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A CORRECTION ON
“A CONJECTURE OF CLEMENS ON RATIONAL
CURVES ON HYPERSURFACES”

CLAIRE VOISIN

1.

The purpose of this note is to correct a mistake in the proof of the
main theorem of [3]:

Theorem 1. Let X C P” be a general hypersurface of degree d. Let
k <n —3; then the following hold:

i) Ifd > 2n—1— k, any k-dimensional subvariety Y of X has a
desingularization Y with an effective canonical bundle.

ii) If d > 2n— 1 —k, and Y is as above, the canonical map off/ 18
generically one to one on its image.

Recall that Ein [1] proved the following:

Theorem 2. Let X C P" be a general hypersurface of degree d and
k <n—1. Then the following hold:

i) If d > 2n — k, any k-dimensional subvariety Y of X has a desin-

gularization Y with an effective canonical bundle.

ii) If d > 2n — k, and Y is as above, the canonical map of Y is
generically one to one on its image.
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Ein’s theorem follows from the fact that if X C P" x S is the
universal hypersurface, S¢ = H°(Opn(d)), with special smooth fiber
Xp, F € §%, then the bundle Tx(1)|x, is generated by global sections.
Then A" ' FTy(n—1— k)|x, is also generated by global sections. On
the other hand we have

n—1—k
N Twn—1-k)x, 2 n—1-k—d+n+1)x,,

with N = dim §%. Hence if n—1—k—d+n+1 <0, the bundle Q3 **,

is generated by global sections. If we have an étale map U — S¢ and a
universal (reduced, irreducible) subscheme )} C Ay of relative dimension
k, with desingularization ), then we will get by restriction non-zero
sections of
N+k o~ g
Q)} v, = Ky

The case of strict inequality follows in the same way.

What we proposed to do in [3] for improving these inequalities was
to study sections of the bundle /\2 Tx(1)x,- When n—1—£k > 2, they

will provide, by wedge-product with sections of TX(1)| X sections of

n—1—k
N Twn—2—-k)x, 2 Q¥ n—2-k—d+n+1)x,.

Soif now 2n — 1 —k —d <0, and Y C Ay is as above, by restriction
one can hope to get non-zero sections of
N+k ~
9575 = K
(respectively of Ky, (—1) if the inequality is strict). We claimed in [3]
that for generic F, the space HO(A? Tx(1)x,), viewed as a space of
sections of a line bundle on the Grassmannian of codimension two sub-
spaces of Tx|x, has no base points on the set of Gi(n + 1) invariant
codimension two subspaces of Ty |x,., i.e., subspaces V C Ty (; ) con-
taining the tangent space to the Gl(n+1)-orbit of (x, F'), where Gl(n+1)
acts in the natural way on X C P x S¢.

However this statement is false, as was pointed out to me by K.
Amerik, whom I thank very much for her observation. Her counterex-
ample is the following : assume that n +1 < d < 2n — 3, so that the
variety of lines in generic Xp is non-empty of dimension 2n — 3 — d,
and the subvariety Py, C Xp covered by the lines is of dimension
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k=2n—2—d <mn—3. We have a corresponding universal subvariety
P C X of relative dimension k, which is obviously GI(n + 1)-invariant.
If the statement were true, since Tx (1) x, is globally generated, there
would be sections of

n—1—k
/\ Trw(n —2—k)x, =2 QY1) 1x,,

which do not vanish by restriction in

HO@QY (1), ;

) = HO (K, (1),

and this is absurd since Pp is covered by lines.

