π. We then apply Lemma 1.42 to
conclude that Ψ̃X = 0 on a Zariski open set of X.

Example 2.14 A uniruled variety is a variety X which admits a dominating
generically finite rational map φ : Y × P1 99K X. Uniruled varieties satisfy
Lang’s conjecture since there is a surjective holomorphic map E → P1, for
any elliptic curve E.
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Example 2.15 Abelian varieties or varieties birationally equivalent to them
obviously satisfy Lang’s conjecture.

Example 2.16 Algebraic K3 surfaces satisfy Lang’s conjecture since they
are swept out by elliptic curves. Heuristically, this fact is proved by a dimen-
sion count : if L is an ample line bundle on a K3 surface S, with L2 = 2g−2,
one has by Riemann-Roch

h0(S, L) = g + 1,

and by adjunction formula, curves C in | L | have genus g. So S carry a
g-dimensional family of curves of genus g, and imposing g−1 nodes to them
provides a 1-dimensional family of curves of geometric genus 1. (Note that
one needs actually a supplementary argument to show that the family is not
empty. Indeed a similar dimension count could also be done for an abelian
surface while the generic abelian surface does not contain elliptic curves.)

Example 2.17 Smooth double covers r : Y → Pn of the projective space
which are not of general type satisfy Lang’s conjecture. Indeed, let Σ ⊂ Pn

be the branch locus. It has to be a smooth hypersurface of degree 2d, with
d ≤ n + 1 in order that the canonical bundle of Y is not ample. Consider
lines in Pn which are tangent to Σ at d− 2 points. They are parameterized
by a family of dimension ≥ 2n − 2 − (d − 2) ≥ n − 1. One can show
by intersection theory that these lines sweep out Pn. One can also show
that the generic such line l meets Σ with simple tangency at d − 2 points,
and transversally at the 4 remaining points. It follows immediately that the
curve r−1(l) is elliptic, so that Y is swept out by elliptic curves. Note that
these varieties admit in fact presumably infinitely many coverings by elliptic
curves. Indeed, replace in the above reasoning, lines by rational curves of
degree l. They have (n + 1)(l + 1) − 4 parameters and they meet Σ in 2dl
points. Those which meet Σ tangentially along dl−2 points and simply along
4 points form a family of expected dimension (n+1)(l+1)−4−(dl−2) ≥ n−1,
for d ≤ n + 1. Hence they should cover Pn, and a supplementary argument
involving intersection theory shows that they indeed cover it.

Example 2.18 Let X be a smooth cubic hypersurface in P5, and let F ⊂
Grass(2, 6) be the Fano variety of lines contained in X. It is known [2]
that F is a symplectic holomorphic variety, that is, it carries a nowhere
degenerate holomorphic 2-form, which implies in particular that its canonical
bundle is trivial. We claim that F is swept out by surfaces birationally
isomorphic to abelian surfaces. Indeed, if Y ⊂ X is a hyperplane section,
the Fano surface ΣY of lines in Y is contained in F . When Y acquires a
singular point, this Fano surface becomes birationally equivalent to the second
symmetric product of the curve C of lines passing through the singular point
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y, and C is a complete intersection of a cubic and a quadric in P3 hence has
genus 4 (cf [15]). Indeed, if l ⊂ Y is a line in Y which does not pass through
y, the plane P :=< l, y > intersects Y along a cubic curve, which has l as a
degree 1 irreducible component, and which is singular at y. Such a curve is
necessarily the union of three lines, two of them passing through y.

Next, if we impose two more singular points to Y , we find that the curve
C acquires two nodes, so that its genus decreases to 2. Hence the surface ΣY

becomes birationally equivalent to the second symmetric product of a genus 2
curve, hence to an abelian surface. Finally there is a two dimensional family
of hyperplane sections of X having three nodes, and it is easy to check that
the corresponding ΣY cover F .

We considered here mostly Calabi-Yau (i.e. K-trivial) examples and this
for the following reason. It is conjectured and proved in dimension 3 [50]
that a smooth projective variety which satisfies h0(X,K⊗r

X ) = 0, ∀r > 0, is
uniruled (there has been also very deep recent progresses on this made by
Demailly and Peternell [23]. Hence, by example 2.14, such varieties satisfy
Lang’s conjecture. On the other hand, if X does not satisfy the condition
above, it admits a fibration, given by the sufficiently divisible pluricanonical
systems, whose generic fiber can be shown to be of Kodaira dimension 0
i.e h0(X,K⊗r

X ) ≤ 1, ∀r > 0, with equality for sufficiently divisible r, and is
positive dimensional if and only if X is not of general type (cf [51]). Finally,
varieties of Kodaira dimension 0 are conjectured to be birationally equivalent
to finite quotient of singular K-trivial varieties (this is proved in dimension
3 [37]). All this put together suggests that a variety which is not of general
type is either uniruled, or fibered with general fiber birationally equivalent
to a finite quotient of a singular positive dimensional K-trivial variety. This
would allow to restrict Lang’s conjecture to the K-trivial case.

2.1.3 Algebraic measure-hyperbolicity

Let us start with the following observation :

Lemma 2.19 If X is a variety of general type, and L is an ample line
bundle on X, there exists a constant A > 0 such that for any covering
family of curves on X, that is any diagram

φ : C → X
π ↓
B ,

where φ is dominating, non constant on the fibers of π, and π is projective
with generic fiber a curve C of genus g, one has

2g − 2 ≥ Adeg φC
∗L,
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where φC := φ|C .

Proof. Since X is of general type, the line bundle K⊗r
X ⊗ L−1 is effective

for r sufficiently large. Let us choose a section of this line bundle, and let D
be its divisor. Since the curves C of the family cover X, they do not stay in
any component of D hence they satisfy deg φ∗CD ≥ 0. On the other hand,
because φ is dominating, it is generically of maximal rank, which implies
that the normal bundle φC

∗TX/φC∗(TC) is generically generated by global
sections on C. Hence we have

deg φC
∗TX/φC∗(TC) ≥ 0.

It follows that deg φC
∗KX ≤ degKC = 2g − 2. Hence

deg φC
∗L ≤ rdeg φC

∗KX ≤ r(2g − 2).

The following definition is the natural counterpart of definition 2.2 :

Definition 2.20 A variety is algebraically measure-hyperbolic if it satisfies
the conclusion of Lemma 2.19.

On the other hand, if Lang’s conjecture 2.13 is true, an X which is not of
general type is dominated by a family of abelian varieties, i.e., there exists
a diagram

φ : A 99K X
π ↓
B ,

where φ is rational, dominating, non constant on the fibers of π, and π is
projective with generic fiber an abelian variety. We may assume that π has
a section, so that multiplication by n, denoted by n·, acts on the fibers of
π. Hence we get φn := φ ◦ n· : A 99K X. Now, since n∗. is multiplication by
n2 on H2(Ab,Z), for each fiber Ab of π, it follows that if C ⊂ Ab is a curve
which does not meet the indeterminacy locus of φ and φn, we have

deg φ∗nL|C = n2deg φ∗L|C .

Hence, starting with one covering family for A, and applying φn to it, we
see that, letting n tends to infinity, we can construct covering families by
curves of fixed genus and of arbitrarily large degree.

This shows that varieties which are rationally dominated by a family of
abelian varieties are not algebraically measure hyperbolic. Hence a weaker
version of Lang’s conjecture 2.13 would be the following converse to Lemma
2.19 :
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Conjecture 2.21 If X is not of general type, it is not algebraically measure-
hyperbolic.

Definition 2.20 raises a number of questions.

Question. If X is not algebraically measure-hyperbolic, is it true that it
is not measure-hyperbolic? Is it true that ΨX or Ψ̃X vanishes on a Zariski
open set?

The answer to this question would show that conjecture 2.21 implies
Kobayashi’s conjecture.

Question. If X is not algebraically measure-hyperbolic, is it true that
its Kobayashi infinitesimal pseudo-metric is degenerate almost everywhere?

None of these questions seems to have an obvious answer. Looking at
the proof of Proposition 2.1, we see that if X is not algebraically measure
hyperbolic, it is swept out by curves φn : Cn → X, such that the integral
of the hyperbolic Kähler form of C is arbitrarily small compared with the
integral over C of a given Kähler form on X. In order to solve the second
question above, we would need that this comparison also holds pointwise
everywhere along Cn.

