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THE GRIFFITHS GROUP OF A GENERAL CALABI-YAU
THREEFOLD IS NOT FINITELY GENERATED

CLAIRE VOISIN

1. Introduction. If X is a K&hler variety, the intermediate Jacobigfi—1(X) is
defined as the complex torus

whereF* H%~1(X) is the set of classes representable by a closed foffi it —1(X),
that is, which is locally of the forrTZ,)Jou,sz[ Adzy, with |[I|+|J|=2k—1 and
|| > k.

Griffiths [9] has defined the Abel-Jacobi map

o (X)) — JEHX),

where%ﬁom(X) is the group of codimensioh algebraic cycles homologous to zero

on X. Using the identification

(Fn—k+lH2n—2k+l(X))*

Hpy—2+1(X, Z)

, n=dimX

given by Poincaré dualityb’;( associates to the cycle= 9T", wherer is a real chain
of dimension 2 — 2k + 1 well defined up to a2— 2k + 1-cycle, the element

/ € (F" T H 248 (X))" [ o 2i41(X, D),
r

which is well defined using the isomorphism
Fn—k+lA2n—2k+l(X)c

n—k+1 ry2n—2k+1 ~
F H (X)_ an—k+lA2n—2k(X) '

If (Z:):;ec is a flat family of codimensiork algebraic cycles orX parametrized
by a smooth irreducible curv€, the map: — d>’§((Z, — Zo) factors through a
homomorphism from the Jacobiah(C) to J%~1(X), and one can show that the
image of this morphism is a complex subtorusJ&f~1(X) whose tangent space
is contained inH*~1¥(X) c H%-1(x,C)/F*H%*~1(X). Defining the subgroup
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152 CLAIRE VOISIN

%’;lg(X) C Sz‘iﬁom(X) of cycles algebraically equivalent to zero as the subgroup gen-
erated by the cycleg; — Z for any family as above and defining the Griffiths group
Griff*(X) as the quotienttt (X)/%#k (X), it follows that the Abel-Jacobi map

hom alg
induces a morphism
@k : Grifff(X) — JZ* LX)y,

where J%~1(X)y is the quotient of/Z~1(X) by its maximal subtorus having its
tangent space contained H—14(X).

In this paper, we are mainly interested in the case whete, k = 2. We use then
the notation/ (X), ®x. In [10], Griffiths proved the following theorem.

TueoreM 1. If X is a general quintic threefold and is the difference of two dis-
tinct lines inX, ®x(Z) is not a torsion point in/ (X). Furthermore,J (X)y = J(X).

From this it follows that Griff X) contains nontorsion elements.
In [3] Clemens, using the countably many isolated rational curves joroved the
following theorem.

THEOREM 2. If X is a general quintic threefoldm®yx ® Q is not a finite-
dimensionalQ-vector space. In particulaGriff (X) ® Q is not a finite-dimensional
Q-vector space.

Clemens’s theorem has been extended to complete intersections by Paranjape [15]
and to Abelian threefolds by Nori [14]. (In the last cadéX)y is different from
J(X), and one considers the Abel-Jacobi map with valug/ (X)y.) Notice that
it is conjectured (see [13]) that for codimension-two cycles, the Abel-Jacobi map
<I>§( : Griff (X) — J(X)y is injective, so both statements should be equivalent.

More recently, Nori [13] proved that there may exist nontorsion cycles in G#ff
for anyk > 3 (so X has to be of dimension at least 4), which are annihilated by the
Abel-Jacobi map. Combining Nori's ideas and the study of the Abel-Jacobi map for
the general cubic sevenfold PP, Albano and Collino [1] even proved that for> 3
the kernel of the Abel-Jacobi mab, : Griff(X) — J%~1(X)y may be nonfinitely
generated.

In this paper, we consider another kind of generalization of the Clemens theorem:
Instead of a quintic threefold, we consider a Calabi-Yau threeXglthat is, X is a
Kéhler threefold with trivial canonical bundle such tti#t(0x) = 0 (so, in particular,

X is projective). For sucl itis well known that the local moduli space &fis smooth
of dimension dinH1(Tx) = dim H-2(X). In [17] we proved the following.

THEOREM 3. Let X be a Calabi-Yau threefold. K1(Tx) # 0, the general defor-
mation X, of X satisfies that the Abel-Jacobi map

Dy, F2(X,) — JA(X,)

of X, is nontrivial, even modulo torsion.
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Itis easy to check thak(X;)y = J(X;) for a general point, so the theorem implies
that Griff(X,) contains nontorsion elements. We prove in this paper the following
result.

THEOREM 4. Let X be a Calabi-Yau threefold. K1(Tx) # 0, the general defor-
mation X, of X has the property that the Abel-Jacobi map

Dy, 1 F2(X;) — J(X;)

is such thatim ®x, ® Q is an infinite-dimensionaQQ—vector space. In particular,
Griff (X;) ® Q is an infinite-dimensional)—vector space.

The one-cycles irX, we use to prove this result are the same as in [18]. Namely,
we consider follL;| a sufficiently ample linear system d¥y, the surfaces < |L;],

s <2 X, having aclass € Ker(js, : H2(S,Z) — H*(X,,7)), whichis inFLH2(S);
thatis,) is algebraicp = c1(D,) for some divisorD, on S, by the Lefschetz theorem
on (1, 1)-classes.

It was proved in [17] that there are countably many isolated such surfacés in
and the countably many corresponding one-cydes= js.(D,) homologous to
zero in X; were proved in [18] to generate a nontorsion subgroug ©f;) by the
Abel-Jacobi map. We were unable to show, however, that this subgroup is nonfinitely
generated.

The method we use is in some sense related to a suggestion of Clemens in [4].
He suggested that a proof of the nonfinite generation of the Griffiths group of the
general quintic threefold could be obtained by studying the ramification loci of the
various generically finite coverings,; : My, — Jl, where it is the moduli space
for the quintic threefold andit, parametrizes a quintic threefolll and a degree
d isolated rational curve in it. Along the ramification divisor ofr;, the curve
C C X has an infinitesimal deformationin X, and there is a corresponding element
®y.(n) € HY2(X), which is the differential ofbx applied to the deformation of
the corresponding cycle iN.

However, another important ingredient is the complexified Abel-Jacobi map; we use
the complexified infinitesimal Abel-Jacobi map to prove Theorem 4. The “complex-

ified” objects we study are the following: ¥ 3 X, andx € Ker(js, : H3(S,C) —
H*(X;, C)), we definelU; as the set of deformation&;, S;) of the pair(X, S) such

that the fixed class, € H2(S;, C) = H2(S, C) belongs toF1H2(S,). It turns out
that whenX is a Calabi-Yau threefold andl is its local moduli space, most va-
rieties U, are generically finite covers oft (by the map(X;, S;) — X;). A point

(X:, S;) of ramification of this map then corresponds to a surfgoe X, that admits

an infinitesimal deformation such that,, € FLH?(S;) remains (infinitesimally) in
F1H2(S,'7). There is then an associated complexified infinitesimal Abel-Jacobi invari-
ant®y,, (n) € H?(X,). Notice that ifa is integral, it is the class of a divisor i}

and we get the same invariant as above.
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In Section 2, we introduce various Hodge theoretic objects and study the varieties
U, defined above. We also define the complexified Abel-Jacobi map and “compute”
its differential.

In Section 3, we give a very simple infinitesimal criterion, which implies that the
infinitesimal invariants above are nonzero and that if the image of the Abel-Jacobi
map of X, were finitely generated, these infinitesimal invariants would vanish. It
follows that if this criterion is satisfied, then Theorem 4 is true.

This infinitesimal criterion concerns the infinitesimal variation of Hodge structure
of a generic sufficiently ample surfadec X. In Section 4, we check this criterion,
which reduces (see [7]) to the study of Jacobian rings, that is, quotients of rings of
functions by Jacobian ideals, generated by the derivatives of the defining equation of
the surface along vector fields.

2. Noether-Lefschetz loci and infinitesimal Abel-Jacobi map. Part of the ma-
terial in this section works in the general situation of a family of smooth surfaces
¥ — B contained in a family of smooth threefolds — B; however, we restrict
the discussion to the following situatiot - B is the local universal family of
deformations of a Calabi-Yau threefald B is a smooth ball, which can be assumed
to be as small as we want. We have dir= dim H(Tx). Now let L be an ample
line bundle onX; since HX(0x) = H?(Ox) = 0 andH'(L) =0, i > 0, by Ko-
daira vanishing any trivial, L extends uniquely to a line bundié on %, and
dimHO(X,, L,) = dimHO(X, L) for anyt € B. ThenP(R%z,.¥) 2 B is smooth
over B, and we denote by c P(R%z,%) the open set parametrizing smooth sur-
faces. Let ther#¥ > U be the universal familyXy X, U be the pullback td/
of the family% = B, and j : ¥ < %y be the natural inclusion. First we have the
following lemma.