In fact, there are other counterexamples, in any degree d > n + 2,
showing that the base locus of HO(A\? Tx(1)x,) is somewhat large :
choose an integer r such that 1 <2n—2— (d—r) < n —3, and positive
integers [1,... ,l, such that ) .l; = d. For generic X, the subvariety
Py ... 1. x of X made of points z such that there exists a line A C P,
with ANX =lix+lexo + ...+ lyzp, To,... ,2, € X, is of dimension

k=2n—-2—(d—r). Let Py, 4. <y X be the corresponding universal
subvariety, and
Pyt — P,

be a desingularization. If the statement were true, there would be for
generic F' a section o of

n—1—k
/\ TX(n_2_k)\XF gﬁngk(—T-i—l)‘XF,

which does not vanish by restriction in
HYQE M (—r+1)5,) = H(Kp_(—r +1)).

This is absurd for the following reason: the points zs,... ,z, give a

correspondence from P, ; x to X; that is a generically finite smooth
cover

,o~

Pllla“ X - Pll:"'aszx

sl

parametrizing the r-uples (z1,... ,2,) such that
ANX =lxz+lsxe+ ...+ 2.

Let

. /
Ji: }%1p- X )(,(xl,... ,x,) — T,

wolrs
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so that j; = j o7 or. Now for any point of Pl’l,m,th the corresponding
points z; of X satisfy the condition ), l;z; = H" ' X, where H =
c1(Ox (1)), and = is rational equivalence. Adapting the arguments of
[4] to this (higher dimensional) situation, we conclude the following:

Lemma 1. For any s € HO(QQ‘H’E'XF) with k > 0, we have

ke e 170 ON+E ~ f70
E:hhs_oﬁnﬂmgﬂhdﬂﬂ %_H(KHNJ%W)
1

i yeeslp X

Applying this to s = f.o, where f € H°(Ox(r — 1)) vanishes at

Z2,...,T, but not at x1, and j7o does not vanish at a point of Pl’1 e Xp
parametrizing (z1,...,z,), we get a contradiction.
2.

We will correct the proof of Theorem 1 as follows: first of all by
Yheorem 2, we have only to study thecase d =2n—k—1, k <n—3in
i) and d =2n — k, k <n — 3 in ii). What remains true is the following:
Assume we have a universal subscheme

Yy C &y

of relative dimension k, with desingularization Y, which we may assume
to be Gl(n + 1)-invariant for some lift of the Gl(n + 1)-action to Ap.
Assume in case i) that the restriction map

n—1-k
H( /\ Tx(n—Q—k)|XF)gHO(Qngk\XF)

0/ON+k ~ 0 ~
SH QY ) = HO(Ky,)

vanishes (otherwise Ky, is effective and we are done). Then for a
smooth point (y, F') of ) the tangent space
Ty7(y7F) C TXUv(va)

is in the base-locus of HO(A" 1% Tx(n—2—k)|x,), and since Tx (1) x,
is globally generated it follows that any codimension-two subspace
V. C Ty, containing Ty ) is in the base-locus of

HO(\? Tx (1) x,)- Similarly, in case ii) assume that the restriction map

n—1—k
H( N\ Tx(n—2—k)x,) =H QY (-1)x,)

SHTOY )y, ) 2 HO(, (1)
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vanishes (otherwise Ky, (1) is effective and we are done). Then for a
smooth point (y, F') of ), any codimension two subspace V C Ty (y,F)
containing Ty (, ry is in the base-locus of HO(N\? Tx(1)x,). Now recall
from [3] the following lemma.

Lemma 2. Let (z,F) € X, and V C Ty () be a codimension-two

subspace which is in the base-locus of HO(\? Tx(1)|x,). Then V N S
contains the ideal In(d) of a line A containing x.

Here S¢ = H%(Z,(d)) C S¢ is naturally contained in Ty (s,r) as the
vertical tangent space of the first projection pr; : X — P". It follows
easily from this lemma that under our assumptions, in case i) or ii),
the tangent space Ty (, ) at a smooth point of J has to contain IA(d)
for a line A containing x. Clearly A is unique, since otherwise Ty (, )
would contain S’g, and since pri, : Ty ) — Tpny is surjective by
Gl(n + 1)-equivariance, Ty (, )y would be equal to T, (y r)-

Hence under our assumptions, there is a morphism ¢ : ) — Grass(1,n),
such that:

- The line Ay r = ¢((y, F')) passes through y.

