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Lecture one : Divisors

0. This lecture is devoted to the classical and well understood subject of divisors on an
algebraic variety. What we want to do is to review the main features of the theory of
divisors, the codimension one cycles, from the point of view of algebraic geometry and
Hodge theory, which fit very well in this case. In particular, we want to insist on the
finiteness statements which have been shown by Clemens and Mumford to be specific of

the codimension one cycles.

In contrast, the remaining lectures will illustrate the fact that when the objects con-
structed from the Hodge theory become more transcendental, the corresponding theory of

algebraic cycles is less harmonious.

1. Recall that on a smooth algebraic variety X, one can identify the Weil divisors, which
are formal sums Tn;D; of codimension one irreducible subvarieties affected with integral
coefficients n; € Z, and Cartier divisors, which are sections of the Zariski sheaf K% /O%
that is are described in a covering (U;) of X by Zariski open sets by a collection of rational
functions ¥; € K% such that ;/1; is invertible in U; N U;. To the Cartier divisor
corresponds its local factorization into product of prime, locally principal, ideals. To such
a Cartier divisor is also associated an algebraic line bundle, the rank one O x-submodule of
the constant sheaf K x generated by ¢! on U;. The isomorphism class of this line bundle
is determined by the class in H}ar(O}’alg) of the Cech cocycle gi; = ¥; /%, € Op,;-

The line bundles associated to two Cartier divisors (1;), (¥}) are isomorphic if and
only if there is a global rational function ¥ on X such that ¥} = 1%; modulo an invertible
function on U;, and then the corresponding Weil divisors D and D' differ by the principal
divisor dive. One obtains this way a bijection between the group CH(X) := {Weil
divisors modulo principal Weil divisors} and the group Pic X of algebraic line bundles
modulo linear equivalence (i.e. isomorphisms). The abelian group structure of Pic X is

given by the tensor product of line bundles.

The study of Pic X splits into two parts : One introduces the notion of algebraic
equivalence between line bundles. A line bundle L on X is algebraically equivalent to zero
if there is an irreducible curve C and a line bundle £ on C x X, two points ¢ and ¢’ € C such
that [,|ch ~ Ox and Llc’XX ~ L. These line bundles form a subgroup Pic’ X C Pic X.

In {5) one can find, for a complete variety X, a purely algebraic construction of Pic® X
as an abelian variety, that is a complete commutative algebraic group. One of the main

tools is the identification of the space of the first order deformations of a line bundle
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to the space H'(Ox) via the correspondence: {multiplicative one cocycle g;; + €fi; on
X x Speck[e]/e* — additive one cocycle fi;/gij € O}

~ The quotient Pic X/ Pic® X can also be studied by purely algebraic methods. Using
vanishing theorems one can prove that if S C X is a smooth surface, complete intersection
of a.mplé divisors, one has an isomorphism Pic’ X ~ Pic® S and an injection Pic X C PicS.
So Pic X/ Pic’ X < PicS/Pic®S. Now on the surface S, the Grothendieck-Hirzebruch-
Riemann-Roch formula is a powerful tool to study line bundles. The results that one can

obtain this way are the following :

a) A line bundle is said to be numerically equivalent to zero if it is of degree zero on any
curve C C X. This determines a subgroup Num X C Pic X/Pic® X and one has :

Num X is a finite group.

b) The quotient NS(X) = PicX/NumX is a finitely generated group of rank p(X),
called the Néron-Severi group.

c) Hodge index theorem : If X is a surface, the intersection theory puts an intersection
form on NS(X), [1], which by definition of numerical equivalence is non degenerate.
Then its index is p(X) — 1.

2. Now we assume that X is a complex projective algebraic variety and we turn to the
Hodge theoretic description of line bundles. The starting point is the theorem of Serre [6],
also called “GAGA principle” :

2.1. Theorem : The functor E — E®" which to a coherent sheaf of Ox-modules
associates the corresponding coherent sheaf of Oﬁ("-vmodules, for the usual topology, via

the continuous map of schemes X®™ — X?*' is an equivalence of category.

It follows that for algebraic X we can identify Pic X with the group of analytic line
bundles, which is itself isomorphic to H!(X,0%*). (As before to a line bundle corre-
sponds the class of the Cech cocycle of its transition functions, constructed from a set of
trivializations). The cohomology is now understood in the usual topology. In the sequel,
we will use Ox, 0% for O, O%** and work with the usual topology. For the cohomology

of coherent sheaves, the confusion is allowed by Serre’s theorem.

The second main tool is the exponential exact sequence.

2.2. 05 7% ox & O% — 0, which shows that O% is quasi isomorphic up to a

shift to the complex: Z(1) : 0 — Z uy Ox — 0, where Ox is put in degree one. This
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complex is the first Deligne complex and its cohomology H%(X,Z(1)) ~ H'(O%) is the
first Deligne cohomology group. The generalization of it will be explained by Jacob Murre.
There is an obvious map of complexes : Z(1) — Z, which has for kernel the sheaf Ox
concentrated in degree one. So one can associate to a line bundle L its Deligne-Chern
class CP(L) € HY(0%) ~ H}(X,Z(1)) and its topological Chern class ¢1(L) € H*(X, Z).
Using the exponential exact sequence, ¢;(L) can also be represented as a Cech cocycle
cijk = 7=(loggij + loggjr + loggsi) € Z, and it follows that its image in H*(X,C)
identifies, via the De Rham isomorphisms, to the class of the closed two form :

2.3. wy, = 51— 80log h(c), where h is a hermitian metric on L and o is a local nowhere zero
holomorphic section of L on which wy, actually does not depend. This is the Chern-Weil

construction of the first Chern class.

