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Hodge loci and absolute Hodge classes
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Abstract

This paper addresses several questions related to the Hodge conjecture. First of all we
consider the question, asked by Maillot and Soulé, whether the Hodge conjecture can be
reduced to the case of varieties defined over number fields. We show that this is the case
for the Hodge classes whose corresponding Hodge locus is defined over a number field.
We also give simple criteria for this last condition to be satisfied. Finally we discuss the
relation between this condition and the notion of absolute Hodge class.

Introduction

Let π : X → T be a family of smooth projective complex varieties. Assume that X , π, T are defined
over Q. An immediate consequence of the fact that there are only countably many components of the
relative Hilbert scheme for π, and that the relative Hilbert scheme (with fixed Hilbert polynomial)
is defined over Q, is the following: if the Hodge conjecture is true, the components of the Hodge
locus in T are defined over Q, and their Galois transforms are again components of the Hodge locus.
(We recall later the definition of the components of the Hodge locus.) In [CDK95], it is proven that
the components of the Hodge locus (and even the components of the locus of Hodge classes, which
is a finer notion) are algebraic sets, while Hodge theory would give them only a local structure of
closed analytic subsets (see [Voi03, § 5.3.1]).

In this paper, we give simple sufficient conditions for components of the Hodge locus to be
defined over Q (and their Galois transforms to also be components of the Hodge locus). Of course,
this criterion does not hold in full generality and, in particular, it does not say anything about the
definition field of an isolated point in the Hodge locus. However, in practice, it is reasonably easy
to check and allows us to conclude in some explicit cases, where the Hodge conjecture is not known
to hold. We give a few examples of applications in § 3.

We first relate this geometric language to the notion of absolute Hodge classes (as we only deal
with the de Rham version, we will not use the terminology of Hodge cycles of [Del82]), and explain
why this notion allows us to reduce the Hodge conjecture to the case of varieties defined over Q, thus
clarifying a question asked by Vincent Maillot and Christophe Soulé. Therefore the present work,
which underlines the relation between the study of the Hodge loci and the more arithmetic notion
of absolute Hodge class is related to the study of the variational form of the Hodge conjecture; see
[And06].

Let us recall the notion of (de Rham) absolute Hodge class (cf. [Del82]). Let Xan be a complex
projective manifold and α ∈ Hdg2k(Xan) be a rational Hodge class. Thus, α ∈ H2k(Xan,Q) is
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rational and

α ∈ F kH2k(Xan,C) ∼= H2k(Xan,Ω•�k
Xan). (0.1)

Here, the left-hand side is Betti cohomology of the complex manifold Xan and the isomorphism
of (0.1) is induced by the holomorphic Poincaré resolution

0 → C
(2iπ)k

−−−−→ O d−→ ΩX → · · · → Ωn
X → 0, n = dimX

of the constant sheaf C on Xan. The right-hand side in (0.1) can then be computed, by the GAGA
principle, as the hypercohomology of the algebraic variety X with value in the algebraic de Rham
complex:

H2k(Xan,Ω•�k
Xan) ∼= H2k(X,Ω•�k

X/C).

Let us denote by E the set of field embeddings of C in C. For each element σ of E , we get a new
algebraic variety Xσ defined over C, and we have a similar isomorphism for Xσ. Furthermore, the
field embedding σ provides a σ(C)-linear morphism

H2k(X,Ω•�k
X/C) → H2k(Xσ ,Ω

•�k
Xσ/C).

Thus, the class α provides a (de Rham or Betti) complex cohomology class

ασ ∈ H2k(Xσ,Ω
•�k
Xσ/C) = F kH2k(Xan

σ ,C)

for each σ ∈ E .

Definition 0.1 (cf. [Del82]). The class α is said to be (de Rham) absolute Hodge if ασ is a rational
cohomology class for each σ.

We introduce in § 1 the notion of weakly absolute Hodge class. In the definition above, we ask
that each ασ is proportional to a rational cohomology class.

In this paper, we first prove the following statement, which answers a question asked by Maillot
and Soulé.

Proposition 0.2. Assume that the Hodge conjecture is known for varieties XQ defined over Q

and (weakly) absolute Hodge classes α on them. Then the Hodge conjecture is true for (weakly)
absolute Hodge classes.

Remark 0.3. As is easy to prove, and as we will see in § 1 (see Lemma 1.5), a weakly absolute Hodge
class α on a variety X defined over Q is defined over Q, that is

α ∈ H2k(XQ,Ω
•�k
X
Q/Q

).

This is more or less contained in [Del82], and can be proved using our geometric arguments.

Remark 0.4. In the statement of the proposition, we fix an embedding of Q into C, and so α
determines a class in H2k(XC,Ω

•�k
XC/C

) = F kH2k(Xan
C ,C), which is assumed to be rational. If the

Hodge conjecture is true for this class, then for any other embedding σ of Q into C, the class ασ is
also rational, and the Hodge conjecture is also true for this Hodge class. Thus, the statement makes
sense and is independent of the choice of embedding.

The proof of this proposition is based on the global invariant cycles theorem of Deligne, and
on a geometric reinterpretation of the notion of absolute or weakly absolute Hodge class, which
is presented in § 1. The proof itself also gives the following result. Let π : X → T be a smooth
projective morphism between quasi-projective varieties defined over Q, and let X be one fiber of π
over a complex point of T .
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Proposition 0.5. Suppose that the Hodge conjecture is true for Hodge classes on smooth projective
varieties defined over Q. Let α be a Hodge class on X. Assume that the Hodge locus of α is defined
over Q; then the class α is algebraic.