- The ideal Ia, ,. is contained in Ty (, ) (and more precisely in the
vertical tangent space T)”f(’";, ) with respect to pry).

Now we prove

Lemma 3.  The differential ¢. of ¢ at (y,F) wvanishes on
IA%F - Ty7(y7F)

Proof. The inclusion In, . C Ty, ) defines a distribution
7T C Ty, which is in fact contained in the integrable distribution Tf;e” =
Kerpry,. The bracket induces then a O-linear map

2
U \T - 19T C T /T,

with fiber at (y, F')

2
(U /\IAy,F - HO(OAy,F (d)(—y)),

such that I'my C T"e(” )mod In, -
Now note that since y € A p), ¢*(T“e” )) is contained in
H (NA(y F)/Pn( y)). In the sequel we will denote Ay r by A. Recall

that there is a natural bilinear map that we will denote by (a,b) — a-b:

In ® H(Naypn(—y)) = H*(Oa(d)(—y))-
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It is easy to see that v is described by
YANB) = A-§u(B) ~ B 4u(A), A, BE I, .

In particular, assume that A € I% satisfies ¢*( ) # 0 ; then
mod. In would contain the elements % or any € IA,
T”e(’" t ) d. I, 1d he el B - fi Bel

and would be equal to H°(Oa(d)(—y)), which is absurd because this
would imply that T"e(y F) = T”e’("; F) Hence ¢, vanishes on IZ and
gives a map

¢ InJIX — HO (N jpu(—y)).

Denoting by K the (n — 1)-dimensional vector space H°(Np /pn(—y)),
we have a natural isomorphism

IAJI, , = H(Oa(d— 1)) ® K*,

such that the bilinear map, used above and factorized by Ii, is the
contraction map

H°(OaA(d—1)®@ K*® K — H°(Oa(d — 1)),
taken into account the isomorphism
H®(Oa(d)(—y)) = H*(Oa(d - 1)).

Hence the resulting map

2
7 NUa/13) » H(Oa(d)(~y))

identifies with

2
N\H’(Oa(d—1)) ® K*) = H*(Oa(d — 1)),
ANB =< A, ¢(B) > — < B,¢p(A) >
Finally we use

Lemma 4. Let ¢ : W @ K* — K be a linear map. If ¢ # 0, then

the map
2

b NWeK") =W,
AANB =< A, ¢(B) > — < B,¢(A) >
has at least a hyperplane of W for image .
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Proof. Let L = Ker¢, I = Im¢ and G = Im1) ; then G contains
the elements < A, B > for A € L, B € I. 1t follows that L is contained
in G®K*+ W ® I, so that we have

rk¢ > dim (W/G) @ (K*/I) = (dim W/G)rk .

Hence if rk ¢ > 0, then dim W/G < 1. q.ed.

Applying this to W = H°(Oa(d — 1)), we conclude that if ¢, # 0,
the image of ¢ contains at least a hyperplane in H°(Oa(d)(—y)), so
that T)’je(’"; P C T}\’,egF) is at least a hyperplane, which contradicts the
fact that the codimension of Y in X is at least 2. Hence Lemma 3 is
proved.

q.e.d.

From Lemma 3 we conclude that under our assumptions the fol-
lowing hold: for (y,F') € ), we have y X F +Ix, , C Y and A, is
independent of G € F' + Ia, .. Indeed, from the fact that ¢. vanishes
on Ia, , one concludes that the distribution Z is integrable, and since
¢ is constant along the leaves of the corresponding foliation, the leaves
must be the affine spaces y x F + Ia .