From the formula 2,3 it is not difficult to show that ¢1(L) is also Poincaré dual of the
homology class £n;[D;] € Han—2(X,Z) of the divisor £n;D; of any meromorphic section
of L (Lelong formula).

If one considers the long exact sequence associated to 2.2, one finds that the following

is exact at the middle :
2.4. HY(0%) 3 H*(X,1) - H*(X,0x), which gives :

2.5. The Lefschetz theorem on (1,1) classes :

An integral class @ € H%(X,Z) is the first Chern class of a Line bundle (or the Poincaré
dual of the homology class of a Weil divisor) if and only if its (0,2) component vanishes.

Here we have identified the map H?(X,Z) — H?(X,0x) to the composite map
H*(X,7) — H*X,C) — H*X,0Ox) , and the last map is described in the
DeRham/Dolbeault cohomology as the map {d-closed 2-form w} — {(0,2) component of
w, which is 8-closed}. Using the Hodge decomposition H%(X,C) = H20 @ H' @ H*2, this
map is also the projection on the last factor, and its kernel is F1H%(X,C) := H*%(X) @
HV(X). Finally using the fact that under complex conjugation H29(X) = H%2(X) one
sees that a class a € H*(X,Z) N F*H?(X) is in fact in Hg'(X) = { classes of real closed
2-forms of type (1,1)}, as is expected from formula 2.3.

Returning to the beginning of the long exact sequence associated to 2.2, one sees that
the kernel of the map ¢; is the quotient H'(Ox)/H'(X,Z). What one learns then from
the Hodge theory is the following : ‘
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One has a decomposition H!(X,C) = H'® ¢ H%!, where Ho!' ~ HY(Ox) ~
HU9(X) = H%(Qx). It follows that the composite H*(X,R) — H(X,C) — H®(X) is
an isomorphism of real vector spaces, and that H!(X,Z) projects to a lattice in H*(Ox).

The quotient H!(Ox)/H!(X,Z) is then a complex torus, with the complex structure given
by the complex structure on its tangent space H!(Ox). It is in fact an algebraic torus (or
an abelian variety) : As explained in [4], a complex torus T = C™ /T is algebraic if one has
a skew symmetric form wz on I, whose extension wg to C™ =T ® R is of type (1,1) for
the complex structure on C™, and whose associated sesquilinear form h is positive definite
on C", where h(X, X) = —w(X,iX).

Equivalently, one can consider the complexification wc of w to a form on I' ® C, use

the splitting ' ® C ~ I'10 T%1 given by the complex structure on T and define h on I'*-?
by

2.6. ho(X,X) = £ we(X,X).
By 2.5, w € A’H,(T,Z)* ~ H*(T,Z) will then be the class of a line bundle, which is
ample by the positivity of h.

To construct such a polarization on T = HY(Ox)/H*(X,Z), one fixes a € H*(X,Z)
the Chern class of an ample line bundle on X, and one defines :

27 wiled) =~ [yar oAy

Using the previous notations, we have I' ® C = H!(X, C) with I'"0 ~ H}(Ox).

The fact that wg is of type (1,1) on T is equivalent to the vanishing of wg g1 (o)
which is clear by we(%!,¥%!) = = [y a" ! A ¥ A%l and a7 A @91 A%l =0 on
X.

The positivity condition reduces then to the statement that he(p®, @%1) =
—% fX a1 A0l /\W = % fX a™ At A0 is strictly positive when POl = 99_13 isa
non-zero element in H1(Ox). This is a particular case of the “Hodge-Riemann bilinear re-
lations” which will be explained in the next lecture. In fact the positivity of ho(9%1,0%1)
can be checked directly by a reduction to the case of a curve : a being the class of an
ample line bundle on X, there is a smooth curve C C X, such that Na™™! is the Poincaré

dual of the homology class of C, for some integer N > 0. Then :

2.8. £ [ a0l AN = %% [ 9" A% and it is easy to check that 1p%! A p®lisa

positive 2-form on C (with respect to the orientation given by its complex structure).



158

3. The fact that T is an abelian variety will now imply that it is isomorphic to Pic® X. It
is clear that algebraically equivalent line bundles are topologically equivalent, hence have

the same c¢;. So points of Pic® X correspond to points in T.

On the other hand one can construct a line bundle on T x X called the Poincaré line

bundle, using the Lefschetz theorem on (1,1) classes :

Consider H(T,Z) ® H'(X,Z) € H*T x X,I) in the Kiinneth decomposition. By
definition of T, H!(T,Z) is canonically the dual of H!(X,Z) so we have a natural class
e € H(T x X,1) corresponding to Id € H*(X,Z)* ® H(X,Z).

