
Vol. 102, No. 1 DUKE MATHEMATICAL JOURNAL © 2000

THE GRIFFITHS GROUP OF A GENERAL CALABI-YAU
THREEFOLD IS NOT FINITELY GENERATED

CLAIRE VOISIN

1. Introduction. If X is a Kähler variety, the intermediate JacobianJ 2k−1(X) is
defined as the complex torus

J 2k−1(X)=H 2k−1(X,C)/F kH 2k−1(X)⊕H 2k−1(X,Z),

whereFkH 2k−1(X) is the set of classes representable by a closed form inFkA2k−1(X),
that is, which is locally of the form

∑
I,J αI,J dzI ∧dzJ , with |I |+|J | = 2k−1 and

|I | ≥ k.
Griffiths [9] has defined the Abel-Jacobi map

�k
X : �k

hom(X)−→ J 2k−1(X),

where�k
hom(X) is the group of codimensionk algebraic cycles homologous to zero

onX. Using the identification

J 2k−1(X)=
(
Fn−k+1H 2n−2k+1(X)

)∗
H2n−2k+1(X,Z)

, n= dimX

given by Poincaré duality,�k
X associates to the cycleZ = ∂�, where� is a real chain

of dimension 2n−2k+1 well defined up to a 2n−2k+1-cycle, the element
∫
�

∈ (
Fn−k+1H 2n−2k+1(X)

)∗
/H2n−2k+1(X,Z),

which is well defined using the isomorphism

Fn−k+1H 2n−2k+1(X)∼= Fn−k+1A2n−2k+1(X)c

dFn−k+1A2n−2k(X)
.

If (Zt )t∈C is a flat family of codimensionk algebraic cycles onX parametrized
by a smooth irreducible curveC, the mapt → �k

X(Zt − Z0) factors through a
homomorphism from the JacobianJ (C) to J 2k−1(X), and one can show that the
image of this morphism is a complex subtorus ofJ 2k−1(X) whose tangent space
is contained inHk−1,k(X) ⊂ H 2k−1(X,C)/F kH 2k−1(X). Defining the subgroup
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�k
alg(X) ⊂ �k

hom(X) of cycles algebraically equivalent to zero as the subgroup gen-
erated by the cyclesZt −Z0 for any family as above and defining the Griffiths group
Griff k(X) as the quotient�k

hom(X)/�k
alg(X), it follows that the Abel-Jacobi map

induces a morphism

�k
X : Griff k(X)−→ J 2k−1(X)tr,

whereJ 2k−1(X)tr is the quotient ofJ 2k−1(X) by its maximal subtorus having its
tangent space contained inHk−1,k(X).

In this paper, we are mainly interested in the case wheren= 3, k = 2. We use then
the notationJ (X),�X. In [10], Griffiths proved the following theorem.

Theorem 1. If X is a general quintic threefold andZ is the difference of two dis-
tinct lines inX,�X(Z) is not a torsion point inJ (X). Furthermore,J (X)tr = J (X).

From this it follows that Griff(X) contains nontorsion elements.
In [3] Clemens, using the countably many isolated rational curves inX, proved the

following theorem.

Theorem 2. If X is a general quintic threefold,Im�X ⊗Q is not a finite-
dimensionalQ–vector space. In particular,Griff (X)⊗Q is not a finite-dimensional
Q–vector space.

Clemens’s theorem has been extended to complete intersections by Paranjape [15]
and to Abelian threefolds by Nori [14]. (In the last case,J (X)tr is different from
J (X), and one considers the Abel-Jacobi map with value inJ (X)tr.) Notice that
it is conjectured (see [13]) that for codimension-two cycles, the Abel-Jacobi map
�2
X : Griff (X)→ J (X)tr is injective, so both statements should be equivalent.
More recently, Nori [13] proved that there may exist nontorsion cycles in Griffk(X)

for anyk ≥ 3 (soX has to be of dimension at least 4), which are annihilated by the
Abel-Jacobi map. Combining Nori’s ideas and the study of the Abel-Jacobi map for
the general cubic sevenfold inP8, Albano and Collino [1] even proved that fork ≥ 3
the kernel of the Abel-Jacobi map�k

X : Griff k(X)→ J 2k−1(X)tr may be nonfinitely
generated.

In this paper, we consider another kind of generalization of the Clemens theorem:
Instead of a quintic threefold, we consider a Calabi-Yau threefoldX; that is,X is a
Kähler threefold with trivial canonical bundle such thatH 2(�X)= 0 (so, in particular,
X is projective). For suchX it is well known that the local moduli space ofX is smooth
of dimension dimH 1(TX)= dimH 1,2(X). In [17] we proved the following.

Theorem 3. LetX be a Calabi-Yau threefold. Ifh1(TX) �= 0, the general defor-
mationXt ofX satisfies that the Abel-Jacobi map

�Xt : �2(Xt )−→ J 2(Xt )

ofXt is nontrivial, even modulo torsion.
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It is easy to check thatJ (Xt )tr = J (Xt ) for a general pointt , so the theorem implies
that Griff(Xt ) contains nontorsion elements. We prove in this paper the following
result.

Theorem 4. LetX be a Calabi-Yau threefold. Ifh1(TX) �= 0, the general defor-
mationXt ofX has the property that the Abel-Jacobi map

�Xt : �2(Xt )−→ J (Xt )

is such thatIm�Xt ⊗Q is an infinite-dimensionalQ–vector space. In particular,
Griff (Xt )⊗Q is an infinite-dimensionalQ–vector space.

The one-cycles inXt we use to prove this result are the same as in [18]. Namely,
we consider for|Lt | a sufficiently ample linear system onXt , the surfacesS ∈ |Lt |,
S

jS
↪→Xt having a classλ ∈ Ker(jS∗ :H 2(S,Z)→H 4(Xt ,Z)), which is inF 1H 2(S);

that is,λ is algebraic,λ= c1(Dλ) for some divisorDλ onS, by the Lefschetz theorem
on (1,1)-classes.

It was proved in [17] that there are countably many isolated such surfaces inXt ,
and the countably many corresponding one-cyclesZλ = jS∗(Dλ) homologous to
zero inXt were proved in [18] to generate a nontorsion subgroup ofJ (Xt ) by the
Abel-Jacobi map. We were unable to show, however, that this subgroup is nonfinitely
generated.

The method we use is in some sense related to a suggestion of Clemens in [4].
He suggested that a proof of the nonfinite generation of the Griffiths group of the
general quintic threefold could be obtained by studying the ramification loci of the
various generically finite coveringsπd : �d → �, where� is the moduli space
for the quintic threefold and�d parametrizes a quintic threefoldX and a degree
d isolated rational curveC in it. Along the ramification divisor ofπd , the curve
C ⊂X has an infinitesimal deformationη in X, and there is a corresponding element
�X∗(η) ∈ H 1,2(X), which is the differential of�X applied to the deformationη of
the corresponding cycle inX.

However, another important ingredient is the complexified Abel-Jacobi map; we use
the complexified infinitesimal Abel-Jacobi map to prove Theorem 4. The “complex-

ified” objects we study are the following: IfS
jS
↪→X, andλ ∈ Ker(jS∗ :H 2(S,C)→

H 4(Xt ,C)), we defineUλ as the set of deformations(Xt ,St ) of the pair(X,S) such
that the fixed classλt ∈ H 2(St ,C) ∼= H 2(S,C) belongs toF 1H 2(St ). It turns out
that whenX is a Calabi-Yau threefold and� is its local moduli space, most va-
rietiesUλ are generically finite covers of� (by the map(Xt ,St ) → Xt ). A point
(Xt ,St ) of ramification of this map then corresponds to a surfaceSt ⊂Xt that admits
an infinitesimal deformationη such thatλt ∈ F 1H 2(St ) remains (infinitesimally) in
F 1H 2(S

η
t ). There is then an associated complexified infinitesimal Abel-Jacobi invari-

ant�Xt ∗(η) ∈ H 1,2(Xt ). Notice that ifλ is integral, it is the class of a divisor inSt
and we get the same invariant as above.
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In Section 2, we introduce various Hodge theoretic objects and study the varieties
Uλ defined above. We also define the complexified Abel-Jacobi map and “compute”
its differential.

In Section 3, we give a very simple infinitesimal criterion, which implies that the
infinitesimal invariants above are nonzero and that if the image of the Abel-Jacobi
map ofXt were finitely generated, these infinitesimal invariants would vanish. It
follows that if this criterion is satisfied, then Theorem 4 is true.

This infinitesimal criterion concerns the infinitesimal variation of Hodge structure
of a generic sufficiently ample surfaceS ⊂ X. In Section 4, we check this criterion,
which reduces (see [7]) to the study of Jacobian rings, that is, quotients of rings of
functions by Jacobian ideals, generated by the derivatives of the defining equation of
the surface along vector fields.

2. Noether-Lefschetz loci and infinitesimal Abel-Jacobi map.Part of the ma-
terial in this section works in the general situation of a family of smooth surfaces
� → B contained in a family of smooth threefolds� → B; however, we restrict
the discussion to the following situation:�

π−→ B is the local universal family of
deformations of a Calabi-Yau threefoldX. B is a smooth ball, which can be assumed
to be as small as we want. We have dimB = dimH 1(TX). Now letL be an ample
line bundle onX; sinceH 1(�X) = H 2(�X) = 0 andHi(L) = 0, i > 0, by Ko-
daira vanishing andKX trivial, L extends uniquely to a line bundle� on �, and

dimH 0(Xt ,Lt ) = dimH 0(X,L) for any t ∈ B. ThenP(R0π∗�)
p−→ B is smooth

overB, and we denote byU ⊂ P(R0π∗�) the open set parametrizing smooth sur-

faces. Let then�
πS−→ U be the universal family,�U

πX−→ U be the pullback toU
of the family �

π−→ B, andj : � ↪→ �U be the natural inclusion. First we have the
following lemma.

Lemma 1. For sufficiently ampleL, the tangent spaceTU,t at a pointt identifies
to H 1(TSt ) by the Kodaira-Spencer map. It is also isomorphic toH 1(T

St
Xt
) by the

Kodaira-Spencer map for pairs, whereT St
Xt

is the kernel of the natural map

T
St
Xt

−→NSt/Xt .

Proof. We have the exact sequence

0 −→ TXt (−Lt)−→ T
St
Xt

−→ TSt −→ 0,

which induces the natural map

H 1
(
T
St
Xt

)
−→H 1(TSt ),

from the deformations of the pair to the deformations of the surface. So by Serre
vanishing, the map above is an isomorphism for sufficiently ampleL.
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Next we have the exact sequence

0 −→H 0(Lt |St ) −→ TU,t
p∗−−→ TB,p(t) −→ 0

and the exact sequence definingT St
Xt

,

0 −→ T
St
Xt

−→ TXt → Lt |St −→ 0,

which induces the exact sequence

0 −→H 0(Lt |St ) −→H 1
(
T
St
Xt

)
−→H 1(TXt )−→ 0,

sinceH 0(TXt ) = 0 andH 1(Lt |St ) = 0. Finally, the Kodaira-Spencer mapTU,t →
H 1(T

St
Xt
) fits into the commutative diagram

0 �� H 0
(
Lt |St

)

��

�� TU,t

��

p∗ �� TB,p(t)

��

�� 0

0 �� H 0
(
Lt |St

)
�� H 1

(
T
St
Xt

)
�� H 1(TXt )

�� 0,

where the first and last vertical maps are the identity. It follows immediately that the
middle map is an isomorphism.