Lemma 1. For sufficiently ampld., the tangent spac&y ; at a pointz identifies
to H1(Ts,) by the Kodaira-Spencer map. It is also isomorphicHé(T,f;) by the
Kodaira-Spencer map for pairs, whe’ﬂ;f; is the kernel of the natural map

S
TX, —> NSt/Xt'
Proof. We have the exact sequence
0— Tx,(-L;)) — T;; — Ts, — O,

which induces the natural map

(1) — HY(Ts,).
from the deformations of the pair to the deformations of the surface. So by Serre
vanishing, the map above is an isomorphism for sufficiently ample
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Next we have the exact sequence
0 Px
0—> H°(Lys,) — Tus —> T, p) —> O

and the exact sequence definm)é,

0— T)f; —> Tx, = L5, — 0,
which induces the exact sequence

0 1( 7S 1

0— H(Lys,) — HY(T}!) — HY(Tx) — 0,

since H%(Tx,) = 0 and H(L,5,) = 0. Finally, the Kodaira-Spencer mdfy , —
Hl(T)f;) fits into the commutative diagram

0— HO(Lys,) Ty —"> Ts.pa) 0

R

0— HO(Lys) — HY(T{) — HY(Tx,) =0,

where the first and last vertical maps are the identity. It follows immediately that the
middle map is an isomorphism. O

We have ornlJ the primitive variation of Hodge structure of the family of surfaces
¥: namely, let

HZ:= Ker(RZnS*Z N R47TX*Z)
be the local system whose fiberzas
H2(S,. I)0 = Ker (H2(S,.Z) > HA(X,. T).

Let %2 := H2®0y, with its Gauss-Manin connection® : %2 — %2 ® Qy, whose
local system of flat sections B2 = H7® C. Let F'%2, 0 <i < 2 be the Hodge
bundles, with fiber

Fig? = FTH?(S,) NKer i, FIH?(S,) = ®p=i HP>7P(S))
and associated quotierit€-2—' = Fi%?/Fi+1%2. By transversality, we have
VSFi%? c FIl92 @ Qy.

We denote by
gs L gpi2—i __y gpi—1.3—i ®Qy
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the Oy -linear map deduced frorS by transversality, so thal® fits into the com-
mutative diagram

VS Fitly? — Fig? @ Qy

l !

VSZ Fi%24 . Fi_l%2®QU

i i

gs . %j,z_l' — %i_l’g_i(@QU'

For e H"J (S,)o we then hav&" (1) € Hom(Ty.,, H'~111(8,)0). Forn € Ty.,,
we denote bWi the induced magi’/ (S,)o — H ~L7*1(S,)o.

Let V be a simply connected open subset/ofThen the local systerﬂé is trivial
onV, so that ifug € V anda € Hz(Svo, ©)p, we can viewi as a section oHé on
V. We then define the component of the Noether-Lefschetz locus determineadsy

Vi={teV, x € FXH*(S)o).

V, is an analytic subvariety of, defined by the vanishing of the projectiond?-2
of the flat, hence holomorphic, sectiare 2. If r € V;, A, € FLH?(S,)0 and hence
has a projectiom}’l e HY1(S)o = ?6,1‘1. Then the next lemma follows from the
definition of V",

LeEmma 2. The Zariski tangent space 3, at ¢ is equal toKerﬁS(A,l’l), where
=S
V(Y € Hom(Ty ., HOA(S))).

Note that usually the terminology of the Noether-Lefschetz locus is reserved to the
case where. is rational. In this case, by the Lefschetz theoren{tii)-classesy)
is the set of point® € V where the clasa, is algebraic; that is, any multipka; A,
that is an integral class is the cld43, ,] of a divisor onS,. Then sincej, A, =0,
Jvx (D p) is a one-cycle homologous to zeroih.

We have the following convenient interpretationof: Let vg be any point ofV;
thenHZ = V x H?(Sy,, O)o. Viewing F132, 92 as vector bundles, we have a map

¢ FY9? — H?(Sy, C), (2.0)

obtained as the composition of the inclusiBi¥? c %2, the isomorphisni? =
H?(S,,, ©)o x V given by the trivialization of2, and the first projection. Then we
have thatV, is naturally isomorphic t@—l(kvo). Indeed, by definition}y, x A,, C
V x H2(S,,, C)o = %2 is the scheme-theoretic intersectiontfx A,, and F1%2 in
9¢2; but this is also the definition of the fibgr1(i,,).

In other words, the flat section restricted toV;,, which is in Fl%?vx' gives the
reverse isomorphisri, — ¢_1()»u0)- We abuse notation in Section 3 and view, by
this isomorphismy; as a subvariety oFl%lzv.
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We denote by

11 _ gl
atedey (2.1)

the projection of the sectioh Fl%lzv. Now if v € V and 211 e HL1(S,)o, let

A1, A2 € FYH?(S,)o be two liftings of AY1, so thati; = A + 5, for somen e
H?9(S,). By Lemma 2 the tangent spacesWg atv coincide, and the two sections
Al.l’l, which are defined on the first-order neighbourhdgdof v in V;, (wherei =1

or 2) are equal at. However, their derivatives do not coincide. In fact, we have the
next lemma.

Lemma 3. The derivative ab of the sectionki’l —A%’l of ?(fllvlg (which vanishes
atv), is equal to—V(n)zy, , : Ty, .o — HL1(S)o. *

Proof. Leth € Ty¢ , and letZ, be the scheme of length two supporteciowith
tangent vectoh. Then the section = 11,7, of F1%?2 is the flat section that extends
A1 € FYH?(S,)0 and that remains ifF19¢2. Now, n being given above, let

W3 =21+ €V @) 1,

whereij is a section ofF2%2 on Z;, extendingy. Then clearly.} is flat and its value
atv is equal tor,. Furthermorey is a section o192 on z, by transversality. It
follows thati’ = u4. Hence,

MM = —eVy () +7,
so that by projecting té¢** and using the definition OVS, we get
=S
(= HM ==V ),

which proves the lemma. O

We now turn to the generalized Abel-Jacobi map and its infinitesimal version. For
uelU,letYy, =X,—S,. We have an exact sequence

0—> H3(X,) —> H3(Y,) =25 H2(S,)0 —> O

of cohomology groups with integral coefficients, aftf(Y,, C) carries a mixed
Hodge structure compatible with the Hodge structureskbtiX,) and H2(S,)o.
Namely, we have a decreasing filtratiBAH3(Y,), 0 < i < 3, such that

F'H3(Y,)nH3(X,) = FTH3(X,), Res(F'H3(Y,)) = F/ H2(S\)o,

where FI H3(X,) = @,>; H"37P(X,) is the Hodge filtration ofX,,.
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Working in families, we get the local system
H}, = R%ty.Z,

wherery = mx o, ¥ =¥y —%. We then define the associated Hodge bunﬁi%sby
tensorizing the local system with, . We denote byv! the Gauss-Manin connection
on ?@ This bundle is equipped with the Hodge filtration by holomorphic subbundles
F! %3 which satisfy Griffiths transversality

VIFIS  FI @ Q.

We denote b)HZ3, %3, Fige3, andVX the analogous objects dh that describe the
variation of Hodge structure of the family: ¥ — B; thatis,HS = R3r, 7, FI%3 C
963 with %3 = H3®05, and V¥ : 963 > #3® Qp with

VYFi93 c F 9 @ Qp.
We then have an exact sequence of variation of mixed Hodge structures
0—> p*Hj —> H3; — HZ — 0. (2.2)

On our open sev, let us choose a splittingy : sz — H?Z of (2.2). Denoting by

P : F1%? — B the composite of the bundle m#&3#? — U andthe map : U — B,
the sectiornry allows us to construct a section

P*y3

)
overFl%fV as follows: If (v, 1) € F1%2, thatis,» € FLH?(S,)o, let A¢ be a lifting
of A in F2H3(Y,). Then we define

s(,A) = Ap —rz(0)mod. FPH3(X,).

This is a well-defined element d¥3(X,, C)/F2H3(X,), since clearlyrr —rz(})
belongs toH3(X,, C) andxr(v) is defined up taF2H3(X,).

In fact, we are mainly interested with the restriction softo the subvarieties
¢~1(h0) = Vi. We may then consider these sectionsot‘)%g’/Fz%fw as the com-
plexified Abel-Jacobi map, as we explain now.

Suppose that € H2(S,, Z)oN FYH?(S,). Theni = [D;] for some divisorD; on
Sy, andj, . (D,) is a one-cycle homologous to zero &p. It is then well known that
the element

Dy, (jus(D1)) € J(Xy) = H3(X,, O)/F?H3(X,) ® H3(X,, Z)
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is equal torr —rz(A)mod.F2H3(X,) ® H3(X,, 7). (The fact that we consider it
modulo H3(X,,Z) makes it independent of the retractiepn) In other words, for
integral A we find thats;y, mod. A is equal to the sectiom, of the pullback toV;,
of the family of intermediate Jacobiad$X),<p given by

() = Py, (jux (D)) € J(Xy), VE V.