Next we show that e is of type (1,1) in the Hodge decomposition of H*(T x X).
That is we have to check that e € H(T) ® H*(X) & H*(T) @ H"*(X). But from
T = HY(Ox)/HY(X,Z), we deduce that (1,0)-forms on T identify to linear forms on
H(X,C) which vanish on H%(X) and (0,1)-forms on T identify to linear forms on
HY(X,C) which vanish on H®!(X). If (w;) is a basis for H%(X) , (@:) the conjugate
basis of H%!(X), and (w},&}) the dual basis of H}(X,C)* = H'(T,C) one finds that
e =% w! @u; + L T} ® Wi, where the w}’s vanish on H*!(X) hence are in H*)(T) and
the &*'s vanish on H1%(X) hence are in H»*(T). So e is of type (1,1).

It follows from 2.5 that e = ¢;(£) for some line bundle £ on T x X, which is uniquely
defined up to line bundles with vanishing Chern classes, coming from T and X. L is

uniquely defined if we impose £ = Ox and LIT“ = Or for some fixed point z € X.

l0><X
T is now a smooth connected algebraic variety which parametrizes line bundles on

X viate L; = ﬁl XX By definition of algebraic equivalence £; is then algebraically

equivalent to Ox = Ly. To conclude that T = Pic® X it suffices now to check:

3.1. The map E : T — T defined by E(t) = L, € Ker(e; : PicX — H*(X,Z)) ~ T is the
identity.

3.1. is a very general fact concerning the Abel-Jacobi map and has a generalization
given by the theorem on normal functions. So it may be useful to see the topological

meaning of this statement.

First of all, let us describe in more geometric terms the map Kerc; — H(Ox)/
HY(X,Z) : Coming back to Weil divisors, an element of Kere; is represented by D =
Yn;D; such that Yn;D; is homologous to zero on X. Then if T is a 2n — 1 real chain
such that OI' = In;D;, [, acts on H™"~!(X) and is well defined up to periods [ for
T € Hz,-1(X,Z). So one obtains a point ®(D) in H»"~1(X)*/Hpn—1(X,Z). (& is the
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Abel-Jacobi map for divisors; its careful definition, in particular the fact that fr is well

defined, will be given by M. Green in a more general context).

Now by the Poincaré duality H™»"~1(X)*/Hyn-1(X,Z) ~ H(Ox)/H'(X,Z) = T.
One version of Abel’s theorem is the statement that ®(D) is equal to ¢P(D) € T, via the
last isomorphism. The proof of 3.1 is then immediate. A meromorphic section of £ gives
D C T x X such that the homology class of D is the Poincaré dual of ¢;(£). Fort € T, we
choose a path 4; from 0 to ¢t in T'. Then . éJ% D, gives a 2n—1 chain I'; in X with boundary

D, — Dy, and we have the identification E(t) = fr, € Ho* Y X)*/Hyn1(X,Z) > T.

It follows that the map E. : Hi(T,Z) — H1(T,Z) ~ Ha,_1(X,Z) induced in homology
by E is described geometrically as v — D, =tl‘:g7 Dy, for v aloop in T. In other words one
has E.(y) = p2-(p}vy N [D]) where p;, p2 are the projections from T’ x X to T and X, and
[D] is the homology class of D. Now [D] is Poincaré dual of ¢;(£), and the identification
of ¢;(L) to Id € H*(T,Z) ® H'(X, 1) gives immediately E. = Idy,(1,7). Hence E = Idr.
(It is not difficult to show that E is additive).

It follows now that the map ¢; embeds Pic X/ Pic’ X in the finitely generated group
H?(X,Z). The group Num X identifies to the torsion of H?(X,Z) for the following reason:
by 2.5, torsion classes are first Chern classes of line bundles, and if a = ¢;(L) one has for
C C X,dLic = [,a =0for a € Tors H*(X,Z). So we have the inclusion Tors H%(X,Z) C
Num X. The converse uses the weak Lefschetz theorem and the Hodge index theorem,
which will be explained in the next lecture : the first one will imply that if @ = ¢1(L)
is a non-torsion class in H2(X,Z), for a surface S C X, a complete intersection of ample
divisors, as = c1(L s) is a non-torsion class in H%(S,Z). The second one will imply that
the intersection form of H?(S,Z)/Torsion restricted to the set of divisor classes is non

degenerate. Hence there is a curve C C S such that d°Ljc # 0.
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Lecture two : Topology and Hodge theory

0. In this lecture, we describe the consequences of the Hodge theory on the topology of
algebraic varieties. The most important are the Lefschetz decomposition and the Hodge
index theorem, or more generally, the Hodge Riemann bilinear relations, which lead to the

notion of polarized Hodge structure.

From the point of view of topology, the weak Lefschetz theorem shows that the coho-
mology of a complex projective variety X of dimension n differs from the cohomology of

its hyperplane section Y only in degrees n and n — 1.

This suggests that working inductively on the dimension, one has only to study the
primitive middle dimensional cohomology of X and Y to understand its relationship with
the theory of algebraic cycles. However, excepted for the case of line bundles, the weak

Lefschetz theorem has no direct analogue at the level of algebraic cycles.