2.2 K-correspondences and a variant of Kobayashi’s
conjecture

We describe here the construction of a pseudo-volume form ΦX on any
complex manifold X, which satisfies the decreasing volume property with
respect to certain multivalued maps, that we shall call K-correspondences.
On one hand, the analogue of Griffiths-Kobayashi’s theorem 1.29 is also
true for this variant of the Kobayashi-Eisenman pseudo-volume form, and
on the other hand, we can show that many Calabi-Yau varieties carry self-
K-correspondences dilating their canonical volume form. Hence we can show
many instances of the analogue of Kobayashi’s conjecture for ΦX .

2.2.1 K-correspondences

If φ : X → Y is a holomorphic map, we have the Jacobian map

∧nφ∗ :
n∧

TX → φ∗
n∧

TY .

K-correspondences are multivalued holomorphic maps φ from a smooth com-
plex manifold to another one (of the same dimension), satisfying the prop-
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erty that there is an associated Jacobian map, which is holomorphic. This
is formalized as follows :

Definition 2.22 [62] A K-correspondence from X to Y , where X and Y
are smooth of the same dimension n, is a reduced closed analytic subset
Σ ⊂ X × Y satisfying the following properties :

1. Each irreducible component of Σ has dimension n and is generically of
maximal rank over X and Y .

2. The restriction pr1|Σ is proper.

3. Let τ : Σ̃ → Σ be a desingularization, and let f := pr1 ◦ τ, g = pr2 ◦ τ.
Then the ramification divisors Rf and Rg satisfy the inequality

Rf ≥ Rg.

The last property can be rephrased as follows : Rf is the hypersurface
defined by the vanishing of the Jacobian map ∧nf∗ :

∧n TeΣ → f∗(
∧n TX),

and similarly Rg is the hypersurface defined by the vanishing of ∧ng∗ :∧n TeΣ → g∗(
∧n TY ). Then condition 3 says that the map

∧ng∗ ◦ ∧nf−1
∗ : f∗(

n∧
TX) → g∗(

n∧
TY )

is holomorphic. This map will be called the generalized Jacobian and de-
noted by JeΣ. For easy reasons, it is in fact already defined on the normal-
ization of Σ.

K-correspondences compose as follows. If Σ ⊂ X × Y and Σ′ ⊂ Y × Z
are K-correspondences, consider the fibered product Σ′′ := Σ ×Y Σ′. The
composed correspondence Σ′ ◦ Σ ⊂ X × Z is defined as the union of those
components of the image of Σ′′ in X × Z via the natural map, which are
generically of maximal rank n over X. It is easy to show that they are also
generically of maximal rank over Z and have dimension n. Furthermore,
properness over X follows from the same property for Σ and Σ′. Finally, one
checks that the composition in the above sense of two K-correspondences
also satisfy property 3, hence is also a K-correspondence.

We have next the corresponding notion of K-isocorrespondence : a K-
isocorrespondence between X and Y is a K-correspondence Σ ⊂ X×Y , such
that the transposed correspondence tΣ ⊂ Y ×X is also a K-correspondence.
In other words the following properties should be satisfied :

1. Every component of Σ is of dimension n and generically of maximal
rank over X and Y .

2. The restrictions to Σ of pr1 and pr2 are proper.
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3. With the same notations as in Definition 2.22, we have

Rf = Rg.

Note that the last property means equivalently that the generalized Jaco-
bian map JeΣ does not vanish on Σ̃, thus providing a canonical isomorphism
between f∗(

∧n TX) and g∗(
∧n TY ), or equivalently an inverse isomorphism

betweem the line bundles f∗KX and g∗KY .

Example 2.23 If dim X = dimY and φ : X → Y is a holomorphic map
which is generically of maximal rank, then the graph of φ, Γφ ⊂ X × Y ,
is a K-correspondence. If φ is an étale and proper morphism, Γφ is a K-
isocorrespondence.

Example 2.24 If A is an abelian variety, and (m, m′) are a pair of coprime
integers, then

A
(m,m′)
↪→ A×A

is a K-isocorrespondence. These examples have the very special property that
both maps f , g (or pr1, pr2 in this case) are unramified. Clozel and Ullmo
[18]constructed curves possessing an infinite number of self-correspondences
satisfying this last property.

In contrast to the above example where the degrees of the map f and g are
different (they are equal to m2n and m′2n respectively), we have the following
result :

Lemma 2.25 If X is of general type, a K-autocorrespondence Σ ⊂ X ×X
satisfies

deg f = deg g,

where f, g are defined as in Definition 2.22.

The following also shows that having non trivial K-autocorrespondences
is restrictive, at least for varieties which are of general type (while the results
in next section tend to show that they are very easy to construct in the K-
trivial case.)

Lemma 2.26 A general curve of genus g ≥ 3 does not admit non trivial
K-autocorrespondences.

The next natural example of K-isocorrespondences comes from the study of
quotient singularities.
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Example 2.27 Let X be smooth and let G be a finite group acting on X.
Assume that the isotropy groups Gx act via SL(n) on the tangent spaces
TX,x and that there exists a crepant resolution

τ : Y → X/G.

Then the graph
Γq ⊂ X × Y

of the meromorphic map q : X 99K Y is a K-isocorrespondence.

2.2.2 Existence theorem for K-correspondences

Consider a degree 3 curve E in P2. It is an elliptic curve. Multiplication by
−2 is easy to construct on it by means of projective geometry. Indeed, for
x ∈ E, consider the tangent line l to E at x. This line meets E at another
point y. It is easy to see that the map x 7→ y is for an adequate choice of
origin, the multiplication by −2.

It turns out that this construction generalizes in higher dimension to
provide more generally interesting K-autocorrespondences on many Calabi-
Yau manifolds.

The Calabi-Yau manifolds we will consider are the following : recall first
that a rationally connected variety Y is a variety satisfying the property
that through any two points x, y ∈ Y there passes at least one rational
curve. This curve can then be chosen to be smooth, and to have arbitrarily
ample normal bundle in Y . We have the following natural way to construct
K-trivial varieties : if Y is smooth and σ is a non zero section of −KY , such
that X := div σ is smooth, then KX is trivial by the adjunction formula :

KX = KY ⊗OX(X).

If furthermore Y is a rationally connected variety, we shall say that X is
a Calabi-Yau hypersurface in a rationally connected variety, (omitting to
mention the fact that we want X ∈| −KY |).

Calabi-Yau hypersurfaces in rationally connected varieties are the most
common Calabi-Yau varieties. All Calabi-Yau complete intersections in Fano
or tori varieties fall in this category. In [62], there are given examples of
Calabi-Yau varieties which do not belong to this category. (Note that abelian
varieties, or symplectic holomorphic varieties, which have trivial canonical
bundle, cannot be constructed this way, but since they do not satisfy the
vanishing

H i(X,OX) = 0, 0 < i < n,

they are sometimes not considered as Calabi-Yau varieties.)
The result of [62] concerning the existence of K-autocorrespondences is

the following :
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Theorem 2.28 Let X be a Calabi-Yau hypersurface in a rationally con-
nected variety. Then X has K-autocorrespondences Σ ⊂ X × X, which
satisfy the property

deg f 6= deg g,

where f, g are as in Definition 2.22.

We explain now the relation between this theorem and volume forms on such
X. Let

Σ̃
f→ X

g ↓
X

be a desingularization of Σ. Let ηX ∈ H0(X,KX) be a generator. This is a
holomorphic n-form which is everywhere non-zero on X. Since ηX does not
vanish, the ramification divisor Rf equals the divisor of the holomorphic n-
form f∗ηX on Σ̃ and similarly the ramification divisor Rg equals the divisor
of g∗ηX . The equality Rf = Rg implies then, assuming that Σ is irreducible,
that for some λ ∈ C∗, we have

g∗ηX = λf∗ηX . (2.2.7)

This equality implies that

g∗(ηX ∧ ηX) =| λ |2 f∗(ηX ∧ ηX).

Integrating over Σ̃, and noticing that ηX ∧ ηX is proportional to a volume
form on X, hence has a non-zero integral, we get :

deg g =| λ |2 deg f. (2.2.8)

Now, the condition deg f 6= deg g (inverting the role of f and g we may
of course suppose that deg f < deg g), means that | λ |2> 1, and formula
(2.2.7) then says that Σ dilates the holomorphic volume form of X.