We have onU the primitive variation of Hodge structure of the family of surfaces
�: namely, let

H 2
Z := Ker

(
R2πS∗Z

j∗−−→ R4πX∗Z
)

be the local system whose fiber att is

H 2(St ,Z)0 := Ker
(
H 2(St ,Z)

jt ∗−−→H 4(Xt ,Z)
)
.

Let �2 := H 2
Z⊗�U , with its Gauss-Manin connection∇S : �2 → �2⊗*U , whose

local system of flat sections isH 2
C = H 2

Z⊗C. Let F i�2, 0 ≤ i ≤ 2 be the Hodge
bundles, with fiber

F i�2
t = F iH 2(St )∩Kerjt∗, F iH 2(St )= ⊕p≥iHp,2−p(St )

and associated quotients�i,2−i = F i�2/F i+1�2. By transversality, we have

∇SF i�2 ⊂ F i−1�2⊗*U.

We denote by

∇S : �i,2−i −→ �i−1,3−i ⊗*U
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the �U -linear map deduced from∇S by transversality, so that∇S
fits into the com-

mutative diagram

∇S : F i+1�2

��

�� F i�2⊗*U

��
∇S : F i�2

��

�� F i−1�2⊗*U

��

∇S : �i,2−i �� �i−1,3−i⊗*U.

For λ ∈ Hi,j (Sv)0 we then have∇S
(λ) ∈ Hom(TU,v,H i−1,j+1(Sv)0). For η ∈ TU,v,

we denote by∇S

η the induced mapHi,j (Sv)0 →Hi−1,j+1(Sv)0.
Let V be a simply connected open subset ofU . Then the local systemH 2

C is trivial
on V , so that ifv0 ∈ V andλ ∈ H 2(Sv0,C)0, we can viewλ as a section ofH 2

C on
V . We then define the component of the Noether-Lefschetz locus determined byλ as

Vλ = {
t ∈ V, λt ∈ F 1H 2(St )0

}
.

Vλ is an analytic subvariety ofV , defined by the vanishing of the projection in�0,2

of the flat, hence holomorphic, sectionλ ∈ �2. If t ∈ Vλ, λt ∈ F 1H 2(St )0 and hence
has a projectionλ1,1

t ∈ H 1,1(St )0 = �1,1
t . Then the next lemma follows from the

definition of∇S
.

Lemma 2. The Zariski tangent space toVλ at t is equal toKer∇S
(λ

1,1
t ), where

∇S
(λ

1,1
t ) ∈ Hom(TV,t ,H 0,2(St )).

Note that usually the terminology of the Noether-Lefschetz locus is reserved to the
case whereλ is rational. In this case, by the Lefschetz theorem on(1,1)-classes,Vλ
is the set of pointsv ∈ V where the classλv is algebraic; that is, any multiplemλλv
that is an integral class is the class[Dλ,v] of a divisor onSv. Then sincejv∗λv = 0,
jv∗(Dλ,v) is a one-cycle homologous to zero inXv.

We have the following convenient interpretation ofVλ: Let v0 be any point ofV ;
thenH 2

C
∼= V ×H 2(Sv0,C)0. ViewingF 1�2, �2 as vector bundles, we have a map

φ : F 1�2 −→H 2(Sv0,C
)
0 (2.0)

obtained as the composition of the inclusionF 1�2 ⊂ �2, the isomorphism�2 ∼=
H 2(Sv0,C)0×V given by the trivialization ofH 2

C, and the first projection. Then we
have thatVλ is naturally isomorphic toφ−1(λv0). Indeed, by definition,Vλ×λv0 ⊂
V ×H 2(Sv0,C)0 ∼= �2 is the scheme-theoretic intersection ofVλ×λv0 andF 1�2 in
�2; but this is also the definition of the fiberφ−1(λv0).

In other words, the flat sectionλ restricted toVλ, which is inF 1�2|Vλ , gives the

reverse isomorphismVλ → φ−1(λv0). We abuse notation in Section 3 and view, by
this isomorphism,Vλ as a subvariety ofF 1�2|V .
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We denote by

λ1,1 ∈ �1,1
|Vλ (2.1)

the projection of the sectionλ ∈ F 1�2|V . Now if v ∈ V andλ1,1 ∈ H 1,1(Sv)0, let

λ1, λ2 ∈ F 1H 2(Sv)0 be two liftings of λ1,1, so thatλ1 = λ2 + η, for someη ∈
H 2,0(Sv). By Lemma 2 the tangent spaces toVλi at v coincide, and the two sections
λ

1,1
i , which are defined on the first-order neighbourhoodV ε

λ of v in Vλi (wherei = 1
or 2) are equal atv. However, their derivatives do not coincide. In fact, we have the
next lemma.

Lemma 3. The derivative atv of the sectionλ1,1
1 −λ

1,1
2 of �1,1

|V ε
λ
(which vanishes

at v), is equal to−∇(η)|TVλ,v : TVλ,v →H 1,1(Sv)0.

Proof. Let h ∈ TV ε
λ ,v

and letZh be the scheme of length two supported onv with

tangent vectorh. Then the sectionλh1 = λ1|Zh of F 1�2 is the flat section that extends
λ1 ∈ F 1H 2(Sv)0 and that remains inF 1�2. Now, η being given above, let

µh2 := λh1 +ε∇S
h (η̃)− η̃,

whereη̃ is a section ofF 2�2 onZh extendingη. Then clearlyµh2 is flat and its value
at v is equal toλ2. Furthermore,µh2 is a section ofF 1�2 onZh by transversality. It
follows thatλh2 = µh2. Hence,

λh1 −λh2 = −ε∇h(η̃)+ η̃,

so that by projecting to�1,1 and using the definition of∇S
, we get

(
λh1

)1,1−(
λh2

)1,1 = −ε∇S
(η)(h),

which proves the lemma.

We now turn to the generalized Abel-Jacobi map and its infinitesimal version. For
u ∈ U , let Yu =Xu−Su. We have an exact sequence

0 −→H 3(Xu)−→H 3(Yu)
Res−−→H 2(Su)0 −→ 0

of cohomology groups with integral coefficients, andH 3(Yu,C) carries a mixed
Hodge structure compatible with the Hodge structures onH 3(Xu) andH 2(Su)0.
Namely, we have a decreasing filtrationF iH 3(Yu), 0 ≤ i ≤ 3, such that

F iH 3(Yu)∩H 3(Xu)= F iH 3(Xu), Res
(
F iH 3(Yu)

) = F i−1H 2(Su)0,

whereF iH 3(Xu)= ⊕p≥iHp,3−p(Xu) is the Hodge filtration ofXu.
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Working in families, we get the local system

H 3
Y,Z = R3πY ∗Z,

whereπY = πX |�, � = �U −�. We then define the associated Hodge bundles�3
Y by

tensorizing the local system with�U . We denote by∇Y the Gauss-Manin connection
on�3

Y . This bundle is equipped with the Hodge filtration by holomorphic subbundles
F i�3

Y , which satisfy Griffiths transversality

∇YF i�3
Y ⊂ F i−1�3

Y ⊗*U.

We denote byH 3
Z, �3, F i�3, and∇X the analogous objects onB that describe the

variation of Hodge structure of the familyπ : � → B; that is,H 3
Z = R3π∗Z, F i�3 ⊂

�3 with �3 =H 3
Z⊗�B , and∇X : �3 → �3⊗*B with

∇XF i�3 ⊂ F i−1�3⊗*B.

We then have an exact sequence of variation of mixed Hodge structures

0 −→ p∗H 3
Z −→H 3

Y,Z −→H 2
Z −→ 0. (2.2)

On our open setV , let us choose a splittingrZ : H 2
Z → H 3

Y,Z of (2.2). Denoting by

P : F 1�2 → B the composite of the bundle mapF 1�2 → U and the mapp : U → B,
the sectionrZ allows us to construct a section

s ∈ P ∗�3

F 2�3
(2.3)

overF 1�2|V as follows: If(v,λ) ∈ F 1�2, that is,λ ∈ F 1H 2(Sv)0, let λF be a lifting

of λ in F 2H 3(Yv). Then we define

s(v,λ)= λF −rZ(λ)mod.F 2H 3(Xv).

This is a well-defined element ofH 3(Xv,C)/F 2H 3(Xv), since clearlyλF − rZ(λ)

belongs toH 3(Xv,C) andλF (v) is defined up toF 2H 3(Xv).
In fact, we are mainly interested with the restriction ofs to the subvarieties

φ−1(λ0) ∼= Vλ. We may then consider these sections ofp∗�3/F 2�3|Vλ as the com-
plexified Abel-Jacobi map, as we explain now.

Suppose thatλ ∈H 2(Sv,Z)0∩F 1H 2(Sv). Thenλ= [Dλ] for some divisorDλ on
Sv, andjv∗(Dλ) is a one-cycle homologous to zero onXv. It is then well known that
the element

�Xv

(
jv∗(Dλ)

) ∈ J (Xv)=H 3(Xv,C)/F 2H 3(Xv)⊕H 3(Xv,Z)
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is equal toλF − rZ(λ)mod.F 2H 3(Xv)⊕H 3(Xv,Z). (The fact that we consider it
moduloH 3(Xv,Z) makes it independent of the retractionrZ.) In other words, for
integralλ we find thats|Vλ mod.H 3

Z is equal to the sectionνλ of the pullback toVλ
of the family of intermediate JacobiansJ (Xb)b∈B given by

νλ(v)=�Xv

(
jv∗(Dλ)

) ∈ J (Xv), v ∈ Vλ.

We now want to study the infinitesimal properties of the mapφ defined in (2.0) or
equivalently of the varietiesVλ. Recall that forv ∈ U, λ ∈ H 1,1(Sv)0 we have the
map

∇S
(λ) :H 1(TSu) = TU,u −→H 2(�Su

)
,

which induces

∇S
(λ) :H 0(Lu|Su

) = Kerp∗ ⊂ TU,u −→H 2(�Su
)
.

Note that by Serre duality and becauseKXv is trivial, both spaces have the same
dimension. We have the following lemma.

Lemma 4. The following are equivalent:

(i) ∇S
(λ) :H 0(Lu|Su)→H 2(�Su) is an isomorphism;

(ii) for any λ̃ ∈ F 1H 2(Sv)0 projecting toλ moduloF 2H 2(Sv), the map

(P,φ) : F 1�2
0 −→ B×H 2(Sv0,C

)
0

is étale atλ̃.