The weak Lefschetz theorem has a more precise version given by the Lefschetz decom-
position, which is proved by the Hodge theory, despite of its algebraic flavour. Interpre-
tation of it in terms of motives is the contents of one of the standard conjectures [3]. We
begin with the Morse theoretic proof of the weak Lefschetz theorem [4], and explain how
the hard Lefschetz theorem follows then from the Hodge-Riemann bilinear relations. For

the Lefschetz decomposition and polarizations on Hodge structures we follow [5].

1. Let U C CV be a smooth complex analytic subvariety of dimension n. Let <,> be the
standard hermitian inner product on CN Then for a general point 0 € CV, the function
fo : U — R defined by fo(X) <0.7: 0m> is a Morse function on U, that is an exhaustion
function with only one non degenerate critical point for each critical value. The Morse
theory says that for each critical point zg of such a function f, such that Hess,, f has index
k, the set Ug(zo)4e := {2 € U/ f(2) < f(z0) + €}, for small ¢, is obtained from Ug(z,)~e by
glueing a k-disk on a k — 1 sphere contained in Ug(z4)—e

Now we have the following (cf. [4]) :

1.1. Lemma : If f = f; is the squared distance function with respect to a hermitian

metric on C¥, the index k of any non degenerate critical point of fy satisfies :

k <n=dimcU.

From this one deduces :
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1.2. Theorem : An affine variety of complex dimension n has the homotopy type of a

CW-complex of real dimension < n.

As an immediate consequence, one obtains the following vanishing theorems :

1.3. Corollary : Let U be an affine variety of dimension n. Then Hx(U,Z) = 0 =
H¥U,Z) for k > n.

Now, if X C PY is a smooth projective variety of dimension n and ¥ = PN-1nX is a
smooth hyperplane section, U := X\Y is an affine variety of dimension n,
U c PN\PN-1 = CVN_ and the Poincaré duality says that Hx(U,Z) = H*"~%(X,Y,Z).
The long exact sequence of relative cohomology for the pair (X,Y’) and the corollary 1.3

now imply :

1.4. The weak Lefschetz theorem : The inclusion j : ¥ — X induces isomorphisms
J*: H¥(X,21) - H*(Y,Z) for k < n —1 and an injection j* : H*"1(X,Z) — H*"1(Y,Z).

Let w € H?*(X,Z) be the Poincaré dual of the homology class of ¥ C X. Us-
ing Poincaré duality on X and Y, one obtains j. : H*(Y) — H¥+?(X), dual of j* :
Hz""‘“’2(X)—>H2"'k"2(Y).

By the definition of w it is then immediate that L = Lx := j,j* : H¥(X) — HF%(X)
is equal to the cup-product with w.

Identifying a neighbourhood of ¥ in X with a neighbourhood of the zero section of
its normal bundle N in X, w is also identified with the Thom class of IV, and it is then a
standard fact that Ly := j*j, : H¥(Y) — H**2(Y) is equal to the cup-product with wyy.

Now we have :

1.5. The hard Lefschetz theorem : For k < n, L** : H¥(X,Q) — H>™*(X,Q) is

an isomorphism.

By the weak Lefschetz theorem and induction on the dimension it suffices to check it
for k = n—1, as shown by the following diagram where both vertical maps are isomorphisms
fork<n-2:
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n—k

HYX,Q) —— H™X,Q)
il T

Hk(Y,Q) —_— HZn—k—z(Y,Q)
Lrok-t

For k = n — 1, we still have the commutative diagram :

H"_I(X', Q) i’ H"'H(_X, Q)
il T

HY(Y,Q) =~ H"(Y,Q)

where j* is injective and its dual j, is surjective. So via j*, the kernel of L identifies with
the kernel of the intersection form <>y on H*~1(Y), restricted to Im j* = (Ker j.)*. We
have Ker j, C Ker(Ly : H"™ (Y, Q) — H"*!(Y,Q)) and Ker j« is a sub-Hodge structure
of Ker Ly. The Hodge-Riemann bilinear relations to be explained below imply :

1.6. On Ker Ly N HP9(Y), p+ g = n — 1, the hermitian form < p,% >g=1""7 fY OAY

is non degenerate of a definite sign.

In particular it remains non degenerate of a definite sign on Ker j. N H?4(Y), and it
follows that <>y is non degenerate on Ker j,, hence on (Ker j,)*. So L: H*(X,Q) —

H™+1(X,Q) is injective, hence an isomorphism.

If one defines the primitive cohomology H¥(X)°, for k < n as the kernel of L"~#+1 :

H*(X,Q) — H*»~*+2(X, Q) the hard Lefschetz theorem implies now :

1.7. Lefschetz decomposition : The natural map ¢ = @LF : 8, H™=2(X)° —
m—k<n
H™(X) is an isomorphism.
Notice that L¥ : H™2F(X)® — H™(X) is a morphism of Hodge structure, so the

Lefschetz decomposition is in fact a decomposition of H™(X, Q) into a direct sum of

primitive sub-Hodge structures.
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Sketch of proof of 1.7. By the hard Lefschetz theorem, one may assume that m < n.
Now one works by induction on m. If 1.7 is known for m — 2, one considers Lr—mtl
H™(X) — H2=m™+2(X). Its kernel is by definition H™(X)°. Now L"~™+%: H™"3(X) —
H2"=m+2(X) is an isomorphism, which implies that L"~™*1 is surjective and that H™(X)
~ H™(X)* @ LH™ %(X), so 1.7 is also true for m, by injectivity of L : H™ *(X) —
H™(X).