We now want to study the infinitesimal properties of the mpagefined in (2.0) or
equivalently of the varietie¥;. Recall that forv € U, » € HY1(S,)o we have the
map

=S

V') HY(Ts,) = Ty.u — H?(0s,),

which induces
=S
V> () : H(Lys,) = Kerp, € Ty, — H?(0s,).

Note that by Serre duality and becaukg, is trivial, both spaces have the same
dimension. We have the following lemma.

LemMma 4. The following are equivalent:
(i) V°(0): HO(Lys,) — H%(0s,) is an isomorphism;
(i) foranyi € FLH?(S,)o projecting tox moduloF2H?2(S,), the map
(P.¢): F1%§ —> B x H?(Sy,. C),
is étale ath.
Proof. We may clearly assume that= vg since the change of base point simply
composesg with the natural isomorphierZ(Svo)o = H?(S,)o. Consider(P, ¢), :
Trigzs = TB.pw X Tyzcs, o0y SINCE ONFLHZ(S,)0 C Tpaye ; this mapis simply

the inclusion

FYH?(S.)0 C H*(S0)0 = Tyyas,)0.6G)
this map induces

(P, )22 : Ty —> Tg, py x H*(0s,).
Itis then immediate, using the definition'st , to show that P, $)%2 = (p.., V" ). But

(P, ¢)+ is an isomorphism if and only {fP, ¢>)2’2 is an isomorphism. Since, is sur-
jective, this is also equivalent (@, ¢)2’2‘Kerp* being an isomorphism ontHZ(@Su),

that is, toV" (1) : HO(L,s,) — H?(0s,) being an isomorphism. So Lemma 4 is
proved. O
In fact, the proof shows the following lemma.
LEmMA 5. The kernel of(P, ¢), at A identifies naturally via the projection to
TU,u to
Kerv® (1) : HO(Lys,) — H2(0s,),
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that is, to the vertical part, pw of Ty, whereV;\” @ is the intersection of; with
[P’(HO(LP(M))) = p~Hpw)). '?'he reverse isomorphism is given by the differential of
the natural section. of F1%2 on VX"(”).

We now study the infinitesimal variation of mixed Hodge structure of the family
v X U. Itis described as above, by transversality, by a series of maps

V'R P s PR3 @ Q.
which fit into the commutative diagram

gXop* . p*(Fi/Fi+l%3) s p*(Fi_l/Fi%3)®QU

l l

v . Fi/FH9 —— FYFigd @ Qy (2.4)

l |

§S: Fi—l/F[%Z > Fi_z/Fi_l%2®QU,

where the first vertical maps are injective and the last ones are surjective. Composing
V" with the restriction may,, — H%(Lys,)* then gives a map

F2/F3H3(Y,) — Hom(HO(Lulsu), Fl/F2H3(Yu)),

which obviously factors througlirl/ F2H?(S,)o since the composition gp* with
the restriction toHO(L,,|Su) = Ker p, is zero. (This simply means that there is no
variation of Hodge structure fox in the fibers ofp.) So we have constructed a map

no: HY(@s,)g —> Hom(HO(Lujs,), FY/F2H3(Y,)).
which induces

pa: H(Lys,) —> Hom (Hl(QSu)O, Fl/F2H3(Yu)).
We then have the following.

LemMA 6. There is a natural isomorphism (depending on the choice of a trivial-
ization ofKyx, )
FYF2H3(Y,) = (TyW)* = (HY(Ts,))"

such that for any; € H%(Lys,) = H%(Ks,), the map
“(na) : Ty — HY(s,),

identifies to?s(n).
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Notice that in the identificatiod/ (L, s,) = H°(Ks,), we use the same trivializa-
tion of Ky, .

Proof. Recall the isomorphismgy , = H(Ts,) = ( ) of Lemma 1. Now
T)fz is dual toQy,(logS,), so that, choosing a tr|V|aI|zat|on & x,, we get an
|somorph|smH1(TS") = (H?(Qy, (log$,)))*, and taking into account the natural

isomorphism (see [S]HZ(QX (logS,)) = FY/F2H3(Y,), we get the first assertion.
Next it is known (this is an easy generalization of [9]) that the map

V' P2 P393 — FYFSG @
identifies to the map given by the interior product
HY(Q% (10g5,)) — Hom(H(Ty"), H?(Q2x, (10gS.))). (2.5)

The image of the map (2.5) is contained in the set of symmetric homomorphisms
from Hl(T§:) to its dual; indeed the dual of (2.5) is equal to the (symmetric) cup

product
HY(1 ) @ 1A (T3 —>H2(/\TS“)

taking into account the isomorphism2 T;?j = (Qiu (logS,))*, the triviality of Ky,
and Serre duality.
It follows that for Hl(Qiu(logSu)), N, x € Hl(T)fZ), we have

(T 0, %)= (V" 0G0, n). (2.6)

Now note that the inclusio%(L,s,) < Hl(T;Z) is dual to the residue map
Res H?(Qx, (10gS,)) — H?(0s,), so that forp € H(Lys,), (2.6) gives

(V' @), x) = (Res(V" M), n) (2.7)

where the second pairing in (2.7) is the duality betwegt(L,s,) and H?(0s,).
(We always use the same trivialization &fy, to compute the pairings.) But by

diagram (2.4), we have REE' (1)(x)) = VS(Resk))(X)) and by definition ofu1,
we haveVY(A)(n) = u1(n)(Regx)). So we have proved for any e Hl(szsu)o, for
anyn € H%(L,s,) andx € Hl(T;?:), the equality

(1), x) = (V> 0G0, 1), (2.8)

where the first pairing is the duality above betwe‘eh(TS“) andHZ(QX (logs$,)),
while the second one is the duality betweHH(LMSu) and H?2 (Os,). Finally, for
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ne HO(Lyjs,) = HO(Ks,). » € HY(Qs,)0. x € HX(Ty"), we have the equalities

(T )0 x) =L 0 60) = (V> W60, 1) B (uam (), x),

where the second equality is standard and follows from the fact that the intersection
pairing ONH?2(S,)ois flat with respect to the Gauss-Manin connection and that, for this

pairing, H29(S,) is perpendicular t&" H2(S,)o. This proves that(V" (n)) = u1(n),
as we wanted. O

We conclude this section with the “complexified infinitesimal Abel-Jacobi map.”
Recall that from Lemma 5 we get, fare H1(Q2s,)o with liting 2 € FXH?(S,)o,

a natural identification between K%IS()»)‘HO(L 50 and KerP, : Ty, .5 5 — TB, pu)»
uidy X ) ’

where by definition ofV;, Vi x & C U x H?(S,,, C)o is in fact contained inF12.
Now consider the section of the bundleP*%3/F2%3 constructed in (2.3). Since
this bundle is naturally trivial on the fibers &, it makes sense to differentiat@,ixi

in the direction contained in Kef,. It follows that we have a map
. _ Al 3 2773
ds 1 Ker P, = KervV” () yo, o ) — H>(Xu)/F H>(X,).
On the other hand, the map

o HY(s,)g —> Hom(HO(Lyjs,), FY/F2H3(Y,))
satisfies Resuo(A) = ?S(A)WO(LM y and hence induces a map

=S
w2 Kerv” (g, ) — H3(X,)/F?H3(X,).

Now we have the following.
LeMMA 7. We have the equality
ds = uo.
Proof. Indeed, recall that, , ; is equal tokr — rz(X)mod. F2%3, whereiy is
any lifting of X € Fl%lzvi in F23¢5,,, . Sincey. is flat, we have
A

VE(Re—rz(R)) = V7 (0r);

sincelr is a section oﬂ”z%ﬁw, we have, by definition oy’
A

VY (ir)mod. F2963 =V (ir),
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wherej.r is the projection of.z in F23¢5 / F33¢3. But then forh € Ty, , NKer p, =
Ker?s()u)mo@uls )» we have

ds(h) =V (ip —rz(R))mod. F2ZH3(X,) = V" (*r)(h),
and by definition ofuz the right-hand side is equal [0 (4). O
The reason we calls or up the complexified infinitesimal Abel-Jacobi map is,
again, that ifA is an integral class, we have shown thﬂ&x;\ is a lifting of the
normal function
v;(u) = &y, (js,,*(D;,u)) € J(Xu)
to a section ofp*(%3/F2%3) on V;. Then ifh € Ker p,., ds(h) is simply the differ-

ential ofv; in the directiori, which makes sense sindg, and hence (X,,) remains
constant in the directioh.

3. An infinitesimal criterion for the nonfinite generation of the image of the
Abel-Jacobi map. With the notation of Section 2, we now assume that gim 0.
Recall that we have defined fof, ¢ X, and forx € HY(Qs,)0. n € H(Ks,) the
maps

V() - HY(Ts,) — HY(Rs,) s
V20 : HY(Ts,) — H(0s,).

We prove in this section the following infinitesimal criterion for the infinite generation
of the Griffiths group of the general fibét,.