Remark 2.29 We can compose Σ with itself r times, getting a K-autocorrespondence
Σ◦r, which will satisfy the condition that the corresponding coefficient λr is
equal to λr. Since | λ |> 1, this coefficient can be made arbitrarily large.

Remark 2.30 The proof of Theorem 2.28 will show that we can construct
such Σ passing through an arbitrary pair (x, y) ∈ X ×X. In particular we
may assume it passes through (x, x), with arbitrary x ∈ X. Equation (2.2.7)
then says that the generalized Jacobian of Σ̃ at any point σx of Σ̃ over (x, x)
can be made arbitrarily large.
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Sketch of Proof of Theorem 2.28. The construction which is described
below will give K-autocorrespondences with corresponding coefficient λ =
−2.

Let x, y ∈ X, x 6= y. Since Y is rationally connected, there is a smooth
rational curve C in Y , which has ample normal bundle in Y , and which
intersect X with a simple tangency at x, and transversally at y. Write the
intersection divisor of C and X as

C ∩X = 2x + y + z,

where the zero-cycle z is supported away from x, y and may be assumed
to be made of C · X − 3 distinct points. Choose an hypersurface Z ⊂ X
containing z. Consider

Σ′ := {(x′, y′, C ′), C ′ ∩X = 2x′ + y′ + z′},

where C ′ is a deformation of C, x′, y′ ∈ X, and z′ is subject to the condition
z′ ⊂ Z.

Our K-correspondence will be defined as the image of Σ′ in X ×X via
the map

σ = (C ′, x′, y′) 7→ (x′, y′).

We first claim that for a generic choice of Z, dimΣ′ = dimΣ = n. Indeed,
the space of deformations of C in Y has dimension h0(C, NC/Y ) = −KY ·
C +n−2, (cf [44]), and the number of conditions imposed to C ′ is X ·C−2,
since we want C ′ to remain tangent to X at x′, and z′ to stay in Z. Since
X ∈| −KY |, we find that the expected dimension of Σ′ is n. An easy
argument shows that this dimension count is correct for an adequate choice
of Z. The proof that Σ is a K-isocorrespondence with coefficient λ = −2
follows now from Proposition 2.31 below.

Proposition 2.31 Notations being as above, we have

2pr∗1ηX + pr∗2ηX = 0

on Σ.

This proposition is an application of Mumford’s theorem [52] on pull-backs
of holomorphic forms via correspondences, or more precisely its higher di-
mensional generalization (see eg [64], III.10) :

Theorem 2.32 Let Γ ⊂ Y ×X be an algebraic subset, which is generically
finite over Y . Assume there exists a proper algebraic subset X ′ ⊂ X, such
that for any y ∈ Y , the 0-cycle Γ∗(y) is rationally equivalent to a 0-cycle



48CHAPTER 2. ALGEBRAIC VERSIONS, VARIANTS, LANG’S CONJECTURES

supported on X ′; then for any top degree holomorphic form ηX on X, we
have

Γ∗ηX = 0

on Y .

Indeed, we apply Mumford’s theorem to the correspondence Γ between Σ̃
and X, which to σ = (x′, y′, C ′) associates the 0-cycle

Γ∗(σ) := 2x′ + y′ ∈ Z0(X)

The 0-cycle 2x′+y′ is equal to C ′ ·X−z′. By assumption z′ is supported on
Z. On the other hand, since Y is rationally connected, one can show that
its Chow group CH1 of 1-cycles “has the size” of the Chow group of 0-cycles
of a n − 1-dimensional variety. Hence it follows that there exists a Z ′ ⊂ X
such that 0-cycles of the form C ′ · X are supported on Z ′ modulo rational
equivalence. Now Mumford’s Theorem says that in this situation, the pull-
back Γ∗ηX vanishes as a n-form on Σ̃. But this pull-back is obviously equal
to 2pr∗1ηX + pr∗2ηX .

2.2.3 A variant of the Kobayashi-Eisenman pseudo-volume
form

The fact that for a K-correspondence, we have a well defined generalized
Jacobian, together with the fact that K-correspondences can be composed,
and thus can considered as generalized morphisms, suggest the following
variant ΦX of the Kobayashi-Eisenman pseudo-volume form ΨX , where one
replaces holomorphic maps from Dn to X with K-correspondences from Dn

to X.

Definition 2.33 For x ∈ X, ζ ∈ ∧n TX,x, the Hermitian pseudo-norm of ζ
with respect to ΦX is defined as

ΦX,x(ζ) =
1
λ

,

where λ = SupΣ,σ {| µ |, JeΣ( ∂
∂z1

∧ . . . ∂
∂zn

) = µζ}. Here Σ runs over all
K-correspondences from Dn to X and σ over all points of Σ̃ which are over
(0, x).

The first properties of ΦX are the following : first of all, one obviously
has

ΦX ≤ ΨX .

Next, ΦX satisfies the decreasing volume property with respect to K-correspondences:
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Lemma 2.34 If Σ ⊂ X × Y is a K-correspondence, then, with the same
notations as above,

g∗ΦY ≤ f∗ΦX

as pseudo-volume forms on Σ̃. In particular, if Σ is a K-isocorrespondence,
this inequality becomes an equality.

Less obvious are the following results, whose proof follows the same lines as
those of Theorems 1.26 and 1.29 :

Theorem 2.35 If X = Dn or X is a product of curves of genus ≥ 2,
ΦX = ΨX , that is ΦX = κn in the first case, and (up to a coefficient) the
product of the hyperbolic volume forms on each factor in the second case.

Theorem 2.36 If X is projective of general type, then ΦX > 0 on a non-
empty Zariski open set of X. (The proof even shows that the lower bound
(1.2.10) for ΨX is also valid for ΦX .)

The important point in the proof of these statements is the following. One
has in both case to study K-correspondences Σ from Dn to X, which will
be either Dn, or a product of curves, or a variety of general type. Let µ be
a pseudo-volume form on X which satisfies the conditions :

i∂∂log µ > 0,
(i∂∂log µ)n ≥ cnµ,

where cn is as in section (1.2.1). Then the function

g∗µ/f∗κn

is C∞ on Σ̃, because we have the condition

Rf ≤ Rg

which will imply that the pseudo-volume form on the numerator vanishes
more than the one on the denominator. The proof of the theorem is then,
as in Ahlfors-Schwarz Lemma, an application of the maximum principle to
this function on Σ̃. Here the properness of Σ̃ over Dn is used in an essential
way to produce a maximum.

To conclude, Theorem 2.28 gives the following :

Theorem 2.37 Let X be a variety which admits a fibration :

φ : X → B,

whose generic fiber is a Calabi-Yau hypersurface in some rationally connected
variety. Then ΦX = 0 on a Zariski open set of X.
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The proof is elementary. One first observes that the construction which gives
the proof of Theorem 2.28 can be made in family over a Zariski open set U
of B, which provides a K-autocorrespondence

ΣU ⊂ XU ×XU ,

where XU = φ−1(U). Let µ be a volume form on B, and consider the volume
form

Ω := φ∗µ ∧ Ωrel,can,

where Ωrel,can is the relative canonical volume form, which is locally over
U equal to φ∗αη ∧ η for some function α on U , where η is a section of the
relative canonical bundle, and where α is determined by the condition that
this relative volume form has integral 1 on the fibres of φ.

Then formula (2.2.7) along the fibres of φ, (where one notes that for
topological reasons λ is constant), implies that if

Σ̃U
f→ XU

g ↓
XU

is a desingularization of ΣU , then

g∗Ω =| λ |2 f∗Ω.

On the other hand, we have by Lemma 2.34:

g∗ΦXU
= f∗ΦXU

.

This immediately implies that ΦXU
= 0. Indeed, writing ΦXU

= γΩ, for
some uppersemicontinuous function γ on XU , these two relations give

g∗γ =| λ |2 f∗γ.

Since γ has a maximum on each fiber of the map Σ̃U → U , this last relation,
together with the fact that | λ |2> 1, implies that γ = 0.

In conclusion, we have shown that the modified pseudo-volume form ΦX

satisfies the analogue of the Griffiths-Kobayashi-Ochiai Theorem, and equals
ΦX for the polydisk. On the other hand, Theorem 2.37 shows that ΦX = 0
for a reasonably general class of varieties which are not of general type, thus
proving in many instances the analogue of Kobayashi’s conjecture 0.1 for
ΦX .

