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0 Introduction

It is well-known (see eg [22]) that the topology of a compact Kähler manifold X
is strongly restricted by Hodge theory. In fact, Hodge theory provides two sets
of data on the cohomology of a compact Kähler manifold. The first data are the
Hodge decompositions on the cohomology spaces Hk(X,C) (see (1.1) where V =
Hk(X,Q)); they depend only on the complex structure.

The second data, known as the Lefschetz isomorphism and the Lefschetz decom-
position on cohomology (see (1.5) with Ak

R = Hk(X,R)) depend only on the choice
of a Kähler class, but remain satisfied by any symplectic class close to a Kähler class.

Both are combined to give the so-called Lefschetz bilinear relations, which lead
for example to the Hodge index theorem (cf [22], 6.3.2) which computes the signature
of the intersection form on the middle cohomology of an even dimensional compact
Kähler manifold as an alternate sum of its Hodge numbers.

If we want to extract topological restrictions using these informations, we are
faced to the following problem: neither the complex structure (or even the Hodge
numbers), nor the (deformation class) of the symplectic structure (or even the sym-
plectic class) are topological.

For this reason, only a very small number of purely topological restrictions have
been extracted so far from these data. (Note however that the formality theorem
[7], which uses more than the data above, is a topological statement. Similarly,
non-abelian Hodge theory has provided strong restrictions on π1(X) (cf [3]).) The
classically known restrictions are the following:

1. Due to the Hodge decomposition and the Hodge symmetry (1.2), the odd Betti
numbers b2i+1(X) have to be even.

2. Due to the Lefschetz property, the even Betti numbers b2i(X) are increasing
in the range 2i ≤ n = dimCX and similarly the odd Betti numbers b2i+1(X)
are increasing in the range 2i + 1 ≤ n = dimCX.

(Note that, as the dimension of the manifold is even, the Lefschetz property also
implies the condition of evenness of odd Betti numbers.)

The purpose of this paper is to extract from the Hodge decomposition and the
Lefschetz property a number of purely topological restrictions on the cohomology
algebra of a compact Kähler manifold. We will show that these restrictions are
effective even in the category of compact symplectic manifold satisfying the Lefschetz
property.

In [19], [15], examples of compact symplectic manifolds which are topologically
non Kähler were constructed. The examples did not have their odd Betti numbers
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b2i+1(X) even. In [10] and [2], one can find examples of compact symplectic man-
ifolds whose odd Betti numbers are even, but for which the Lefschetz property is
satisfied by no degree 2 cohomology class.

Here, many of the examples we construct satisfy the Lefschetz property. Further-
more, they are all built starting from compact Kähler manifolds, and considering
either symplectic blow-up of them in a “wrong” symplectic embedding, or complex
projective bundles on them. For all of them we conclude that their rational (and
even sometimes real) cohomology algebra does not satisfy the restrictions imposed
to the cohomology algebra of a compact Kähler manifold.

As in [20], the key point here is the observation that the Hodge decomposition on
the cohomology of a compact Kähler manifold is compatible with the cup-product
(see (1.4)). This leads to a number of algebraic restrictions on the cohomology
algebra of X. Note that what we provide here is only a sample of them, where we
tried to separate restrictions of three kinds:

1. Restrictions on the real cohomology algebra coming from the Hodge decom-
position.

2. In the spirit of [20], more subtle restrictions on the rational cohomology algebra
coming from the Hodge decomposition.

3. Restrictions coming from the polarization on the Hodge structure.

These restrictions, together with examples showing that they are all effective
even in the symplectic category, are described in section 3. In section 2, we give two
stability results concerning cohomology algebras endowed with a polarized Hodge
structure. The first one (Theorem 2.1) concerns tensor products of cohomology
algebras (corresponding to taking products of manifolds):

Theorem 0.1 Assume there is a polarized Hodge structure on a (rational or real)
cohomology algebra M , and assume that

M ∼= A⊗B,

where A and B are (rational or real) cohomology algebras. If either A1 = 0 or
B1 = 0, then A and B are of even dimension and there are polarized Hodge structures
on A and B, inducing that of M .

The other one (Theorem 2.8) concerns projective bundles :

Theorem 0.2 Let X be a compact connected smooth oriented manifold, and let E be
a complex vector bundle on X with trivial determinant. Assume that the cohomology
of X is generated in degrees 1 and 2. Then if the cohomology algebra H∗(P(E),Q)
carries a Hodge structure, the cohomology algebra H∗(X,Q) ⊂ H∗(P(E),Q) has
an induced Hodge structure, for which the Chern classes ci(E) are Hodge classes. A
similar result holds with H∗(P(E),Q),H∗(X,Q) replaced by H∗(P(E),R), H∗(X,R).

These results are used in section 3 to construct compact symplectic manifolds with
non-Kähler rational cohomology algebras, but satisfying the Lefschetz property. In
one of our examples, the criterion we use, namely the existence of a Hodge structure
on the cohomology algebra, needs the rational cohomology algebra, while on the
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first two examples, the real cohomology algebra suffices to exclude the existence of
a Hodge structure.

In the last section, we show that there are in fact supplementary constraints on
the cohomology algebra of a compact Kähler manifold. Indeed, we finally construct
an example of a compact symplectic manifold which has the real cohomology alge-
bra of a Kähler manifold, and whose cohomology algebra carries a rational Hodge
structure, but whose rational cohomology algebra is not the rational cohomology
algebra of a compact Kähler manifold. Thus all the restrictions we met before are
satisfied, but still we find supplementary restrictions of a more subtle nature, related
to the result in [23]: some Hodge classes on certain compact Kähler manifolds can-
not be constructed as Chern classes of holomorphic vector bundles or even analytic
coherent sheaves.

1 Real and rational Hodge structures on cohomology
algebras

Let us recall the notion of a Hodge structure [22], 7.1.1.

Definition 1.1 A rational (resp. real) Hodge structure of weight k is a rational
(resp. real) vector space V , together with a decomposition into a direct sum of
complex vector subspaces

VC := V ⊗ C = ⊕p+q=kV
p,q, (1.1)

satisfying the Hodge symmetry condition

V p,q = V q,p. (1.2)

Here the tensor product is taken over Q in the rational case, and over R in the
second case.

Remark 1.2 A very classical observation is the fact that for odd k, the existence
of a Hodge structure of weight k on V forces the dimension of V to be even, by the
Hodge symmetry (1.2).

As is well known, the data of a Hodge structure of weight k on V is equivalent
to the data of an action of C∗ on VR, satisfying the property that λ ∈ R∗ acts by
multiplication by λk. Indeed, we let z ∈ C∗ act on VC by multiplication by zpzq

on V p,q and the Hodge symmetry (1.2) implies that this action leaves VR := V ⊗ R
stable.

In this paper, we will consider what we will call rational (resp. real) cohomology
algebras, that is finite dimensional graded associative Q-algebras (resp. R-algebras)
with unit, satisfying the conditions making them good candidates to be cohomology
algebras of connected compact oriented manifolds:

1. The product is graded commutative.

2. Ai = 0 for i < 0 and the term A0 is generated over Q (resp. R) by 1A.
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3. For a certain integer m that we will call the dimension of A, we have

Am ∼= Q, resp. Am ∼= R,

and the pairing

Ak ⊗Am−k → Am (1.3)

is perfect, for any k (so, in particular Ak = 0 for k > m).

Note that condition 2 reflects the connectivity of X, when A = H∗(X,Q), where
X is a topological space, and that the dimension of A is the dimension of X if X is
a compact oriented manifold.

We will denote ∪ the product on A, whether A comes from geometry or not.

Definition 1.3 A Hodge structure on a cohomology algebra A is the data of a Hodge
structure of weight k on each graded piece Ak, satisfying the following compatibility
property with the product of A:

Ap,q ∪Ap′,q′ ⊂ Ap+p′,q+q′ . (1.4)

Remark 1.4 If there exists a Hodge structure on a cohomology algebra A, then
the dimension of A is even. Indeed, the top degree cohomology of A is endowed
with a Hodge structure of weight l = dimA. On the other hand, it is of rank 1 by
condition 3. By remark 1.2, it follows that l is even.

The main result of Hodge theory applied to Kähler geometry is the following
([22], 6.1.3):

Theorem 1.5 Let X be a compact Kähler manifold. Then the Hodge decomposition
on each Hk(X,Q) equips the cohomology algebra H∗(X,Q) with a Hodge structure.

Our goal in this paper is to explore the topological restrictions deduced from the
existence of a Hodge structure on H∗(X,Q) or H∗(X,R). We will show that these
restrictions are effective even in the category of compact symplectic manifolds satis-
fying the Lefschetz property (see next section). It turns out that stronger restrictions
are obtained using the notion of polarized Hodge structure.