Proof. We may clearly assume thatu= v0 since the change of base point simply
composesφ with the natural isomorphismH 2(Sv0)0

∼= H 2(Su)0. Consider(P,φ)∗ :
TF 1�2,λ̃ → TB,p(u)×TH2(Su)0,φ(λ̃)

. Since onF 1H 2(Su)0 ⊂ TF 1�2,λ̃ this map is simply
the inclusion

F 1H 2(Su)0 ⊂H 2(Su)0 = TH2(Su)0,φ(λ̃)
,

this map induces
(P,φ)0,2∗ : TU,u −→ TB,p(u)×H 2(�Su

)
.

It is then immediate, using the definition of∇S
, to show that(P,φ)0,2∗ = (

p∗,∇S)
. But

(P,φ)∗ is an isomorphism if and only if(P,φ)0,2∗ is an isomorphism. Sincep∗ is sur-
jective, this is also equivalent to(P,φ)0,2∗ |Kerp∗ being an isomorphism ontoH 2(�Su),

that is, to∇S
(λ) : H 0(Lu|Su) → H 2(�Su) being an isomorphism. So Lemma 4 is

proved.

In fact, the proof shows the following lemma.

Lemma 5. The kernel of(P,φ)∗ at λ̃ identifies naturally via the projection to
TU,u to

Ker∇S
(λ) :H 0(Lu|Su

) −→H 2(�Su
)
,
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that is, to the vertical partT
V
p(u)

λ̃

of TV
λ̃
, whereV p(u)

λ̃
is the intersection ofVλ̃ with

P(H 0(Lp(u))) = p−1(p(u)). The reverse isomorphism is given by the differential of

the natural sectioñλ of F 1�2 onV p(u)

λ̃
.

We now study the infinitesimal variation of mixed Hodge structure of the family

�
πY→ U . It is described as above, by transversality, by a series of maps

∇Y : F i/F i+1�3
Y −→ F i−1/F i�3

Y ⊗*U,

which fit into the commutative diagram

∇X ◦p∗ : p∗(F i/F i+1�3
)

��

�� p∗(F i−1/F i�3
)⊗*U

��

∇Y : F i/F i+1�3
Y

��

�� F i−1/F i�3
Y ⊗*U

��

∇S : F i−1/F i�2 �� F i−2/F i−1�2⊗*U,

(2.4)

where the first vertical maps are injective and the last ones are surjective. Composing

∇Y
with the restriction map*U,u →H 0(Lu|Su)∗ then gives a map

F 2/F 3H 3(Yu)−→ Hom
(
H 0(Lu|Su

)
, F 1/F 2H 3(Yu)

)
,

which obviously factors throughF 1/F 2H 2(Su)0 since the composition ofp∗ with
the restriction toH 0(Lu|Su) = Kerp∗ is zero. (This simply means that there is no
variation of Hodge structure forX in the fibers ofp.) So we have constructed a map

µ0 :H 1(*Su

)
0 −→ Hom

(
H 0(Lu|Su

)
, F 1/F 2H 3(Yu)

)
,

which induces

µ1 :H 0(Lu|Su
) −→ Hom

(
H 1(*Su

)
0, F

1/F 2H 3(Yu)
)
.

We then have the following.

Lemma 6. There is a natural isomorphism (depending on the choice of a trivial-
ization ofKXu)

F 1/F 2H 3(Yu)∼= (TU,u)
∗ = (

H 1(TSu))∗
such that for anyη ∈H 0(Lu|Su)∼=H 0(KSu), the map

t
(
µ1(η)

) : TU,u −→H 1(*Su

)
0

identifies to∇S
(η).
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Notice that in the identificationH 0(Lu|Su)∼=H 0(KSu), we use the same trivializa-
tion ofKXu .

Proof. Recall the isomorphismsTU,u = H 1(TSu) = H 1
(
T
Su
Xu

)
of Lemma 1. Now

T
Su
Xu

is dual to*Xu(logSu), so that, choosing a trivialization ofKXu , we get an
isomorphismH 1(T

Su
Xu
) ∼= (H 2(*Xu(logSu)))∗, and taking into account the natural

isomorphism (see [5])H 2(*Xu(logSu))= F 1/F 2H 3(Yu), we get the first assertion.
Next it is known (this is an easy generalization of [9]) that the map

∇Y : F 2/F 3�3
Y −→ F 1/F 2�3

Y ⊗*U

identifies to the map given by the interior product

H 1(*2
Xu
(logSu)

) −→ Hom
(
H 1(T Su

Xu

)
, H 2(*Xu(logSu)

))
. (2.5)

The image of the map (2.5) is contained in the set of symmetric homomorphisms
from H 1(T

Su
Xu
) to its dual; indeed the dual of (2.5) is equal to the (symmetric) cup

product

H 1
(
T
Su
Xu

)
⊗H 1

(
T
Su
Xu

)
−→H 2

( 2∧
T
Su
Xu

)
,

taking into account the isomorphism
∧2

T
Su
Xu

= (*2
Xu
(logSu))∗, the triviality ofKXu ,

and Serre duality.
It follows that forλ ∈H 1(*2

Xu
(logSu)), η, χ ∈H 1(T

Su
Xu
), we have

〈∇Y
(λ)(η),χ

〉 = 〈∇Y
(λ)(χ),η

〉
. (2.6)

Now note that the inclusionH 0(Lu|Su) ↪→ H 1
(
T
Su
Xu

)
is dual to the residue map

Res:H 2(*Xu(logSu))→H 2(�Su), so that forη ∈H 0(Lu|Su), (2.6) gives

〈∇Y
(λ)(η),χ

〉 = 〈
Res

(∇Y
(λ)(χ)

)
,η

〉
, (2.7)

where the second pairing in (2.7) is the duality betweenH 0(Lu|Su) andH 2(�Su).
(We always use the same trivialization ofKXu to compute the pairings.) But by

diagram (2.4), we have Res(∇Y
(λ)(χ)) = ∇S

(Res(λ))(χ)) and by definition ofµ1,

we have∇Y
(λ)(η) = µ1(η)(Res(λ)). So we have proved for anyλ ∈ H 1(*Su)0, for

anyη ∈H 0(Lu|Su) andχ ∈H 1
(
T
Su
Xu

)
, the equality

〈
µ1(η)(λ),χ

〉 = 〈∇S
(λ)(χ),η

〉
, (2.8)

where the first pairing is the duality above betweenH 1
(
T
Su
Xu

)
andH 2(*Xu(logSu)),

while the second one is the duality betweenH 0(Lu|Su) andH 2(�Su). Finally, for
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η ∈H 0(Lu|Su)∼=H 0(KSu), λ ∈H 1(*Su)0, χ ∈H 1
(
T
Su
Xu

)
, we have the equalities

〈t(∇S
(η)

)
(λ),χ

〉 = 〈
λ,∇S

(η)(χ)
〉 = 〈∇S

(λ)(χ),η
〉 (2.8)= 〈

µ1(η)(λ),χ
〉
,

where the second equality is standard and follows from the fact that the intersection
pairing onH 2(Su)0 is flat with respect to the Gauss-Manin connection and that, for this

pairing,H 2,0(Su) is perpendicular toF 1H 2(Su)0. This proves thatt (∇S
(η))= µ1(η),

as we wanted.

We conclude this section with the “complexified infinitesimal Abel-Jacobi map.”
Recall that from Lemma 5 we get, forλ ∈ H 1(*Su)0 with lifting λ̃ ∈ F 1H 2(Su)0,

a natural identification between Ker∇S
(λ)|H0(Lu|Su ) and KerP∗ : TV

λ̃
×λ̃,λ̃ → TB,p(u),

where by definition ofVλ̃, Vλ̃× λ̃ ⊂ U ×H 2(Su0,C)0 is in fact contained inF 1�2.
Now consider the sections of the bundleP ∗�3/F 2�3 constructed in (2.3). Since
this bundle is naturally trivial on the fibers ofP , it makes sense to differentiates|V

λ̃
×λ̃

in the direction contained in KerP∗. It follows that we have a map

ds : KerP∗ = Ker∇S
(λ)|H0(Lu|Su ) −→H 3(Xu)/F

2H 3(Xu).

On the other hand, the map

µ0 :H 1(*Su

)
0 −→ Hom

(
H 0(Lu|Su

)
, F 1/F 2H 3(Yu)

)

satisfies Res◦µ0(λ)= ∇S
(λ)|H0(Lu|Su ) and hence induces a map

µ2 : Ker∇S
(λ)|H0(Lu|Su ) −→H 3(Xu)/F

2H 3(Xu).

Now we have the following.

Lemma 7. We have the equality

ds = µ2.

Proof. Indeed, recall thats|V
λ̃
×λ̃ is equal toλ̃F − rZ(λ̃)mod.F 2�3, whereλ̃F is

any lifting of λ̃ ∈ F 1�2|V
λ̃

in F 2�3
Y |V

λ̃
. Sinceλ̃ is flat, we have

∇X
(
λ̃F −rZ

(
λ̃
)) = ∇Y

(
λ̃F

);
sinceλ̃F is a section ofF 2�3

Y |V
λ̃
, we have, by definition of∇Y

,

∇Y
(
λ̃F

)
mod. F 2�3

Y = ∇Y (
λF

)
,
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whereλF is the projection of̃λF in F 2�3
Y /F

3�3
Y . But then forh ∈ TV

λ̃
,u∩Kerp∗ =

Ker∇S
(λ)|H0(Lu|Su ), we have

ds(h)= ∇X
h

(
λ̃F −rZ

(
λ̃
))

mod. F 2H 3(Xu)= ∇Y (
λF

)
(h),

and by definition ofµ2 the right-hand side is equal toµ2(h).

The reason we callds or µ2 the complexified infinitesimal Abel-Jacobi map is,
again, that ifλ̃ is an integral class, we have shown thats|V

λ̃
×λ̃ is a lifting of the

normal function
νλ̃(u)=�Xu

(
jSu∗

(
Dλ̃,u

)) ∈ J (Xu)

to a section ofp∗(�3/F 2�3) onVλ̃. Then ifh ∈ Kerp∗, ds(h) is simply the differ-
ential ofνλ̃ in the directionh, which makes sense sinceXu, and henceJ (Xu) remains
constant in the directionh.

3. An infinitesimal criterion for the nonfinite generation of the image of the
Abel-Jacobi map. With the notation of Section 2, we now assume that dimB > 0.
Recall that we have defined forSu ⊂ Xu and forλ ∈ H 1(*Su)0, η ∈ H 0(KSu) the
maps

∇S
(η) :H 1(TSu) −→H 1(*Su

)
0,

∇S
(λ) :H 1(TSu) −→H 2(�Su

)
.

We prove in this section the following infinitesimal criterion for the infinite generation
of the Griffiths group of the general fiberXb.