Thus the natural question we are led to is the following :

Question. How do ΦX , Ψ̃X and ΨX compare ? (Note that we always
have ΦX ≤ ΨX , Ψ̃X ≤ ΨX .) Are ΦX and Ψ̃X equivalent ? There is a
variant Φ̃X of ΦX which is bimeromorphically invariant (cf [62]). Are Φ̃X

and Ψ̃X equivalent ?



Chapter 3

General hypersurfaces in
projective space

3.1 Hyperbolicity of hypersurfaces and their com-
plements

We consider general hypersurfaces of degree d in projective space Pn+1. For
small degree d, it is easy to show that neither the hypersurfaces, nor their
complement are algebraically hyperbolic. We describe here methods which
allow to prove algebraic hyperbolicity for the general hypersurface when the
degree becomes large enough (an explicit, optimal bound will be given.) We
also give an argument for the algebraic hyperbolicity of the complement. We
conclude with a sketch of the methods used to prove the analogous (but much
more difficult) statements for Kobayashi hyperbolicity.

3.1.1 Algebraic hyperbolicity

Algebraic hyperbolicity of general hypersurfaces of degree d ≥ 2n+2 in Pn+1

has been established by Clemens [14].

Theorem 3.1 (Clemens) If d ≥ 2n + 1, a general hypersurface degree d
in Pn+1 does not contain any rational curve. More generally, there is the
following lower bound for the genus g of curves C contained in a general
hypersurfaces of degree d in Pn+1 :

2g − 2 ≥ (d− 2n− 1)deg C. (3.1.1)

Remark 3.2 One can check that any hypersurface of degree d ≤ 2n − 1 in
Pn+1contains lines, which shows that the theorem above is not far from being
optimal.

51
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Ein [25] subsequently generalized such estimates to subvarieties of any codi-
mension. His result is the following :

Theorem 3.3 (Ein) Fix an integer k ≤ n − 1 (which will be the codimen-
sion). Then for d ≥ n + k + 2 and X a general hypersurface of degree d
in Pn+1, any codimension k subvariety Y ⊂ X has effective canonical bun-
dle (meaning that any desingularization of Y satisfies this property). More
precisely, for any desingularization Ỹ → Y of Y , the line bundle

KeY (−d + n + k + 2)

is effective.

Clemens theorem is recovered as the case k = n− 1 of this theorem.
Finally, Xu [67] got better results in the case of subvarieties of codimen-

sion 1, which can be explained by the fact that a codimension 1 subvariety
of a generic hypersurface of dimension ≥ 2 in projective space is cut out by
a hypersurface in ambiant space.

In [60], we presented the proof of theorems 3.1 and 3.3 in the follow-
ing way, which led to further improvements ([60], [54], [16]) which we will
describe later on.

Proof of Theorem 3.3. The idea is as follows : let U ⊂ H0(Pn+1,OPn+1(d))
be the Zariski open set parameterizing smooth hypersurfaces. Let

π : X → U, X ⊂ Pn+1 × U,

be the universal family. Assume that for general X there is given a subvariety
Y ⊂ X of codimension k. As there are only countably many components
of the relative Hilbert scheme parameterizing subvarieties of codimension k
in fibers of π, a Baire argument shows that there exist a quasi-projective
variety B, a dominant morphism φ : B → U , and a relative subvariety of
codimension k

Y ⊂ XB,

where XB := X ×U B, such that Y ⊂ X is one fiber Yb ⊂ Xb for some
b ∈ B. Note that we may assume that B is smooth and φ is étale, by
restricting to a locally closed subset of B. It follows that the bundle φ∗ΩX
is isomorphic to ΩXB

. We shall denote by Ỹ a desingularization of Y. It
induces a desingularization of the generic fiber Yb.

The strategy to produce sections of KeYb
(−d + n + k + 2) is now the

following. Let N := dimB. Then

dim Ỹ = N + n− k
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and

K eY =
N+n−k∧

Ω eY . (3.1.2)

Furthermore, for generic b, the adjunction formula shows that

K eY|fYb
= KfYb

. (3.1.3)

Hence, to construct non-zero sections of KeYb
(−d + n + k + 2), it will suffice

to prove:

Lemma 3.4 The bundle

N+n−k∧
ΩX |Xb

(−d + n + k + 2) ∼=
N+n−k∧

Ω eXB |Xb

(−d + n + k + 2)

is generated by global sections.

Indeed, restricting these sections to Yb ⊂ Xb and projecting them further
to

∧N+n−k Ω eY|Yb
will produce via the identifications (3.1.2) and (3.1.3), the

desired non-zero section of KeYb
(−d + n + k + 2).

Proof of Lemma 3.4. Since we have

rank ΩX |Xb
= N + n, detΩX |Xb

= KXb
= OXb

(d− n− 2),

there is a canonical isomorphism :

N+n−k∧
ΩX (−d + n + k + 2)|Xb

∼=
k∧

TX (k)|Xb

. (3.1.4)

The Lemma 3.4 follows then from the following

Lemma 3.5 The bundle TX (1)|Xb
is generated by global sections.

As mentioned in remark 3.2, these results are not far from being optimal.
However Clemens conjectured that they could be improved by 1, which was
shown in [61].

Theorem 3.6 (Voisin) If d ≥ 2n, and n ≥ 3, a general hypersurface X of
degree d in Pn+1 contains no rational curve.

If d ≥ 2n + 1, and C ⊂ X is any curve, one has

h0(C̃,K eC(−1)) 6= 0,
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which provides the following lower bound for the genus of C :

2g − 2 ≥ deg C.

More generally, for any 2 ≤ k ≤ n−1, if d ≥ n+k+1, and X is general of
degree d, any codimension k subvariety of X has effective canonical bundle.

This theorem is now optimal, in view of remark 3.2. One can now go
further and try to see what are the counterexamples to the first statement
when the degree goes smaller. Pacienza [54] shows the following :

Theorem 3.7 (Pacienza) Assume n ≥ 4. Then the only rational curves
contained in a general hypersurface of degree d = 2n− 1, are the lines con-
tained in X.

More generally, if d = n + k, k ≥ 4, and X is general of degree d, the
only codimension k subvariety of X which does not have effective canonical
bundle is the variety swept-out by lines.

This result has been further generalized by Clemens and Ran, who study
more generally subvarieties Y in generic hypersurfaces X of degree d in
projective space Pn+1, satisfying the condition

H0(Ỹ , KeY (t)) = 0,

where t is a non negative integer.

Theorem 3.8 Let X be general and Y ⊂ X be a subvariety of codimension
k with desingularization Ỹ . Assume that

d(d + 1)/2 ≥ 2n + 2 + k,

and let
t = Max(0,−d + n + 2 + [

k + 1
2

]).

Then either h0(Ỹ ,KeY (t)) 6= 0, or Y is ruled by lines in X.

Note that even for t = 0, that is in the range

d ≥ n + 2 + [
k + 1

2
],

this improves Pacienza’s result. Note also that if 2d+1 ≤ 3n+2, the generic
hypersurface of degree d in Pn+1 contains conics (degree 2 plane curves), so
that the theorem above for k = n− 1 is sharp.

The proof of Theorem 3.6, which has been applied and refined by Pa-
cienza and subsequently by Clemens and Ran to get Theorems 3.7 and 3.8,
follows the same lines as the one described above. The only difference is
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that we try now to improve the statement (see the proof of Lemma 3.4)
that

∧k TX (k)|Xb
is generated by global sections, by looking at sections of∧k TX (k − 1)|Xb

. To do this, we look at sections of
∧2 TX (k − 1)|Xb

and
take their wedge product with sections of TX (1)|Xb

. In [60], it was mistak-
enly claimed that sections of

∧2 TX (1)|Xb
have no base-locus on the Grass-

mannian of codimension 2 subspaces of TX |Xb
, which was enough, by taking

wedge product with sections of TX (1)|Xb
, and using the isomorphism

N+n−k∧
ΩX (−d + 2n)|Xb

∼=
n−1∧

TX (n− 2)|Xb

,

to produce sections of
∧N+n−k Ω eXB |Xb

(−d + 2n) not vanishing in

N+n−k∧
Ω eY|Yb

(−d + 2n).

This was corrected in [61] : there is indeed a non-trivial base-locus but it
can be described explicitly. There is correspondingly a description of the
base-locus, in the Grassmannian of codimension k subspaces of TX |Yb

, of the
space of global sections of

∧k TX (k − 1)|Xb
, for any k ≥ 2.