1.1 Polarizations

Another important property satisfied by the cohomology algebra of a compact Kähler
manifold X is the fact that the Hodge structure on it can be polarized using a Kähler
class ω ∈ H1,1(X)R. Let us define a polarization on a cohomology algebra endowed
with a Hodge structure A. The class of the polarization should be an element

ω ∈ A1,1
R := A1,1 ∩A2

R.

This element, seen as an element of A2, should satisfy the Lefschetz property:
let dimA = 2n. Then for any integer k, 0 ≤ k ≤ n, the cup-product by ωn−k

∪ωn−k : Ak
R → A2n−k

R

should be an isomorphism. Note that both sides have the same dimension by the
duality (1.3).
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Remark 1.6 The morphism ∪ωn−k is anti-self-adjoint for k odd, and self-adjoint
for k even, with respect to the duality Ak

R
∼= (A2n−k

R )∗. Thus, the existence of a
degree 2 class ω satisfying the Lefschetz property above implies that the dimension
of Ak

R is even for odd k.

The Lefschetz property implies the Lefschetz decomposition (1.5) below (cf [22],
6.2.3): Let ω be a class satisfying the Lefschetz property above, and define for k ≤ n
the primitive part Ak

R,prim by

Ak
R,prim := Ker (∪ωn+1−k : Ak

R → A2n−k+2
R ).

Then we have for k ≤ n

⊕

k−2i≥0

Ak−2i
R,prim

P
i ∪ωi

∼= Ak
R. (1.5)

Observe that the Ak
R,prim are real sub-Hodge structures of Ak

R, which means that
the corresponding complex vector spaces

Ak
C,prim ⊂ Ak

C

are stable under the Hodge decomposition. This follows from condition (1.4) above,
and from the fact that ω is of type (1, 1). If furthermore A is a rational cohomology
algebra and we can choose ω to be rational, then Ak

R,prim is in fact defined over Q
and provides a rational sub-Hodge structure of Ak.

To conclude, let us mention the Riemann bilinear relations, which will play a
role in section 3.3. A being as above a cohomology algebra of dimension 2n endowed
with a Hodge structure and a class ω of type (1, 1) satisfying Lefschetz property,
we can construct for each k ≤ n, using the duality on A given by the generator ωn

of A2n
R , a non degenerate intersection pairing qω on Ak

R, which is symmetric if k is
even and alternate if k is odd, defined by:

qω(α, β) = ωn−k ∪ α ∪ β ∈ A2n
R ∼= R.

(The last isomorphism here is defined up to a multiplicative coefficient).
It follows easily from the definition of the primitive parts Ai

R,prim ⊂ Ai
R that the

Lefschetz decomposition is orthogonal for the pairing qω. Let us now introduce the
Hermitian pairing on Ak

C:
hω(α, β) = ιkqω(α, β).

For bidegree reasons, using the condition (1.4), we also find that the Hodge decom-
position is orthogonal with respect to the pairing hω.

hω(α, β) = 0, α ∈ Ap,q
C , β ∈ Ap′,q′

C , (p, q) 6= (p′, q′). (1.6)

Finally the second Riemann bilinear relations are restrictions on the signs of the
Hermitian pairing hω restricted to the part

Ap,q
C,prim ⊂ Ap,q

C , p + q = k

defined as Ap,q
C,prim = Ap,q

C ∩ Ak
C,prim. If A is the cohomology algebra of a compact

Kähler manifold, these restrictions are described in the following theorem.
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Theorem 1.7 Let X be a compact Kähler manifold with Kähler class ω. Then the
Hermitian form hω is definite of sign (−1)

k(k−1)
2 ιp−q−k on the component

ωr ∪Hp,q(X,C)prim, 2r + p + q = k

of Hk(X,C).

A polarized cohomology algebra (A,ω) should satisfy also these sign restrictions.
At this point, we find another constraint on the Betti numbers of a compact

Kähler manifold, which shows that we cannot consider separately the odd and even
Betti numbers to address the question asked by Simpson in [18], namely what can
be the Betti or Hodge numbers of compact Kähler manifolds. Indeed, we have the
following lemma:

Lemma 1.8 Let M be a cohomology algebra which carries a polarized Hodge struc-
ture. Let 2n = dimM , and let i be an integer such that

4i + 2 ≤ n.

Then if M2i+1 6= 0, we have rk M4i+2 ≥ 2 and more precisely rk M2i+1,2i+1 ≥ 2.

Proof. Indeed, note that some Mp,q 6= {0} for some p > q, p + q = 2i + 1. Then
there is an α ∈ Mp,q

C such that α ∪ α 6= 0, otherwise this contradicts the fact that
for a polarisation given by ω ∈ M1,1, the Hermitian form

hω(α, α) = ιωn−2i−1 ∪ α ∪ α

is non degenerate on Mp,q
C by the Lefschetz decomposition (1.5) and the Riemann

bilinear relations (1.7).
Hence M4i+2

C contains a non zero class of type (2i+1, 2i+1), of the form β = α∪α.
On the other hand, M2i+1,2i+1

C contains ω2i+1. But these two cohomology classes
cannot be proportional because β2 = 0, while ω4i+2 6= 0 by Lefschetz property and
because 4i + 2 ≤ n.

1.2 Sub-Hodge structures and a lemma of Deligne

The following lemma, communicated to the author by Deligne [6], and very much
used in [20], [21], allows to detect sub-Hodge structures in a given cohomology
algebra endowed with a Hodge structure. Let A∗ = ⊕kA

k be a rational (resp.
real) cohomology algebra endowed with a Hodge structure. Let A∗C := A∗ ⊗ C. Let
Z ⊂ Ak

C be an algebraic subset which is defined by homogeneous equations expressed
only using the ring structure on A∗. The examples we shall consider in this paper
will often be of the form :

Z = {α ∈ Ak
C/αl = 0 in Akl

C },
where l is a given integer.

Lemma 1.9 Let Z be as above, and let Z1 be an irreducible component of Z. As-
sume the C-vector space < Z1 > generated by Z1 is defined over Q, (resp. over R),
that is < Z1 >= Bk

Q ⊗ C for some Bk
Q ⊂ Ak

Q (resp. < Z1 >= Bk
R ⊗ C for some

Bk
R ⊂ Ak

R). Then Bk
Q (resp. Bk

R) is a rational (resp. real) sub-Hodge structure of
Ak
Q (resp. Ak

R).

We refer to [20] for the proof of this lemma.
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2 Stability results

2.1 Products

We prove in this section the following result:

Theorem 2.1 Assume there is a polarized Hodge structure on a connected (rational
or real) cohomology algebra M , and assume that

M ∼= A⊗B,

where A and B are (rational or real) cohomology algebras. If either A1 = 0 or
B1 = 0, then A and B are of even dimension and there are polarized Hodge structures
on A and B, inducing that of M .

Geometrically, this implies that if a product X×Y , where X and Y are smooth com-
pact oriented manifolds, has the cohomology algebra of a Kähler compact manifold,
and one of them has b1 = 0, then the cohomology algebras of X and Y carry polar-
ized Hodge structures, and thus in particular inherit all the constraints described in
next section.

Another geometric consequence is the fact that if a Kähler compact manifold M
is homeomorphic to a product X × Y , where either b1(X) = 0 or b1(Y ) = 0, then
any polarized Hodge structure on H∗(M) comes from polarized Hodge structures on
H∗(X) and H∗(Y ), a result which can be compared to a result in deformation theory:
if a compact complex manifold is a product X × Y , and b1(X) = 0, b1(Y ) = 0, then
small deformations of X × Y are of the form X ′ × Y ′, where X ′ is a deformation of
X and Y ′ is a deformation of Y . (This is not true if only one of the assumptions
b1(X) = 0, b1(Y ) = 0 is satisfied, as a product may deform to a non trivial fiber
bundle.)

Remark 2.2 The assumption that A1 = 0 or B1 = 0 is obviously necessary in all
the statements above, as the case of a complex torus shows. Indeed, the complex
torus is a product of an even number 2n of copies of S1’s, and thus can be written
as a product of X, a product of an odd number 2d − 1 of copies of S1’s and Y , a
product of an odd number 2d′ + 1 of copies of S1’s, with d + d′ = n.

To start the proof of the theorem, let us show the assertion of even dimensionality.

Lemma 2.3 Under the assumptions of Theorem 2.1, A and B are even dimen-
sional.

Proof. Indeed, let s = dimA, t = dimB, so that

s + t = 2n := dim M.

As A1 = 0, or B1 = 0, and M = A⊗B, one has

M2 = A2 ⊗B0 ⊕A0 ⊗B2,

where we can identify canonically A0, B0 with Q. Let ω ∈ M2
R be the class of a

polarization. Then ωn 6= 0 in M2n = As ⊗Bt.
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Writing ω = a + b, with a ∈ A2 and b ∈ B2, we conclude by writing

ωn = ⊕i≤n

(
n

i

)
ai ⊗ bn−i

that As must be generated by a power of a, and Bt must be generated by a power
of b. Thus s and t are even.