Proposition 1. Assume thatLu is sufficiently ample and that for genericu ∈ U

and genericη ∈H 0(KSu), we have that

(i) the map∇S
(η) :H 1(TSu)→H 1(*Su)0 is injective;

(ii) for genericλ ∈H 1(*Su)0 such that∇S
(λ)(η)= 0, we have that

Ker∇S
(λ) :H 0(Lu|Su

) −→H 2(�Su
)

is generated byη.
Then for the general pointt ∈ B, the Abel-Jacobi mapφXt of Xt satisfies that

Im�Xt ⊗Q is an infinite-dimensionalQ–vector space.

In assumption (ii),η is viewed as an element ofH 0(Lu|Su)⊂H 1(TSu).
To start the proof, we first note the following lemma.

Lemma 8. Assumption (ii) implies that for genericu and genericλ ∈ H 1(*Su)0,
the map

∇S
(λ) :H 0(Lu|Su

) −→H 2(�Su
)

is an isomorphism.
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Proof. IdentifyingH 0(Lu|Su) with H 0(KSu) by a trivialization ofKXu , the maps
∇S

(λ) : H 0(Lu|Su) → H 2(�Su) are symmetric, with respect to Serre duality. Hence
∇S

(λ) determines a quadricqλ on P(H 0(Lu|Su)). If λ is as in assumption (ii), the
quadricqλ hasη for only singular point, and sinceη is generic, it is not in the base
locus of the system of quadricsqλ. Hence the tangent space atλ to the discriminant
hypersurface, parametrizing singular quadricsqλ being equal to the set ofqλ vanishing
at η, is a proper subspace ofH 1(*Su)0, so the genericqλ is smooth.

Now note that the condition that∇S
(λ) : H 0(Lu|Su) → H 2(�Su) is an isomor-

phism is Zariski open onH 1(*Su)0, which is the complexification ofH 1,1
R (Su)0 :=

H 1,1(Su)∩H 2(Su,R)0. So if it is satisfied at some point, it will be satisfied at some
real pointλ ∈H

1,1
R (Su)0, which obviously has a natural (real) liftingλ in F 1H 2(Su)0.

From Lemma 4 we know that at such aλ ∈ F 1�2 the map

(P,φ) : F 1�2 −→ B×H 2(Su0,C)0

is étale, so it is a local isomorphism for the usual topology. Hence there are open
connected neighbourhoodsB ′ ⊂ B of p(u), V ′ ⊂ H 2(Su0,C)0 of φ(λ), andW ⊂
F 1�2 of λ, with W

(P,φ)∼= B ′ ×V ′. Finally, note that sinceφ(λ) is real, the rational
points inV ′∩H 2(Su0,Q)0 are Zariski dense inV ′. For any such rational pointλ ∈ V ′,
the fiberφ−1(λ)∩W is then naturally isomorphic toB ′ by P , and it parametrizes
then the pairsSt

jt
↪→ Xt such thatλt is algebraic onSt . For each suchλ, we choose

an integermλ such thatmλλ is integral, and thenmλλ = c1(Dλ,t ) on St . Hence we
get a normal functionνλ onB ′, that is, a section of the sheaf

	 = �3/F 2�3⊕H 3
Z

defined by
νλ(t)=�Xt

(
jt∗(Dλ,t )

) ∈ J (Xt ).

We use the countably manyνλ, λ ∈ V ′
Q, in order to prove Proposition 1. So we assume

by contradiction the following assumption:

(∗) For any general pointt ∈ B ′, the image of�Xt tensorized byQ is
finitely generated.

Then we have the following.

Lemma 9. If (∗) holds, there existsλ1, . . . ,λN ∈ V ′
Q such that for anyλ ∈ V ′

Q,
there exist integersm �= 0, m1, . . . ,mN , satisfying the equality

mνλ =
∑
i

miνλi in 	.

Proof. Choose an orderingλi, i ∈N, of the elements ofV ′
Q. For any sequence

(αi)i∈N of integers with only finitely many nonzero elements, let
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B ′
α· =

{
t ∈ B ′,

∑
i

αiνλi (t)= 0 in J (Xt )
}
.

ThenB ′
α· is an analytic subset ofB ′, so any point in

B ′′ = B ′ −
⋃

B ′
α· �=B ′

B ′
α·

is general. On the other hand, by definition, ift ∈ B ′′, any relation with integral
coefficients

∑
i αiνλi (t) = 0 in J (Xt ) implies that

∑
i αiνλi = 0 in 	. Lemma 9

follows, taking anyt ∈ B ′′ at which (∗) holds.

Coming back to the sections of P ∗(�3/F 2�3)|W) defined in (2.3), we get the
following corollary.

Corollary 1. Under the same assumption (∗), for anyλ ∈ V ′, s|B ′×λ belongs
to the finite vector spaceK of holomorphic sections of(�3/F 2�3)|B ′ generated by
the image ofH 3

C|B ′ in (�
3/F 2�3)|B ′ and by liftingsν̃λi of νλi in (�

3/F 2�3)|B ′ for
i = 1, . . . ,N .

Here we use the isomorphismW ∼= B ′ ×V ′ given by(P,φ).

Proof. By Lemma 9, the conclusion is true forλ ∈ V ′
Q. Indeed, a relationmνλ =∑

i miνλi in 	 is equivalent to a relation

mν̃λ =
∑
i

mi ν̃λi +α in

(
�3

F 2�3

)
|B ′
,

whereα ∈ H 3
Z and ν̃λi , ν̃λ are liftings of our normal functions in(�3/F 2�3)|B ′ .

On the other hand, we have shown in Section 2 thatmλs|B ′×λ, mλi s|B ′×λi give such
liftings.

In order to deduce from this that the conclusion is true for anyλ ∈ V ′, we use now
the Zariski density ofV ′

Q in V ′. To be precise, using a trivialization of the bundle

(�3/F 2�3)|B ′ , Corollary 1 will follow now from the next lemma.

Lemma 10. Let K be a finite-dimensional set of functions onB ′. Let f be a
function onB ′ ×V ′, whereV ′ is a connected open set ofCk meetingRk, such that
for anyλ ∈ V ′ ∩Qk, f|B ′×λ ∈K. Then for anyλ ∈ V ′, f|B ′×λ ∈K.

Proof. Let k = dimK and letp1, . . . ,pk be points onB ′ such that the restriction
mapK → ⊕i�pi is an isomorphism. Then we have a basis(ki) of K such that
ki(pj ) = δij . So any elementg of K satisfiesg = ∑

i g(pi)ki . It follows that the
function f (b,v)−∑

i f (pi,v)ki(b) on B ′ ×V ′ vanishes onB ′ × (V ′ ∩Qk), hence
everywhere, by the (analytic) Zariski density ofB ′ ×(V ′ ∩Qk) in B ′ ×V ′.

Now we use analytic continuation to conclude the following.
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Corollary 2. Let U ′ be any open subset ofU contained in the image of the
projectionW → U . (We recall thatW is an open subset ofF 1�2|V and thatV is open

in U .) Then under the same assumption (∗), for anyλu ∈ F 1�2
|U ′ such that(P,φ) is

étale atλu, the sections|U ′
λu,0

belongs toP ∗(K), whereU ′
λu,0

denotes the irreducible

component ofU ′
λu

∼= φ−1(φ(λu)) containingu (which is unic since by hypothesisU ′
λu

is smooth atu).

Proof. Let (F 1�2
|U ′)et denote the Zariski-dense open subset ofF 1�2

|U ′ where

(P,φ) is étale. We can cover(F 1�2
|U ′)et by connected open setsWi isomorphic to

Bi×Vi by (P,φ) for some open subsetsBi of B ′ andVi of H 2((Su0,C)0). Then for
λu ∈ Wi , Bi ×φ(λu) is open inU ′

λu,0
. So if we show thats|Bi×φ(λu) belongs toK,

there is ak ∈K such that

P ∗k|Bi×φ(λu) = s|Bi×φ(λu),

and this will be true everywhere onU ′
λu,0

by analytic continuation.
So it suffices to prove the following: For anyWi

∼= Bi ×Vi , we have that for any
λ ∈ Vi, s|Bi×λ belongs toK. But using the same argument as in Corollary 1, we see
that if this is true forWi and ifWi ∩Wj �= ∅, this is true as well forWj . Since this
is true onW by Corollary 1 and(F 1�2

|U ′)et is connected, this is true for allWi .
Corollary 2 is proved.

We conclude with the following corollary.

Corollary 3. Let λu ∈ F 1�2
|U ′ be such thatU ′

λu
is irreducible reduced, and

generically finite overB via p. Then if (∗) is satisfied, for anyh ∈ TU ′
λu
,λu

, such that

P∗(h)= 0 in TB,p(u), we haveds(h)= 0 in H 3(Xu)/F
2H 3(Xu).

This is immediate sinceP : U ′
λu

→ B is a generic isomorphism, that is,(P,φ)
is étale at the generic point ofU ′

λu
. We then can apply the previous corollary and

conclude that for somek ∈K, we haveP ∗(k)= s on some open set ofU ′
λu

. Hence the
equality is true everywhere by irreducibility, and it follows that the vertical derivatives
of s|U ′

λ
vanish.

Proof of Proposition 1. We now show that the hypotheses of Proposition 1 con-
tradict the conclusion of Corollary 3. The hypotheses are as follows:

(i) the map∇S
(η) : H 1(TSu) → H 1(*Su)0 is injective for genericu and η ∈

H 0(KSu);

(ii) for genericλ ∈H 1(*Su)0, such that∇S
(λ)(η)= 0, we have that

Ker∇S
(λ) :H 0(Lu|Su

) −→H 2(�Su
)

is generated byη.
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Recall from Lemma 6 that the transposed map

t
(∇S

(η)
) :H 1(*Su

)
0 −→ (

H 1(TSu))∗ ∼= F 1H 3(Yu)

F 2H 3(Yu)

satisfies
Res◦t(∇S

(η)
) = ∇S

η :H 1(*Su

)
0 −→H 2(�Su

)
.

Now hypothesis (i) says thatt (∇S
(η)) is surjective; furthermore, the condition dimB>

0 implies dimF 1H 3(Xu)/F
2H 3(Xu) > 0. It follows that for genericλ ∈ Ker∇S

η , we

havet (∇S
(η))(λ) �= 0 in

F 1H 3(Xu)

F 2H 3(Xu)
= Ker

(
Res: F

1H 3(Yu)

F 2H 3(Yu)
−→H 2(�Su

))
.

Note also that by definition∇S

η(λ) = ∇S
(λ)(η) ∈ H 2(�Su), so we conclude from

assumption (ii) that we can findλ such that

(a) Ker∇S
(λ) is generated byη, with η generic inH 0(Lu|Su);

(b) t (∇S
(η))(λ) �= 0 in F 1H 3(Xu)/F

2H 3(Xu).

Now recall Lemmas 6 and 7, which say that forη ∈ Ker∇S
(λ), so thatη is tangent

to Vλ̃ atu for any λ̃ ∈ F 1H 2(Su)0 overλ, andη is annihilated byp∗,

t
(∇S

(η)
)
(λ) ∈ F 1H 3(Xu)

F 2H 3(Xu)

is equal tods|V
λ̃
(η).