ProrosiTION 1. Assume thaL, is sufficiently ample and that for genetice U
and generia; € HO(KSM), we have that
(i) the mapv° (i) : HY(Ts,) — HY(Qs,)0 is injective;
(i) for genericx € H(Qs,)o0 such thatv° ()(5)) = 0, we have that

Kerv° (1) : HO(Lys,) — H?(0s,)

is generated by;.
Then for the general point € B, the Abel-Jacobi magy, of X, satisfies that
Im®y, ® Q is an infinite-dimensional—-vector space.

In assumption (ii)y is viewed as an element &f%(L,s,) C H(Ts,).
To start the proof, we first note the following lemma.

LeEmMMA 8. Assumption (i) implies that for genericand generic. € H(2s,)o,
the map
=S
V (0 : HO(Lys,) — H?(0s,)
is an isomorphism.
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Proof Identlfymg HO(LM|S )y with HO(Ks,) by a trivialization ofKy, , the maps
v° (A) HO (Lujs,) = H?(0s,) are symmetric, with respect to Serre duality. Hence
A (1) determines a quadrig, on IP’(HO(LMS )). If A is as in assumption (ii), the
guadricg, hasn for only singular point, and since is generic, it is not in the base
locus of the system of quadrigg. Hence the tangent spacejato the discriminant
hypersurface, parametrizing singular quadgicbeing equal to the set gf, vanishing
atn, is a proper subspace ﬁfl(szsu)o, so the generig; is smooth. O

Now note that the condition thaf (A : HO (Lujs,) — H? (Os,) is an isomor-
phism is Zariski open orHl(qu)o, which is the complexification oH[R (Sw)o:=
HY1(S,)NH2(S,, R)o. Soif it is satisfied at some point, it will be satisfied at some
real pointh € Hé‘l(su)o, which obviously has a natural (real) liftirigin FH2(S,)o.

From Lemma 4 we know that at suctha F19? the map

(P,¢): F1%? — B x H?(S,5, O)o
is étale, so it is a local isomorphism for the usual topology. Hence there are open
connected neighbourhood® c B of p(u), V' C HZ(S,,O, O of p(1), andW C
P

(P,$)
F19¢? of &, with W = B’ x V’. Finally, note that since (1) is real, the rational
points inV’mHz(SuO, Q) are Zariski dense if’. For any such rational pointe V’,
the fiber¢p—1(x) N W is then naturally isomorphic t®’ by P, and it parametrizes

then the pairsS; SN X, such thati; is algebraic onsS;. For each such, we choose
an integern; such thatn; X is integral, and them;x = c1(D, ;) on S;. Hence we
get a normal functiom; on B’, that is, a section of the sheaf

$=93/F*¥3 o H
defined by
(1) = @x, (jie(Dr.0)) € J(Xy).

We use the countably mamy, A € Vd, in order to prove Proposition 1. So we assume
by contradiction the following assumption:

(*) For any general point € B/, the image of®x, tensorized byQ is
finitely generated.

Then we have the following.

LemMma 9. If (%) holds, there exista1,..., Ay € V@ such that for any. € V,,
there exist integers: # 0, m1, ..., my, satisfying the equality

myvy szﬂ})”. in $.
i

Proof. Choose an ordering;, i € N, of the elements OV@. For any sequence
(a);eN Of integers with only finitely many nonzero elements, let
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B, ={te B Y aiv,()=0inJ(X)}.

1

ThenB], is an analytic subset @&8’, so any point in

B"=B- ] B,
Bl #B’

is general. On the other hand, by definitions i€ B”, any relation with integral
coefficients) ; a; vy, (r) = 0 in J(X;) implies that) , o;v;;, = 0 in $. Lemma 9
follows, taking anyr € B” at which ) holds. O

Coming back to the section of P*(%3/F2%3),y) defined in (2.3), we get the
following corollary.

CoroLLARY 1. Under the same assumptior)( for any A € V', 5,5« belongs
to the finite vector spac& of holomorphic sections afit3/ F2¥3),p- generated by
the image oTH&B/ in (9¢3/F293),p and by liftingsd, of v, in (#3/F2%3) p for
i=1,...,N.

Here we use the isomorphisii = B’ x V'’ given by (P, ¢).

Proof. By Lemma 9, the conclusion is true fare V@. Indeed, a relatiomyv, =
> ;mivy; in $ is equivalent to a relation

%3
mf))\ :Zmiﬁxi-l—ot in (W) s
- |B’

1

wherea € H3 and i, %, are liftings of our normal functions i3/ F253) p .
On the other hand, we have shown in Section 2 il g/, m;,; 5/ x5, give such
liftings.

In order to deduce from this that the conclusion is true foragyV’, we use now
the Zariski density otV((’I in V’. To be precise, using a trivialization of the bundle

(93/ F2%3) 5/, Corollary 1 will follow now from the next lemma.

Lemma 10. Let K be a finite-dimensional set of functions @. Let f be a
function onB’ x V', whereV' is a connected open set @ meetingR¥, such that
foranyx € V'NQF, fip vy € K. Then for anyr € V', fipixs € K.

Proof. Letk = dimK and letps, ..., px be points onB’ such that the restriction
map K — @;0,, is an isomorphism. Then we have a bagis) of K such that
ki(pj) = &;;. So any elemeng of K satisfiesg = ), g(p;)k;. It follows that the
function f(b,v) —)_; f(pi,v)ki(b) on B’ x V' vanishes omB’ x (V' NQ¥), hence
everywhere, by the (analytic) Zariski density Bfx (V' NQ¥) in B’ x V'. O

Now we use analytic continuation to conclude the following.
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CoroLLARY 2. Let U’ be any open subset @f contained in the image of the
projectionW — U. (We recall thatW is an open subset 0?1%2 and thatV is open
in U.) Then under the same assumptiej, for anyx, € Fl%fU, such that(P, ¢) is
étale atr,,, the sectionw/ belongs toP*(K), whereU; .0 denotes the irreducible
component OUL, = ¢—1(¢ ()\u)) containingu (which is unic since by hypothesﬂgu
is smooth at).

Proof. Let (F1%2 )¢ denote the Zariski-dense open subsetrdfit2 , where
U 1%

(P, ¢) is étale. We can coveiF! %IU,)et by connected open sel; isomorphic to
B; x V; by (P, ¢) for some open subsess of B’ andV; of HZ((SMO, ©)o). Then for
Ay € Wi, B; x ¢(X,) is open i”Uiu,o- So if we show thas g, «4(.,) belongs tok,
there is ak € K such that

PERIB x¢ () = SIBy x ()

and this will be true everywhere (m/{u,o by analytic continuation.

So it suffices to prove the following: For ariy; = B; x V;, we have that for any
A € Vi, siB;xx belongs toK . But using the same argument as in Corollary 1, we see
that if this is true forW; and if W; " W; # ¢, this is true as well foW;. Since this
is true onW by Corollary 1 and(Fl%le/)et is connected, this is true for al;.
Corollary 2 is proved. O

We conclude with the following corollary.

CoroLLARY 3. Let &, € F137, be such that] is irreducible reduced, and
generically finite oveB via p. Then if §) is satisfied, for any: € Ty, s such that

Py(h) =01in Tg pw), we havels(h) = 0in H3(X,)/F?H3(X,).

This is immediate since : Uiu — B is a generic isomorphism, that i&P, ¢)
is étale at the generic point (M” We then can apply the previous corollary and
conclude that for somee K, we haveP*(k) = s 0N some open set cbf’ Hence the

equality is true everywhere by irreducibility, and it follows that the vert|cal derivatives
of s,y vanish. O

Proof of Proposition 1. We now show that the hypotheses of Proposition 1 con-
tradict the conclusion of Corollary 3. The hypotheses are as follows:
(i) the mapV° () : HY(Ts,) — HY(Qs,)o is injective for generia: andn
H°(Ks,);
(ii) for generici e Hl(QSu)o, such thaﬁs(k)(n) =0, we have that

Kerv° (1) : HO(Ly;s,) — H?(0s,)

is generated by.
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Recall from Lemma 6 that the transposed map

_ v o FTH3(Y)
(V) HY(@s.)o — (HYT))" = 1y

satisfies s s

Reso' (V' () =V, : HY(Qs,), — H?(0s,).
Now hypothesis (i) says thatV S(n)) is surjective; furthermore, the condition diBn-
0 implies dimF1H3(X,)/F2H3(X,) > 0. It follows that for generia. € Ker?i, we

have! (V° () (1) # 0 in

FIH3(Y,) )
=Ker{ Res;: ———— — H~4(0O .
( FZH3(Y,) ( S“)>

Note also that by definitioﬁi(/\) = VS(A)(n) € H?(0s,), so we conclude from
assumption (ii) that we can findsuch that

€) Ker?s()») is generated by, with n generic inHO(LMSu);

(b) ‘(Y )() #0in FLH3(X,)/ FPH3(X,).