The corrected proof then works as follows : By Ein’s Theorem, we have
only to consider the case d = n + k + 1, k ≥ 2; assume there is a fam-
ily of codimension k subvarieties Y ⊂ XB, where as in the previous proof
B → U is étale, and such that Yb does not have an effective canonical bun-
dle. Then reasoning as in the previous proof, we see that any section of∧k TX (k − 1)|Xb

∼= ∧N+n−k ΩX |Xb
vanishes under restriction in

N+n−k∧
ΩY|Yb

,

for generic b. This means that at any point y of Yb, the tangent space

TY,y ⊂ TXB ,y

has to be in the base-locus introduced above, which is a differential system
imposed to Y. Analyzing the geometry of this differential system, we are led
to the conclusion that Yb has to be a component of the algebraic subset of
points x ∈ Xb such that there is a line osculating X at x to order d. We then
find a contradiction by proving that generically this subset is irreducible of
codimension k and has a natural desingularization which has an effective
canonical bundle.

These results suggest the following :
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Conjecture 3.9 For a general hypersurface X of degree d ≥ n+3 in Pn+1,
the rational curves C ⊂ X have bounded degree.

We shall explain in section 3.2 that the assumption is necessary. Let us
show the heuristic motivation for this conjecture : the condition on d exactly
means that the canonical bundle of X is ample. Let C ↪→ X be a curve,
with normalization j : C̃ → X. Assume that C̃ is rational, and assume
for simplicity that it is immersed via j in X. The adjunction formula gives
−2 = deg j∗KX + deg N eC/X

. Riemann-Roch formula then says that

χ(N eC/X
) = −2− deg j∗KX + n− 1.

Since KX is ample, we see that this number is negative when the degree of
C is large enough, so that the space H1(N eC/X

) is non trivial. Hence the
space of potential obstructions to the deformations of the map j (cf [44])
is non trivial, which suggests that there are deformations of X on which C
does not survive.

3.1.2 Geometry of the complement

Zaidenberg observed in [72] that the complement of a general hypersurface
X of degree ≤ 2n + 2 in Pn+1 is not hyperbolic. The reason is that there
are lines in Pn which meet X exactly in two points (with multiplicities).
Since P1 r 2 points is not hyperbolic, the result follows. We shall explain
now an argument to study algebraic hyperbolicity of the complement of
a general hypersurface in projective space, which is measured using only
algebraically degenerate entire curves in Pn+1rX. Here we note that if there
is a holomorphic map from C to V = Pn+1\X whose image is contained in
an algebraic curve C ′, then the closure C of C ′ is rational and meets X in
at most 2 points.

The existence or non-existence of such curve C can be done by studying
the algebraic hyperbolicity of the degree d cyclic cover of Pn+1 ramified
over X, which is a degree d hypersurface in Pn+2. Here, although this
hypersurface is not generic, we may hope to apply the method explained in
the previous section. What we want to study is now slightly different : find
the minimum number of points of intersection of any curve C with X. This
problem was considered by Xu [68] for curves in P2.

The following was proved implicitly in [60].

Theorem 3.10 Let X ⊂ Pn+1 be general of degree d = 2n + r, r ≥ 3. Then
any curve C meets X in at least r points.

Proof of Theorem 3.10.We use the following variant of Mumford’s
theorem 2.32, which allows the varieties to vary with parameters. This
variant was proved in [65].
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Theorem 3.11 Let X π→ B be a smooth projective morphism, and let σi, i =
1, . . . , m be section of π. Choose integers ni, i = 1, . . . , m. Assume that for
any b ∈ B, the 0-cycle

∑
i niσi(b) is rationally equivalent to 0 in Xb. Then,

for generic b ∈ B, for any N and any α ∈ H0(ΩN
X |Xb

), the pull-back

∑

i

niσ
∗
i α

vanishes in ΩN
B,b.

We shall apply this theorem to the following situation : φ : B → U will
be an étale map, where U is the Zariski open subset of H0(OPn+1(d)) pa-
rameterizing smooth hypersurfaces. We assume that there is a family of
curves

C ⊂ B × Pn+1

g ↓
B

and sections σi, i = 1, . . . , m of g such that as a 0-cycle on Xb, we have

Cb ∩Xb =
∑

i

niσi(b).

The contents of the theorem is that we then have m ≥ r = d−2n. Choose a
line lb varying algebraically with b, such that lb passes through σ1(b). Since
Cb is rationally equivalent in Pn+1 to deg Cb · lb, it follows that

∑
i niσi(b) is

rationally equivalent in Xb to deg Cb · (lb ∩Xb). We can thus apply Theorem
3.11 to the 0-cycle

∑
i niσi(b) − deg Cb · (lb ∩ X). Let N = dimB. As a

consequence of Lemma 3.4 for k = n, we get that

N∧
ΩXB

(−d + 2n + 2)|Xb

=
N∧

ΩXB
(2− r)|Xb

is generated by global sections. Now since the line lb is supported on an
hyperplane section, it follows that the bundle

N∧
ΩXB

(3− r)|Xb
⊗ I

lb

is generated by global sections. Now, if m ≤ r − 1, sections of OPn+1(r − 3)
separate the m− 1 points σ2(b), . . . , σm(b). Hence it follows that there exist
sections α of

∧N ΩXB |Xb
which take arbitrary values at σ2(b), . . . , σm(b) and

which vanish along lb. This contradicts the fact that for such α, we have∑
i σ
∗
i α = 0 in ΩN

B,b, according to Theorem 3.11.
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3.1.3 Kobayashi’s hyperbolicity

Let us first explain constructions due to Green, Zaidenberg, Ciliberto and
Zaidenberg, which prove the existence of hyperbolic hypersurfaces, or of hy-
persurfaces with hyperbolic complements. Brody and Green [6] constructed
explicit examples of hyperbolic surfaces of high degree in projective 3-space.
As for the hyperbolicity of the complements, Green [32] proves the following
:

Theorem 3.12 (Green) The complement of the union of d ≥ 2n + 1 hyper-
planes in general position in Pn is hyperbolically embedded.

Here for an open subset U ⊂ X, with X compact, the condition that U is
hyperbolically embedded in X is stronger than U being hyperbolic. It means
that for some constant c > 0, we have dK,U ≥ cdX |U , where dX is a given
distance on X.

In the case where n = 2, Zaidenberg deduces from this :

Theorem 3.13 There exist smooth curves of any degree d ≥ 5 which have
hyperbolic, and even hyperbolically embedded complements.

The proof shows that there is an open neighborhood for the analytic topol-
ogy, in the set of all degree d curves, of the point parameterizing an union
of d ≥ 5 lines in general position, which consists of curves with hyperboli-
cally embedded complement. It uses Green’s Theorem above, together with
Theorem 1.22, and a careful analysis of what happens to a sequence of holo-
morphic maps fn : C→ Un := P2 rCn when Cn tends to a generic union of
d ≥ 5 lines. This last curve C0 is of course not Brody hyperbolic, but the
point is that C0 r Sing C0 is Brody hyperbolic.

In a completely different spirit, Ciliberto and Zaidenberg constructed
recently singular hypersurfaces in P4, of degree ≥ 125, which are Brody
hyperbolic, thus reproving the existence of smooth hyperbolic hypersurfaces
in these ranges of degree. The idea is very simple : consider a self-product
C3, where C is a smooth curve of genus g ≥ 2. It is clearly hyperbolic.
Furthermore it can be sent to a hypersurface in P4 using an adequate linear
system. The image Y of this map φ : C3 → P4 will not be isomorphic to
C3, since there is a surface Σ ⊂ C3 on which φ is 2 − 1, and a curve D on
which φ is 3− 1. However a holomorphic map from C to Y would lift to C3

if it does not have image in Σ′ := φ(Σ). So any such map has to take value
in Σ′. On then shows that the normalization Σ̃′ of Σ′ has high irregularity,
so that Bloch’s theorem 1.18 allows to show that any entire curve in Σ′ has
to be algebraically degenerate. It remains to see that Σ′ cannot contain a
rational or elliptic curve. However, using the fact that the triple curve φ(D)
has genus > 1, this would produce a hyperelliptic or a double cover of an
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elliptic curve in C3, which one can easily show not to exist if C is generic
and the genus of C is large enough.

In the case of surfaces, Duval constructed examples of singular surfaces
in P3, of degree ≥ 8, which are Brody hyperbolic. These surfaces admit a
fibration over a curve of genus ≥ 2, with fiber curves of genus ≥ 2. The
fibration is obtained as the Stein factorization of a linear projection to P1.