So the hypotheses imply that for anyλ̃ ∈ F 1H 2(Su)0 overλ, the vertical derivative
of s|V

λ̃
is nonzero. In order to contradict Corollary 3, it suffices now to show that we

can choosẽλ so thatVλ̃ is smooth atu and generically finite overB.
The first statement follows easily from (a) and (b): indeed, to prove the smoothness

of Vλ̃ atu, it suffices to show that

∇S
(λ) :H 1(TSu) −→H 2(�Su

)
is surjective or that its dual

t
(∇S

(λ)
) :H 0(Lu|Su

) −→H 1(TSu)∗ = F 1H 3(Yu)

F 2H 3(Yu)

is injective.

But one sees easily, as in Section 2, that Res◦t (∇S
(λ)) is equal to∇S

(λ)|H0(Lu|Su ),
and hence its kernel is generated byη by (a). Furthermore, one has the equality

t
(∇S

(λ)
)
(η)=t

(∇S
(η)

)
(λ) ∈ F 1H 3(Xu)

F 2H 3(Xu)
,
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and by (b) this is nonzero. Sot (∇S
(λ)) is injective, as we wanted to prove.

What remains is to show that for generalλ̃ lifting λ, the varietyVλ̃ is generically
finite overB viaP . Recall from (2.1) that onVλ̃ we have a natural sectioñλ1,1 of the
bundle�1,1. Now on the total space of�1,1, let 
 be the discriminant hypersurface;
that is, for anyu,


u = {
λ ∈ �1,1

u , ∇S
(λ) :H 0(Lu|Su

) −→H 2(�Su
)

is not an isomorphism
}
.

If q : F 1�2 → �1,1 is the natural projection, it follows from Lemma 4 thatq−1(
)
is equal to the ramification locus of the map(P,φ). This implies that the ramification
locus of the mapP|V

λ̃
is equal to(λ̃1,1)−1(
). HenceP|V

λ̃
is generically finite if and

only if λ̃1,1(Vλ̃) is not contained in
. Now sinceη is contained in the vertical tangent

space ofVλ̃ at u, it suffices to prove that̃λ1,1∗ (η) is not tangent to
u at λ. But the
symmetric maps

∇S
(µ) :H 0(Lu|Su

) −→H 2(�Su
)

can be viewed as quadricsqµ on P(H 0(Lu|Su)). Then the assumption onλ means
thatqλ hasη as its only singular point. It follows that the tangent space to
u atλ is
the set{µ ∈H 1(*Su)0, qµ(η)= 0}.

Now we use Lemma 3 and conclude that ifλ̃
1,1∗ (η) was tangent to
u atλ for any

λ̃ lifting λ, the subspace∇S

η(H
0(KSu)) of H 1(*Su)0 would be tangent to
u at λ.

Hence we would have the following: For anyω ∈H 0(KSu),

〈
η,∇S(∇S

η(ω)
)
(η)

〉 = 0. (3.9)

This cannot hold for genericη and sufficiently ampleL for the following reason:
One can show (and this is done in the next section) by describing the variation of
Hodge structure of the family of surfacesSu (with fixedXu) in terms of the Jacobian
ring associated toSu ⊂Xu (see [7] and [10]) that there is a natural surjective map

ψ :H 0(3Lu|Su
) −→H 2(�Su

)
and that (3.9) would mean exactly thatψ(η3)= 0. But if L is sufficiently ample, the
multiplication mapS3H 0(Lu) → H 0(3Lu) is surjective, so thatψ(η3) = 0 for any
η would imply thatψ = 0, which is absurd sinceH 2(�Su) �= 0. So we have obtained
the desired contradiction with the conclusion of Corollary 3, and this shows that
the finiteness assumption (∗) is absurd. The proof of Proposition 1 is now complete.

4. Checking the infinitesimal criterion for any Calabi-Yau threefold. In this
section we prove that conditions (i) and (ii) of Proposition 1 are satisfied for a suffi-
ciently large multiple of an ample line bundle onX. This will conclude the proof of
Theorem 4. We start with the proof of (i).
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Proposition 2. LetX be a Calabi-Yau threefold andL1 be a line bundle onX. If
L1 is sufficiently ample, any sufficiently large multipleL of L1 satisfies the property
(i): that is, for genericu ∈ |L| and genericα ∈H 0(KSu), the map

∇S
(α) :H 1(TSu) −→H 1(*Su

)
0

is injective.

Proof. It is known from [9] that the composition of this map with the inclusion

H 1(*Su

)
0 ⊂H 1(*Su

)

is nothing but the multiplication map byα:

H 1(TSu) −→H 1(TSu ⊗KSu

) ∼=H 1(*Su

)
.

So the transposed map

H 1(*Su

)
0 −→ (

H 1(TSu))∗ ∼=H 1(*Su ⊗KSu

)

is also the multiplication byα, and we have to show that it is surjective for generic
α. We know from [7] and [10] that for sufficiently ampleL and smoothS ∈ |L|, the
residues onS of the classes of the 3-formsPω/s2 generateF 1H 2(S)0, so that their
projections moduloH 2,0(S) generateH 1(*S)0, whereω is a generator ofH 0(KX),
P varies inH 0(2L), ands ∈H 0(L) is an equation forS. Hence we have a surjective
map

H 0(2L)−→H 1(*S)0. (4.10)

Similarly, considering residues of meromorphic formsPω/s3, whereP ∈ H 0(3L),
we get a surjective map

H 0(3L)−→H 2(�S). (4.11)

One then shows exactly as in [2] that forα ∈H 0(L), one has the commutative diagram

α :H 0(2L)

��

�� H 0(3L)

��
∇S

α : H 1(*S)0
�� H 2(�S).

(4.12)

These maps can be obtained as well by looking at the exact sequence

0 −→ �S(−L)−→*X |S −→*S −→ 0, (4.13)
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which, by taking the second exterior power and tensoring withL, gives

0 −→*S −→ (
*X

2|S(L)
) −→KS(L)−→ 0. (4.14)

Using the isomorphismKS(L)∼= 2L|S given byω and the fact that the induced map

H 1(*Su

) −→H 1(*2
X |S(L)

) ∼=H 2(*2
X

)
is equal tojS∗, we get by the long exact sequence induced by (4.14) the desired map
H 0(2L|S)→H 1(*S)0, with kernelH 0(*X

2|S(L)).
Tensoring (4.14) by any line bundleL′, we also get maps

H 0(2L+L′|S
) −→H 1(*S(L

′)
)
,

and in particular

H 0(3L|S
) −→H 1(*S(L)

)
. (4.15)

The map (4.11) is then simply obtained by composing the map (4.15) with the map

δ :H 1(*S(d)
) −→H 2(�S) (4.16)

deduced from the exact sequence (4.13) twisted byL. It is then obvious that the
following diagram is commutative:

H 0
(
2L|S

)

��

α �� H 0
(
3L|S

)

��
H 1(*S)0

α �� H 1
(
*S(L)

)
.

(4.17)

Furthermore, it also follows from the commutativity of diagrams (4.12) and (4.17)
that forλ ∈H 1(*S)0, α ∈H 0(�S(L)), one has

∇S

α(λ)= δ(αλ). (4.18)

In order to show the surjectivity of

α :H 1(*S)0 −→H 1(*S(L)
)

for genericS and α, we do the following. LetL1 = �X(1) be sufficiently ample
on X and letφ0, . . . ,φ3 ∈ H 0(L1) define a mapφ : X → P3. For d sufficiently
large, let@ ⊂ P3 be defined byσ ∈ H 0(�P3(d)) and letS = φ−1(@) be defined by
s = φ∗(σ ) ∈ H 0(�X(d)). Let R ∈ |�X(4)| be the ramification locus ofφ. For@ we
have the exact sequences analogous to (4.14):

0 −→*@(k)−→*2
P3|@(d+k)−→K@(d+k)−→ 0, (4.19)
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which can be pulled back toS and which give rise to maps (taking into account the
isomorphismK@

∼= �@(d−4))

H 0(�S(2d−4+k)
) −→H 1(φ∗*@(k)

)
. (4.20)

We have the following lemma.

Lemma 11. The diagram

H 0
(
�S(2d−4+k)

)
r

��

�� H 1
(
φ∗*@(k)

)
φ∗

��
H 0

(
�S(2d+k)

)
�� H 1

(
*S(k)

)
(4.21)

is commutative for an adequate choice of equationr ∈H 0(�X(4)) for R.

This follows easily from the fact that the composite

TX
φ∗−−→ φ∗(TP3)∼= φ∗(*2

P3(4)
) φ∗−−→*2

X(4)∼= TX(4)

is the multiplication byr, where the choice ofr is determined by the isomorphisms
KX

∼= �X andKP3 ∼= �P3(−4).

As a consequence of Lemma 11, we get the following.

Lemma 12. Let d be sufficiently large, and let@, t ∈ H 0(�@(d−4)) satisfy the
following condition: the multiplication map

t :H 1(*@(−4)
) −→H 1(*@(d−8)

)
is surjective. Then the multiplication map

φ∗t :H 1(*S)0 −→H 1(*S(d−4)
)

satisfies thatImφ∗t containsrH 1(*S(d−8)).

Proof. From Lemma 11 we conclude that the image of the map

φ∗ :H 1(φ∗*@(d−4)
) −→H 1(*S(d−4)

)
containsrH 1(*S(d−8)). Indeed, we have the commutative diagrams

H 0
(
�S(3d−8)

)
r

��

�� H 1
(
φ∗*@(d−4)

)
φ∗

��
H 0

(
�S(3d−4)

)
�� H 1

(
*S(d−4)

)
(4.22)
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and

H 0
(
�S(3d−8)

)
r

��

�� H 1
(
*S(d−8)

)
r

��
H 0

(
�S(3d−4)

)
�� H 1

(
*S(d−4)

)
,

(4.23)

where the surjectivity of the first horizontal map is easy to check.
So it suffices to prove that ifd is large enough, the assumption on@, t implies that

the multiplication map

φ∗t :H 1(φ∗*@)0 −→H 1(φ∗*@(d−4)
)

is surjective. Now consider the exact sequences

0 −→ J 2d−8 −→H 0(�@(2d−8)
) −→H 1(*@(−4)

) −→ 0,

0 −→ J 3d−12 −→H 0(�@(3d−12)
) −→H 1(*@(d−8)

) −→ 0

constructed above, whereJ ∗ ⊂ H 0(�@(∗)) is the Jacobian ideal of@, that is, the
image ofH 0(*2

P3(−4+∗−d)|@) under the map induced by (4.19). The hypothesis
on t means exactly that

J 3d−12+ tH 0(�@(2d−8)
) =H 0(�@(3d−12)

)
.

Now if d is large enough, the multiplication map

H 0(�S(4)
)⊗φ∗H 0(�@(3d−12)

) −→H 0(�S(3d−8)
)

is surjective. It follows that

H 0(�S(4)
) ·φ∗J 3d−12+φ∗tH 0(�S(2d−4)

) =H 0(�S(3d−8)
)
.