Note also that the proof showed that the algebras A and B have their top degree
part generated by a power of a degree 2 element.

Let us now apply Deligne’s Lemma 1.9 to get the following:

Lemma 2.4 The subspaces

A2 ∼= A2 ⊗B0 ⊂ M2, B2 ∼= A0 ⊗B2 ⊂ M2

are rational sub-Hodge structures of M2.

Proof. By Deligne’s lemma, it suffices to show how to recover these subspaces
algebraically, using only the algebra structure of M . Let 2s = dimA, 2t = dimB,
so that s + t = n. We claim that A2

C ⊂ M2
C is an irreducible component of

Z ⊂ M2
C, Z = {m ∈ M2

C, ms+1 = 0},

and similarly for B2
C, with s replaced by t.

To see this, let as before ω = a + b be a decomposition of a polarizing class
ω ∈ MR. Then we proved in the previous lemma that as 6= 0 in A2s. The tangent
space to Z at the point a is described as

TZ,a = {m ∈ M2
C, asm = 0}.

Writing m = α + β, α ∈ A2, β ∈ B2, we conclude immediately that β = 0 for
m ∈ TZ,a, which shows that the Zariski tangent spaces of A2

C and Z coincide at a.
As A2

C ⊂ Z is smooth, this implies that A2
C is an irreducible component of Z.

Recall that a Hodge class in a rational Hodge structure M2k of weight 2k is a
rational element of M2k which is also in Mk,k. As a corollary of the previous two
lemmas, we get

Corollary 2.5 The 1-dimensional rational spaces A2s ⊂ M2s, B2t ⊂ M2t are gen-
erated by Hodge classes ηA, ηB of M of respective degrees 2s, 2t.

Proof. Indeed, consider the case of A. Then, as mentioned above, A2s is the image
of the map

SymsA2 → SymsM2 → M2s,

where the first map is the inclusion, and the second is given by the product of M .
As A2 is a sub-Hodge structure of M2, A2s is also a sub-Hodge structure of M2s.
As it is one dimensional, it must be generated by a Hodge class.
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We finally prove the following:

Lemma 2.6 Let ω ∈ M2
R be a polarizing class and decompose it as

ω = a + b, a ∈ A2
R, b ∈ B2

R.

Then the classes a and b satisfy the Lefschetz property, namely for any k ≤ s

∪as−k : Ak
R → A2s−k

R

is an isomorphism, and similarly for b and B.

Proof. Let α ∈ Ak
R ⊂ Mk

R and assume that as−k ∪ α = 0 in A2s−k
R . It then follows

that ai ∪ α = in Ak+2i
R for all i ≥ s− k. Let us compute now:

ωn−k ∪ α =
∑

i≤n−k

(
n− k

i

)
ai ∪ bn−k−i ∪ α.

As ai ∪ α = 0 for i ≥ s − k, the sum runs only over the pairs (i, j) with i + j =
n− k, i < s− k, and thus j > n− s = t. As bt+1 = 0, we get ωn−k ∪ α = 0 and the
Lefschetz property for (M,ω) shows that α = 0.

Proof of theorem 2.1. We assert that each Ai, Bi ⊂ M i is a sub-Hodge
structure of M i. For i = 1, this follows from the fact that we have either A1 =
0, B1 = M1 or A1 = M1, B1 = 0 and for i = 2, this follows from Lemma 2.4. We
choose now a polarizing class ω ∈ M1,1

R and decompose it into ω = a + b. Then by
Lemma 2.4, a and b are of type (1, 1).

We prove now the result by induction on i. So assume the result is proved for
i− 1. Then all the subspaces

Al ⊗Bl′ , l + l′ = i, l > 0, l′ > 0

of M i are sub-Hodge structures. Using now Lemma 2.4, and using a polarization
ω = a + b ∈ M1,1

R , we have that a and b are in M1,1
R and thus we get that each

subspace
as−l ∪ bt−l′ ∪Al

R ⊗Bl′
R ⊂ M2n−i

R

is a real sub-Hodge structure.
By lemma 2.6, this subspace is in fact equal to A2s−l ⊗B2t−l′ ⊗ R, and thus we

conclude that for l > 0 and l′ > 0, l + l′ = i

A2s−l ⊗B2t−l′ ⊂ M2n−i

is a rational sub-Hodge structure of M2n−i, because it is rational, and tensored by
R becomes a real sub-Hodge structure. But the orthogonal of

⊕l>0,l′>0,l+l′=iA
2s−l ⊗B2t−l′

with respect to the intersection pairing on M is equal to Ai ⊕ Bi. Thus Ai ⊕ Bi is
a sub-Hodge structure of M i. But Ai ⊂ Ai ⊕ Bi is the kernel of the restriction to
Ai ⊕ Bi ⊂ M i of the multiplication by the Hodge class ηA : M i → M i+2s, where
ηA generates A2s, and similarly Bi ⊂ Ai ⊕ Bi is the kernel of the restriction to
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Ai ⊕Bi ⊂ M i of the multiplication by the Hodge class ηB : M i → M i+2t, where ηB

generates B2t. Thus we conclude that Ai and Bi are sub-Hodge structures of M i.
To conclude the proof of the theorem, it remains to show that a polarizes the

Hodge structure on A ⊂ M , and b polarizes the Hodge structure on B ⊂ M . We
already proved that a and b satisfy the Lefschetz property. We have to show that
the second bilinear relations (1.7) hold.

This is easy because, the same argument as in the proof of Lemma 2.6 shows
that if α ∈ Ai

R, i ≤ s is primitive for a, namely satisfies as−i+1∪α = 0, then α ∈ M i
R

is primitive for ω. Furthermore, we have, for primitive α, β, and for the choices of
generators

ωn, as, bt

of M2n
R , A2s

R , B2t
R respectively:

ν < α, as−i ∪ β >A=< α, ωn−i ∪ β >M ,

where

ν =

(
n−i
s−i

)
(
n
s

) .

Thus the second bilinear relations for (M, ω) imply the second bilinear relations for
(A, a).

Note to conclude that, without polarizations, the same arguments prove the
following result, which will be used later on:

Theorem 2.7 Assume there is a Hodge structure on a (rational or real) cohomology
algebra M , and assume that

M ∼= A⊗B,

where A and B are (rational or real) cohomology algebras. If A1 = 0, and A and
B are generated in degree ≤ 2, then A and B are of even dimension and there are
Hodge structures on A and B, inducing that of M .

Proof. As in the previous proof, we first use Deligne’s Lemma 1.9 to prove that
A2⊗1B and 1A⊗B2 are sub-Hodge structures of M2. To prove this, note that M is
generated in degree ≤ 2, which implies, as it is of even dimension 2n, that there is a
ω ∈ M2 such that ωn 6= 0 in M2n (otherwise any monomial ω1 . . . ωn with deg ωi = 2
would vanish in M2n, contradicting the fact that M2n is generated by a product of
elements of degree 1 or 2). Having this, and writing ω = α + β, α ∈ A2 ⊗ 1B, β ∈
1A ⊗B2, we conclude as before that

αd 6= 0 in A2, βd′ 6= 0 in B2,

for some integers d, d′ such that dimA = 2d, dimB = 2d′. It follows then that
A2
C ⊗ 1B is recovered as an irreducible component of the set

{m ∈ M2
C, md+1 = 0 in M2d+2

C },
and similarly for 1A ⊗B2

C. Thus by Deligne’s Lemma 1.9, A2 ⊗ 1B and 1A ⊗B2 are
sub-Hodge structures of M2.

As A1 = M1 the same is true in degree 1. As the algebras are generated in
degree ≤ 2, it follows that A = A ⊗ 1B and B = 1A ⊗ B are sub-Hodge structures
of M .
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2.2 Projective bundles

We consider now the simplest kinds of compact oriented manifolds which are close
to be a product: namely bundles over a basis satisfying the Leray-Hirsch condition.
Then their cohomology is additively the tensor product of the cohomology of the ba-
sis and the cohomology of the fiber, but not multiplicatively. The simplest examples
of this are given by complex projective bundles P(E) → X associated to complex
vector bundles on compact oriented manifolds.

Theorem 2.8 Let X be a compact smooth oriented manifold, and let E be a complex
vector bundle of rank ≥ 2 on X with trivial determinant. Assume that the cohomol-
ogy of X is generated in degrees 1 and 2. Then if the cohomology algebra H∗(P(E),Q)
carries a Hodge structure, the cohomology algebra H∗(X,Q) ⊂ H∗(P(E),Q) has an
induced Hodge structure, for which the Chern classes ci(E) are Hodge classes. A sim-
ilar result holds with H∗(P(E),Q),H∗(X,Q) replaced by H∗(P(E),R), H∗(X,R).