Now recall Lemmas 6 and 7, which say that foe Ker?s(k), so thaty is tangent
to V; atu for anyx € F1H?(S,)o over, andy is annihilated byp.,

FH3(X,)
F2H3(X,)

— FIH3(X,)
() 0) € ot
(V') ) F2H3(X,)
is equal tods|yv, ().
So the hypotheses imply that for ahy F1HZ(S,)o overa, the vertical derivative
of sjv; is nonzero. In order to contradict Corollary 3, it suffices now to show that we

can choosé. so thatV; is smooth at: and generically finite oveB.
The first statement follows easily from (a) and (b): indeed, to prove the smoothness
of V; atu, it suffices to show that

V20 : HY(Ts,) — H%(0s,)

is surjective or that its dual
(V) : HO(Lujs,) — HY(Ts,)" =

is injective.
But one sees easily, as in Section 2, thatRéﬁS(x)) is equal to?s()»)mo@m )
and hence its kernel is generatedsply (a). Furthermore, one has the equality

FlH3(X,)

TEw)m = (T m)n e SIS
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and by (b) this is nonzero. S(ﬁs()»)) is injective, as we wanted to prove.

What remains is to show that for genekalifting 1, the varietyV; is generically
finite over B via P. Recall from (2.1) that orv; we have a natural sectiort-1 of the
bundle%®1. Now on the total space 6t let% be the discriminant hypersurface;
that is, for anyu,

D, = {1 e ¥t AR HO(L,s,) — H?(0s,) is not an isomorphisin

If ¢ : F192 — %11 is the natural projection, it follows from Lemma 4 that1(%)
is equal to the ramification locus of the m@p, ¢). This implies that the ramification
locus of the mapP|y. is equal to(x1)~*(@). HencePy. is generically finite if and

only if X“(VX) is not contained iw. Now sincen is contained in the vertical tangent

space ofV; atu, it suffices to prove thaii’l(n) is not tangent t@p, ati. But the

symmetric maps
V() : HO(Lujs,) — H?(0s,)

can be viewed as quadrigg on P(HO(LM‘SM)). Then the assumption on means
thatg, hasn as its only singular point. It follows that the tangent spac@tat 2 is
the set{u € H(Qs,)0, g,.(n) = O}.

Now we use Lemma 3 and conclude thai?[fl(n) was tangent t@, at for any
X lifting A, the subspac@j(HO(Kgu)) of H(Qs,)o would be tangent t@, at A.
Hence we would have the following: For anye HO(KSM),

(.9 (T, (@) (m) =0. (3.9)

This cannot hold for generig and sufficiently ampld. for the following reason:
One can show (and this is done in the next section) by describing the variation of
Hodge structure of the family of surfac8s (with fixed X,,) in terms of the Jacobian
ring associated t§, C X, (see [7] and [10]) that there is a natural surjective map

v H%(3Lys5,) — H?(0s,)

and that (3.9) would mean exactly thatn3) = 0. But if L is sufficiently ample, the

multiplication mapS3H%(L,) — H®(3L,) is surjective, so tha¥ (%) = 0 for any

n would imply thatys = 0, which is absurd sincHz(@Su) # 0. So we have obtained

the desired contradiction with the conclusion of Corollary 3, and this shows that

the finiteness assumptiomr)(is absurd. The proof of Proposition 1 is now complete.
O

4. Checking the infinitesimal criterion for any Calabi-Yau threefold. In this
section we prove that conditions (i) and (ii) of Proposition 1 are satisfied for a suffi-
ciently large multiple of an ample line bundle éh This will conclude the proof of
Theorem 4. We start with the proof of (i).
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ProposITION 2. Let X be a Calabi-Yau threefold anbl; be a line bundle orX . If
L, is sufficiently ample, any sufficiently large multigleof L1 satisfies the property
(i): that is, for genericu € |L| and generiax € H%(Ks, ), the map

V(@) : HY(Ts,) — HY(Qs,),
is injective.
Proof. It is known from [9] that the composition of this map with the inclusion
HY(Qs,), € HY(Ss,)
is nothing but the multiplication map hy.
HY(Ts,) — HY(Ts, ® Ks,) = HY(Rs,).
So the transposed map
HY(R2s,)g — (H*(Ts,))" = H (s, ®Ks,)

is also the multiplication by, and we have to show that it is surjective for generic
a. We know from [7] and [10] that for sufficiently ample and smootts € |L|, the
residues ors of the classes of the 3-formBw/s? generateF 1 H2(S)o, so that their
projections moduld29(S) generateH1(Q5)o, Wherew is a generator oH%(K ),

P varies inH%(2L), ands € H%(L) is an equation fos. Hence we have a surjective
map

H°2L) — HY(Qy)o. (4.10)

Similarly, considering residues of meromorphic forie/s, whereP € H9(3L),
we get a surjective map

HO3L) — H?(0y). (4.11)
One then shows exactly as in [2] that foe H9(L), one has the commutative diagram

o:H92L) —— HO@3L)

|

=S
V, : H{(Qs)o —= H?(0s).
These maps can be obtained as well by looking at the exact sequence

0— Os(—L) — Qx5 —> Qs —> 0, (4.13)
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which, by taking the second exterior power and tensoring witgives
0— Q5 — (Qx%(L)) — Ks(L) — 0. (4.14)
Using the isomorphisnK's(L) = 2L,s given byw and the fact that the induced map
HY(Qs,) — HY(Q%5(L) = H?(95)

is equal tojs,, we get by the long exact sequence induced by (4.14) the desired map
HO(2L|5) — HY(Qs)0, With kernelHO(Qxlzs(L)).
Tensoring (4.14) by any line bundl€, we also get maps

HO(2L+L{s) — HY(Qs(L)),
and in particular
HO(3Ls) — H(Qs(L)). (4.15)
The map (4.11) is then simply obtained by composing the map (4.15) with the map
8 : HY(Qs(d)) — H?(Os) (4.16)

deduced from the exact sequence (4.13) twisted.byt is then obvious that the
following diagram is commutative:

HO(2Ls) —— HO°(3Lys)
l l (4.17)
HY(Qg)o —— HY(Qs(L)).

Furthermore, it also follows from the commutativity of diagrams (4.12) and (4.17)
that forx € H(Qs)o, @ € H°(O5(L)), one has

Vo) = 8(ah). (4.18)
In order to show the surjectivity of
a: HY(Qs)o — HY(Qs(L))

for genericS and«, we do the following. LetL; = Ox(1) be sufficiently ample
on X and letgo,...,¢3 € HO(L1) define a mapp : X — P3. For d sufficiently

large, lets c P2 be defined byr € HO(Ops(d)) and letS = ¢~1(X) be defined by
s = ¢*(0) € H(Ox(d)). Let R € |0x(4)| be the ramification locus af. For = we

have the exact sequences analogous to (4.14):

0—> Qs (k) — Qfs;p(d+k) — Ks(d+k) — 0, (4.19)
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which can be pulled back t§ and which give rise to maps (taking into account the
isomorphismKy = Oy (d —4))

H%(05(2d —4+k)) — HY(¢*Qx (k). (4.20)
We have the following lemma.
Lemma 11 The diagram
HO(05(2d —4+k)) — HY(¢p*Qx (k)
\Lr J{zp* (4.21)
HO(0s(2d +k)) —— HY(Qs(k))
is commutative for an adequate choice of equatienH%(0x (4)) for R.
This follows easily from the fact that the composite
Tx 25 ¢*(Tps) = 6% (025 (4) 25> Q5 () = Tx (4)

is the multiplication by, where the choice of is determined by the isomorphisms
Ky =0y andK[p):’. = @[p3(—4).

As a consequence of Lemma 11, we get the following.

LEmMA 12. Letd be sufficiently large, and IeE, r € H(Ox (d — 4)) satisfy the
following condition: the multiplication map

t: H Qs (—4) — HY(Q5(d-8))
is surjective. Then the multiplication map
¢*t : HY(Qs)o —> HY(Q2s(d — )

satisfies thatm ¢*r containsr H1(Q2s(d —8)).

Proof. From Lemma 11 we conclude that the image of the map
¢*: HY(¢* Qs (d — ) — HY(Qs(d - D)
containsr H1(Qs(d —8)). Indeed, we have the commutative diagrams
H°(05(3d —8)) — H(¢p*Qs(d - 4))
\Lr Jfb* (4.22)
HO(05(3d —4)) — HY(Qs(d - %))
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and
HO(05(3d —8)) — H(Q5(d —8))
lr J{ (4.23)
HO(05(3d —4)) — HY(Qs(d — b)),

where the surjectivity of the first horizontal map is easy to check.
So it suffices to prove that if is large enough, the assumption Bnz implies that
the multiplication map

¢*1: H(¢*Qs)o — HY(¢* Q5 (d—4))
is surjective. Now consider the exact sequences
0— J8 — HO(05(2d - 8)) — H(Qx(—4) — 0,
0— J¥12 _ H%05(3d-12) — H'(Qx(d—8) — 0

constructed above, whetg* ¢ H%(Ox (%)) is the Jacobian ideal o, that is, the
image ofHO(Qn2D3(—4+*—d)|2) under the map induced by (4.19). The hypothesis
ont means exactly that

J¥12 1 1 HO(05(2d - 8)) = HO(05(3d - 12)).
Now if d is large enough, the multiplication map
H%(05(4) ®¢*H°(05(3d —12)) — H°(05(3d —8))
is surjective. It follows that
H(05(®)-¢* 37121 ¢*t HO(05(2d — 4)) = H(05(3d - 8)).
Since HO(05(4)) - ¢* J3?~12 vanishes inH1(¢*Qx (d — 4)) and the map
H°(05(3d —8)) — H(¢p*Qs(d—4)
is surjective, it follows that
¢*1: H'(¢*Qx)o — HY(¢*Qs(d —4))
is surjective. O

We now conclude the proof of Proposition 2. It is quite easy to verify that for
genericx, ¢ the condition of Lemma 12 is satisfied. So we h&¥s r) such that
Im¢*t contains H1(S25(d — 8)). We want to conclude that

¢*t : H{(Qs)o —> HY(Q2s(d — %)
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is in fact surjective.
Consider the surjective ma®(05(34 —4)) — H1(Q5(d —4)). It has for kernel
the space
J3=4 = Lds(u), u e HY(Tx(2d—d)s)}.