We turn now to other recent results on Kobayashi’s conjecture 0.7. Con-
cerning the case of surfaces, it has been solved positively by Demailly and
Elgoul [21], and independently by McQuillan [49], although their result are
not optimal, as shown by Duval’s example :

Theorem 3.14 Let S be a general surface in P3 of degree ≥ 21. Then S is
Kobayashi hyperbolic.

The result has been proved by McQuillan for degree d ≥ 36.
An important idea of the proof is the use of a notion of jet differential,

which is slightly different from the Green-Griffiths notion (cf section 1.2.3)
and was introduced by Demailly in [20] : the space of k-jets Xk considered
is an explicitly described compactification of the space of smooth unparam-
eterized jets, which can be alternatively defined as the space of curvilinear
subschemes of lenght k + 1 of X supported at one point :

Xk ⊃ Xcurv
k := {z ⊂ X, z ∼= SpecC[t]/(tk+1)}.

This Xk can be constructed as the “Proj” of the sheaf of jet differentials
considered by Demailly, which are the jet differentials invariant under the
full reparameterization group AutSpecC[t]/(tk+1). As a projective bundle,
Xk has a line bundle OXk

(1). By definition of Xk, Demailly’s degree m k-jet
differentials are sections of OXk

(m).
A non constant holomorphic map f : C → X from any smooth curve to

X admits a lifting fk : C → Xk, which to a point c where f is of maximal
rank, associates the restriction of f to the infinitesimal neighborhood of
order k of c in C.

Green-Griffiths Theorem 1.36 provides in this case :

Lemma 3.15 Let L be an ample line bundle on X and let σ be a section of
OXk

(m) ⊗ π∗L−1, where π : Xk → X is the structural map. Then for any
non constant holomorphic map f : C→ X, σ vanishes on Im fk.

Consider now the case where S is a surface of general type. Riemann-Roch
estimates for the sheaves π∗OXk

(m)(−L) show the following :

Proposition 3.16 (Demailly [20]) If c2
1(S) > 9

13c2(S), then there is a non
zero section of π∗OX2(m)(−L), for m large enough.
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The assumption on the Chern classes are satisfied by surfaces of degree ≥ 15
in P3.

The jet space X2 is a bundle over S, of relative dimension 2. The rest of
the proof consists in proving that, if S satisfies Pic S = Z, which is true for
general S of degree ≥ 4 in P3 (the Noether-Lefschetz theorem, cf [64], 3.3.2),
and a number of vanishing assumptions, satisfied by a general S of degree ≥
21 in P3, the base-locus B of the space of sections of π∗OX2(m)(−KS) has at
most 2-dimensional components dominating S. Here the assumption on the
Picard group is used to describe the possible classes of divisor components
in this base-locus.

Having this, the projection B → S provides then a multifoliation on S,
and by Lemma 3.15, entire curves in S must be contained in leaves of this
multifoliation. One then applies McQuillan’s Theorem 2.9 to conclude that
they are algebraically degenerate.

To conclude, it suffices to show that there are no elliptic or rational curves
on S for general S, but this is known to be true once S is general of degree
≥ 5 by [67].

To conclude this section, we conclude with the following beautiful gen-
eralization of the Demailly-Elgoul Theorem :

Theorem 3.17 (Siu, [57]) For any n > 0, there exists a constant δn such
that a generic hypersurface X of degree d ≥ δn in Pn is Kobayashi hyperbolic.

Note the difference between Siu’s and Demailly-Elgoul statement, which
lies in the fact that Siu proves his result for generic, i. e. away from a
Zariski closed proper subset in the parameter space, while Demailly-Elgoul’s
Theorem is only for general surfaces, that is, away from a countable union
of proper closed algebraic subsets. Indeed, they have first to impose the
condition that the Picard group is Z, which holds in the complement of a
countable union of proper algebraic subsets, and they also use Xu’s result,
which is proved only for general surfaces.

The proof uses (Green-Griffiths) jet differentials of order n − 1 on X.
The first step is :

Proposition 3.18 Let q > 0 be fixed. Then for d large enough, there exist
an integer m and a non-zero jet differential of order n − 1 and degree m
twisted by OX(−q) on X.

Using the notation π : Pn−1 → X for the space of n − 1-jets, (cf section
1.2.3), this means a section of OPn−1(m)⊗ π∗OX(−q).

Using Theorem 1.36, Theorem 3.17 is reduced to showing that the sec-
tions above have an empty base-locus on Pn−1. This is proved by Siu using
the following proposition 3.19 : introduce as in the previous section the uni-
versal family φ : X → U of smooth hypersurfaces of degree d in Pn. There
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is correspondingly a universal family of jet spaces

φn−1 : Pn−1 → U, π : Pn−1 → X .

Siu proves next the following:

Proposition 3.19 There exist c, c′ depending on n but not on d, such that
the bundle

(TPn−1 ⊗OPn−1(c)⊗ π∗OX (c′))|Pn−1

is generated by global sections.

Here Pn−1 ⊂ Pn−1 is the fiber of φn−1 over the point x ∈ U parameterizing
X. Note that the correct version of this statement should in fact take into
account the (mild) singularities of this space (see [58]).

Having this, we let Lie derivative with respect to these vector fields act
on the non zero section given by Proposition 3.18, which may be chosen to
vary holomorphically with X. Taking q very large with respect to c, c′, and
using a precise estimate on the number m in Proposition 3.18, one finally
gets, by iterating enough this action, a non zero section at any point.

3.2 Calabi-Yau hypersurfaces

We consider now the case of Calabi-Yau hypersurfaces. They are far from
being algebraically hyperbolic. On the other hand, it is not known if their
Kobayashi pseudo-distance or pseudo-volume form are 0, according to con-
jecture 0.1. We describe results and conjecture by Clemens, and we also
explain a method to study sweeping-out of general hypersurfaces by varieties
of a given type. This leads to a statement which seems to indicate that Lang’s
conjecture 2.13 might be wrong.

3.2.1 Rational curves on Calabi-Yau hypersurfaces

We study here rational curves in Calabi-Yau hypersurfaces, that is hyper-
surfaces of degree d = n+2 in Pn+1. In contrast with Conjecture 3.9, which
concerned hypersurfaces with ample canonical bundle, we have the following
result (see [13]) :

Theorem 3.20 (Clemens) A general Calabi-Yau hypersurface of dimension
≥ 2 contains rational curves of arbitrarily large degree.

We will focus on the dimension 3 case. The same technic applies in higher
dimension. Note that for a smooth rational curve C ⊂ X, where X is a
Calabi-Yau threefold, the adjunction formula gives deg NC/X = −2 and the
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Riemann-Roch formula then shows that χ(NC/X) = 0. Hence one can expect
that the normal bundle of such curve will generically satisfy the conditions

h0(NC/X) = h1(NC/X) = 0,

which implies that, identifying the curve with P1, the normal bundle has the
following shape:

NC/X
∼= OP1(−1)⊕OP1(−1).

Such curve will be said to be infinitesimally rigid. Theorem 3.20 can then
be made more precise :

Theorem 3.21 A general quintic threefold X ⊂ P4 contains infinitely many
infinitesimally rigid rational curves.

Proof. The idea is to construct explicitly a singular (nodal) quintic, con-
taining infinitely many rigid rational curves not passing through the nodes.
These curves are stable under deformations (cf [43]), which implies that the
relative Hilbert scheme parameterizing such a pair (C,X), C ⊂ X, will be
smooth (in fact étale) over the deformation space U of X, hence in particular
dominating, since both spaces are quasi-projective. The rigidity condition
being Zariski open, it will then suffice to consider the complement of the
union of proper algebraic subsets of U which are the images of the closed
proper algebraic subsets of the relative Hilbert schemes above where the
curve is not anymore infinitesimally rigid, to get the result.

The construction is the following : the singular quintic threefold will
contain a plane P , which forces generically 16 nodes which are on P , and no
other singularities. We ask also that a hyperplane section Σ ⊂ X containing
P is the union

P ∪ S,

where the quartic surface satisfies the following property :
S contains three lines l0, l1, l∞, not meeting Sing X and mutually non-

intersecting. Projecting S from l∞ makes it into an elliptic fibration. The
line l0 will then play the role of the 0-section, and we can apply then the
multiplication map ·m by any integer m to l1 to get rational curves Cm ⊂ S.