Proof. Let X be of real dimension 2n, π : P(E) → X be the structural map. We
know that

Γ := π∗H2(X,Q) ⊂ H2(P(E),Q)

is a hyperplane, which satisfies the properties that αn+1 = 0, for any α ∈ Γ. Next,
the cohomology of P(E), as the cohomology of X, being generated in degree 1 and
2, it follows that there exists a class β ∈ H2(P(E),Q) such that βn+r−1 6= 0, where
r := rank E.

Thus we conclude that the hyperplane ΓC ⊂ H2(P(E),C) must be an irreducible
component of the algebraic subset

Z := {β ∈ H2(P(E),C), βn+r−1 = 0}.

By Deligne’s Lemma 1.9, it follows that Γ is a sub-Hodge structure of H2(P(E),Q)
for the given Hodge structure. As π∗ : H1(X,Q) → H1(P(E),Q) is an isomorphism,
we have the same conclusion for the cohomology of degree 1. Finally, as the co-
homology of X is generated in degrees 1 and 2, we conclude that the cohomology
sub-algebra

π∗H∗(X,Q) ⊂ H∗(P(E),Q)

is also a sub-Hodge structure.
Observe now that the injective map

π∗ : H∗(X,Q) → H∗(P(E),Q)

admits as its dual map the Gysin map

π∗ : H∗(P(E),Q) → H∗−2r+2(X,Q)

which thus must be also a morphism of Hodge structures (of bidegree (−r+1,−r+1)
on each graded piece).

We claim that there is a class β ∈ H2(P(E),Q), unique up to a multiplicative
coefficient, such that β does not vanish modulo π∗H2(X,Q) and satisfies

π∗βr = 0 in H2(X,Q).

11



Furthermore this class must be a Hodge class. Indeed, we take for β the class c1(H)
where H is the dual of the Hopf line bundle on P(E). Then it is a standard fact (see
[9]) that

π∗βr = −c1(E).

As c1(E) was supposed to be 0, this proves the existence of β. As for the uniqueness,
observe that for α ∈ H2(X,Q),

π∗(β + π∗α)r = π∗βr + rα,

so that π∗(β + π∗α)r = 0 implies α = 0.
The same argument shows that the complex line βC ⊂ H2(P(E),C) is an irre-

ducible component of the closed algebraic subset

Z := {γ ∈ H2(P(E),C), π∗γr = 0}.

As π∗ is a morphism of Hodge structures, we conclude by Deligne’s Lemma 1.9 that
β must be a Hodge class.

The proof is now finished. Indeed, let β be defined (up to a multiplicative
coefficient) as above. Then β satisfies in H∗(P(E),Q) a unique polynomial equation

βr =
∑

1≤i≤r

βr−i ∪ π∗αi,

where the αi are proportional to ci(E). As all the powers βl’s are Hodge classes on
P(E), and the αi’s can be recovered as polynomials in the Segre classes σj(E) =
π∗(βr−1+j) (cf [9]), the αi must be also Hodge classes on X for the induced Hodge
structure on H∗(X,Q).

3 Explicit constraints

The purpose of this section is to describe explicit constraints on a cohomology alge-
bra, imposed by the presence of a (polarized) Hodge structure. We want to separate
the constraints on the real cohomology algebra imposed by the Hodge decomposi-
tion, which will be considered in section 3.1, from more subtle constraints related
to the rational cohomology algebra, which will be explained in section 3.2 and from
those imposed by the polarisation (section 3.3). We will illustrate the effectiveness
of each of these criteria by exhibiting compact symplectic manifolds satisfying the
Lefschetz property and not satisfying the considered criterion.

3.1 Constraints coming from the real Hodge structure

It is clear that constraints coming only from the real (or rational) Hodge structure,
without polarizations, must involve the odd degree cohomology. Indeed, if there is no
odd degree cohomology, we can put the trivial Hodge structure on all the cohomology
groups, and this will obviously satisfy the compatibility conditions (1.4).

The classically known topological restriction on the cohomology algebra of a
compact Kähler manifold coming from the Hodge decomposition is the fact that odd
Betti numbers b2i+1 must be even. This condition is very restrictive for surfaces, as

12



it is known that among compact complex surfaces, this condition characterizes the
Kähler ones, a result due to Kodaira [13].

Let us refine this restriction using the cohomology algebra.

Lemma 3.1 Let M be a real cohomology algebra. If M carries a Hodge structure,
then for any pair of integers k, l with k even and l odd, the product:

µ : M l ⊗Mk → Mk+l

must be of even rank. More generally, if M
′k ⊂ Mk, M

′l ⊂ M l are sub-Hodge
structures, then the product:

µ : M
′l ⊗M

′k → Mk+l

must be of even rank.

Proof. Indeed, as M
′k⊗C and M

′l⊗C are stable under the Hodge decomposition,
that is decompose into the direct sum of their components of type (p, q), p + q = k,
resp. p + q = l, it follows from the compatibility conditions (1.4) that the image
ImµC of µ, tensored by C, is also stable under the Hodge decomposition, namely, it
is the direct sum of its terms of type (p, q), p+ q = k + l. As k + l is odd, and Im µC
is defined over R, the Hodge symmetry (1.2) is satisfied by Im µC, which implies
that it is of even rank.

This lemma can be combined with Deligne’s Lemma 1.9, to get effective restric-
tions which are much stronger than the classical ones. Let us state this restriction
explicitely:

Proposition 3.2 Let M be a real cohomology algebra with Hodge structure. For
some even integer 2k, let Z1, . . . , Zr ⊂ M2k

C be algebraic subsets as in Lemma 1.9.
Suppose the complex vector spaces < Zi >, i = 1, . . . , r are defined over R, that is

< Zi >= Bi ⊗ C, B ⊂ M2k.

Let B :=
∑

i Bi ⊂ M2k. Then for any odd integer l, the product map

B ⊗M l → M2k+l

has even rank.

Indeed, Deligne’s Lemma then tells us that B has to be a sub-Hodge structure, so
that we can apply Lemma 3.1.

Let us construct using Theorem 3.2 a compact symplectic manifold X which
satisfies the Lefschetz condition, hence in particular has its odd Betti numbers even,
but whose real cohomology algebra does not admit any Hodge structure. So in
particular, this X does not have the real cohomology algebra of a compact Kähler
manifold.

Example 3.3 We start with a a complex torus T = C3/Γ of dimension 3, and we
fix a symplectic structure on T , given for example by a constant Kähler form ω on
C3. We may even assume that T is an abelian variety and that the cohomology class
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λ0 of the Kähler form is rational. Next, we choose 2 elements λ1, λ2 in H2(T,Q)
which satisfy the property that

λ1 ∪H1(T,Q) + λ2 ∪H1(T,Q)

has rank 11. As rank H1(T,Q) = 6, this means that the map

µ : H1(T,Q)⊕H1(T,Q) → H3(T,Q), (3.7)
µ((a, b)) = λ1 ∪ a + λ2 ∪ b

has a 1-dimensional kernel. Let us give an explicit example of such a pair: Choose
a basis w1, . . . , w6 of the Q-vector space H1(T,Q) ∼= Γ∗Q. The cohomology H∗(T,Q)
identifies to the exterior algebra

∧
Γ∗Q, the cup-product being identified with the ex-

terior product. Let

λ1 = w1 ∧ w2 + w3 ∧ w4, λ2 = w3 ∧ w5 − w1 ∧ w4.

Then we clearly have w1 ∧ λ1 = w3 ∧ λ2, and it is an easy exercise to verify that the
kernel of the map (3.7) is generated by this relation.

We now do the following : choosing ε ∈ Q small enough, the classes λ0 + ελ1

and λ0 + ελ2 are symplectic classes, which can be represented by symplectic forms
ω1, ω2 in the same deformation class as ω. In fact, the important point for us is the
fact that ω0 + ω1 + ω2 is a symplectic form, whose class is close to 3λ0.

As the classes λ0, λ1, λ2 are rational, we can find multiples Mλ0, Mλ1, Mλ2

which consist of integral symplectic classes, such that there are symplectic embeddings
(we can use [12], 3.4, or approximately holomorphic embeddings (see [16] using
results of [8]))

φi : T → PN , i = 1, 2, 3,

with φ∗i Ω = Mωi, where Ω is the Fubini-Study symplectic form on PN .
Let ψ : T → PN × PN × PN be the map (φ1, φ2, φ3). For the product symplectic

form Ω̃ = p∗1Ω + p∗2Ω + p∗3Ω, the image W = ψ(T ) is a symplectic submanifold,
because ψ∗Ω̃ = M(ω0 + ω1 + ω2).