The fact that Imp* contains- H1(Q5(d — 8)) means then that

rHO(05(3d — 8))|4+1=5—0 iS contained ng_4|¢*t:s:o- Now let
Se =s+erg’t.
We first show that for generic o, and¢
rHY(Qs,(d—8)) = HY(Qs,(d —4)). (4.24)

Equivalently, we have to show that the multiplication map
r: HY(Ts (4)) — H*(Ts,(8)) (4.25)
is injective. Looking at the exact sequences

0—Ts.(4) — Tx(4)s. — Os.(d+4) — 0,
0— T5.(8) — Tx(8)s. —> 05.(d+8) — 0,

and using the fact thaty (1) is sufficiently ample, we find that the kernel of the map
(4.25) identifies to the set

{ue H(Tx(8)r). dse(u)}r—s.—0=0}.
Now we have the equality
dse (M)\r:sE:O =ds (”)|r:s€:0 + Etdr(u)\r:sgz@

where the curvegr = s = 0} and {r = s = 0} coincide. (Notice that all these
derivatives only make sense when restricted to the vanishing locus of the considered
equation.) Now clearly for sufficiently largg generak, and any in the fixed vector
spaceH°(Tx(8),r), the right-hand side vanishes if and only if

ds(u)y=s.—0=0 and dr(u)jr=s.—0 = 0.

But if ¢ is generic, the surfack is reduced, and the second condition meansitligt
tangent to it. Then clearly there is at most for each suehone-dimensional family
of curves{r = s = 0} on the surfaceR which are tangent ta; that is,s satisfies
the first condition. Since varies in the fixed subspace 8(Tx (8)|r) of elements
tangent toR, it follows that ford large enough and generic, the two conditions
above imply thai: = 0, so that the map (4.25) is injective.
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This means, as above, that we have
3d—4 0
I o, =H (0s.(3d —4))

[r=se [r=s¢=0’

so that, in particular,

g4 o= H°(05.(3d-4)

|t =r=sc= |¢*1=r=5¢=0"

But the curve defined by = ¢*t = 0 is equal to the curve defined by = ¢*t = 0;
the restriction map

H(Tx(2d —4)) — H°(Tx(2d—4)s)
is surjective, and for € HO(Tx (2d —4)), we have
ds (u)|r=s=¢*t=0 =ds(u)|r=s=1=0. (4.26)

It follows that we have as well

]3d—4

S |p*t=r=s=0 = HO(GS (3d— 4))

|p*t=r=s=0"

Sincejg’d“le*t:s:o contains H%(05(3d — 8)) 5+/=s—0, this implies that

3d—4 0
Jg |pst=5=0 — H (@S(3d _4))\¢*t=s=0’

which is equivalent to the fact that's : H1(Q5)o — HL(Qs(d — 4)) is surjective.
Finally, it is easy to check that for generice HO(05x(4)), the multiplication map

¢*t' : HY(Qs(d —4) — HY(Qs(d))

is surjective, so we have proved that for generiec H°(0x(d)) the multiplication
map
¢*t : H(Qs)o — H(Q25(d))

is surjective. Thus Proposition 2 is proved. O
It remains now to check condition (ii) in Proposition 1.

ProrosiTION 3. Let L1 be ample on the Calabi-Yau threefold Then for any
sufficiently large multiplel. of L1 and any genericS € |L|, « € H%(L|s), and » €

HY(S5)o such thatv" (1)(«) = 0 in H2(05), we have that
Ker (V> (1) : HO(Ljs) — H2(05))
is generated bw.

We follow this strategy: We again consider a generic mapX — P2, with
L1 =0x(1) = ¢*(Ops(1)) sufficiently ample, and surfaces= »~1(=) for generic
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¥ c P3 of degreed sufficiently large. S&& = V (s), £ = V(o) with s = ¢*(0).

Next letr € H%(Ox(d)) be generic. Then forr = ¢*¢, we know thaﬁi :
HY(Qs)o — H2(0s) is surjective, so the set afe H(Qg)o such thalv (1)(a) = 0
in H2(0Os), which is equal to KeVi, has the minimal generic dimension. Hence it
suffices to prove Proposition 3 for su¢h, «).

First, we show that for generice H(¢*Qx)o such thalV" (A)(a) = 0in H2(0y),
that is,x € KerV-, the kernel of

V' () HO(05(d)) — H?(Os)
is generated by and
Js :=Ker (H%(05(d)) — HY(Tx)) = Im (H®(¢*(Tps)) — H°(0s(d))).
Then we conclude that for genevics KerVi, the kernel of
V' () HO(05(d)) — H%(Os)

is generated byr, by showing that the set of quadrigs on P(H°(0s(d))) for
re Ker?i has no base point oR(Js).

Let us introduce the notatioR, = C[Xy, ..., X3]/J,, whereJ, is the ideal gen-
erated by the partial derivativ%—i. Using (4.19), we get isomorphisms

R =H"Qz), R =HNQs0), (4.27)

for any integerk # 0. FurthermoreR, is Gorenstein: we havR*?—8 = C, and the
pairings

R4k -4tk __, Rid—8 (4.28)

are perfect. We first show the following.

ProrosiTION 4. Assume tha€@x (1) is sufficiently ample, thap is generic, and
thatd is sufficiently large. Let € H%(0x (d)) be generic and assume that there exist
A1 € R¥-8= gY(Qx(—4), A € H?(0x(2)) satisfying the following properties:

(@) Kerry: R — R¥=8 = (R%)* is generated by the imageofs in RZ;

(b) Axrg: R4™1 — R3—7=(RY~1)* is an isomorphism;

(c) A%r1: RI72 — R3-6= (RI-2)* is an isomorphism;

(d) A3xp: RY3 — R3-5= (R4=3)* is an isomorphism;

(e) A*rp: RI™4 — R34 = (RI~%)* is an isomorphism.

Then fory € H%(0x (4)) generic andQ € H°(0x(2)) generic, the element

b =Y¢* (1) + 0" (Ar1) +¢*(A%1)
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of Hl(¢*Qx)o satisfies thalv" (1)(@) = 0 in H2(Os), wherea = ¢*(¢), and the
kernel of
V() : HO(05(d)) —> H2(0s)

is generated by and Js.

It is clear thatx is in the kernel oﬁs(x), since we have. = f¢*(11), where
A € HY(Qx(—4)) satisfiessis = 0 in HY(Q5(d —4)). This implies thaixa = 0 in
HY(Qs(d)) and a fortioriV° () (a) = 0 in H2(Os), since we have by (4.18)

V(W) (@) = S@h).
Also Js is contained in the kernel ﬁs(k). Indeed, since. € H1(¢*Qx)o, the map
V() : HX(Ts) — H2(Os),

which is given by interior product, clearly factors througtt(¢*(Tx)). Let us first
prove the following lemma.

LeEmMMaA 13 Let ) = A%r; € R%4~* Assumptions (a),.,(€) oniz, A imply the
following:

(i) ' : RI=2 — R3d-6 = (R4=2)* is an isomorphism;

(i) Arq:(Ker))4—1— (Cokern)3—7 is an isomorphism;

(iii) r1: (Kerx)? — (Cokern)3—8 has its kernel generated by

Here we denote bgKer")* (resp.,(Cokerir’)*) the kernel of the multiplication by
A1 R — R~ (resp., the cokernel of the multiplication y: RX~24+4 — R¥).

Proof. (i) is assumption (c).

(i) Let u € (Kera)?—1 and assumeiiiu = 0 in (Cokera’)3?—7, This means that
Aru = A%xqv in R¥~7 for somev € R?~3. By assumption (b), it follows that
u = Av. ThenA2x1u = 0 implies that43x,v = 0; by (d),v =0, sou = 0.

We prove (iii) in the same way. O

In order to prove Proposition 4, we first study the map

Ty - HY(¢* (Tx)) — H(¢*Qx(d)),
which is the factorization of the multiplication map by (1)) € HX(¢*Qx):

i HY(Os(d)) — HY(*Qx (),
using the surjective map

HO(0s5(d)) — HY(¢*(Tx)).