Here we use the following notion. The locus of Hodge classes for the family π : X → T is the
set of all Hodge classes of degree 2k on some fiber of π. It is seen as a subset of the Hodge bundle
F kH2k

C on T .
The Hodge locus of α is defined as the projection to T (via the natural map p : F kH2k → T ) of

the connected component of the locus of Hodge classes passing through α.
We now turn to the problem of whether Hodge classes should be (weakly) absolute. As we will

see in § 1, this is exactly related to the field of definition of the connected components of the locus
of the Hodge classes. In statement (2) of the theorem, we will address the weaker question of the
field of definition of the corresponding Hodge locus. By Proposition 0.5, this is in fact sufficient to
address the question of Maillot and Soulé.

Let X be a complex projective manifold, with a deformation family π : X → T defined over Q

as above, and let α ∈ Hdg2k(X) be a Hodge class which is primitive with respect to an ambient
polarization (i.e. one coming from X ). If S ⊂ F kH2k is a closed analytic or algebraic subset,
πS : XS → Sred is obtained by base change p : Sred → T . We show the following.

Theorem 0.6. We have the following.

(1) Assume that for one irreducible component S passing through α of the locus of Hodge classes,
there is no constant sub-variation of Hodge structure of R2kπS∗Qprim on S, except for Qαt.
Then α is weakly absolute.

(2) Let us weaken the assumptions on S by asking that any constant sub-variation of Hodge
structure of R2kπS∗Q on S is of type (k, k). Then, p(Sred) is defined over Q, and satisfies the
property that its Galois translates are also of the form p(S′

red) for some irreducible component
S′ of the locus of Hodge classes.

Remark 0.7. We consider primitive Hodge classes in statement (1) because otherwise the assump-
tions are empty. We could work more generally with subvariations of Hodge structures.

Remark 0.8. Statement (1) illustrates the power of the algebraicity theorem of [CDK95], as it is an
immediate application of it and of the global invariant cycles theorem.

Statement (1) will imply, by Lemma 1.5 proven in the next section, that under the same as-
sumptions, the Hodge locus of α is defined over Q and its image under any element of Gal(Q/Q) is
again a component of the Hodge locus.

An immediate corollary of Theorem 0.6(1) is the following simple statement.

Corollary 0.9. Assume that the infinitesimal Torelli theorem holds for the variation of Hodge
structure on R2kπ∗Qprim. Assume that one component S passing through α of the locus of
Hodge classes has positive dimension, and that the only proper non-trivial sub-Hodge structure
of H2k(X,Q)prim is Qα. Then α is weakly absolute.

Note that the assumption that S has positive dimension is satisfied once

hk−1,k+1 := rkHk−1,k+1(X)prim < dimT

(cf. [Voi03, Proposition 5.14]).

Proof. Indeed, a constant sub-variation of Hodge structure of R2kπS∗Qprim on S must then be
(by taking the fiber at the point 0 corresponding to X) equal either to R2kπS∗Qprim or to Qα.
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The first case is impossible by the Torelli assumption, and dimS > 0. Thus, the assumptions of
Theorem 0.6(1) are satisfied.

Note also that statement (2) of Theorem 0.6 combined with Proposition 0.5 gives the following
criterion for the Maillot–Soulé question to have a positive answer.

Corollary 0.10. Suppose that the Hodge conjecture is true for Hodge classes on smooth projective
varieties defined over Q. Then if α is a Hodge class on X and there exists an irreducible S of the
locus of Hodge classes passing through α satisfying the assumptions of Theorem 0.6(2), the class α
is algebraic.

The rest of the paper is devoted to a study of the assumptions of Theorem 0.6. While the
assumptions in statements (1) and (2) are of course non-trivial, it is interesting to note that they
can be checked by some infinitesimal computations at the point (X,α), involving the infinitesimal
variation of Hodge structure on the cohomology of the fibers of the family X .

This illustrates the power of the combination of the algebraicity theorem of [CDK95], and of
the global invariant cycles theorem of Deligne [Del71]: a first-order computation can lead to the
conclusion that a class is absolute Hodge or that its Hodge locus is defined over Q.

Section 1 is devoted to the discussion of absolute and weakly absolute Hodge classes in terms of
the corresponding components of the locus of Hodge classes and components of the Hodge locus.

In § 2, we prove the results stated in this introduction.
In the last section, we give variants and applications of Theorem 0.6. In Theorem 3.1, we give

an algebraic (Zariski open) criterion on a Hodge class α ∈ F kH2k in order that the assumptions of
Theorem 0.6 are satisfied at least at a general point of the connected component S̃α of the locus
of Hodge classes passing through α. Of course, except in level 2 where we can use the Green density
criterion, it is hard to decide whether there are many Hodge classes in the Zariski open set of F kH2k

where this criterion is satisfied. We give examples in level 2, where this criterion is satisfied in a
Zariski dense open set, in which there are ‘many’ Hodge classes. In one of these examples, the Hodge
conjecture is not known to hold for these classes.