Our example will be the symplectic manifold X obtained as the symplectic blow-
up of PN × PN × PN along W . For an adequate choice of symplectic form of class
µ1 + µ2 + µ3− ηe, with η very small, the Lefschetz property is satisfied, as it follows
easily from the fact that the restriction of the symplectic class p∗1ω + p∗2ω + p∗3ω to
W = T satisfies the Lefschetz property on T . (The Lefschetz property for symplectic
blow-ups is studied in general in [4].)

Proposition 3.4 The cohomology algebra of X does not satisfy the condition of
Proposition 3.2, hence does not admit any real Hodge structure. In particular X
does not have the cohomology algebra of a compact Kähler manifold.

Proof. By the computation of the cohomology of a symplectic blow-up (cf [22],
7.3.3 in the complex case), we get that H2(X,Q) = Q4, generated by the class
e of the exceptional divisor, and the classes µi := τ∗(p∗i [Ω]), i = 1, 2, 3, where
τ : X → PN × PN × PN is the blowing-up map. Furthermore, letting j : E → X
denote the inclusion of the exceptional divisor of τ , and τ ′ : E → W = T the
restriction of τ , we have that H3(X,Q) = j∗(τ

′∗H1(T,Q)).
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Now, one sees easily that each class µi generates an irreducible component of the
algebraic subset

Z = {a ∈ H2(X,C), aN+1 = 0 in H2N+2(X,C)}.

As each µi is rational, it must be a Hodge class by Deligne’s Lemma 1.9.
Hence we proved that for any Hodge structure on H∗(X,Q), the classes µi are

of type (1, 1). It remains to see that for two adequately chosen rational (or real)
cohomology classes λ, λ′ which are combinations of the µi, the rank of

µ : H3(X,Q)⊕H3(X,Q) → H5(X,Q) (3.8)
(α, β) 7→ λ ∪ α + λ′ ∪ β

is odd.
Let us take

λ = µ2 − 1
ε
µ1, λ′ = µ3 − 1

ε
µ1.

Then as λ, resp. λ′, is the pull-back via τ of a class λ̃ on PN × PN × PN , it follows
that the following diagram commutes

λ̃|W∪ : H1(W,Q) → H3(W,Q)
j∗τ

′∗ ↓ j∗τ
′∗ ↓

λ∪ : H3(X,Q) → H5(X,Q),

where the vertical maps are injective. We have the similar result for λ′. On the
other hand, identifying W with T , we have

λ̃|W = Mλ1, λ̃′|W = Mλ2.

As the map j∗τ
′∗ : H3(T,Q) → H5(T,Q) is injective, the fact that the map (3.7)

has odd rank thus implies that the map (3.8) has odd rank.

Let us now describe another non trivial necessary condition for a real cohomology
algebra M to admit a Hodge structure. Let H2i+1 be an even dimensional real vector
space, and let H4i+2 be a real vector space. Let

µ :
∧2

H2i+1 → H4i+2

be a linear map.

Lemma 3.5 Suppose there are Hodge structures of respective weights 2i + 1 and
4i + 2 on H2i+1 and H4i+2 for which µ is a morphism of Hodge structures. Then
there exists a complex vector subspace W ⊂ H2i+1

C satisfying the properties:

1. rk W = 1
2rk H2i+1

C .

2. rk µ|V2 W ≤ 1
2rk µ.
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Proof. Indeed, let

W := F iH2i+1
C := H2i+1,0

C ⊕ . . .⊕H i+1,i
C .

Then by Hodge symmetry, 1 is satisfied. Furthermore, if µ is a morphism of Hodge
structures, we get

µ(
∧2

F iH2i+1
C ) ⊂ H4i+2,0

C ⊕ . . .⊕H2i+2,2i
C ,

and as Im µ is a real sub-Hodge structure of H4i+2, we conclude by Hodge symmetry
for Im µ that we have the condition

rank µ(
∧2

F iH2i+1
C ) ≤ 1

2
rank µ. (3.9)

Coming back to real cohomology algebras, we can apply this lemma to H2i+1 =
M2i+1, where µ is the cup-product map. Moreover, combining this lemma with the
results of the previous section, we can also apply it to more general morphisms of
Hodge structures of the form:

µ′ = φ ◦ µ :
∧2

M2i+1 → M4i+2 φ→ M ′,

where M ′ will be an adequate Hodge structure of even weight and φ will be shown
to be a morphism of Hodge structures.

In order to show the effectiveness of this restriction on the structure of cohomol-
ogy algebras, we need the following lemma:

Lemma 3.6 Let M be a real or rational vector space of rank 2n, and let

µ :
∧2

M → Q

be a generic linear surjective map to a rational or real vector space Q of rank q = 2q′

or q = 2q′ + 1 satisfying the following numerical conditions :

q′ ≤ n(n− 1)
2

, (q − q′)(
n(n− 1)

2
− q′) > n2. (3.10)

Then there is no complex subspace W ⊂ MC of rank n, such that

rank µ|V2 W ≤ q′. (3.11)

Proof. We work inside the space K = Hom (
∧2 MC, QC) of C-linear maps µ :∧2 MC → QC and make a dimension count. The dimension of the Grassmannian

Grass(n,MC) of n-dimensional subspaces of MC is n2. For fixed W ∈ Grass(n,MC),
the codimension of the (Zariski closed) space consisting of µ ∈ K satisfying the
condition that rank µ|V2 W ≤ q′ is equal to (q−q′)(n(n−1)

2 −q′) assuming this number
is ≥ 0, which is implied by our first assumption. It follows immediately that under
our first assumption in (3.10), the codimension of the set of µ for which there exists
a W such that (3.11) holds is at least q′(n(n−1)

2 − q′) − n2. This is positive under
our second assumption in (3.10), and it follows that this Zariski closed subset of K
is a proper subset.
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Let us now construct an example of a symplectic compact manifold X whose
real cohomology algebra does not satisfy the criterion given by Lemma 3.5.

Example 3.7 In lemma 3.6, we make n = 5, q′ = 5, q = 2q′+ 1. We now consider
a real torus T of dimension 10, and let K be any simply connected compact Kähler
manifold satisfying the condition that rank H2(K,Q) = 11 and that the cohomology
of K is generated in degree 2.

We consider now T ×K, which can be endowed with the structure of a compact
Kähler manifold, hence in particular is a compact symplectic manifold. We have,
using Künneth decomposition and Poincaré duality, an inclusion

Hom (H2(T,Q),H2(K,Q)) ⊂ H10(T ×K,Q). (3.12)

Choose now a generic surjective map

µ :
∧2

H1(T,Q) = H2(T,Q) → H2(K,Q)

and let λ ∈ H10(T×K,Q) be the class which is the image of µ under the map (3.12).
Our example will be the symplectic manifold P(E), for any complex vector bundle

E on Y := T ×K such that

c1(E) = 0, c5(E) = mλ

for some non zero integer m.

Let us now combine Theorem 2.8 and Lemma 3.5 to show the following result.

Proposition 3.8 The compact symplectic manifold P(E) has the property that there
is no Hodge structure on the real cohomology algebra H∗(P(E),R).

Proof. Suppose the conclusion is not satisfied. We first use Theorem 2.8 (version
with real coefficients) to conclude that under our assumptions, there should be a real
Hodge structure on H∗(Y,R) = H∗(T ×K,R) for which λ is a Hodge class.

We next use Theorem 2.7, (version with real coefficients) to conclude that there
are real Hodge structures on H∗(T,R) and H∗(K,R) which induce the Hodge struc-
ture on H∗(T ×K,R). The class λ being a Hodge class on T ×K, we conclude that
the corresponding morphism

µ :
∧2

H1(T,R) → H2(K,R)

is a morphism of Hodge structures. But this contradicts the fact that µ is generic,
so that by Lemma 3.6, the map µ does not satisfy the necessary condition (3.9),
with 2i + 1 = 1 in this case.

Remark 3.9 The two criteria we applied in this section to detect the non-existence
of real Hodge structures on the cohomology algebras of certain symplectic mani-
folds, and the proof of their effectiveness, are not only different geometrically. The
difference of nature is made clear in the fact that in the previous case, our crite-
rion did not apply to a generic choice of λ1, λ2, and indeed, for a generic choice of
λ0, λ1, λ2, there exists a rational Hodge structure on the cohomology of the variety
we constructed.

In the second example, a generic choice of µ will lead to an example where the
criterion applies.
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3.2 Constraints coming from the rational Hodge structure

In this section, we want to use Theorem 2.8 to construct a compact symplectic man-
ifold X, whose cohomology algebra does not carry any Hodge structure, polarized
or not. Working a little more, one can see that the rational information is actually
needed, the information given by the real cohomology algebra being too weak.