It is easy to compute the degree of these curves so as to prove that this
degree tends to ∞ with m. Also, it is clear that only finitely many such
curves will pass through one of the nodes of X, given a generic X containing
Σ.

It remains to see that for such a generic choice of X, infinitely many
curves Cm are infinitesimally rigid in X. This is done as follows : the K3
surface S has trivial canonical bundle, hence the rational curves Cm have
normal bundle OP1(−2) in S. The normal bundle of S in X is trivial away
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from the nodes of X, so that there is an extension class e ∈ H1(S, TS) ∼=
H1(S, ΩS) associated to the normal bundle sequence :

0 → TS → TX |S → OS → 0.

(Here, to take into account the nodes of X, we can either restrict everything
to S\{nodes of X}, or work with the small resolution of X which contains
a copy of S.) The image em of e in each group

H1(NCm/S) ∼= H1(ΩCm),

via the restriction map H1(ΩS) → H1(ΩCm), is the extension class of the
normal bundle sequence

0 → NCm/S → NCm/X → OCm → 0,

and this extension class will be non trivial if and only if the normal bundle
of Cm in X is isomorphic to OP1(−1) ⊕ OP1(−1). Now, it is easy to show
that for a generic choice of X containing Σ, the class e1 is non trivial, and
computing the cohomology classes of the curves Cm, it will follow that for
infinitely many of the curves Cm, the class em is also non trivial.

Clemens (see [17], Lecture 22) conjectured the following :

Conjecture 3.22 If X is a general quintic threefold, there are at most
finitely many rational curves of given degree in X.

This conjecture has been proved up to degree 9 (see [35]). More generally,
one might conjecture that in a general Calabi-Yau hypersurface of dimension
≥ 3, rational curves cover a countable union of Zariski closed proper algebraic
subsets of codimension ≥ 2.

This is supported by the following argument from deformation theory :
if C ⊂ X is a smooth curve, with normal bundle NC/X , the obstructions to
deform C with X lie in H1(C, NC/X). Now assume X has trivial canonical
bundle and C is rational. Then h1(NC/X) = 0 ⇒ h0(NC/X) = n−3, as show
adjunction formula and Riemann-Roch theorem. So Clemens conjecture is
supported by the idea that if there are no obstructions to deform a rational
curve C with X, then h1(NC/X) = 0. The exception n = 2 is well understood
from this point of view. Indeed, curves in a quartic surfaces are obstrued,
but the point is that the deformations of the quartic surface do not provide
all the deformations of its complex structure but only an hypersurface in
them.

Remark 3.23 For special quintic, there are interesting one-dimensional
families of rational curves, eg one-dimensional families of lines which are
not the base of a cone in X. (cf [1]).
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Remark 3.24 The conjecture becomes wrong if instead of a quintic three-
fold, we consider double covers of P3 ramified along an octic surface S (cf
Example 2.17). Indeed, consider lines l in P3 which meet S along a 0-cycle
of the form 2x + 2y + 4z. It is easy to see that there is a one-dimensional
family of such lines, and the normalization of their inverse image in the
double cover is rational. Note that these double covers have Picard rank 1,
as the quintic threefold does. Other examples with Picard group of rank ≥ 2
are easy to construct (eg K-trivial threefolds which admit a K3 fibration).

3.2.2 Sweeping out a general hypersurface by subvarieties

We shall now describe an argument which allows to study rational maps
from varieties which are members of a given family to general hypersurfaces.
More precisely, let us introduce the following definition :

Definition 3.25 Let S be a quasi-projective variety and f : Y → S be a
smooth projective map of fibre dimension r. We say that a variety X is
rationally swept-out by varieties of the family Y if there exists a n − r-
dimensional quasi-projective variety B, a map ρ : B → S, and a dominating
rational map :

φ : YB 99K X.

Here YB := Y ×S B. This φ will then be generically finite since both sides
have the same dimension. In particular it is generically finite on the generic
fibre Yb of the family f : YB → B. Our goal is to study rational sweeping
out of general hypersurfaces of degree d and dimension n by varieties pa-
rameterized by a basis of small dimension. Our result [63] is the following
:

Theorem 3.26 (Voisin) Fix an integer 1 ≤ r ≤ d. Let γ = r−1
2 , r odd, or

γ = r
2 , r even, that is γ is the round-up of r−1

2 . Let Y → S, dimS = C,
be a family of r-dimensional smooth projective varieties. Then the general
hypersurface of degree d in Pn+1 is not rationally swept out by varieties
parameterized by S if

(d + 1)r ≥ 2n + C + 2, (γ + 1)d ≥ 2n− r + 1 + C. (3.2.5)

Let us sketch the method to prove this : to start with, observe that by an
easy countability argument involving the countably many Chow varieties pa-
rameterizing an hypersurface X, a point s of S, and the graph of a generically
finite rational map

φ : Ys 99K X,

it suffices to show that under the assumptions of Theorem 3.26, there do not
exist a quasi-projective variety B, a map ρ : B → S, a morphism m : B → U
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and a dominating rational map

Φ : YB 99K X , (3.2.6)

which is over U , i.e such that π ◦ Φ = m ◦ f . Here the notations are as
before : U parameterizes smooth hypersurfaces of degree d, π : X → U is
the universal hypersurface, and f : YB → B is the pull-back of the family Y
via the morphism ρ.

So let us assume by contradiction that such data are given. Observe
that for s ∈ S fixed, the fibre ρ−1(s) =: Bs has codimension ≤ C in B. We
may assume shrinking B if necessary that B, Bs are smooth and that m is
of maximal rank along Bs. Then the corank of ms = m|Bs

: Bs → U is ≤ C,
and we may assume that it is constant.

Next, restrict Φ to Ys := f−1(Bs) and denote it by Φs. Note that Ys
∼=

Ys × Bs. Hence we get a rational map

Φs : Ys × Bs 99K Xs, Xs := X ×U Bs,

which is over Bs. This means that its graph ΓΦs lies in

Ys × Bs ×Bs Xs,

that is in
Ys ×Xs.

Note that ΓΦs has codimension n in the above variety. Hence it has a
cohomology class γs in H2n(Ys ×Xs,Q).

We shall be mainly interested in the Künneth component γs,r of γs in
Hr(Ys,Q)⊗H2n−r(Xs,Q). Now we have the following theorem, which is an
easy refinement of Nori’s connectivity theorem [53], or more precisely of the
explicit Nori theorem for hypersurfaces, which can be found eg in [64], 8.3.2.
Let m : M→ U be a morphism, where M is smooth quasi-projective. We
assume that Corank m is constant equal to C. Let

XM := XU ×U M,

and let
j : XM ↪→M× Pn+1

be the natural embedding.

Theorem 3.27 i) Assume that

(d + 1)r ≥ 2n + C + 2. (3.2.7)

Then, the restriction map

j∗ : FnH2n−r(M× Pn+1,C) → FnH2n−r(XM,C)
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is surjective.
ii) If

(γ + 1)d ≥ 2n + 1− r + C, (3.2.8)

then for any i ≥ 1, the restriction map

j∗ : H2n−r−i(M× Pn+1,C) → H2n−r−i(XM,C)

is surjective.

Here the Hodge filtration is the Hodge filtration defined on the cohomology
of a smooth quasi-projective variety [19].

From this theorem, we deduce :

Corollary 3.28 The class γs,r vanishes in

Hr(Ys,Q)tr ⊗ (H2n−r(Xs,Q)/H2n−r(Pn+1 × Bs,Q)).

Here the suffix “tr” denotes the transcendental part of the cohomology group
Hr(Ys,Q), that is the quotient of Hr(Ys,Q) by all the sub-Hodge structures
which are not of Hodge level r, that is which have no (r, 0)-part.