The second application (Theorem 3.6) concerns the period map. Under a reasonable assumption
on the infinitesimal variation of Hodge structures on the primitive cohomology of the fibers of a
family π : X → T of projective varieties defined over Q, we conclude that any component W
dominating T by the first projection of the set of pairs (t, t′) ∈ T×T , such that the Hodge structures
on Hn(Xt,Q)prim and Hn(Xt′ ,Q)prim are isomorphic, is defined over Q. This last application has
some similarities with Mustafin’s work [Mus85].

1. Absolute and weakly absolute Hodge classes

Let us introduce the following variant of the notion of absolute Hodge class.
Definition 1.1. A Hodge class α on a complex projective variety X is said to be weakly (de Rham)
absolute Hodge if for each σ ∈ E , ασ is a multiple λσγσ, where γσ ∈ H2k(Xan

σ ,Q) is a rational
cohomology class (hence, a Hodge class) and λσ ∈ Q.

Remark 1.2. It turns out that the condition λσ ∈ Q is automatically satisfied. In fact, one even
knows that λ2

σ ∈ Q>0.
Indeed, consider the primitive decomposition of α with respect to the polarization given by a

projective embedding of X.

α =
∑

2k−2r�0,2r�n

c1(L)k−rαr, n = dimX,

where αr ∈ H2r(X,Q)prim.
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Then the primitive decomposition of ασ is given by

ασ =
∑

2k−2r�0,2r�n

c1(Lσ)k−rαr,σ,

and, thus, if ασ = λσγσ, with γσ ∈ H2k(Xan
σ ,Q), then for each r we get

αr,σ = λσγσ,r, (1.1)

where γσ,r is the degree 2r primitive component of γσ, and thus is a rational cohomology
class. However, we know by the second Hodge–Riemann bilinear relations that if αr �= 0, we
have

∫
X c1(L)n−2rα2

r �= 0 and, in fact, is of a sign which depends only on r. This is a rational
number, which is also equal to

∫
Xσ

c1(Lσ)n−2rα2
r,σ. On the other hand, as γσ,r is a primitive rational

cohomology class, we also have
∫
Xσ

c1(Lσ)n−2rγ2
σ,r ∈ Q and, thus, from the equalities∫

X
c1(L)n−2rα2

r =
∫

Xσ

c1(Lσ)n−2rα2
r,σ = λ2

σ

∫
Xσ

c1(Lσ)n−2rγ2
σ,r, (1.2)

where the last term
∫
Xσ

c1(Lσ)n−2rγ2
σ,r is a rational number of the same sign as

∫
X c1(L)n−2rα2

r , we
get λ2

σ ∈ Q>0.

Geometrically, the meaning of these notions is given in Lemmas 1.4 and 1.5. It is formulated
using the geometric notions of locus of Hodge classes and of Hodge loci.

Let π : X → T be a family of deformations of X, which is defined over Q (here T is not supposed
to be geometrically irreducible, and thus the assumption is not restrictive on X). There is then the
algebraic vector bundle F kH2k on T , defined over Q, which is the total space of the locally free
sheaf F kH2k = R2kπ∗Ω•�k

X/T on T . We will use the following terminology (see [CDK95]). The locus
of Hodge classes for the family above, in degree 2k, is the set of pairs (Xt, αt) ∈ F kH2k(C) such
that αt ∈ H2k(Xan

t ,C) is rational (hence, a Hodge class).
The components of the Hodge locus are the image in T , via the natural projection p : F kH2k → T ,

of the connected components of the locus of Hodge classes. If α is a Hodge class on X, the Hodge
locus of α is the image in T of the connected component of the locus of Hodge classes passing
through α.

Note that the locus of Hodge classes is obviously locally a countable union of closed analytic
subsets in F kH2k(C). Indeed, if α ∈ F kH2k(Xan

t ,C) ∩ H2k(Xan,Q), then in a simply connected
neighborhood U of t ∈ T , we have a trivialization of the locally constant sheaf R2kπan∗ C, which
induces a trivialization of the corresponding holomorphic vector bundle H2k

C and gives a composed
holomorphic map:

ψ : F kH2k
C ↪→ H2k

C → H2k(Xt,C), (1.3)

where H2k
C is the total space of the locally free analytic sheaf

H2k = R2kπ∗Ω•
X an/T = R2kπan

∗ C ⊗OT

on T .
Then, over U , the locus of Hodge classes identifies to ψ−1(H2k(Xt,Q)), which is a countable

union of fibers of ψ. As the map ψ is holomorphic, this defines a natural structure of analytic
subschemes on the connected components of the locus of Hodge classes.

Similarly, the local description of the Hodge locus of α is as follows. We can locally extend α to
a locally constant section α̃ of R2kπan∗ Q. Then α̃ gives, in particular, a holomorphic section of the
vector bundle H2k := R2kπan∗ C⊗OT . Then the Hodge locus of α is simply defined by the condition

α̃�k−1 = 0,

949



C. Voisin

where α̃�k−1 is the projection of α̃ in the quotient H2k/F kH2k. This again defines locally the
analytic schematic structure of the Hodge locus of α.

It is clear from these descriptions that the projection from the locus of Hodge classes to the
Hodge locus is a local immersion which is open onto a union of local analytic branches of the Hodge
locus.

Cattani, Deligne and Kaplan proved, in fact, the following much stronger result concerning the
structure of the locus of Hodge classes (cf. [CDK95]).

Theorem 1.3. The connected components of the locus of Hodge classes are algebraic subsets of
the algebraic vector bundle F kH2k.

Let us now reformulate the notion of ‘(weakly) absolute Hodge’ using this terminology from
Hodge theory.