Here, it is hard to formulate the criterion in a general way. The starting point
is however Theorem 2.8, which tells us that for some types of manifolds, Hodge
structures on their cohomology algebras come from Hodge structures on a certain
subalgebra, for which certain classes must be Hodge classes. This point can be
combined with the general observation made in [20] that a rich cohomology algebra
may prevent a cohomology algebra with Hodge structure to carry any non trivial
Hodge class.

We will content ourselves illustrating the combination of the two arguments on
an example.

Example 3.10 We start with the simplest example Y constructed in [20] of compact
Kähler manifold not having the rational cohomology algebra of a projective complex
manifold, namely, we consider a complex torus

T = ΓC/(Γ1,0 ⊕ Γ),

where Γ is a lattice of even rank 2n; we assume there is an endomorphism φ acting
on Γ, and that Γ1,0 ⊂ ΓC is the eigenspace associated to the choice of n complex
eigenvalues of φ, not pairwise conjugate. Here φ is assumed to have only complex
eigenvalues, and to satisfy the following condition :

The Galois group of the splitting field of Q[φ] is the (3.13)
symmetric group in 2n letters acting on the 2n eigenvalues of φ.

The torus T admits then the endomorphism φT induced by the C-linear extension
of φ acting on ΓC, which preserves Γ1,0 and Γ.

The Kähler manifold Y was obtained by successive blow-ups of T × T . Namely,
observing that the four subtori

T1 = T × 0, T2 = 0× T, T3 = Diag(T ), T4 = Graph(φT )

of T × T meet pairwise transversally in finitely many points x1, . . . , xN , we first
blow-up the xi’s, getting T̃ × T x1,...,xN ; then the proper transforms T̃i are smooth
and disjoint, and we get Y by blowing them in T̃ × T x1,...,xN .

We shall denote τ : Y → T ×T the natural map, which is the composition of two
blow-ups.

Let us choose now any integral cohomology class λ ∈ H2(Y,Z). Then λ = c1(L),
where L is a C∞ complex line bundle on Y . Our example will be the manifold

X = P(L⊕ L−1).

Let us show:
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Theorem 3.11 If dimT ≥ 3 and 0 6= λ2 belongs to τ∗H4(T × T,Q) ⊂ H∗(Y,Q),
then the rational cohomology algebra of the manifold X does not admit a Hodge
structure.

Proof. We first observe that the manifold Y has its cohomology generated in degrees
1 and 2. Indeed, this is true for the torus T × T , (for which degree 1 suffices), thus
also for T̃ × T x1,...,xN by adding the classes of exceptional divisors over points. To
see that this remains true for Y , observe that the restriction maps in cohomology

H∗(T̃ × T x1,...,xN ,Q) → H∗(T̃i,Q)

are surjective for all i. It thus follows that the cohomology of Y is generated (as an
algebra) by the pull-back of the cohomology of T̃ × T x1,...,xN and the classes ei of
the exceptional divisors over T̃i.

We can thus apply Theorem 2.8 and conclude that for any Hodge structure on the
rational cohomology algebra H∗(X,Q), the sub-algebra π∗H∗(Y,Q) is a sub-Hodge
structure, and furthermore, for the induced rational Hodge structure on H∗(Y,Q),
the Chern class c2(L⊕−L) = −λ2 is a Hodge class.

We now briefly recall the analysis made in [20]: We proved that for any rational
Hodge structure on H∗(Y,Q), the classes ei are Hodge classes. Studying the cup-
product maps (which must be morphisms of Hodge structures of bidegree (1, 1))

ei∪ : H1(Y,Q) → H3(Y,Q),

where H1(Y,Q) ∼= H1(T × T,Q), we then concluded :

1. The induced (weight 1) Hodge structure on H1(T×T,Q) is induced by a Hodge
structure on H1(T,Q), that is, is the direct sum of two copies of a rational
Hodge structure on H1(T,Q).

2. Furthermore this Hodge structure must admit the automorphism tφ. (Observe
that H1(T,Q) ∼= Γ∗Q, so that tφ acts on it.)

The proof is now finished because we know that the class λ2 must be a Hodge
class in H4(Y,Q), and we made the assumption that it belongs to the sub-Hodge
structure τ∗H4(T ×T,Q) =

∧4 H1(Y,Q) ⊂ H4(Y,Q). Thus it must be a non trivial
Hodge classes in H4(T × T,Q), for the Hodge structure induced by the Hodge
structure above on H1(T,Q). However, as in [20] (see [21] for more details of such
computations), using assumption (3.13), an easy irreducibility argument for the
action of tφ on certain natural direct summands of H∗(T,Q)⊗H∗(T,Q) shows that
there is no non zero Hodge classes in H4(T×T,Q) for any Hodge structure satisfying
the conclusions 1, 2 above.

3.3 Constraints coming from polarizations

We have made essentially no use of the polarization in the previous sections. Fur-
thermore, we used a lot odd dimensional cohomology, for the following reason: a
Hodge structure of odd weight always gives a non trivial information. This is not the
case for Hodge structures of even weight 2k. In this case, we can always consider the
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trivial Hodge structure, for which everything is of type (k, k). Furthermore, if we
have a cohomology algebra M with trivial odd degree part, then we can always put
the trivial Hodge structure on each term M2k, and this will give us a cohomology
algebra with Hodge structure.

In the presence of polarization, and assuming the dimension of M is divisible by
4, we meet now the following restriction given by the Hodge index theorem 3.12.
Let us define the signature τ(M) of a cohomology algebra M of dimension 4m as
the signature on the intersection form on M2m. This signature is only defined up to
sign if we did not fix the isomorphism

M4m ∼= R.

Theorem 3.12 Let M be a cohomology algebra of dimension 4m which is endowed
with a trivial Hodge structure. Then, if this Hodge structure can be polarized, we
have

τ(M) = ±
∑

i

(−1)irk M2i.

Proof. Indeed, if we look at the Riemann second bilinear relations (1.7), they give
us the signs on the intersection form on the real part of the (p, q) ⊕ (q, p) part of
the pieces of the Lefschetz decomposition on the middle piece M2n. (Here, all the
signs may be reversed by changing the orientation.) As a result one gets the Hodge
index formula [22], 6.3.2, which gives the signature τ as an alternate sum of mp,q

numbers, mp,q := rk Mp,q. In our case, the Hodge decomposition is trivial, so we
get the formula

τ = ±
∑

i

(−1)im2i, m2i := rk M2i. (3.14)

Let us now use this condition, combined with Deligne’s Lemma 1.9, to construct
a symplectic compact manifold X such that M = H∗(X,Q) carries a rational Hodge
structure, and such that adequate symplectic classes ω on X satisfy the Lefschetz
property, but such that M does not carry any polarized Hodge structure.

Example 3.13 We consider a K3 surface S, and consider a basis a1, . . . , a22 of
H2(S,Q) consisting of symplectic classes; more precisely, we assume that ai is the
cohomology class of a symplectic form αi close to a given symplectic form α, so that∑

i αi is again a symplectic form.
For an adequate integer coefficient l >> 0, one knows by [12] that one can

construct embeddings φi : S → PN such that φ∗i Ω = lαi, where Ω is the Fubini-Study
Kähler form on PN . Then

∑
i φ
∗
i Ω = l

∑
i αi is again a symplectic form on S.

We consider now the embedding ψ := (φ1, . . . , φ22) of S into (PN )22. With the
above choice of φi’s, this provides a symplectic submanifold of (PN )22 endowed with
the product Kähler form.

The symplectic manifold we will consider will be the symplectic blow-up of (PN )22

along ψ(S). This is a symplectic manifold with symplectic class given by τ∗(
∑

i pr∗i ω)−
εe, where τ : X → (PN )22 is the blowing-up map and e is the cohomology class of
the exceptional divisor.
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Let us show:

Theorem 3.14 Any Hodge structure on H∗(X,Q) is trivial (that is H2i(X,Q) is
completely of type (i, i)). Furthermore the trivial Hodge structure cannot be polarized.

Proof. We use lemma 1.9 to show that for any Hodge structure on H∗(X,Q), the
cohomology H2(X,Q) must be completely of type (1, 1). Indeed, the cohomology of
X in degree 2 is generated by the hi := τ∗pr∗i h and by e. We observe that for each
i = 1, . . . , 22, the line generated by hi is an irreducible component of the set

Z ⊂ H2(X,C), Z = {α ∈ H2(X,C), αN+1 = 0}.

Thus Lemma 1.9 implies that this line is generated by a Hodge class, as it is defined
over Q. Finally, the last generator e must also be of type (1, 1), because the (2, 0)⊕
(0, 2) part has even rank, and we just proved above that it has rank ≤ 1.