Now the codimension of T)’}‘Zt in S’g = T}"f‘fzt is equal to the codi-
mension of ) in X, that is n — k — 1. Thus the image of the restriction
map

T o) = HY(Oa(d)(—y))

has also codimension n — k — 1, and therefore has dimension d — n +
k + 1 which is equal to n < d —2 in case i) and to n +1 < d — 2
in case ii). But recall that Y is invariant under GIl(n + 1) so that

T)’}e(”; ") contains the elements of Tqa ® Tpr, tangent to the orbit of

(y, F) and projecting to 0 in Tpn,, that is the element F' € S’g and
IyJﬁ_l. Finally we may assume that F' is generic in the affine space
F + 1A, p so that if Xo, ..., X, are the coordinates in P" with Xi(y) =
0,2 >1and Xi\Ay,F = 0, 2 > 2, then the elements Xlg_)i'my,p’ 1> 2,
are generic and in particular independent modulo the space generated

oF oF :
by Fia, p Xla—Xo\Ay,F’ X18—X1\Ay,p’ which depends only on Fia,

The conditions dim < F,IyJ;ifl >|a, S T oin case i), and
dim < F,1,J§7" >|a, < n+1in case ii) imply now that

OF OF

Xi—— Xi— >< 1in case i)
y,F? 8X0‘Ay,p, aXl ‘Ay,p b

dim < F\A
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oF oF
) Xigo ) X5
y,F IBXO‘A%F 18X1 Ay, P

Thus Fip, , = aX{ in case i), and Fin, p = X179t in case ii), for
some linear form Z on A, r and some [ > 1 which obviously will be
independent of (y, F') € Y. Comparing dimensions we see that in case
i),Yr has to be a component of the variety Py r C X made of points
through which passes a line osculating X to order d, while in case ii)
YFr has to be a component of the variety P, 4_; » C Xr made of points
x through which passes a line A with AN Xp =z + (d —1)z'. Note
that by the arguments explained in Section 1 the corresponding varieties
Pa,(resp. Py q-1) of X actually satisfy the condition that the restriction
map

dim < Fia >< 2 in case ii).

HO(Qg—H‘: N HO(Q]Y+k )

\XF) Pi |Pyr

vanishes, (resp. the restriction map

QY 1)pxe) > HYQRH (<D)jp, )

vanishes).
So to finish the proof of Theorem 1, it suffices to show

Proposition 1. Assumen —3 > kg =2n—1—d > 0 (for case i)
orn—3 >k 41 =2n—d>0 (for case ii); then for generic F', the k-
dimensional variety Py r admits a desingularization Isd,p, the canonical
map of which is generically one to one on its image. Similarly the
kiq—1-dimensional variety P4 r admits a desingularization _pl’d_l,p,
the canonical map of which is generically one to one on its image.

Let G C P" x Grass(1,n) be the set {(z,A)/z € A}, and let P 5
G be the pull-back of the universal P! bundle on Grass(l,n). Then
there is a natural section 7 of 7 given by 7(x,A) = z € A, and a
corresponding line subbundle £ of the bundle £&; = 7,0(d), with fiber
at (z,A) the set of polynomials of degree d on A vanishing to order d at
z. Let Fy = &3/L. Now let F' be a section of Opn(d); then there is an
induced section or of Fg4, and by definition Py r is the image by the first
projection of V(op). Since Fy is generated by the sections op, V(op)
is smooth of the right dimension for generic F', and one verifies that
pri: V(or) = Py is a desingularization (one uses here the inequality
n—3>kyg=2n—1—d>0).

Similarly, to desingularize P, 4_; r, let Y be the blow-up of P" x P"
along the diagonal. There is a natural map

f:Y = Grass(1,n), (z,y) —»< z,y >,
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and there are two sections
1, T2, T1((7,9)) =2 €< 3,y >, n2((2,y)) =y E< 7,y >

of the induced P! bundle P 5 Y on Y. There is then a line subbundle £
of the bundle £; = 7,Op(d), with fiber at (z,y) the set of polynomials
f of degree d on A vanishing to order [ at z and to order d — [ at y
(when = = y, f should vanish to order d at z). Let Fq = £;/L. Now
let F' be a section of Opn(d); there is an induced section op of Fy,
and by definition P} 4_;  is the image by the first projection of V(o).
Since Fy is generated by the sections op, V(op) is smooth of the right
dimension for generic F' and one verifies that pry : V(op) = P g risa
desingularization (one uses here the inequality n—3 > k; 4 =2n—d >
0).