Lemma 1.4. A Hodge class α on X is absolute Hodge if and only if the connected component of
the Hodge locus passing through α is defined over Q, and its Galois transforms under Gal(Q/Q)
are again connected components of the locus of Hodge classes.

The statement that Hodge classes for the family π : X → T are absolute is equivalent to the fact
that the locus of Hodge classes is a countable union of algebraic subsets of F kH2k defined over Q.

Proof. To see the first statement, we first observe that for σ ∈ E , the transformation

α ∈ H2k(X,C) �→ ασ ∈ H2k(Xσ ,C)

is nothing but the action of σ ∈ E on the complex points of the algebraic variety F kH2k defined
over Q.

We observe now that given a variety Y defined over Q, and given a complex point y ∈ Y (C), its
orbit under E is equal to the set of complex points of Y which belong to the Q-Zariski closure Yy of y,
and which do not belong to a proper algebraic subset of this closure which is defined over Q. Inside
Yy, this is the complementary set of a countable union of Zariski closed nowhere dense subsets.

It follows from these observations that if a given Hodge class is absolute Hodge, then the comple-
ment of a countable union of nowhere dense subsets of its Q-Zariski closure in F kH2k is contained
in the locus of Hodge classes. On the other hand, as we mentioned above, the locus of Hodge classes
is a countable union of closed algebraic subsets. This implies that any irreducible component of the
Q-Zariski closure of any point in F kH2k either intersects the locus of Hodge classes in a countable
union of nowhere dense subsets or is contained in the locus of Hodge classes.

Thus, we conclude that a given Hodge class is absolute Hodge if and only its Q-Zariski closure
in F kH2k is contained in the locus of Hodge classes.

It remains to see that if the Hodge classes are absolute for our family, then the locus of Hodge
classes is a countable union of closed algebraic subsets of F kH2k defined over Q.

The above tells us that for any point α in this locus, its Q-Zariski closure is contained in this
locus. Recall now the local form of the locus of Hodge classes: it is locally a countable union of closed
analytic subsets. Locally, in each branch of an analytic component, the set of points which are not
Q-Zariski dense is a countable union of proper closed analytic subsets. Choose in each branch a
point α which does not belong to this union. Then its Q-Zariski closure contains the whole branch.

It follows that for countably many generically chosen Hodge classes αi, the locus of Hodge classes
must be equal to the union of the Q-Zariski closures of the αi.

The statement that Hodge classes are weakly absolute Hodge implies the facts that the locus
of Hodge classes is a countable union of algebraic subsets of F kH2k defined over Q and that the
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Hodge locus is a countable union of algebraic subsets of T defined over Q. More precisely, we have
the following.

Lemma 1.5. Let α ∈ H2k(Xan,Q) be a weakly absolute Hodge class. Then the connected component
S̃α of the locus of Hodge classes passing through α is defined (schematically) over Q, and so is the
Hodge locus of α. Furthermore, the Galois transforms of the Hodge locus of α are also (schematically)
components of the Hodge locus.

Remark 1.6. As already mentioned, this says in particular that if X is defined over Q, a weakly
absolute Hodge class on X is defined over Q, for the natural Q-structure of algebraic de Rham
cohomology:

H2k(X,Ω•
X/C) ∼= H2k(X,Ω•

X
Q
/Q

) ⊗Q C.

Proof of Lemma 1.5. We know by Theorem 1.3 that S̃α is algebraic, and it is by definition con-
nected. We make the base change S̃α,red → T , where we replace if necessary S̃α by a Zariski open
set, in order to make the reduced scheme S̃α,red smooth. Then the corresponding family

πα : Xα → S̃α,red

admits the locally constant section α̃ ∈ H0(S̃α,red, R
2kπα∗Q). Indeed, α̃ is a tautological section of

R2kπα∗Ω•�k

Xα/S̃α,red
, hence provides a holomorphic section of the bundle F kH2k on S̃α,red with fiber

F kH2k(Xan
t ,C) at t ∈ S̃α,red. On the other hand, by definition of S̃α,red, the class α̃t is rational for any

t ∈ S̃α,red. Thus the section is in fact locally constant. By the global invariant cycle theorem [Del71],
there exists a class β ∈ H2k(X α,Q) which is of type (k, k) and restricts to α̃t on each fiber Xt of
the family Xα. In fact, we can even make this class uniquely defined by choosing an ample line
bundle L on X α, which allows us to define a polarization on H2k(X α,Q) (see also the proof of
Proposition 0.2 or [And96] for more details). Then β is uniquely determined if we impose that β
lies in the orthogonal complement of Ker restX with respect to this polarization.

Now let α be weakly absolute. Then, for any σ ∈ E , the class βσ on Xα,σ restricts to ασ = λσγσ

on Xσ, where γσ is rational, and is in the orthogonal complement of Ker restXσ with respect to the
polarization induced by Lσ. It thus follows that (1/λσ)βσ , which restricts to γσ, has to be rational
(hence, is a Hodge class). Let γ̃ be the locally constant section of R2kπα∗Q on S̃α,red obtained by
restricting (1/λσ)βσ . We conclude that we have an inclusion

1
λσ
σ(S̃α,red) ⊂ S̃γσ ,red, (1.4)

which is easily checked to extend, in fact, to a schematic identification
1
λσ
σ(S̃α) = S̃γσ . (1.5)

Indeed, this follows from the flatness of the sections α̃σ and γ̃σ, from the fact that λσ has to be
constant along σ(S̃α,red) by formula (1.2), and from the fact that S̃γσ is by definition connected.