The projection from H™(X) to H™2(X) given by the isomorphism H™(X) =~
H™(X)® @ LH™?(X) is induced up to coefficient by the operator A of Hodge theory,
which acts on forms (see §2). It is not known if it can be represented by an algebraic
cycle of codimension n — 1 in X x X (acting on H*(X) via Poincaré duality and Kiinneth

decomposition), although this is obviously the case for the operator L.

2. We turn now to the Hodge theoretic approach to the Lefschetz theorems. The weak and
hard Lefschetz theorems will be obtained as a consequence of the Lefschetz decomposition,

which in Kéahler geometry exists at the level of forms.

Let X be a Kahler manifold of dimension n. Let w be the K&hler form, and let
L : A¥(X) — A¥+?(X) be the pointwise operator of multiplication by w on complex k-forms
on X. One defines the Hodge operator * : AF(X) — A2 *(X) by (p,) Vol = ¢ A %y,

where Vol = “’n—': and (,) is the induced pointwise hermitian metric on A*(X).

Let A = *~1L*. Then obviously A is the formal adjoint of L for the hermitian metric
<,> defined on A¥(X) by < ¢,¥ >= [},(,%) Vol.

One says that a form ¢ € A¥(X) is primitive if it satisfies A = 0.

One has then the following result of hermitian geometry, which comes from the com-
putation of the commutator [L, A] as a number operator ([L, A] acts as multiplication by

p — n on p-forms).

2.1. Proposition : Any k-form ¢ € A¥(X) can be written uniquely as ¢ = Z
r>Sup(k—n,0)
L"pk_or where @p—2, is primitive of degree k — 2r. There exists non commutative poly-

nomials Py (L, A) with rational coefficients such that ¢r—a, = Pi (L, A)(p).
The existence of the Lefschetz decomposition 1.7 follows now from the following facts:
2.2. i) Let ¢ € A¥(X), k < n; then Ay = 0 is equivalent to L" "%ty = 0.

ii) The operators L and A commute with the Laplacian operator A.
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ii)} implies that if ¢ is harmonic its primitive components ¢i_2, are also harmonic,
so 2.1 and 2.2 i) imply the surjectivity in 1.7. The injectivity follows also from 2.1 :
Suppose 0 = EL @r_ay in H¥(X), with LP~*2m+1p, o0 = 0 in H2"~k+2r+2(X). One
may assume that @r_o, is harmonic so L"pk—2, is also harmonic, and the equalities 0 =
TL g gr, 0= LPk+2r+1lp, o hold at the level of forms. By 2.2 i) and unicity in 2.1,

one deduces g2y = 0.

2.3. On the forms ¢ € A¥(X), we have defined the hermitian inner product < ¢,% >=
fx(go,tﬁ) Vol = fX @ A *p. For a non zero form ¢, one has < ¢, > > 0. One deduces

from this :
2.4. Hodge-Riemann bilinear relations : Let Qi(p, %) = (=1)F* =12 [ poApAw™Tk,
for @, € H¥(X), k <n. Then :

) Qulp, ) = 0for p € HPI(X),$ € HP ¥ (X) and (¢',¢) # (g, P)-

) (0= Qu(p, ) = (~DHE-D/2{0=0 [ o AT AW > 0, for p € HM(X), ¢ # 0,

and ¢ primitive.

This follows from the following fact of hermitian geometry :

2.5. If ¢ € AP9(X) is primitive (p + ¢ = k < n), one has the equality xp = (—1)kk-1)/2

i(p—a) (n—l-k)!Ln*k‘f_o“

Of course, to deduce 2.4 of 2.5, one uses the fact that if ¢ is a primitive cohomology

class, its harmonic representative is a primitive form, by 2.2 ii).
The consequences of 2.4 depend on the parity of & :

A) If k is even, 2.4 describes completely the indices of the real symmetric intersection
forms Q on H*(X). In particular if n is even one can deduce from 2.4 and 1.7 (cf. 1],
p. 78) the following :

2.6. Hodge index theorem : The topological intersection form Q(p,9) = fX @A on
H™(X) for n even has for index i(X) = Z(—l)“h“’b.
(a,b)
Let us also mention the following consequence of 2.4, which is very important for the

consistency of the Hodge conjecture, when applied to the monodromy groups.

2.7. Let X be an algebraic variety and w the class of an ample line bundle on X. For each
integer p consider Hdg?P(X) := H?(X,Z) 0 H»?(X). Then the group of automorphisms
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of H¥(X,7) preserving the forms Qj, the operator L and the subspace Hdg*(X) C
H?(X,Z) acts as a finite group on Hdg?(X).