SinceH 0(�S(4)) ·φ∗J 3d−12 vanishes inH 1(φ∗*@(d−4)) and the map

H 0(�S(3d−8)
) −→H 1(φ∗*@(d−4)

)
is surjective, it follows that

φ∗t :H 1(φ∗*@)0 −→H 1(φ∗*@(d−4)
)

is surjective.

We now conclude the proof of Proposition 2. It is quite easy to verify that for
generic@, t the condition of Lemma 12 is satisfied. So we have(@, t) such that
Imφ∗t containsrH 1(*S(d−8)). We want to conclude that

φ∗t :H 1(*S)0 −→H 1(*S(d−4)
)
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is in fact surjective.
Consider the surjective mapH 0(�S(3d−4)) → H 1(*S(d−4)). It has for kernel

the space
J 3d−4
S = {

ds(u), u ∈H 0(TX(2d−4)|S
)}
.

The fact that Imφ∗t containsrH 1(*S(d−8)) means then that
rH 0(�S(3d−8))|φ∗t=s=0 is contained inJ 3d−4

S |φ∗t=s=0. Now let

sε = s+εrφ∗t.

We first show that for generict , σ , andφ

rH 1(*Sε (d−8)
) =H 1(*Sε (d−4)

)
. (4.24)

Equivalently, we have to show that the multiplication map

r :H 1(TSε (4)) →H 1(TSε (8)) (4.25)

is injective. Looking at the exact sequences

0 −→ TSε (4)−→ TX(4)|Sε −→ �Sε (d+4)−→ 0,

0 −→ TSε (8)−→ TX(8)|Sε −→ �Sε (d+8)−→ 0,

and using the fact that�X(1) is sufficiently ample, we find that the kernel of the map
(4.25) identifies to the set

{
u ∈H 0(TX(8)|R)

, dsε(u)|r=sε=0 = 0
}
.

Now we have the equality

dsε(u)|r=sε=0 = ds(u)|r=sε=0+εtdr(u)|r=sε=0,

where the curves{r = s = 0} and {r = sε = 0} coincide. (Notice that all these
derivatives only make sense when restricted to the vanishing locus of the considered
equation.) Now clearly for sufficiently larged, generalt , and anyu in the fixed vector
spaceH 0(TX(8)|R), the right-hand side vanishes if and only if

ds(u)|r=sε=0 = 0 and dr(u)|r=sε=0 = 0.

But if φ is generic, the surfaceR is reduced, and the second condition means thatu is
tangent to it. Then clearly there is at most for each suchu a one-dimensional family
of curves{r = s = 0} on the surfaceR which are tangent tou; that is,s satisfies
the first condition. Sinceu varies in the fixed subspace ofH 0(TX(8)|R) of elements
tangent toR, it follows that for d large enough and genericσ , the two conditions
above imply thatu= 0, so that the map (4.25) is injective.
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This means, as above, that we have

J 3d−4
Sε |r=sε=0

=H 0(�Sε (3d−4)
)
|r=sε=0,

so that, in particular,

J 3d−4
Sε |φ∗t=r=sε=0

=H 0(�Sε (3d−4)
)
|φ∗t=r=sε=0.

But the curve defined bys = φ∗t = 0 is equal to the curve defined bysε = φ∗t = 0;
the restriction map

H 0(TX(2d−4)
) −→H 0(TX(2d−4)|S

)
is surjective, and foru ∈H 0(TX(2d−4)), we have

dsε(u)|r=s=φ∗t=0 = ds(u)|r=s=t=0. (4.26)

It follows that we have as well

J 3d−4
S |φ∗t=r=s=0 =H 0(�S(3d−4)

)
|φ∗t=r=s=0.

SinceJ 3d−4
S |φ∗t=s=0 containsrH 0(�S(3d−8))|φ∗t=s=0, this implies that

J 3d−4
S |φ∗t=s=0 =H 0(�S(3d−4)

)
|φ∗t=s=0,

which is equivalent to the fact thatφ∗t : H 1(*S)0 → H 1(*S(d−4)) is surjective.
Finally, it is easy to check that for generict ′ ∈H 0(�@(4)), the multiplication map

φ∗t ′ :H 1(*S(d−4)
) −→H 1(*S(d)

)
is surjective, so we have proved that for generict ∈ H 0(�@(d)) the multiplication
map

φ∗t :H 1(*S)0 −→H 1(*S(d)
)

is surjective. Thus Proposition 2 is proved.

It remains now to check condition (ii) in Proposition 1.

Proposition 3. Let L1 be ample on the Calabi-Yau threefoldX. Then for any
sufficiently large multipleL of L1 and any genericS ∈ |L|, α ∈ H 0(L|S), andλ ∈
H 1(*S)0 such that∇S

(λ)(α)= 0 in H 2(�S), we have that

Ker
(∇S

(λ) :H 0(L|S)−→H 2(�S)
)

is generated byα.

We follow this strategy: We again consider a generic mapφ : X → P3, with
L1 = �X(1) = φ∗(�P3(1)) sufficiently ample, and surfacesS = φ−1(@) for generic
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@ ⊂ P3 of degreed sufficiently large. SoS = V (s), @ = V (σ) with s = φ∗(σ ).
Next let t ∈ H 0(�@(d)) be generic. Then forα = φ∗t , we know that∇S

α :
H 1(*S)0 →H 2(�S) is surjective, so the set ofλ ∈H 1(*S)0 such that∇S

(λ)(α)= 0

in H 2(�S), which is equal to Ker∇S

α, has the minimal generic dimension. Hence it
suffices to prove Proposition 3 for such(S,α).

First, we show that for genericλ ∈H 1(φ∗*@)0 such that∇S
(λ)(α)= 0 inH 2(�S),

that is,λ ∈ Ker∇S

α, the kernel of

∇S
(λ) :H 0(�S(d)

) −→H 2(�S)

is generated byα and

J̃@ := Ker
(
H 0(�S(d)

) −→H 1(T@)
) = Im

(
H 0(φ∗(TP3)

) −→H 0(�S(d)
))
.

Then we conclude that for genericλ ∈ Ker∇S

α, the kernel of

∇S
(λ) :H 0(�S(d)

) −→H 2(�S)

is generated byα, by showing that the set of quadricsqλ on P(H 0(�S(d))) for

λ ∈ Ker∇S

α has no base point onP(J̃@).
Let us introduce the notationRσ = C[X0, . . . ,X3]/Jσ , whereJσ is the ideal gen-

erated by the partial derivatives∂σ
∂Xi

. Using (4.19), we get isomorphisms

R2d−4
σ

∼=H 1(*@)0, R2d−4+k
σ

∼=H 1(*@(k)
)
, (4.27)

for any integerk �= 0. Furthermore,Rσ is Gorenstein: we haveR4d−8
σ

∼= C, and the
pairings

R2d−4−k
σ ×R2d−4+k

σ −→ R4d−8
σ (4.28)

are perfect. We first show the following.

Proposition 4. Assume that�X(1) is sufficiently ample, thatφ is generic, and
thatd is sufficiently large. Lett ∈H 0(�@(d)) be generic and assume that there exist
λ1 ∈ R2d−8

σ
∼=H 1(*@(−4)), A ∈H 0(�@(2)) satisfying the following properties:

(a) Kerλ1 : Rd
σ → R3d−8

σ
∼= (Rd

σ )
∗ is generated by the imaget of t in Rd

σ ;
(b) Aλ1 : Rd−1

σ → R3d−7
σ

∼= (Rd−1
σ )∗ is an isomorphism;

(c) A2λ1 : Rd−2
σ → R3d−6

σ
∼= (Rd−2

σ )∗ is an isomorphism;
(d) A3λ1 : Rd−3

σ → R3d−5
σ

∼= (Rd−3
σ )∗ is an isomorphism;

(e) A4λ1 : Rd−4
σ → R3d−4

σ
∼= (Rd−4

σ )∗ is an isomorphism.
Then forψ ∈H 0(�X(4)) generic andQ ∈H 0(�X(2)) generic, the element

λ= ψφ∗(λ1)+Qφ∗(Aλ1)+φ∗(A2λ1
)
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of H 1(φ∗*@)0 satisfies that∇S
(λ)(α) = 0 in H 2(�S), whereα = φ∗(t), and the

kernel of

∇S
(λ) :H 0(�S(d)

) −→H 2(�S)

is generated byα and J̃@ .

It is clear thatα is in the kernel of∇S
(λ), since we haveλ = f φ∗(λ1), where

λ1 ∈ H 1(*@(−4)) satisfiestλ1 = 0 in H 1(*@(d−4)). This implies thatαλ = 0 in

H 1(*S(d)) and a fortiori∇S
(λ)(α)= 0 inH 2(�S), since we have by (4.18)

∇S
(λ)(α)= δ(αλ).

Also J̃@ is contained in the kernel of∇S
(λ). Indeed, sinceλ ∈H 1(φ∗*@)0, the map

∇S
(λ) :H 1(TS)−→H 2(�S),

which is given by interior product, clearly factors throughH 1(φ∗(T@)). Let us first
prove the following lemma.

Lemma 13. Let λ′ = A2λ1 ∈ R2d−4
σ . Assumptions (a),. . . ,(e) onλ1, A imply the

following:
(i) λ′ : Rd−2

σ → R3d−6
σ

∼= (Rd−2
σ )∗ is an isomorphism;

(ii) Aλ1 : (Kerλ′)d−1 → (Cokerλ′)3d−7 is an isomorphism;
(iii) λ1 : (Kerλ′)d → (Cokerλ′)3d−8 has its kernel generated byt .

Here we denote by(Kerλ′)∗ (resp.,(Cokerλ′)∗) the kernel of the multiplication by
λ′ : R∗

σ → R2d−4+∗
σ (resp., the cokernel of the multiplication byλ′ : R∗−2d+4

σ → R∗
σ ).

Proof. (i) is assumption (c).
(ii) Let u ∈ (Kerλ′)d−1 and assumeAλ1u = 0 in (Cokerλ′)3d−7. This means that

Aλ1u = A2λ1v in R3d−7
σ for somev ∈ Rd−3

σ . By assumption (b), it follows that
u= Av. ThenA2λ1u= 0 implies thatA3λ1v = 0; by (d),v = 0, sou= 0.

We prove (iii) in the same way.

In order to prove Proposition 4, we first study the map

µλ′ :H 1(φ∗(T@)
) −→H 1(φ∗*@(d)

)
,

which is the factorization of the multiplication map byφ∗(λ′) ∈H 1(φ∗*@):

µλ′ :H 0(�S(d)
) −→H 1(φ∗*@(d)

)
,

using the surjective map

H 0(�S(d)
) −→H 1(φ∗(T@)

)
.