As

p

(
1
λ
σ(S̃α)

)
= p(σ(S̃α)) = σ(p(S̃α)),

we conclude from (1.5) that the image via σ of the Hodge locus of α is also a component of the
Hodge locus.

Finally, to see that if α is weakly absolute Hodge, then S̃α ⊂ F kH2k is defined over Q, we use
equality (1.5) applied to σ ∈ E , together with the fact noted in Remark 1.2 that λ2

σ ∈ Q. It follows
that the constant λσ ∈ Q can take only countably many values and, in particular, there are only
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countably many Galois transforms σ(S̃α), and as we know that S̃α is algebraic, this implies that S̃α

is defined over Q.

2. Proofs of Theorem 0.6 and Propositions 0.2 and 0.5

Proof of Proposition 0.2. Let (Xan, α) be a pair consisting of a projective complex manifold and
an absolute (respectively a weakly absolute) rational Hodge class. By the geometric interpretation
given above, and by Lemma 1.5 in the weakly absolute case, it follows that there exist smooth
irreducible quasi-projective varieties X , S defined over Q, a projective morphism π : X → S, and a
locally constant global section

α̃ ∈ H0(S,R2kπ∗Q),

such that X is one fiber of π and α is the restriction of α̃ to this fiber. Indeed, starting from a
family π : X → T defined over Q, we take for S a desingularization of the component of the Hodge
locus passing through α, and make the base change S → T .

Deligne’s global invariant cycle theorem [Del71] says now that for any smooth projective com-
pactification X of X , there exists a Hodge class β ∈ Hdg2k(X ) such that

β|X = α.

Of course, we may also choose X defined over Q. In order to conclude, we claim that we may
choose β to be absolute Hodge (respectively, weakly absolute Hodge). Indeed, we will deduce from
this, under the assumptions of Proposition 0.2, that β is the class of an algebraic cycle and, then,
so is its restriction α.

To prove the claim, consider the morphism of rational Hodge structures

H2k(X an
,Q) → H2k(Xan,Q).

The left-hand side can be polarized using a ample line bundle L on X . That is, we use the Lefschetz
decomposition with respect to this polarization, and change the signs of the natural intersection
pairing

(αr, βr) =
∫
X
c1(L)N−2rαr ∪ βr, N = dimX

on the pieces of the Lefschetz decomposition with r even, in order to get a polarized Hodge structure.
Thus, we conclude that there is an orthogonal decomposition

H2k(X an
,Q) = A⊕B

into the sum of two Hodge structures, where the first is identified via restriction to its image in
H2k(X,Q) and the second is the kernel of the restriction map. Here B is a sub-Hodge structure
of H2k(X an

,Q) and A is then defined as the orthogonal of B under the metric described above on
H2k(X an

,Q).

We then define β to be the unique element of A which restricts to α.

For each element σ of Gal(Q/Q), we get a line bundle Lσ on X an
σ , a sub-Hodge structure

Bσ := Ker restXσ , and the isomorphism

H2k(X an
,C) ∼= H2k(X an

σ ,C) (2.1)

commutes with restriction maps and is compatible with the polarizations given by L and Lσ. Thus,
we get similarly a rational sub-Hodge structure Aσ of H2k(X an

σ ,Q) and there is a commutative
diagram where the horizontal maps are restriction maps and thus are defined on rational cohomology,
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and the vertical maps are induced by the comparison isomorphism (2.1):

A⊗ C
� � �� H2k(X,C)

Aσ ⊗ C
� � �� H2k(Xσ ,C)

It follows from this that if α is absolute Hodge (respectively, weakly absolute Hodge), so is β.

Proof of Proposition 0.5. Indeed, with the same notation as above, we have the assumption that
S′ := p(Sred) is defined over Q. As the monodromy acts in a finite way on the set of Hodge classes of
Xt, t ∈ S′ generic, there is an étale cover S′′ of the smooth part of S′, also defined over Q, on which
this monodromy action becomes trivial. Thus, we have by base change a family π′′ : XS′′ → S′′,
together with a global section α̃ of R2kπ′′∗Q, whose restriction to X0 is equal to α. The global
invariant cycles theorem now says that there exists a Hodge class β on a smooth compactification
X S′′ , which we may assume defined over Q, restricting to α. If the Hodge conjecture is true for
Hodge classes on varieties defined over Q, it is then true for β and thus also for α.

Proof of Theorem 0.6. (1) Let (X,α) be as in the statement of the theorem. By Theorem 1.3, the
component passing through α of the locus of Hodge classes is an algebraic set. Let S be an irreducible
component of this set containing (X,α), and satisfying the assumption of Theorem 0.6(1). Replacing
S by a Zariski open set of Sred, we may assume that S is smooth. There is, by base change, a
projective family πS : XS → S together with a tautological flat section

α̃ ∈ H0(S,R2kπS∗Ω•�k
XS/S

),

with value αt at each t (cf. the proof of Lemma 1.5).
Let X S be a smooth projective compactification of XS . The global invariant cycle theorem says

that there exists a class β ∈ H2k(X S ,Q) ∩ F kH2k(X S ,Q) such that β|X = α. On the other hand,
the vector space