B) When k is odd, as explained in the first lecture, one can interpret 2.4 as the posi-
tivity condition necessary to polarize certain complex tori constructed from the Hodge
decomposition on H*(X)?. These tori are defined as the quotients F/H*(X,Z)° where
F = Z HP9(X)® is considered as a quotient of H¥(X,C)?. They are the Weil

pHe=k
p=q+1(4)
intermediate jacobians, which unfortunately do not in general vary holomorphically with

X (2D

In contrast, the Griffiths intermediate jacobians (see M. Green’s lectures) vary holo-
morphically with X, but are only complex tori, having a line bundle with non degenerate
indefinite curvature, the signs of which are determined by 2.4. These two tori contain
the “algebraic part of the intermediate jacobian” which is the complex torus L&¢+1 /L2,
where I C H**(X,Z)° is maximal to satisfy : Lg = Lg N FIPIHZH(X,C)'o
Lc N FiH1H26+1( X, C)0. This torus is an abelian variety polarized by Q2¢41 according
to 2.4 and (Lecture one, 2.6 - 2.7).

3. To conclude this lecture we mention the following a‘pplic‘ations of the Lefschetz decom-

position and the Hodge-Riemann bilinear relations :

The first one is due to Deligne [1] :

3.1. Theorem : Let f: X — B be a smooth and projective morphism; then the Leray

spectral sequence
HP(Rf.C) = HPTY(X,C) degenerates at E,.

The point is that a relatively ample line bundle will give a flat Lefschetz decomposition on
the flat bundle R?f,C. The operators L* : RYf.C — RI%2*f,C are compatible with ds,
and it suffices to check the vanishing of d; on the primitive cohomology : but if n is the

dimension of the fibers, one has the following diagram :

n-q+1

H(RIA.CY) S, Hp(RIn-etrfC)

| | ¢

Hp+2(Rq"1f*C) Lo Hp+2(R2n—q+1f*C)
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Now the first L™™¢%! is zero and the second one is an isomorphism, which implies that the
first d; is zero. The vanishing of the other d,’s is proved in the same way.

~ For the second application, let us say that a Hodge structure over Q(H&, H"E =p+?_k
HP1) is. polarized if there is a bilinear form @ on H& symmetric for k even, skew for k

odd, defined over Q and satisfying the conditions 2.4.

Then one has :

3.2. Let H be a polarized Hodge structure and let L C H be a sub-Hodge structure.
Then L is a direct factor in H, i.e. there exists a sub-Hodge structure L' C H such that
LoL' =H.

It suffices to note that @ is non degenerate on Lg because of the definiteness of
iP=9Q(p,%) on HPY and that L+ := L' is also a sub-Hodge structure of H by the first

condition in 2.4.
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Lecture 3 : Noether-Lefschetz loci

0. This lecture is devoted to the Noether-Lefschetz loci associated with a variation of
Hodge structure, that is the loci where an integral class is a Hodge class. The name is
borrowed from the case of a variation of Hodge structure given by the H? of a family of
varieties, where by the Lefschetz theorem on (1,1) classes these loci can also be defined
as the sets of points in the family corresponding to varieties having a line bundle with
prescribed first Chern class. It also refers to the celebrated Noether-Lefschetz theorem,
proved rigorously by Lefschetz, which says that a general surface in P3? of degree at least

four carries no line bundle other than the multiples of O(1).

For Hodge structures of higher degree, such interpretation depends on the Hodge
conjecture, and conversely one could hope that the compared study of the deformation of
subschemes and the deformation of the associated Hodge classes would lead to a proof of
the “variational Hodge conjecture” [7]. In fact, excepted for particular situations (special
cycles in hypersurfaces, Lagrangian subvarieties in symplectic manifolds) this study is
very difficult to carry out, and the only general criterion, the notion of semi-regularity
due to Bloch [1], subsequently refined by Ran [6], cannot be checked in general. (That is,
general principles do not give the existence of semi-regular representative of a Hodge class,
even modulo an ample class, excepted in the case of divisors). We start with the Hodge
theoretic local description of the Noether-Lefschetz loci, and continue with the geometric
description of the deformation theory of the Hodge class associated to a subscheme [1]. We
also introduce some infinitesimal invariants of a Hodge class and explain its relations with
geometry, following [2]. Finally, we turn to the case of divisors, explain shortly some recent
results in Noether-Lefschetz theory for surfaces in P3, and conclude with the proof of the
infinitesimal criterion of M. Green ([3], [4]) which will be used as an existence criterion for

one cycles in threefolds in lecture 8.

1. Let U be a connected and simply connected complex space and let H3*, H2¥, FtH?*
be a variation of Hodge structure on U. So we have H?* = H%k ® Oy, a flat bundle with
the Gauss-Manin connection V : H2* — H2F @ Qp, such that VH%" = 0, and F*H?* is
a decreasing filtration by holomorphic subbundles satisfying VF‘H?* ¢ F=IH?* @ Qu.
Now the local system H %"' is trivial on U, so one can identify it with the group of its global

sections and with its fiber at any point (notation A — A, t € U).
One says that A\, € Hﬂ‘t) is a Hodge class if it belongs to F'“H(gt’;.

Forany A € H¥ := H}* ®C, one defines Uy CU by Ux = {t e U/ X, € F‘H?t")} One
has then :
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1.1. Lemma : Uy is analytic and can be defined locally by h*¥~1:¥+1 holomorphic equa-
tions, where ¥ 1K+l = pank HF-1h+1 HA-1LE+1 - ph=1) php2k,

The fact that U is analytic is ciear, because U) is defined by the vanishing of the
projection of the flat, hence holomorphic section A € H2* in the quotient H2*/FEH?k,

To prove the second statement, one uses transversality : One chooses G ¢ H2F such
that G ® F¥~1H2* = H2*, One has ther a holomorphic projection = : H2* — Fk-132k,
Let 0 € U and let U} be defined in a neighbourhood of 0 by the vanishing of m(}) in the
quotient %=1 /F¥{2k In U}, X belongs to COF*H* so A= A+Xa, A\ € FFH2F X € 6.