Next we observe that the cohomology of our variety X is generated in degree 2.
This follows from the computation of the cohomology of a blown-up variety (cf [22],
7.3.3 in the complex case, the symplectic case is computed in the same way), and
from the following facts:

1) The variety (PN )22 satisfies the property that its cohomology is generated in
degree 2.

2) The restriction map on cohomology

ψ∗ : H∗((PN )22,Q) → H∗(S,Q)

is surjective.
It follows that if j : E ↪→ X is the inclusion, and τ ′ : E → S is the restriction of

τ , then for α = ψ∗β ∈ H∗(S,Q), we have

j∗τ
′∗α = e ∪ τ∗β in H∗(X,Q),

and this implies that the cohomology of X is also generated in degree 2.
As the Hodge structure on H2(X,Q) is trivial, the Hodge structure on all coho-

mology groups H2i(X,Q) are trivial too. Furthermore, X has no odd dimensional
cohomology.

It remains to see why the trivial Hodge structure cannot be polarized. For this
we apply Theorem 3.12, which tells us that in this case we should have

τ(X) = ±
∑

i

(−1)ib2i. (3.15)

This formula must give the signature (defined up to sign) of the intersection form on
the middle part of any cohomology algebra endowed with a trivial Hodge structure
which can be polarized. We can now easily construct a projective variety with the
same Betti numbers and which has the property that the Hodge structures on its
cohomology are trivial. Namely we start from S′ = P2 blown-up at 21 points, choose
a basis b1, . . . , b22 of H2(X ′,Q) consisting of Chern classes of very ample line bundles
Li and imbed holomorphically S′ in (PN )22, using the morphisms φ′i given by the
line bundles Li. Then we consider the projective variety X ′ defined by blowing-up
S′ in (PN )22.

21



As X ′ is projective, its cohomology carries a polarized Hodge structure. As the
blown-up surface X ′ has a trivial Hodge structure, the Hodge structure on H∗(X ′,Q)
is trivial. Note also that, as S′ has only trivial Hodge structures, so does X ′, and
thus X ′ has the same Hodge numbers as X. Thus the signature of X ′ is given by
formula (3.15).

Hence, to conclude that the trivial Hodge structure on H∗(X,Q) cannot be
polarized, it suffices to show that the absolute value of the signature of X is different
from that of X ′, hence does not satisfy formula (3.15).

This is quite easy, because the middle cohomology H22N (X,Q) is a direct sum

H22N (P22N ,Q)
⊕

e11NQ
⊕

j∗(e11N−3τ
′∗H4(S,Q))

⊕
j∗(e11N−2τ

′∗H2(S,Q)),

where the first term is orthogonal to the three other ones, the second and the third
are isotropic and dual, and orthogonal to the last one, and the intersection form of
X restricted to the term j∗(e11N−2τ

′∗H2(S,Q) is equal to the intersection form on
H2(S,Q), with opposite sign.

We do the same computation with X ′ and we conclude that the difference τ(X)−
τ(X ′) is equal to τ(S′)− τ(S), hence is non zero.

The argument is not quite complete, as we also have to show that we do not
have τ(X) = −τ(X ′). This is easily checked for large N .

4 Further restrictions

Up to now, we have been studying the topological constraints on compact Kähler
manifolds via the constraints imposed to the cohomology algebra by the existence
of a (polarized) Hodge structure. In this final section, we want to show that there
are in fact other constraints on the cohomology algebra.

Theorem 4.1 There exists a compact symplectic manifold whose rational cohomol-
ogy algebra carries a rational polarizable Hodge structure, but is not isomorphic to
the rational cohomology algebra of any compact Kähler manifold.

In fact our example will even be a manifold which does not have the rational coho-
mology algebra of a compact Kähler manifold, but satisfies the following properties:

1. The cohomology algebra of X admits a polarized rational Hodge structure.

2. X has the real cohomology algebra of a compact Kähler manifold.

Example 4.2 We consider a 3-dimensional torus T , which admits complex multi-
plication by a number field K, with [K : Q] = 6. This means that K acts on T ,
hence on H1(T,Q), and this makes the space H1(T,Q) a 1-dimensional K-vector
space.

Let ki, i = 1, . . . , 6 be a basis of K over Q and for each i, let

γi ∈ Hom (H1(T,Q),H1(T,Q)) ⊂ H6(T × T,Q)

be given by the action of ki on H1(T,Q). Let also f1, f2 ∈ H6(T × T,Q) be the
respective classes of the fibers of the projections pr1 : T × T → T , pr2 : T × T → T .
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Note that we have

H6(T × T,Q)⊗H6(T × T,Q) ⊂ H12(T × T × T × T,Q) (4.16)

by Künneth decomposition, and

H6(T × T,Q)⊗H6(T × T,Q) ∼= Hom (H6(T × T,Q),H6(T × T,Q)) (4.17)

by Poincaré duality on T × T .
Let V ⊂ H6(T × T,Q) be the subspace generated by f1, f2, γ1, . . . , γ6. Observing

that the intersection pairing is non degenerate on V , let

P : H6(T × T,Q) → H6(T × T,Q)

denote the orthogonal projector onto V .
By (4.16) et (4.17) P can be seen as a rational cohomology class of degree 12

on Y := T 4. Furthermore, P is a Hodge class, because it corresponds to an endo-
morphism of Hodge structure (an orthogonal projection onto a sub-Hodge structure)
acting on H∗(T × T,Q).

Let G be a complex vector bundle of rank r on Y such that ci(G) = 0 for i 6= 0, 6,
and c6(G) is a non zero multiple of P , say c6(G) = mP .

Similarly the classes e, f of the fibers of the projections pr1, resp. pr2 from Y =
T 4 = T 2 × T 2 to T 2 are degree 12 Hodge classes on Y . Let E, F be complex vector
bundles of rank s on Y with the property ci(E) = ci(F ) = 0, i 6= 0, 6, c6(E) = m′e,
c6(F ) = m′f for some non zero integer m′.

We define X to be the fibered product over Y of the projective bundles P(E), P(F ), P(G):

X := P(E)×Y P(F )×Y P(G).

Let us prove:

Theorem 4.3 1. The cohomology algebra H∗(X,Q) is endowed with a natural
Hodge structure.

2. The real cohomology algebra H∗(X,R) does not depend on the choice of number
field K satisfying the condition that K ⊗ R ∼= C3.

3. For certain choices of K, and adequate choices of r, s, m, m′, the variety X is
projective (in particular Kähler). With the same m, m′, r, s, for a “generic”
choice of K, X does not have the rational cohomology algebra of a Kähler
manifold.

Proof. Statement 1 follows from the explicit computation of the cohomology al-
gebra of X, which is the fibered product of the projective bundles P(E), P(F ), P(G)
over Y = T 4. This cohomology algebra is then generated over H∗(T 4,Q) by
hE := c1(LP(E)), where LP(E) is the dual of the relative Hopf line bundle, and
similarly hF and hG, with the relations

hs
E = −π∗c6(E)hs−6

E , hs
F = −π∗c6(F )hs−6

F , hr
G = −π∗c6(G)hr−6

G ,

where π : X → Y is the structural map. This presentation is due to the fact that
ci(E) = 0, i 6= 0, 6 and similarly for F and G.
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As we know that c6(E), c6(F ), c6(G) are Hodge classes on Y , there is a Hodge
structure on H∗(X,Q), inducing the Hodge structure on H∗(Y,Q) and obtained by
declaring hE , hF and hG to be of type (1, 1).

For the proof of 2, observe that the real cohomology algebra H∗(X,R) depends
only on the representation of the algebra K ⊗Q R on H1(T,R). Thus we conclude
that the R-algebra H∗(X,R) does not depend on the choice of field K satisfying the
condition that K ⊗Q R = C3.

It remains to prove 3.
First of all, we note that we can choose K in such a way that T and thus Y = T 4

are abelian varieties. The classes e, f, f1, f2, γi are all classes of algebraic cycles.
Here we use the fact that γi are algebraic, which is a general fact (see [17]): the
Künneth component of type (n− 1, 1) of a codimension n algebraic cycle class in a
product of smooth projective varieties Z, Z ′, dim Z = n, is again an algebraic cycle
class.

As Y is projective, we know that the Chern character

ch : K0,alg ⊗Q→ CH(Y )⊗Q
is an isomorphism, and this implies that for adequate choices of ranks r, s and
integers m, m′ there exist algebraic vector bundles E, F of rank s, G of rank r on
Y satisfying the conditions :

ci(E) = ci(F ) = ci(G) = 0, i 6= 6, c6(E) = m′e, c6(F ) = m′f, c6(G) = mP.