H2k(X S ,Q)|Xt
∩H2k(Xt,Q)prim

is a constant sub-Hodge structure of H2k(X,Q)prim. Thus, by our assumption on S, we conclude
that it must be equal to Qαt. It follows that the complex vector space

H2k(X S ,Ω•
XS

)|Xt
∩ H2k(Xt,Ω•

Xt
)prim

has rank 1 and is generated by α.
Let σ ∈ E . We want to show that the class

ασ ∈ H2k(Xσ,Ω
•�k
Xσ

) ⊂ H2k(Xan
σ ,C)

is of the form λσγσ, where γσ is rational.
However, σ provides a new family X S,σ fibered over Sσ with fiberXt,σ , such that the vector space

H2k(X S,σ,Ω•
XS,σ

)|Xσ
∩ H2k(Xσ ,Ω•

Xσ
)prim (2.2)

has rank 1 and is generated by ασ. It follows that the intersection of the image of the restriction map

H2k(X an
S,σ,Q) → H2k(Xan

σ ,Q), (2.3)

with H2k(Xan
σ ,Q)prim has rank 1.

As this intersection is a sub-Hodge structure of H2k(Xan
σ ,Q), we must have ασ = λσγσ for some

rational primitive Hodge class γσ on Xσ, and some non-zero complex coefficient λσ. By Remark 1.2,
we have λσ ∈ Q, and thus α is weakly absolute.

953



C. Voisin

(2) The proof of statement (2) is similar, but needs a supplementary argument. Indeed, with the
same notation as above, we find that α belongs to the sub-Hodge structure

H2k(X an
S ,Q)|Xan ∩H2k(Xan,Q)prim,

which is the fiber at 0 of the locally constant sub-Hodge structure

H2k(X an
S ,Q)|Xan

t
∩H2k(Xan

t ,Q)prim, t ∈ S,

hence must be a trivial sub-Hodge structure. This assumption is algebraic, as it can be translated
into the fact that the vector space

H2k(X S ,Ω•
XS

)|X ∩ H2k(X,Ω•
X)prim

is equal to

H2k(X S,Ω
•�k

XS
)|X ∩ H2k(X,Ω•�k

X )prim.

Now let σ ∈ E . We conclude from the above that the sub-Hodge structure

H2k(X an
S,σ,Q)|Xan

σ
∩H2k(Xan

σ ,Q)prim,

to which ασ belongs, is trivial. Thus, we can write ασ =
∑i=N

i=1 λiγi, where γi are independent
rational Hodge classes on Xan

σ coming from X an
S,σ and the λi are complex coefficients. As ασ gives a

flat section of the bundle F kH2k on σ(S), and the γi are locally constant on σ(Sred), we conclude
that the λi are constant on σ(Sred). We claim that for a generic choice of rational coefficients
λ′i, 1 � i � N , σ(p(Sred)) is equal to p(S′′

red) where S′′ is an irreducible component of the locus of
Hodge classes passing through

∑i=N
i=1 λ′iγi.

Assuming the claim, this shows that there are only countably many transforms of p(Sred) under
the action of E and, thus, because p(Sred) is algebraic, this implies that p(Sred) is defined over Q.
The claim also gives the second part of the statement.

To prove the claim, we choose a simply connected neighborhood U of the point σ(0) ∈ T (C). Over
U , we can consider the map ψ : F kH2k

C|U → H2k(Xan
σ ,C) of (1.3). Then for any choice of complex

coefficients µi, we know that p(ψ−1(
∑

i µiγi)) contains p(σ(Sred)) ∩ U , and that for (µ1, . . . , µN ) =
(λ1, . . . , λN ), p(σ(Sred)) ∩ U is the reduction of an irreducible component of p(ψ−1(

∑
i µiγi)). By

lower semi-continuity of the dimension of the fibers of ψ, we conclude that the latter property
remains true for (µi) ∈ CN in a Zariski open set of coefficients and, thus, in particular for some
N -uple (λ′i) ∈ QN .

Having this, we proved that for some irreducible analytic component S′ of ψ−1(
∑i=N

i=1 λ′iγi),
the two analytic subsets σ(p(Sred)) ∩ U and p(S′

red) of U coincide. As σ(p(Sred)) is irreducible and
reduced and because, by Theorem 1.3, ψ−1(

∑i=N
i=1 λ′iγi) is an open set in an irreducible algebraic

subset S′′ of F kH2k (an irreducible component of a connected component of the locus of Hodge
classes), we obtain by analytic continuation that σ(p(Sred)) = p(S′′

red).

Remark 2.1. The schematic structure of the locus where a combination
∑

i µiγi remains in F kH2k

may depend on the µi, even if we know that the corresponding reduced algebraic set does not depend
generically on the µi. This is why we have to restrict here to the underlying reduced subschemes.

3. Variants and applications

Let us give to start with an infinitesimal criterion which will guarantee that the assumptions of
Theorem 0.6(1) are satisfied by an irreducible component of S̃α. This will then give as a consequence
of Theorem 0.6 an algebraic criterion (Theorem 3.1) for a Hodge class α ∈ F kH2k(C), to be weakly
absolute.
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We assume again that π : X → T is a family of projective varieties defined over Q, and we
denote as before by F kH2k the algebraic vector bundle whose sheaf of sections is (R2kπ∗Ω•�k

X/T )prim,
which admits as a quotient the bundle Hk,k whose sheaf of sections is (Rkπ∗Ωk

X/T )prim. This is an
algebraic vector bundle defined over Q. We have the OT -linear map which describes the infinitesimal
variation of Hodge structure

∇ : Hp,q → Hp−1,q+1 ⊗ ΩT ,

which is defined using the Gauss–Manin connection and Griffiths transversality (cf. [Voi03, § 5.1.2]).
Here Hp,q := (Rqπ∗Ω

p
X/T )prim.