Now G has an induced connection Vg = ng o V, and by transversality, one finds on
Uy :
Vi € FF ' H* @ Qui, VA=0= Vgl =0.

Because A = 0 at 0, it follows that A, = 0 on a neighbourhood of 0 in U}, hence that

U} = U, in this neighbourhood .

Now, if one wants to extend these definitions to the case of a non simply connected
U and preserve the fact that the Uy are analytic, one has to work with polarized Hodge
structures and restrict the definition to the case of an integral class A. Otherwise, it could
happen that the monodromy on X along Uy produces infinitely many new classes A’ in such
a way that the analytic space Uy has in fact infinitely many branches U} at one point. This
situation is excluded for X integral, and for polarized Hodge structures, by the finiteness

of the monodromy action on the set of Hodge classes, mentioned in lecture 2.

1.2. Now we want to describe at finite orders near 0 the subscheme Uy. Suppose we have a
map Sm ;—: U, where S,, = SpecC[¢]/e™, such that Jm(0) =0, and let S C S j::—1 U
be an extension of j to a map with value in U. Then jn41{Sm+1) C Un if and only if the
fat class A remains in F¥H2* on S™+1. Now let X be a holomorphic section of 7% 1 F kp(2k
extending ) (by assumption, on Sy, A is a section of F' kH2%). Then because A is flat on Sm,
VX = e™1de p where p isin F"‘I'H%") by transversality. A can be modified by an arbitrary
section of the form €™, hence V) can be modified by an arbitrary element of the form
€™ 1de ¢, where ¢ € F""H%(f). So the image Om4+1(A) of @ in Fk—lH%‘)/FkH%‘) = 'Hg_l’kﬂ
does not depend on }, and one has : jm41(Smt1) C Us <= there exists an extension

3 € ji, 4y F*H?* which is flat <= Omi1(X) = 0 in Hyp; ¥+

In particular, for m = 1, we have described the Zariski tangent space of Uyat 0:
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1.3. Lemma : TUyq) = Ker V(A¥F), where V : ’H:‘&;‘ — Hom(TU(o),H::O')l’k“) is the

linear map constructed by transversality from the Gauss-Manin connection :

Av 2 Fk+1H2k - kaHZk ® QU

l l

V. FEpk o PRI ROy

l l

vV : Hk,k — Hk—l,k-H ® QU

and Ak ¢ ’Hf(;;"' is the projection of the class A, which is by assumption in FRHE at 0,

The lemma follows from the equality V(X)(j2,8/¢) = 02()), which is clear by the

description of 02()) given above. Finally, from lemmas 1.1 and 1.3, we deduce :

1.4. Lemma : If V()\%*) is surjective at 0 € Uy, U, is smooth of codimension h¥~1:F+1
at 0.

2. The case where ) is the Hodge class of subvariety :

2.1. We assume now that we have a family of smooth complex varieties X’ - U, and we
consider the associated variation of Hodge structures : H3* = R*r,Z, F ¢JFiHI2E =
R*—tr, (04 Ju)- Let Zo C Xo be a smooth subvariety (Bloch works with £.c.i subschemes).
Let A € H**(X,y,Z) N H**(X,,Z) be the associated Hodge class. We want to compare
the deformation theory of the pair (Zp, Xo) and the subscheme Uy defined in 1). Let us

assume that for S,,, — U, as in 1.2, we could extend Z, to a subvariety

Jm

D — X

T2\ ) T
Sm

then this implies that j(Sm) C Ua; to see this we have to show that the flat extension A,
of Aisin F"’Hz"'lsm. But if n is the dimension of the fibers X, H?* is dual of H#?"~2* and
it is easy to see that the flat extension A, of A, as an element of H2"~?¥* is given by the
restriction map ’R,Z"‘”m(ﬂi,m/sm) — R (Qy /5n) = R *1(K 2, /50) = OSpm)
which implies clearly that it annihilates F"'k“'H?"_“]Sm = RQ""Qkﬂ,F"'k“"l(Q‘,m/sm ).
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2.2. If we have an extension jm+1 : S™! — U of j,, as in 1) we have now the obstruction
Om+1(A) € 'H" ~LE+1 constructed in 1.2, and the obstruction 0! tes1(Zm) € HY(Nz,) to
extend Z,, to a subvanety Zm+1 C Xpmt1, where Nz, is the normal bundle of Zg in Xj.