(We use the fact thatf 1 (¢*(Tps)|s) = 0.) Notice that from (4.18), the composition
of ,, with the maps : H1(¢*Qx) — H?(0s) of (4.16) is equal to the factorization
throuthl(qs*(Tg)) of ?S(¢*(A/))|Ho(@s(d)). We have the following lemma.
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LEmMMA 14. LetK = (H%(0x(1))/H®0ps(1)))*. Choose a splitting
H°(0x (D) = K*® H%(Opa(D)); (4.29)

thenKerz,, is naturally isomorphic taKer1)? @ K* ® (Kerix')?—1, and Cokerz;,
is naturally isomorphic tqCokeri')3¢—8 g K ® (Coker./)3—7,

Notice that the map frorKer1 )¢ @ K*® (Ker')?~1 to Kerfz,, is the natural one:
indeed ,(Ker1) identifies to the kernel Gt/ 4« (z71(7y,), While (Ker)? ! identifies
to the kernel of the analogous map

HY(¢*(T5)(-1)) — H(¢*Qx(d - 1))

restricted tap* (H1(Tx (—1))).
Notice also that both statements are dual to each other: indeed, thgmap
symmetric with respect to the Serre duality isomorphism

HY¢*(T)) = (HY(¢* Q2= ()

so (Ker))¢ is dual to(Cokern')3—8 and (Ker1)4~1 is dual to(Coker)3~7 by
the pairings (4.28).

So it suffices to prove the second statement, and for this we can replaloe ;..
To prove it we first prove the following.

LemMa 15 Let€ be the vector bundle,.0x (2) on P3, and let¥ be the cokernel
of the natural map
H%(0x(2) ®@0ps — €;

then the splitting (4.29) gives an isomorphism
I = 0ps(—2) & (K ®Ops(—1)).
Proof. LetI" c X x P° be the graph of. Then
H = R pro,(9r ® pri (0x(2))).
Now if Q is defined by the exact sequence
0—> Q —> H%(Ops(1)) ®Ops —> Opa(1) —> 0,

Jr has the resolution

3 2
0— /\ (pr2*Q® pri(0x(-1)) — /\ (pr; 0® pri(0x(—1))
— pr3Q® pri(0x(=1)) — $r — 0. (4.30)

One concludes from this thaf is isomorphic to

3 2
Kerp: \ 0@ H3(0x(-1) — /\ 0® H3(0x).
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Now the dual of the map is simply the natural map
@: Q®0pa(1) — HO(0x (1)) ®0pa(D),
from which it follows easily that
I = (Cokera)* = Op3(—2) ® (K ® Opa(—1)). O
Tensorizing the exact sequence
H%(0x(2)) ®0ps —> € —> % —> 0 (4.31)
with Oy (d — 2), we deduce easily from Lemma 15 the following.
CoroLLARY 4. The splitting (4.29) gives an isomorphism

HO(0s(d))
HO(0x(2))HO(0x(d —2))

= H(0x(d—4) @ (K @ H'(05(d —93))).
Similarly, tensorizing the exact sequence (4.31) vith(d — 2) and using Lem-
ma 15, we easily get the following.
CoroLLARY 5. The splitting (4.29) gives an isomorphism

HY(¢*Qx(d))
HO(0x(2))¢*HY(Qx(d —2))

=HY(Qzd-d)®K@H (Qx(d—9).

Proof of Lemma 14.By assumption (i) ond’, it follows that Imu;s contains
HO0x(2)¢*(HY(Qx(d — 2)), since it means that the map : HX(Tx(-2)) —
HY(Qsx(d—2)) is surjective.

So it suffices to study the cokernel of the induced map

_ HO(0s(d)) H(¢*Qx(d))
. —> .
HO(0x(2))HO(0x(d—2)) HO(0x(2))¢*HY(Qx(d —2))

o

But applying Corollaries 4 and %, gives a map

HO(05(d—9)®(K®H(05(d—3))) — H* (25 (d— ) ®(KRH (25 (d—3))).

This last map is now easily seen to be the direct sum of the multiplication map by
A € HY(Qsx)o, from which we conclude that

Cokery;, = Cokerpy = (Coker)* 8@ (K ® (Cokerr)¥~7),
using the isomorphisms
HYQsWd-4))=R¥8  HY(Qsd-3)=R¥,
of (4.27). O
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Next for Q € H2(0x(2)), letas = Q¢*(Ar1) € H1(¢*Qx)o. Again, the multipli-
cation map
Hay : HO(O5(d)) — HY(¢*Qx(d))

induces a symmetric map
HY(¢*(Tx)) — H'($*Qx(d)),
and hence a symmetric map

H(¢*Qx(d))
(0x(2)HY(¢*Qx(d-2))’

Tory 1" (H' (1)) @ (K* @9 (H(T5 (1)) — —5

that is, by Lemma 14 a map
M, Ry ®(K*@R;™) — RY @ (K@ R ).

We have the following lemma.

Lemma 16, The mapp,, vanishes orR?, and onK* ® R~ it is computed as
follows: There is a natural map

W : H%(0x(2)) — Hom(K*, K)

such that
T, K*®RIT — K@R3’

is equal to¥ (Q) ® AA1.

Proof. The first statement is obvious, sinp@z(d)*(HO(@g (d)))) is contained in
HO%0x(2)-¢*(HY(Q5x(d —2))). As for the second one, consider the commutative
diagram

04" (Ax))
HO(05(d)) ———> HO(05(3d —4))

| |

HO(05(d)) ——2—= HY¢*Qs5(d)),

wherey] is any lifting of A1 in HO(05x(2d —8)); the second vertical map was defined
in (4.20). The commutative diagram shows that it suffices to prove more generally
the following lemma: Consider the multiplication map

H°(0x () HO(Ox (d+k+2))
. —_—
HO(0p3(2)) HO(Ox (d —2)) HO(0p3(2)) HO(Ox (d +k))

Q¢*P
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for any P € HO(Ops(k)). Using the isomorphism deduced from Lemma 15,

HO(Ox(d+k+2)
HO(0p3(2)) HO(Ox (d+K))

= HO(Opa(d —2+Kk)) ® (K ® HO(Opa(d —1+K))),

Q¢* P induces a map
K*® H®(0ps(d — 1)) — K ® HO(Ops(d —1+k));

then we have the following.

LeEMMA 17. There is a natural map
W H(0x(2)) — Hom(K*, K),

such that this map is equal W (Q)® P.
Proof. We construct the mag as follows: Let¥ be the cokernel of the natural
map
H%(0x (1)) ® Ops —> ¢,.0x ().

Using the equality
¥ = Rypra,(9r ® priOx (1)),

where the notation is as in the proof of Lemma 15, and the resolution (4.30), we find
thatZ is isomorphic to the dual of the cokernel of the natural map

0 ®H®(0x (1)) — HO(0x(2) ®0ps(1).

In particular, there is a natural inclusion $fin H%(0 (2))* ®O0p3(—1). Tensorizing
by Ops(1) and taking global sections, we get a map

xHo(0x () — (H%(0x(2))"

whose image is the set of linear forms vanishing®h0ps (1)) - H°(0x (1)). Recall-

ing thatK* = H%(0x(1))/H®(Ops(1)), such a linear formy (Q) obviously induces

a symmetric bilinear form ok * and, hence, a magp(Q) : K* — K. The statement
concerning the multiplication is then clear: in fact, it clearly suffices to do the case
d =1 =0, and then this results from the definitionwf So Lemma 17 (hence also
Lemma 16) is proved. O

We also need the following lemma.

LEmMA 18. If ¢ is generic, for generi@ € H°(0x(2)), the map¥(Q) : K* — K
is an isomorphism.
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Proof. Notice that eacl (Q) is symmetric and hence defines a quagpon K *.
In fact, o (k) = x(0)(k?), with the notation of the above proof. But we know that
the mapy has for image the set of linear forms vanishing®0ps (1)) - H°(0x (1)).
So to prove the lemma, it suffices to show that this set, viewed as a set of quadrics on
H%(0x (1)), has exactly for base IOCLBO(@[pB(l)). But the base locus of this set of
quadrics is exactly the set

[k e HO(0x (1), k* € HO(0ps(D)) - HO(Ox (D))}

So we have to prove that for genedic= (¢o, ..., ¢3) the conditiork? € (¢, ..., ¢3)
implies thatk € {(¢o, ..., ¢3). This is easy: It suffices to degenerdm, ..., ¢3) to
the linear system of elements B°(0x (1)) vanishing on a certain number of points
of X, and verify that one can do this while keeping the dimensiotyef..., ¢3) C
H%(0x(2)) constant. Then for the degenerated syste). .., ¢3), the result is ob-
vious; this implies the same thing for the generic system. O

Similarly, let A3 = y¢*(11) € HX(¢*Q5x)o, for anyy € H°(Ox(4)). Then the
multiplication map

s HY(Os(d)) — HY(4*Qx(d))
induces a map
Ty RE= ¢*(HY(Tx)) — HY(Qs(d—4) = R¥S,

where we use Corollary 5 to realizé!(Q25 (d —4)) as a quotient o (¢* Q5 (d)).
Then we have the following.