The assumption of positive dimension for the Hodge loci is automatically satisfied if hk−1,k+1

(X)prim < dimT . This is proved in [Voi03], where it is shown that the Hodge loci in T for the
variation of Hodge structure on Hk−1,k+1(Xt)prim can be defined by at most hk−1,k+1(X)prim <
dimT equations. We assume below that T is smooth.

Let α ∈ H2k(X,Q)prim be a Hodge class, where X = X0 is a fiber of π, 0 ∈ T (C). Let λ ∈ Hk,k

be the projection of α ∈ F kH2k in Hk,k.
Let us assume that the map

µλ : TT,0 → Hk−1,k+1(X0)
given by µλ(v) = ∇v(λ) is surjective. Let Kλ be its kernel; Kλ is the tangent space of the Hodge
locus of α at 0 (cf. [Voi03, 5.3.2]). We have the following algebraic criterion on λ, for α to be weakly
absolute.

Theorem 3.1. Assume that:

(1) µλ is surjective;

(2) for p > k, p+ q = 2k, the map

∇0 : Hp,q(X0)prim → Hp−1,q+1(X0) ⊗K∗
λ,

obtained by restriction of ∇, is injective;

(3) the map

Hk,k(X0)prim → Hk−1,k+1(X0) ⊗K∗
λ,

obtained by restriction of ∇, has for its kernel the line generated by λ.

Then α is weakly absolute.

Proof. As the map µλ is surjective, the component Sα of the Hodge locus determined by α is smooth
with tangent space Kλ at 0 ∈ T (cf. [Voi03, Proposition 5.14]).

Conditions (2) and (3) imply that any constant sub-variation of Hodge structure of R2kπ∗Qprim

defined along an open set of Sα containing the point 0 parameterizing X is equal to Qα. Indeed, if
γp,q is a locally constant section of R2kπ∗Cprim which remains of type (p, q) near 0 on Sα, where we
may assume p � q by Hodge symmetry, then we have

∇γp,q = 0 in Hp−1,q+1 ⊗ ΩSα ,

and, in particular, we have (at 0)

∇γp,q(0) = 0 inHp−1,q+1(X0)prim ⊗K∗
λ.

Thus, by assumptions (2) and (3), we conclude that γp,q = 0 for p > k and γp,q is proportional to
λ for p = k.

We conclude then by applying Theorem 0.6(1).

Remark 3.2. The same reasoning shows that if we only assume that conditions (1) and (2) in
Theorem 3.1 hold, then the class α satisfies the conclusion of part (2) of Theorem 0.6. Thus,
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in particular, if S̃0
α is the irreducible component of S̃α passing through α (it is unique and reduced

because S̃α is now smooth at the point α), then p(S̃0
α) is defined over Q.

It is interesting to note that condition (1) is a Zariski open condition on the class λ ∈ Hk,k (not
necessarily Hodge) and that conditions (2) and (3) are Zariski open in the set where condition (1)
is satisfied. One can even note that the complementary set where these conditions are not satisfied
is Zariski closed and defined over Q, as are the bundles Hp,q and the map ∇.

Of course, even if we can show that the Zariski open set of F kH2k defined by conditions (1)–(3)
above is non-empty, it is not clear whether there are any Hodge classes in it. This is the case,
however, if our variation of Hodge structure has Hodge level 2, that is, hp,q = 0 for p � k + 2.
Indeed, in this case, we have the Green density criterion given below which guarantees that if there is
any λ ∈ Hk,k(Xt)prim satisfying property (1), then the set of rational Hodge classes is topologically
dense in the real part of the vector bundle Hk,k. The general statement is as follows. Let H be a
local system of rational vector spaces on a smooth complex connected basis B, and suppose that
there is a variation of Hodge structure of weight 2 on H, that is, a holomorphically varying Hodge
filtration

H2,0 ⊂ F 1H ⊂ F 0H = H := H ⊗Q OB

satisfying the condition that
F 1H⊕H2,0 = H

and Griffiths transversality
∇(F iH) ⊂ F i−1H⊗ ΩB.

Let H1,1 := F 1H/F 2H; H1,1 also identifies to the C∞-subbundle of H ⊗ C∞ with fiber

F 1Hb ∩ F 1Hb

over b ∈ B. Furthermore, it has a real structure

H1,1 = H1,1
R ⊗ C,

where H1,1
R is the real vector bundle with fiber HR ∩ F 1Hb over b ∈ B.

The infinitesimal variation of Hodge structure gives an OB-linear map

∇ : TB → Hom(H1,1,H0,2)

and, thus, for any λ ∈ H1,1(Xb), a C-linear map on the fibers

µλ : TB,b → H0,2
b , µλ(u) = ∇u(λ).

Proposition 3.3 (cf. [Voi03, § 5.3.4]). Assume that for one b ∈ B, there exists a λ ∈ H1,1
b such that

µλ is surjective. Then the locus of Hodge classes is topologically dense in the real vector bundle H1,1
R .