Proof of Corollary. Indeed, γs,r is a Hodge class. This means that,
viewed by Poincaré duality as an element of

Hom (Hr(Ys,Q),H2n−r(Xs,Q)),

it will be in the subspace

HomHS (Hr(Ys,Q),W0H
2n−r(Xs,Q)),

consisting of morphisms of Hodge structures (of bidegree (n − r, n − r))
from Hr(Ys,Q) to the subspace W0H

2n−r(Xs,Q), which is the pure part (of
Hodge weight 2n − r) of H2n−r(Xs,Q). Now, we can apply Theorem 3.27,
i) to ms : Bs → U , since we know that the corank of ms is ≤ C. This says
that Fn(H2n−r(Xs,C)/H2n−r(Pn+1 × Bs,C)) = 0, and this implies that the
Hodge structure on

W0H
2n−r(Xs,Q)/H2n−r(Pn+1 × Bs,Q)

has no Hp,q-part for p ≥ n. It follows that any morphism of Hodge structures
of bidegree (n− r, n− r) from Hr(Ys,Q) to W0H

2n−r(Xs,Q)/H2n−r(Pn+1×
Bs,Q) vanishes on Hr,0(Ys), and thus on Hr(Ys)tr.
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The conclusion of the proof of Theorem 3.26 is now roughly the following:
the rational map Φ of (3.2.6) has a graph

ΓΦ ⊂ YB ×U X
and has codimension n here. Its class [ΓΦ] ∈ H2n(YB ×U X ,Q) restricts on
Ys ×Bs Xs to the class γs considered above. On the other hand, let us fix
u ∈ U , and let Bu := m−1(u). Then Φ restricts to the surjective dominating
map generically finite on fibers :

Φu : Yu 99K Xu,

where Yu := Y×S Bu. Now Φu being dominating, and the variety Xu having
a non-trivial Hn,0 group, Φu induces a non-zero (in fact injective) map

Φ∗u : Hn(Xu,Q)tr → Hn(Yu,Q),

which has, again by a Hodge level argument, a non-zero induced component
in

Hom (Hn(Xu,Q)tr, H
n−r(Bu, Rrf∗Qtr)).

This implies that the class [ΓΦ] is non trivial, even modulo the image of
H2n(YB × Pn+1,Q), in H2n−r(XB, Rrf∗Qtr). Applying part ii) in Theorem
3.27 and a Leray spectral sequence argument to the map ρ ◦π : XB → S, we
conclude that the restriction γs of [Φ] does not vanish in

Hr(Ys,Q)tr ⊗ (H2n−r(Xs,Q)/H2n−r(Pn+1 × Bs,Q)),

which contradicts Corollary 3.28.

3.2.3 Lang’s and Clemens’ conjectures contradict

Let us apply Theorem 3.26 to the case where the family Y → S is a family of
polarized abelian varieties. Hence we may assume that C = dimS ≤ r(r+1)

2 .
We shall be only interested in the case where d = n + 2, namely the case of
K-trivial hypersurfaces, since an hypersurface with ample canonical bundle
cannot be rationally swept out by abelian varieties. Theorem 3.26 then gives
the following :

Theorem 3.29 A general hypersurface of degree d = n + 2 in Pn+1 is not
rationally swept out by abelian varieties of dimension r ≥ 2.

Indeed, it suffices to check the inequalities

(n + 3)r ≥ 2n +
r(r + 1)

2
, (γ + 1)(n + 2) ≥ 2n− r + 1 +

r(r + 1)
2

,

for n ≥ r ≥ 2, where γ is round-up of r−1
2 .
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Let us now come back to Lang’s conjecture 2.13. Note first of all that for
X a variety with trivial canonical bundle (or more generally with Kodaira
dimension ≥ 0), it can be restated as follows :

Conjecture 3.30 A variety X which is not of general type and has Ko-
daira dimension ≥ 0 should be rationally swept out by abelian varieties of
dimension r ≥ 1.

Indeed, since a multiple of the canonical bundle of X is effective, it is easy
to see that a rational map φ : A 99K X whose infinitesimal deformations
generate generically the normal bundle, should factor as

A → B
ψ99K X,

where the first map is a quotient map to an abelian variety B and the
second map is generically finite. So if X is covered by rational images of
non-constant maps from an abelian variety, it must be covered by rational
images of non-constant generically finite maps from an abelian variety.

Now, Theorem 3.29 says that a general Calabi-Yau hypersurface is not
rationally swept out by abelian varieties of dimension ≥ 2. So we have :

Corollary 3.31 If Lang’s conjecture is true, a general Calabi-Yau hyper-
surface is swept out by elliptic curves.

Next we have the following (see [63] or [17], lecture 22) :

Lemma 3.32 A general Calabi-Yau hypersurface of dimension n ≥ 2 is not
rationally swept out by elliptic curves of constant modulus.

Proof. Indeed, there would be otherwise a dominant rational map

φ : B ×E 99K X,

where X is generic, E is an elliptic curve, and dimB = n − 1. This would
induce an injective morphism or rational Hodge structure

Hn(X,Q)prim → H1(E,Q)⊗Hn−1(B,Q),

since the Hodge structure on Hn(X,Q)prim is simple for general X.
It is easy to disprove the existence of such a morphism for general X by

an infinitesimal argument concerning the variations of Hodge structure on
Hn(X,Q)prim.

Hence we get the following corollary :

Corollary 3.33 If Lang’s conjecture 2.13 is true, a general Calabi-Yau hy-
persurface of dimension n ≥ 2 has a uniruled divisor.
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Proof. (See also [17], lecture 22) Indeed, by Corollary 3.31, such an X
should be rationally swept out by elliptic curves, and by Lemma 3.32, the
elliptic curves sweeping out X cannot be of constant modulus. This means
that there exist a n-dimensional projective variety E, a morphism f : E → B
whose general fiber is an elliptic curve, and a surjective morphism φ : E →
X. Furthermore we may assume that the classifying map j : B → P1 is
well-defined and non constant. Now, the divisor (j ◦ f)−1(∞) is uniruled,
and since this divisor is algebraically equivalent to (j◦f)−1(t) for any t ∈ P1,
its image in X must contain a divisor, which is also uniruled.

In conclusion, taking for example n = 3, we proved that Lang’s conjecture
2.13 and Clemens’ conjecture 3.22 on the finiteness of rational curves of a
given degree, contradict.
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[19] P. Deligne. Théorie de Hodge II, Publ. Math. IHES 40 (1971), 5-57.

[20] J.-P. Demailly. Algebraic criteria for Kobayashi hyperbolic projective
varieties and jet differentials, in Proceedings of Symposia in Pure Math-
ematics volume 62.2, 1997, 285-360.

[21] J. -P. Demailly, J. El Goul, Hyperbolicity of generic surfaces of high
degree in projective 3-space, Amer. J. Math. 122 (2000), 515-546.

[22] J.-P. Demailly, L. Lempert, B. Shiffman. Algebraic approximations of
holomorphic maps from Stein domains to projective manifolds, Duke
Math. J., vol. 76, 2, 1994, 332-363.

[23] J.-P. Demailly, T. Peternell. Pseudoeffe

[24] J. Denef, F. Loeser. Germs of arcs on singular algebraic varieties and
motivic integration, Invent. Math. 135 (1999), 201-232.

[25] L. Ein. Subvarieties of generic complete intersections, Invent. Math. 94
(1988), 163-169.

[26] D. A. Eisenman. Intrinsic measures on complex manifolds and holomor-
phic mappings, Mem. Amer. Math. Soc. 96 (1970).

[27] T. Graber, J. Harris, J. Starr. Families of rationally connected varieties,
to appear in JAMS.

[28] T. Graber, J. Harris, B. Mazur, J. Starr. Rational connectivity and
sections of families over curves, to appear Annales de l’ENS.



BIBLIOGRAPHY 73

[29] M. Green, P. Griffiths. Two applications of algebraic geometry to en-
tire holomorphic mappings, in The Chern symposium 1979, Hsiang,
Kobayashi, Singer, Weinstein Eds, Springer-Verlag 1980, 41-74.

[30] M. Green. A new proof of the explicit Noether-Lefschetz theorem, J.
Diff. Geom. 27 (1988) 155-159.

[31] M. Green. Holomorphic maps to complex tori, Amer. J. Math.
100,(1978),615-620.

[32] M. Green. Holomorphic maps into Pn omitting hyperplanes, Trans.
Amer. Math. Soc. 169 (1972), 89-103.

[33] Ph. Griffiths. Holomorphic mappings into canonical algebraic varieties,
Ann. of Math. 98 (1971), 439-458.

[34] Ph. Griffiths. Periods of certain rational integrals, I, II, Ann. of Math.
90 (1969) 460-541.

[35] T. Johnsen, S. Kleiman. Rational curves of degree at most 9 on a general
quintic threefold, Commun. Algebra 24 (1996) 2721-2753.

[36] J.-P. Jouanolou. Hypersurfaces solutions d’une équation de Pfaff
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