(We use the fact thatH 1(φ∗(TP3)|S) = 0.) Notice that from (4.18), the composition
of µλ′ with the mapδ :H 1(φ∗*@)→H 2(�S) of (4.16) is equal to the factorization

throughH 1(φ∗(T@)) of ∇S
(φ∗(λ′))|H0(�S(d))

. We have the following lemma.
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Lemma 14. LetK = (H 0(�X(1))/H 0(�P3(1)))∗. Choose a splitting

H 0(�X(1)
) ∼=K∗⊕H 0(�P3(1)

); (4.29)

thenKerµλ′ is naturally isomorphic to(Kerλ′)d ⊕K∗ ⊗ (Kerλ′)d−1, andCokerµλ′
is naturally isomorphic to(Cokerλ′)3d−8⊕K⊗(Cokerλ′)3d−7.

Notice that the map from(Kerλ′)d⊕K∗⊗(Kerλ′)d−1 to Kerµλ′ is the natural one:
indeed,(Kerλ′)d identifies to the kernel ofµλ′ |φ∗(H1(T@))

while (Kerλ′)d−1 identifies
to the kernel of the analogous map

H 1(φ∗(T@)(−1)
) −→H 1(φ∗*@(d−1)

)
restricted toφ∗(H 1(T@(−1))).

Notice also that both statements are dual to each other: indeed, the mapµλ′ is
symmetric with respect to the Serre duality isomorphism

H 1(φ∗(T@)
) ∼= (

H 1(φ∗*@(d)
))∗;

so (Kerλ′)d is dual to(Cokerλ′)3d−8 and (Kerλ′)d−1 is dual to(Cokerλ′)3d−7 by
the pairings (4.28).

So it suffices to prove the second statement, and for this we can replaceµλ′ byµλ′ .
To prove it we first prove the following.

Lemma 15. Let� be the vector bundleφ∗�X(2) onP3, and let� be the cokernel
of the natural map

H 0(�X(2)
)⊗�P3 −→ �;

then the splitting (4.29) gives an isomorphism

� ∼= �P3(−2)⊕(
K⊗�P3(−1)

)
.

Proof. Let � ⊂X×P3 be the graph ofφ. Then

� = R1pr2∗
(
�⊗pr∗1

(
�X(2)

))
.

Now if Q is defined by the exact sequence

0 −→Q−→H 0(�P3(1)
)⊗�P3 −→ �P3(1)−→ 0,

� has the resolution

0 −→
3∧(

pr2
∗Q⊗pr∗1

(
�X(−1)

)) −→
2∧(

pr∗2Q⊗pr∗1
(
�X(−1)

))
−→ pr∗2Q⊗pr∗1

(
�X(−1)

) −→ � −→ 0. (4.30)

One concludes from this that� is isomorphic to

Kerβ :
3∧
Q⊗H 3(�X(−1)

) −→
2∧
Q⊗H 3(�X).
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Now the dual of the mapβ is simply the natural map

α :Q⊗�P3(1)−→H 0(�X(1)
)⊗�P3(1),

from which it follows easily that

� = (Cokerα)∗ ∼= �P3(−2)⊕(
K⊗�P3(−1)

)
.

Tensorizing the exact sequence

H 0(�X(2)
)⊗�P3 −→ � −→ � −→ 0 (4.31)

with �@(d−2), we deduce easily from Lemma 15 the following.

Corollary 4. The splitting (4.29) gives an isomorphism

H 0
(
�S(d)

)
H 0

(
�X(2)

)
H 0

(
�@(d−2)

) ∼=H 0(�@(d−4)
)⊕(

K⊗H 0(�@(d−3)
))
.

Similarly, tensorizing the exact sequence (4.31) with*@(d−2) and using Lem-
ma 15, we easily get the following.

Corollary 5. The splitting (4.29) gives an isomorphism

H 1
(
φ∗*@(d)

)
H 0

(
�X(2)

)
φ∗H 1

(
*@(d−2)

) ∼=H 1(*@(d−4)
)⊕K⊗H 1(*@(d−3)

)
.

Proof of Lemma 14.By assumption (i) onλ′, it follows that Imµλ′ contains
H 0(�X(2)φ∗(H 1(*@(d − 2)), since it means that the mapλ′ : H 1(T@(−2)) →
H 1(*@(d−2)) is surjective.

So it suffices to study the cokernel of the induced map

ρλ′ : H 0
(
�S(d)

)
H 0

(
�X(2)

)
H 0

(
�@(d−2)

) −→ H 1
(
φ∗*@(d)

)
H 0

(
�X(2)

)
φ∗H 1

(
*@(d−2)

) .
But applying Corollaries 4 and 5,ρλ′ gives a map

H 0(�@(d−4)
)⊕(

K⊗H 0(�@(d−3)
))−→H 1(*@(d−4)

)⊕(
K⊗H 1(*@(d−3)

))
.

This last map is now easily seen to be the direct sum of the multiplication map by
λ′ ∈H 1(*@)0, from which we conclude that

Cokerµλ′ ∼= Cokerρλ′ ∼= (Cokerλ′)3d−8⊕(
K⊗(Cokerλ′)3d−7),

using the isomorphisms

H 1(*@(d−4)
) ∼= R3d−8

σ , H 1(*@(d−3)
) ∼= R3d−7

σ ,

of (4.27).
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Next forQ ∈H 0(�X(2)), let λ2 =Qφ∗(Aλ1) ∈H 1(φ∗*@)0. Again, the multipli-
cation map

µλ2 :H 0(�S(d)
) −→H 1(φ∗*@(d)

)
induces a symmetric map

H 1(φ∗(T@)
) −→H 1(φ∗*@(d)

)
,

and hence a symmetric map

µλ2
: φ∗(H 1(T@)

)⊕(
K∗⊗φ∗(H 1(T@(−1)

))) −→ H 1
(
φ∗*@(d)

)
H 0

(
�X(2)

)
H 1

(
φ∗*@(d−2)

) ,
that is, by Lemma 14 a map

µλ2
: Rd

σ ⊕(
K∗⊗Rd−1

σ

) −→ R3d−8
σ ⊕(

K⊗R3d−7
σ

)
.

We have the following lemma.

Lemma 16. The mapµλ2
vanishes onRd

σ , and onK∗ ⊗Rd−1
σ it is computed as

follows: There is a natural map

E :H 0(�X(2)
) −→ Hom(K∗,K)

such that

µλ2
:K∗⊗Rd−1

σ −→K⊗R3d−7
σ

is equal toE(Q)⊗Aλ1.

Proof. The first statement is obvious, sinceµλ2(φ
∗(H 0(�@(d)))) is contained in

H 0(�X(2)) ·φ∗(H 1(*@(d−2))). As for the second one, consider the commutative
diagram

H 0
(
�S(d)

)

��

Qφ∗(Aλ′
1) �� H 0

(
�S(3d−4)

)

��
H 0

(
�S(d)

) µλ2 �� H 1
(
φ∗*@(d)

)
,

whereλ′
1 is any lifting ofλ1 in H 0(�@(2d−8)); the second vertical map was defined

in (4.20). The commutative diagram shows that it suffices to prove more generally
the following lemma: Consider the multiplication map

Qφ∗P : H 0
(
�X(d)

)
H 0

(
�P3(2)

)
H 0

(
�X(d−2)

) −→ H 0
(
�X(d+k+2)

)
H 0

(
�P3(2)

)
H 0

(
�X(d+k)

)
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for anyP ∈H 0(�P3(k)). Using the isomorphism deduced from Lemma 15,

H 0
(
�X(d+k+2)

)
H 0

(
�P3(2)

)
H 0

(
�X(d+k)

) ∼=H 0(�P3(d−2+k)
)⊕(

K⊗H 0(�P3(d−1+k)
))
,

Qφ∗P induces a map

K∗⊗H 0(�P3(d−1)
) −→K⊗H 0(�P3(d−1+k)

);
then we have the following.

Lemma 17. There is a natural map

E :H 0(�X(2)
) −→ Hom(K∗,K),

such that this map is equal toE(Q)⊗P .

Proof. We construct the mapE as follows: Let� be the cokernel of the natural
map

H 0(�X(1)
)⊗�P3 −→ φ∗�X(1).

Using the equality

� = R1pr2∗
(
�⊗pr∗1�X(1)

)
,

where the notation is as in the proof of Lemma 15, and the resolution (4.30), we find
that� is isomorphic to the dual of the cokernel of the natural map

Q(1)⊗H 0(�X(1)
) −→H 0(�X(2)

)⊗�P3(1).

In particular, there is a natural inclusion of� in H 0(�X(2))∗⊗�P3(−1). Tensorizing
by �P3(1) and taking global sections, we get a map

χ :H 0(�X(2)
) −→ (

H 0(�X(2)
))∗

whose image is the set of linear forms vanishing onH 0(�P3(1)) ·H 0(�X(1)). Recall-
ing thatK∗ = H 0(�X(1))/H 0(�P3(1)), such a linear formχ(Q) obviously induces
a symmetric bilinear form onK∗ and, hence, a mapE(Q) :K∗ →K. The statement
concerning the multiplication is then clear: in fact, it clearly suffices to do the case
d = l = 0, and then this results from the definition ofE. So Lemma 17 (hence also
Lemma 16) is proved.

We also need the following lemma.

Lemma 18. If φ is generic, for genericQ ∈H 0(�X(2)), the mapE(Q) :K∗ →K

is an isomorphism.
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Proof. Notice that eachE(Q) is symmetric and hence defines a quadricqQ onK∗.
In fact, qQ(k) = χ(Q)(k2), with the notation of the above proof. But we know that
the mapχ has for image the set of linear forms vanishing onH 0(�P3(1))·H 0(�X(1)).
So to prove the lemma, it suffices to show that this set, viewed as a set of quadrics on
H 0(�X(1)), has exactly for base locusH 0(�P3(1)). But the base locus of this set of
quadrics is exactly the set{

k ∈H 0(�X(1)
)
, k2 ∈H 0(�P3(1)

) ·H 0(�X(1)
)}
.

So we have to prove that for genericφ = (φ0, . . . ,φ3) the conditionk2 ∈ 〈φ0, . . . ,φ3〉
implies thatk ∈ 〈φ0, . . . ,φ3〉. This is easy: It suffices to degenerate(φ0, . . . ,φ3) to
the linear system of elements ofH 0(�X(1)) vanishing on a certain number of points
of X, and verify that one can do this while keeping the dimension of〈φ0, . . . ,φ3〉 ⊂
H 0(�X(2)) constant. Then for the degenerated system(φ0, . . . ,φ3), the result is ob-
vious; this implies the same thing for the generic system.

Similarly, let λ3 = ψφ∗(λ1) ∈ H 1(φ∗*@)0, for anyψ ∈ H 0(�X(4)). Then the
multiplication map

µλ3 :H 0(�S(d)
) −→H 1(φ∗*@(d)

)
induces a map

µλ3
: Rd

σ
∼= φ∗(H 1(T@)

) −→H 1(*@(d−4)
) ∼= R3d−8

σ ,

where we use Corollary 5 to realizeH 1(*@(d−4)) as a quotient ofH 1(φ∗*@(d)).
Then we have the following.