The corresponding manifold

X = P(E)×Y P(F )×Y P(G)

is then projective, which proves the first statement.
Let us now show that for a number field K satisfying the condition (3.13), that

is, its Galois group is as large as possible, the rational cohomology algebra of the
symplectic manifold X (independently of the integers r, s, m, m′) is not isomorphic
to the rational cohomology algebra of a compact Kähler manifold. The key point
here, as in [20] or in Theorem 3.11 above, is that in this case, the presence of such
an algebra acting by isogenies on the complex torus Y prevents it to be an abelian
variety. In turn, this will prevent the Hodge classes used below to come from Chern
classes of reflexive analytic coherent sheaves, as in [23].

So assume to the contrary that there exists a compact Kähler manifold Z which
has its cohomology algebra isomorphic to that of X. Let π′ : Z → Alb Z be the
Albanese map of Z. Topologically, π′ induces the isomorphism

π
′∗ : H1(Alb Z,Q) ∼= H1(Z,Q)

and the map induced by cup-product on Z:

π
′∗ : H l(Alb Z,Q) ∼=

l∧
H1(Z,Q) → H l(Z,Q).

As the cohomology algebra of X and Z are isomorphic, we conclude that the map
π
′∗ is injective in top degree for Z, as it is the case for X, and this implies that

π′ : Z → Alb Z
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is surjective.
Observe also for future use that, via the isomorphism of cohomology algebras

H∗(X,Q) ∼= H∗(Z,Q)

the morphism π
′∗ identifies to π∗ : H∗(Y,Q) → H∗(X,Q).

Next, we have the following lemma:

Lemma 4.4 The torus Alb Z must be isogenous to a product T 2
1 ×T 2

2 where T1 and
T2 are three-dimensional tori on which the field K acts by isogenies.

We postpone the proof of this lemma and conclude the proof of Theorem 4.3 as
follows: As the torus Alb Z is of the form T 2

1 × T 2
2 , where the Ti’s are 3-dimensional

tori with an action of K, and as K satisfies condition (3.13), one proves as in [21]
that

Hdg2(AlbZ) = 0, Hdg4(Alb Z) = 0.

This torus thus satisfies the condition of the Appendix of [23], and we thus conclude
as in [23] that any reflexive analytic coherent sheaf F on Alb Z is a vector bundle
with trivial Chern classes. In particular, by the Riemann-Roch formula for complex
vector bundles on compact complex manifolds (see [1]), any reflexive coherent sheaf
on AlbZ satisfies

χ(Alb Z,F) = 0. (4.18)

Next we observe that the morphism π′ : Z → AlbZ is projective, that is, there
exist line bundles on Z which are relatively ample w.r.t. π′. Indeed, this fol-
lows from iterated applications of (the proof of) Theorem 2.8, which show that for
any Hodge structure on the rational cohomology algebra H∗(Z,Q), the sub-algebra
Imπ

′∗ (which identifies as mentioned above to Im π∗) is a sub-Hodge structure,
and that H2(Z,Q) is generated by π

′∗H2(Alb Z,Q) and by three Hodge classes of
degree 2 (corresponding to hE , hF , hG). It follows that for any fiber Za of π

′∗, the
image of the map H2(Z,Q) → H2(Za,Q) is of type (1, 1). On the other hand, this
image contains a Kähler class on Za. We then easily conclude that some rational
combinations of the classes hE , hF , hG (transported to Z) restricts to a Kähler class
on any fiber Za, which implies by Kodaira theorem that this rational combination
is ample on the fibers of π′.

The contradiction now comes from the following: let L be a relatively ample line
bundle on Z, whose first Chern class c1(L) is a rational combination of hE , hF , hG.
Observe that we can assume that the top self-intersection c1(L)N , N = dimZ =
12 + r − 1 + 2(s− 1) is not equal to 0. Indeed, this follows from the relations

hr
G = c6(G)hr−6

G , hr+11
G = c6(G)hr+5

G = c6(G)2hr−1
G ,

hr+11
G hs−1

E hs−1
F = c6(G)2hs−1

E hs−1
F hr−1

G 6= 0,

where the last equality follows from c6(G)2 = m2P 2 6= 0.
As c1(L)N 6= 0, the Hilbert polynomial PL defined by PL(n) = χ(Z,L⊗n) is not

identically equal to 0. As L is relatively ample, we have

Riπ′∗L⊗n = 0
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for large n and i > 0, and thus

χ(Z,L⊗n) = χ(Alb Z, R0π
′∗L⊗n).

But the coherent sheaf Fn = R0π′∗L⊗n is reflexive on Alb Z, because the analysis
of H2(Z) shows that no divisor of Z can be contracted to a codimension 2 ana-
lytic subset of AlbZ. Hence by (4.18), Fn satisfies χ(Alb Z,Fn) = 0, which is a
contradiction.

Proof of Lemma 4.4. We use first of all in an iterated way Theorem 2.8,
which implies that any Hodge structure on H∗(X,Q) ∼= H∗(Z,Q) comes from a
Hodge structure on H∗(Y,Q) for which the classes c6(E), c6(F ), c6(G) must be
Hodge classes. As we have already seen, H∗(Y,Q) identifies to H∗(Alb Z,Q) under
the isomorphism

H∗(X,Q) ∼= H∗(Z,Q).

Thus the complex torus AlbZ satisfies the property that there is an isomorphism of
exterior algebras

H∗(T 4,Q) ∼= H∗(Alb Z,Q)

sending the classes e, f and P to Hodge classes.
Recall that Y ∼= T 2 × T 2 and that e and f are the fibers of the two projections

on T 2. It follows that

Ker (e∧ : H1(Y,Q) → H1(Y,Q)),

which is equal to pr∗1H
1(T 2,Q) is sent to a sub-Hodge structure of H1(Alb Z,Q).

Similarly, Ker (f∧ : H1(Y,Q) → H1(Y,Q)), which is equal to pr∗2H
1(T 2,Q) is sent

to a sub-Hodge structure of H1(Alb Z,Q). Thus we conclude that Alb Z is isogenous
to a direct sum T ′ ⊕ T ′′ of two tori, in such a way that the isomorphism

H1(T 2 × T 2,Q) → H1(AlbZ,Q)

sends pr∗1H
1(T 2,Q) to H1(T ′,Q) and pr∗1H

1(T 2,Q) to H1(T ′′,Q).
We now consider the image of the class P . This is now a Hodge class in H∗(T ′×

T ′′,Q) which lies in Hom (H∗(T ′,Q),H∗(T ′′,Q)). Thus its image in H∗(T ′′,Q) and
the orthogonal of its kernel in H∗(T ′,Q), which both identify to V ⊂ H∗(T 2,Q),
are sub-Hodge structure of H∗(T ′′,Q) and H∗(T ′,Q) respectively. Thus it suffices
to prove that if a 6-dimensional torus T ′ admits an isomorphism of cohomology
algebras

H∗(T × T,Q) ∼= H∗(T ′,Q)

sending V to a sub-Hodge structure of H∗(T ′,Q), then T ′ is of the form T 2
1 , where

T1 admits an action of K by isogenies.
We first observe that the complex lines generated by f1 and f2 are irreducible

components of the set of reducible elements in VC ⊂
∧6 H1(T ′,C) = H6(T ′,C). As

these two lines are defined over Q, they must be generated by a Hodge class on T ′,
by lemma 1.9.

We use now the classes f1, f2 to show that T ′ is isogenous to a product

T ′ ∼= T ′1 ⊕ T ′2
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of two 3-dimensional complex tori. Indeed, we recover the sub-Hodge structures
H1(T ′i ,Q) ⊂ H1(T ′,Q) as the kernel of the morphism of Hodge structures

∪fi : H1(T ′,Q) → H7(T ′,Q).

Having this decomposition, we look at the image of V in Hom (H1(T ′1,Q),H1(T ′2,Q))
via the natural projection (given by Künneth decomposition and Poincaré duality)

H6(T ′1 × T ′2,Q) → Hom (H1(T ′1,Q), H1(T ′2,Q)).

The image V of V under this map is a sub-Hodge structure of rank 6, and the
subalgebra L of EndH1(T ′1,Q) generated by the γ−1

i ◦ γj is a sub-Hodge struc-
ture of End H1(T ′1,Q) which is isomorphic to K as a Q-algebra. As K ⊗ C has no
nilpotent element, it follows that LC has no (−1, 1)-part in its Hodge decomposi-
tion, because the (−1, 1)-part of the Hodge structure on End H1(T ′1,Q) is equal to
Hom (H0,1(T ′1), H

1,0(T ′1)) and this is nilpotent.
Thus LC is purely of type (0, 0), and L consists of endomorphisms of T ′1. As L

is isomorphic to K, this shows that T ′1 has complex multiplication by K. Finally,
as LC is of type (0, 0), the same is true of V , which implies that T ′1 and T ′2 are
isogenous. This concludes the proof of the Lemma.
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