Example 3.4. The criterion above allows us to prove that many Hodge classes are weakly absolute
for surfaces in P3, without using the Lefschetz theorem on (1, 1)-classes.

More interestingly, it allows us to show a similar result for certain level 2 subvariations of Hodge
structure in the H2k of a variety X, without knowing the Hodge conjecture for the Hodge classes in
this sub-Hodge structure. We can construct such examples on four-dimensional hypersurfaces with
automorphisms.

Example 3.5. Consider the action of the involution ι on P5 given by ι(X0, . . . ,X5) = (−X0,−X1,
X2, . . . ,X5), and take for T the family of isomorphism classes of degree 6 hypersurfaces whose
defining equation is invariant under ι, and for sub-Hodge structure the anti-invariant part of H4(X)
under ι. This Hodge structure has Hodge level 2, because ι acts trivially on the rank 1 spaceH4,0(X).
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Thus, the Green density criterion applies once assumption (1) above is satisfied. The parameter space
T has dimension 226, and the number h1,3

− is equal to 208. One can check that assumptions (1)–(3)
are satisfied generically on F 2H4−, thus proving that many Hodge classes are weakly absolute, even if
the Hodge conjecture is not known for them. This is done following [CG80, Gri69] by computations
in the Jacobian ring of the generic hypersurface as above. In fact, this can be done for X the Fermat
hypersurface, and for a generic class λ ∈ H2,2(X)−.

We now turn to another application of Theorem 0.6, which concerns the fibers of the period
map and the Torelli problem.

Let π : X → T be a family of smooth polarized projective varieties which is defined over Q, and
consider the variation of Hodge structure on Hn(Xt)prim. Here T is assumed to be smooth. The
corresponding infinitesimal variation of Hodge structure at t ∈ T is given by the map

∇ : Hp,q(Xt)prim → Hp−1,q+1(Xt)prim ⊗ ΩT,t.

We assume the following property: at the generic point 0 ∈ T , the corresponding map

µ : Hp,q(X0)prim ⊗ TT,0 → Hp−1,q+1(X0)prim,

η ⊗ v �→ ∇v(η),

is surjective whenever Hp,q(X0)prim �= 0. (This property is satisfied, for example, by the families of
hypersurfaces or complete intersections in projective space.) We then have the following.

Theorem 3.6. Let Z ⊂ T × T be the set of points (t, t′) such that there exists an isomorphism of
Hodge structures between Hn(Xt,Q)prim and Hn(Xt′ ,Q)prim. Let W ⊂ T × T be (the underlying
reduced scheme of) an irreducible component of Z which dominates T . Then under the assump-
tions above, W is defined over Q and any Galois transform of W is again (the underlying reduced
scheme of) an irreducible component of Z.

Proof. We apply Theorem 0.6(2). The set W above is Γred for an irreducible component Γ of
the Hodge locus corresponding to the induced variation of Hodge structure of weight 0 on Hn

(Xt,Q)∗prim ⊗Hn(Xt′ ,Q)prim on T × T . What we have to prove in order to apply Theorem 0.6(2) is
the fact that if W dominates T by the first (or equivalently second) projection, then any constant
sub-Hodge structure of

Hn(Xt,Q)∗prim ⊗Hn(Xt′ ,Q)prim, (t, t′) ∈W,

must be of type (0, 0).
By definition, for (t, t′) ∈W , the Hodge structures on

Hn(Xt,Q)prim, Hn(Xt′ ,Q)prim,

are isomorphic. Thus, the Hodge structures on

Hn(Xt,Q)∗prim ⊗Hn(Xt′ ,Q)prim, Hn(Xt,Q)∗prim ⊗Hn(Xt,Q)prim

are isomorphic. Furthermore, t is generic. Thus, it suffices to prove that on any finite cover of T ,
there is no constant sub-Hodge structure ofHn(Xt,Q)∗prim⊗Hn(Xt,Q)prim which is not of type (0, 0).

This is done by an easy infinitesimal argument. Let

α ∈ Hn(Xt,Q)∗prim ⊗Hn(Xt,Q)prim

be of bidegree (r, s) with r > s, r + s = 0. Thus, r > 0 and if we see α as an element of
Hom(Hn(Xt)prim,H

n(Xt)prim), α ∈ Hr,−r means that α(Hp,q(Xt)prim) ⊂ Hp+r,q−r(Xt)prim.
We have to show that if there is a flat section α̃ on T , extending α and staying of type (r,−r),

with r > 0, then α = 0. It suffices to show this at first order at 0 ∈ T , where this is equivalent to
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saying that if
∇α = 0 in Hr−1,−r+1(X0 ×X0) ⊗ ΩT,0,

then α = 0. However, saying that ∇α = 0 is equivalent to saying that

∇v(α(φ)) = α(∇v(φ)), ∀φ ∈ Hp,q(X0)prim, ∀(p, q), p+ q = n, ∀v ∈ TT,0. (3.1)

Equation (3.1) shows that α is, in fact, determined by its value on the first non-zero term Hp,q

(X0)prim, because, by assumption, the map

Hp,q(X0)prim ⊗ TT,0 → Hp−1,q+1(X0)prim,

φ⊗ v �→ ∇v(φ)

is surjective once Hp,q(X0)prim is different from zero.
On the other hand, α must be zero on the first non-zero term Hp,q(X0)prim, because it sends

Hp,q(X0)prim in Hp+r,q−r(X0)prim, which is zero because r > 0.
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