Lemma 19. There is a nonzero map� : H 0(�X(4)) → C such thatµλ3
is equal

to�(ψ)λ1.

This is not difficult. In fact,� ∈ (H 0(�X(4)))∗ is simply given by the inclusion of
C=H 3(�P3(−4)) in H 3(�X(−4)).

Proof of Proposition 4. We know from Lemma 13 thatAλ1 : (Kerλ′)d−1 →
(Cokerλ′)3d−7 is an isomorphism. By Lemma 18, we also know that for generic
Q the mapE(Q) : K∗ → K is an isomorphism. Using Lemmas 14 and 16, we
conclude that for genericQ the map induced byµλ2

Kerµλ′ −→ Cokerµλ′

vanishes on(Kerλ′)d and induces a (symmetric) isomorphism

K∗⊗(
Kerλ′)d−1 −→K⊗(

Cokerλ′)3d−7
.

Next by Lemma 13, we know that the mapλ1 : (Kerλ′)d → (Cokerλ′)3d−8 has for
kernel exactly〈t〉. Using Lemmas 14 and 19, we conclude that for genericψ the map
induced byµλ3

Kerµλ′ −→ Cokerµλ′
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induces a (symmetric) map

(
Kerλ′)d −→ (

Cokerλ′)3d−8
,

which has for kernel exactly〈t〉. But then it follows immediately that for genericQ
andψ and forλ= λ′ +λ2+λ3, the map

µλ :H 1(φ∗(T@)
) −→H 1(φ∗*@(d)

)

has its kernel generated byφ∗t ∈H 1(φ∗T@).
To conclude the proof of Proposition 4, we now simply note that the map

δ :H 1(φ∗*@(d)
) −→H 2(�S)

is injective. To see this, it suffices to prove thatH 1(φ∗(*P3(d))|S) = 0 or that
H 2(φ∗(*P3))= 0, which is easy.

Then we have proved thatδ◦µλ has its kernel generated byφ∗(t) and since this map

is equal to the factorization throughH 1(φ∗T@) of ∇S
(λ) :H 0(�S(d))→H 2(�S), it

follows that this last map has its kernel generated byJ̃@ andα = φ∗t .
So Proposition 4 is proved.

Next we prove the following lemma.

Lemma 20. Assume that fort generic inH 0(�@(d)), there existsλ ∈H 1(φ∗*@)0

such that∇S
(λ) : H 0(�S(d)) → H 2(�S) has its kernel generated bỹJ@ and α =

φ∗(t). Then for genericλ ∈ Ker∇S

α ⊂H 1(*S)0 the kernelKer∇S
(λ) :H 0(�S(d))→

H 2(�S) is generated byα.

Proof. For anyλ ∈H 1(*S)0, the map

∇S
(λ) :H 0(�S(d)

) −→H 2(�S)

is symmetric with respect to Serre duality, so it determines a quadricqλ on P(H 0

(�S(d))). We know by assumption that there is aqλ, which has for singular locus the
projective space generated byα andJ̃@ , and we want to conclude that the genericqλ
singular atα hasα as its only singular point. By Bertini, it clearly suffices to prove
that the system of quadricsqλ singular atα has no base point on the projective space

P(J̃@). Now note that the set Ker∇S

α, which exactly parametrizes this linear system,
identifies to {

λ ∈H 1(*S)0, λ⊥ ∇S

α

(
H 0(KS)

)}
,

where the symbols⊥ refer to the pairing onH 1(*S)0. Furthermore, by definition,

the conditionqλ(u)= 0 is equivalent toλ⊥ ∇S

u(u). Recalling that the map

∇S

u :H 0(KS)−→H 1(*S)0
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identifies to the composite of the multiplication byu

H 0(KS)=H 0(�S(d)
) −→H 0(�S(2d)

)
and of the map (4.10)

H 0(�S(2d)
) −→H 1(*S)0,

we conclude thatu is in the base locus of the system of quadrics Ker∇S

α if and only
if the image ofu2 in H 1(*S)0 is contained in the image ofαH 0(�S(d)) in H 1(*S)0,
which has for kernel the spaceJ 2d

S , image ofH 0(TX(d)|S) in H 0(�S(d)) . So the
proof of Lemma 20 is concluded by the following lemma.

Lemma 21. For genericσ, t , the conditionu2 = φ∗t.vmod.J 2d
S for u ∈ J̃ d@,v ∈

H 0(�S(d)) implies thatu= 0.

The proof of this last lemma is not very difficult, so we do not give it here.

From Lemma 20 and Proposition 4, we conclude now with the following.

Corollary 6. If for σ, t generic, there existA,λ1 satisfying the assumptions of
Proposition 4, then Proposition 3 is true.

Proof of Proposition 3. It remains only to show the existence ofA,λ1 satisfying
conditions (a) to (e) of Proposition 4.

For any integerk we have the map given by the multiplication in the Jacobian ring
of σ

R2k
σ −→ Homsym

(
R2d−4−k
σ ,R2d−4+k

σ

)
,

where the subscript “sym” refers to the perfect pairings (4.28). We denote byD2k
σ ⊂

P(R2k
σ ) the discriminant hypersurface for these families of quadrics. It is easy to show

that for genericσ and for any 0≤ k ≤ 2d−4,D2k
σ �= P(R2k

σ ). This is what we want
to show:

For genericσ and generict ∈ Rd
σ , there existsλ1 ∈ D2d−8

σ such that
Kerλ1 is generated byt . Furthermore, for genericA ∈ H 0(�@(2)), we
haveAkλ1 �∈D2d−8+2k

σ , for 1≤ k ≤ 4.

Now notice that the degree ofD2k
σ is equal to the rank ofR2d−4−k

σ . In particular,
we have the following:

d0D2d−6
σ = rkRd−1

σ < rkRd
σ = d0D2d−8

σ ,

d0D2d−4
σ = rkRd−2

σ < rkRd
σ = d0D2d−8

σ ,

d0D2d−2
σ = rkRd−3

σ < rkRd
σ = d0D2d−8

σ ,

d0D2d
σ = rkRd−4

σ < rkRd
σ = d0D2d−8

σ .

Furthermore, it is easy to show that forσ generic andA generic we haveAkR2d−8
σ �⊂

D2d−8+2k
σ for 1 ≤ k ≤ 4.
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Then we contend that the existence ofA,λ1 satisfying conditions (a) to (e) follows
from the next lemma.

Lemma 22. Let σ be generic, and let� ⊂ P(Rd
σ )×P(R2d−8

σ ) be defined as

� = {
(t,λ1), tλ1 = 0 in R3d−8

σ

}
.

Then� has only one component�genof dimension at least equal todimP(R2d−8
σ )−1.

Indeed, we know that for generict ∈ Rd
σ , the mapt : R2d−8

σ → R3d−8
σ is surjective.

It follows that the principal component of� (the one that dominatesP(Rd
σ )) is

exactly of dimension dimP(R2d−8
σ )− 1, and it must be equal to�gen. So �gen

is of dimension dimP(R2d−8
σ )−1. But �gen has to dominateD2d−8

σ by the second
projection, since� has no other component of dimension at least equal to dimD2d−8

σ .
Since dim�gen= dimD2d−8

σ , the second projection

�gen−→D2d−8
σ

must be birational, and any other component of� is sent to a proper subset ofD2d−8
σ .

It follows thatD2d−8
σ is irreducible, and its generic elementλ1 satisfies that Kerλ1

is generated byt for generict ∈ Rd
σ . But thenD2d−8

σ is also reduced. For degree
reasons, we cannot then haveAkD2d−8

σ ⊂D2d−8+2k
σ for 1 ≤ k ≤ 4, and sinceD2d−8

σ

is irreducible, it follows that for genericλ1 ∈D2d−8
σ , we haveAkλ1 �∈D2d−8+2k

σ for
1 ≤ k ≤ 4. So Lemma 22 implies the existence ofA,λ1 satisfying conditions (a)
to (e).

Proof of Lemma 22.One has to prove that there exists no nonempty proper subset
Z ⊂ P(Rd

σ ) such that forz ∈ Z the multiplication mapz : R2d−8
σ → R3d−8

σ has
cokernel of dimension at least equal tok = codimZ. Equivalently, by duality the map
z : Rd

σ → R2d has a kernel of dimension at least equal tok = codimZ. Let l ≤ d be
such that

h0(�P3(l)
) ≤ k < h0(�P3(l+1)

)
.

One first verifies that there exists 0< ε < ε′ < 1 such that ford large enough,σ
generic, andZ as above, one hasεd < l < ε′d. This follows from the following facts,
which are proved by a dimension count:

(a) there exists 0< ε < 1 such that for sufficiently larged, genericσ , and any
t �= 0 ∈ R

[εd]
σ , the multiplication mapt : Rd

σ → R
d+[εd]
σ is injective;

(b) there existsB ∈ R
d−[εd]
σ such that the multiplication mapB : Rd+[εd]

σ → R2d

is injective.
It follows from (a) and (b) thatBR[εd]

σ does not meetZ, which implies thatl+1 ≥ εd.
Also it follows from (a) and (b) that for anyz ∈ Rd

σ , we have Kerz∩BR[εd]
σ = {0}.

Hence forz ∈ Z, we have

k ≤ dimKerz ≤ h0(d)−h0([εd])≤ h0([ε′d]),
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whereε′ is chosen so as to satisfy the last inequality for larged. This gives the other
inequality.

Now one shows that for anyl < ε′d, d large enough, and for genericσ , there exists
C ∈ Rd−l−2

σ such that the multiplication map

C : Rd+l+2
σ −→ R2d

σ

is injective. Consider now the mapC : Rl+2
σ → Rd

σ . Then forz ∈ Rl+2
σ , we have

Ker
(
z : Rd

σ −→ Rd+l+2
σ

) = Ker
(
Cz : Rd

σ −→ R2d
σ

);
hence, in particular, ifCz ∈ Z, we have dimKer(z : Rd

σ → Rd+l+2
σ ) ≥ h0(l). Hence

we conclude that ifZ′ = CRl+2
σ ∩Z, we have that the codimension ofZ′ in P(Rl+2

σ )

is at most equal toh0(l+1), and forz ∈ Z′, dimKer(z : Rd
σ → Rd+l+2

σ )≥ h0(l). This
is absurd because of the following fact (which is proved by looking at the Fermat
equation):

The dimension of the subspaceZ′′ of P(Rl+2
σ ) defined by the condition

z ∈ Z′′ ⇐⇒ dimKer
(
z : Rd

σ −→ Rd+l+2
σ

) ≥ h0(l)

is not greater than 140, for genericσ .

This obviously contradicts the fact thatZ′ ⊂ Z′′ and dimZ′ ≥ h0(l+2)−h0(l+1),
which is strictly greater than 140 ford large enough, sincel > εd.

So the existence of suchZ for genericσ is absurd, and Lemma 22 is proved.

The proof of Proposition 3 is now finished, and together with Propositions 1 and
2, it implies Theorem 4.
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