In both cases it suffices to show that the canonical map of V(o) is
of degree one on its image.

In the case of Pyp the canonical bundle of V(oF) is equal to
Kg+c1(F4). Now note that G is the universal P-bundle on Grass(1,n),
via pry so that PicG is generated by H = pri(Opn(l)) and L =
pry(Ocrass(1)). It is easy to show that Kq = —2H —nL.

Next &; is the pull-back via pro of the cl(i)(IZiI:rels)ponding bundle over

Grass(1,n), hence has determinant equal to ==—= L. Finally the natu-

ral section of P 5 G is simply given by the evaluation map 7,0p(1) =
& — 7(0p(1)), and since 7*(Op(1)) = H, its kernel L; is of class
L— H. Clearly £ = L% hence L is of class d(L — H). So we have

Ky (o) = Ka + c1(Fa)

d(d+ 1)
2

d(d—1)
2

Sincen—3>2n—1—d >0, we have n > 3,d > n+ 2 > 5, hence
d—2>0, %d(d — 1) —n > 0, which implies that Ky (,,) is very ample.
In the case of P4y, f: Y — Grass(1,n) identifies Y with the self-
product of the tautological P'-bundle on Grass(1,n), hence its Picard
group is generated by H; = pri(Opn (1)), Hy = pr;(Op=(1)), and L =
[*(Ograss(1)). One computes easily that Ky = —2H;—2Hs+(—n+1)L.
Next the two sections 7y, 7o correspond to the evaluation maps

= —2H —nL + L —d(L — H)

=(d—2)H + ( —n)L.

&1 — 11 (0Op(1)), &1 — 75 (Op(1)),

609
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with 7 (Op(1)) = Hi, and 75 (Op(1)) = Ha, so their kernels £, £5 have
for class L — Hy and L — Hy respectively. Clearly £ = L8 ® £297! and
hence is of class [(L — Hy) + (d —)(L — Hy. Thus

Ky (op) =Ky + c1(Fq)
= —2H, — 2Hy + (—n + 1)L

1
+ @L—Mﬂﬂﬁ (d — 1) Hy.

Soif I > 2, and d — [ > 2, we conclude easily that the canonical map of
V(or) is of degree one on its image.

Ifl=1ord—1[1=1,say d—1 =1 for example, we construct another
desingularization of P 4_; as follows: Let as above G C P" x Grass(1,n)
be the set {(z,A)/xz € A}. Let P 5 G be the pull-back of the universal
P! bundle on Grass(1,n), and 7 be the natural section of 7. There is a
natural rank-two subbundle K of &;, whose fiber at (z, A) is the set of
polynomials of degree d on A vanishing to order d — 1 at z. In fact, if
L1 is as above the kernel of the evaluation map

& — 7°0p(1) = H,

K is isomorphic to E?d_l ®&.

Now if F' is a section of Opn(d), there is an induced section op of
F = &4/K, and by definition Py_; ; r is the image by the first projection
of V(oF). Since F is generated by the sections o, V(o) is smooth of
the right dimension for generic F', and one verifies that pry : V(op) —
Py_1,1,F is a desingularization. We have then

KV(O'F) =K¢g + 01(7:)

=—2H —nL+ @L - 2(d - 1)61([,1) - 61(51)
=(2d — 4)H + (@ —n—1-2(d—1))L.

Using the inequalities d > n + 3 > 6, we immediately see that Ky,
is very ample. So Proposition 1 is proved. qg.e.d.
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