LeEmma 19. There is a nonzero mag : H%(0x(4)) — C such thatiz,, is equal
to ®(Y)A1.

This is not difficult. In fact® € (H%(Ox (4)))* is simply given by the inclusion of
C = H3(Ops(—4)) in H3(0x(—4)).

Proof of Proposition 4. We know from Lemma 13 tha#ii; : (Kera)4—1 —
(Coker)3=7 is an isomorphism. By Lemma 18, we also know that for generic
Q the map¥(Q) : K* — K is an isomorphism. Using Lemmas 14 and 16, we
conclude that for generi@ the map induced by,

Kerix,, —> Cokerg,,

vanishes oriKer’)¢ and induces a (Symmetric) isomorphism

)d—l )3d—7.

K*® (Kera —> K ® (Coker/

Next by Lemma 13, we know that the map : (Kerx)¢ — (Cokern’)3?—8 has for
kernel exactly(z). Using Lemmas 14 and 19, we conclude that for gengribe map
induced byjz, ,

Kerpx,, —> Coker,,
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induces a (symmetric) map
(Ker)d)d — (Coker)/)gd_s,

which has for kernel exactlyr). But then it follows immediately that for generi@
andy, and fori = 1’ + A2+ A3, the map

W, HY(¢%(Tx)) — HY(¢*Qs(d))

has its kernel generated 7 € H(¢*Tx).
To conclude the proof of Proposition 4, we now simply note that the map

8 : HY(¢*Qx(d)) — H?(Os)

is injective. To see this, it suffices to prove '[thl(qﬁ*(Q[ps(d))\S) = 0 or that
H?(¢*(Qps)) = 0, which is easy.

Then we have proved théb 1z, has its kernel generated by (r) and since this map
is equal to the factorization througil(¢*Tx) of V° (1) : HO(Os(d)) — H2(Os), it
follows that this last map has its kernel generated/pyando = ¢*.

So Proposition 4 is proved. O

Next we prove the following lemma.

LemMaA 20. Assume that for generic inH% (0 (d)), there exists. € H1(¢p*Qx)o
such thatV° (1) : HO(0s(d)) — H2(Os) has its kernel generated hjs and o =
¢*(t). Then for generia. e Ker?ﬁ C HY(Qs)o the kerneKerV° (1) : HO(Og(d)) —
H?(0y) is generated bw.

Proof. For anyx € H1(Qs)o, the map
V() : HO(0s(d)) — H?(Os)

is symmetric with respect to Serre duality, so it determines a quagran P(H°
(0s(d))). We know by assumption that there ig,a which has for singular locus the
projective space generated &yandJs,, and we want to conclude that the genegic
singular ate hasa as its only singular point. By Bertini, it clearly suffices to prove
that the system of quadrigg singular atx has no base point on the projective space
P(Js). Now note that the set Kﬁi, which exactly parametrizes this linear system,
identifies to

{1 e HXQs)0, A L Vo (H(Ks))),

where the symbols_ refer to the pairing o/ 1(Qs)o. Furthermore, by definition,
the conditiong, (u) = 0 is equivalent ta. L ?,f(u). Recalling that the map

=S
V. : H%(Kg) — HY(Q5)0
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identifies to the composite of the multiplication by
H(Ks) = H(Os(d)) — H°(05(2d))

and of the map (4.10)
H°(05(2d)) — H(Qs)o.

we conclude that is in the base locus of the system of quadricsTK(Sgn'f and only
if the image ofu? in H1(Q25)o is contained in the image ofH%(05(d)) in HX(Q2s)o,
which has for kernel the spack, image of HO(Tx (d)|s) in H°(Os(d)) . So the
proof of Lemma 20 is concluded by the following lemma.

Lemma 21 For generico, ¢, the conditionu? = ¢*t.vmod.J2 for u € J¢,v €
H%(0g(d)) implies thatu = 0.
The proof of this last lemma is not very difficult, so we do not give it here.[]

From Lemma 20 and Proposition 4, we conclude now with the following.

CoroLLARY 6. If for o, ¢ generic, there exisH, A1 satisfying the assumptions of
Proposition 4, then Proposition 3 is true.

Proof of Proposition 3. It remains only to show the existence 4f A1 satisfying
conditions (a) to (e) of Proposition 4.
For any integek we have the map given by the multiplication in the Jacobian ring
of o
RZ — Homgym (RZ =4k R24=4+k),

where the subscript “sym” refers to the perfect pairings (4.28). We denoi&by
P(RZ) the discriminant hypersurface for these families of quadrics. It is easy to show
that for generier and for any 0< k < 2d —4, D% # P(R%). This is what we want

to show:

For generico and generia € RY, there exists\; € D2¢~8 such that
Keri1 is generated by. Furthermore, for generid € H%(0x(2)), we
haveA); ¢ D28+ for 1<k < 4.

Now notice that the degree @2 is equal to the rank oR2¢~4~*, In particular,
we have the following:

d°D2 "% = rk RS < rk RS =d°D2'~8,
d°D? =4 = rk RI=2 < rk RY = d°D% 8,
d°D%=2 = rk RI=3 < rk RY = d°D%8,

d°D? = rk R** < rk R? = d° D8,

Furthermore, it is easy to show that fergeneric and4 generic we havelk R2/—8 ¢
D2—8+2% for 1<k < 4.
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Then we contend that the existenceAqfi; satisfying conditions (a) to (e) follows
from the next lemma.

Lemma 22. Leto be generic, and lek ¢ P(RY) x P(R%/~8) be defined as
R ={(t,r1),tA1=01in R¥ 78},
Thend has only one componefiigen of dimension at least equal thm P(R%—8)—1.

Indeed, we know that for generic= R?, the magr : R2—8 — R8s surjective.
It follows that the principal component Gk (the one that dominateB(R?)) is
exactly of dimension dirP(R%~8) — 1, and it must be equal t®gen SO Rgen
is of dimension dinP(R2/~8) — 1. But Rgen has to dominated2~8 by the second
projection, sincék has no other component of dimension at least equal taxgn®.
Since dinfRgen= dim D28, the second projection

2d-8
%gen —> DU

must be birational, and any other componer#idé sent to a proper subsetDﬁd—s.

It follows that D2~8 is irreducible, and its generic element satisfies that Kexy

is generated by for generict € RY. But thenD2/~8 is also reduced. For degree
reasons, we cannot then hateD2—8 ¢ p24—8+2k for 1 < k < 4, and sinceD?/~8

is irreducible, it follows that for generit; € D248, we haveA*i, ¢ D24~8+2% for

1 <k < 4. So Lemma 22 implies the existence 4fA1 satisfying conditions (a)
to (e). O

Proof of Lemma 22. One has to prove that there exists no nonempty proper subset
Z c P(R?) such that forz € Z the multiplication map : R2~8 — R3?-8 has
cokernel of dimension at least equakte- codimZ. Equivalently, by duality the map
z: R? — R? has a kernel of dimension at least equakte codimZ. Let! < d be
such that
hO(Ops(D)) < k < h°(Opa(l +1)).

One first verifies that there existsfe < ¢’ < 1 such that ford large enoughg
generic, and as above, one had <[ < €'d. This follows from the following facts,
which are proved by a dimension count:

(a) there exists B< € < 1 such that for sufficiently largé, generico, and any

t #0e R¥Y! the multiplication map : RY — RI! is injective;
(b) there existss € RS 1“1 such that the multiplication map : RZ ¢!l . g2d

is injective.
It follows from (a) and (b) thaBR([fd] does not meext, which implies that+1 > ed.
Also it follows from (a) and (b) that for any € R¢, we have Keen BREY = {0}
Hence forz € Z, we have

k < dimKerz < h°(d) —h%([ed]) < h°([€'d]),
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wheree’ is chosen so as to satisfy the last inequality for latg&his gives the other
inequality.

Now one shows that for arly< €’d, d large enough, and for generig there exists
C e RZ~'=2 such that the multiplication map

C - RIHH2 __, pd
° o o
is injective. Consider now the map: R:2 — RY. Then forz € R.2, we have
Ker(z: RY — RIT1+2) =Ker(Cz: RY — R¥);

hence, in particular, i€z € Z, we have dimKefz : RY — RI*'+2) > h0(1). Hence

we conclude that iz’ = CR:2n Z, we have that the codimension 8f in P(R/+2)

is at most equal ta%(/+ 1), and forz € Z’, dimKer(z : RY — RZ+!%2) > p0(1). This

is absurd because of the following fact (which is proved by looking at the Fermat
equation):

The dimension of the subspazé of P(R.*?) defined by the condition
ze 72" < dimKer(z: RS — RIT*2) > n0()

is not greater than 140, for genetic

This obviously contradicts the fact that ¢ Z” and dimz’ > h%(1+2) —h%( +1),
which is strictly greater than 140 faflarge enough, since> ed.
So the existence of such for generico is absurd, and Lemma 22 is proved(]

The proof of Proposition 3 is now finished, and together with Propositions 1 and
2, it implies Theorem 4.
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