The obstruction 0}, ;(Zm) can be defined as the extension class of the exact sequence :

0— Og, —-)J#{'"“@Ozo = Jim ® 0z, —0

I
N3

where J,,'f""“,Jn’f"' are ideal sheaves of Z, in X,4+1 and X, respectively. More
analytically the deformation Xp,41 can be represented by a form a = Yy €'a; where
a; € AO’I(T)I(’;)), (that is a; is a (0,1) form on X, with value in the bundle T)l(’: of
(1,0) vector fields), and a has to satisfy up to order m, the integrability condition :
(*) 8a — [a,a) = 0. Because Z, C Xm is analytic, we may assume that up to order
m—1,a), isin A°'1(Zd)(Té;0). Then (*) together with the fact that ag = 0 shows that
the image of ap),, in A%1(Z0)(Nz,) is 8 closed, hence has a class in H*(Nz,), which gives
the obstruction 0, ;(Zm).

To compare 0/, ,,(Zn) and 0m41()), Bloch introduces the semi-regularity map v :
HY(Ng,) = H*1(Q5 1) = l’ 1 **+1 which is defined as the dual of the composite :
2.2.1.  H* k- 1(9" k+1y , gr-k- 1(20,9*1 M) = H Y20, Kz, ® N3,)
where the last map is induced by the exact sequence : 0 — N3 — Qx,,, — 2z, = 0,
which gives to the n — k + 1** power :

Q:‘\:o'k“ — Kz, @ Nz,.

Bloch shows : [1].

2.3. Theorem : One has the relation Opm1(A) = Y(Ohpt1(Zm)) in HE1EH1(Xo).

The proof of Bloch is purely algebraic : an analytic proof for smooth Zg can be
sketched as follows : as an element of H*~¥+1,»=k=1(X)* the obstruction Om+1(}) has
the following description : Let ¢ € Fr F1H2"=2¥(X,) and let & = S0 €l represents
a holomorphic section of jy, 1 (F n—k+192n=2kY extending ¢, where @i are 2n — 2k closed
forms on Xo, such that Se¢; is in F7k+1427=2F up to order m for the complex structure

defined by a (cf. 2.2); then

2.3.1. Om+1(A)(p) = on Om-
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Now using the fact that a = ¢ €'a; with a;), € A%Y(Z, )(T}":’) for i < m, one finds
that ¢;,, =0 for i < m and that :

2.3.2. Pmlzy = fa,,,(<po)120.
It is then clear by 2.3.1,2.3.2, 2.2.1 and the description of 07, , ,(Zm) as the projection
°f.a"ilz3 that (Om+1(A)(p) = on Om = fza Int apm(@m) =< 7*(®), Opmy1(Zm) >, which is

the contents of the theorem.

As a consequence of theorem 2.3 one has now :

2.4. Theorem : If v is injective, the locus U, coincide schematically with the image in

U of the space of deformations of the pair (Zo, Xo).
One says that Z is semi-regular in this case, because this is the generalization of

the notion of regularity (H!(Nz,) = 0) which implies the stability of Zo under small

deformations of Xg [5].

2.5. We want to explain now the construction of invariants of Hodge classes [2], which
are an attempt to recover information on the ideal of a subscheme from the infinitesimal

behaviour of its Hodge class.

Consider Zy C Xy, a subvariety of codimension k. Associated to a (maybe infinitesi-
mal) deformation X — U of Xj, we have the map ¢ = @, : TU(;g) — ® Hom(H?4(X,),
HP~19%1( X4)) describing the infinitesimal variation of Hodge structure of Xo. These maps
can be iterated and by the flatness of the Gauss-Manin connection, we obtain that the £
iterations ¢p(U1) 0 ... 0 ppye—1(Up) : HPTE1,2n=2k=p=+1 () — FP=12n=2k=p+1(X) s

symmetric in Uy,...,U;. So we obtain in particular a map :
Pt HrRHn—k={(X 0y s Hom(STU gy, H* ¥ 7¥(Xo)).
The invariants that Griffiths and Harris associate to A = [2] € H*¥(X,) is then :

2.5.1, Hr=kHen=k=¢(_)\) = { € Hm=k+tn=k={(X()IVV € STUq), bt (w)(V).A = 0}.

Now the relation with the geometry is given by :

2.6. Lemma : The image of H* ¥4 Q7%+ ® Iz,) in H*"*~4(Q%,**¢) is contained in
Hn—k-{-l,n—k—l(_/\).

The lemma follows from the description of #¢(w)(V) as the interior product of w by

the image of V = U; ® ... ® Up in H4(A‘Tx,), where we use the Kodaira-Spencer map
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TUpy — H'(Tx,) : It is clear then that for w € H""""(Q}:"“ ® Iz,),Ye(w)(V) €
H ""k(Q}:k ® Iz,) which integrates to zero on Zj.

One can find examples of cycles in hypersurfaces for which equality holds in 2.6.

In the case of a class A € H?(S,Z) N HY!(S) on a surface S, the space H%%(=X) C
HY(K 5>) is made of sections of the canonical bundle and it was believed for a time that for
surfaces in P3, if one has a reduced component S of the Noether-Lefschetz locus, along
which the space H2%(—)) is non zero, the class A is supported on the divisor of a form w
in H>%(—)). This was proved in [8] for degree less than seven, and disproved in general
in [9).

3. We finish this lecture with the proof of a very important lemma, due to M. Green,
which gives an infinitesimal and purely algebraic criterion for the existence and density of
the Noether-Lefschetz locus for divisors. We will work in the geometric setting although

the proof works for any VHS of weight two.

So let S 5 U be a family of smooth projective varieties parametrized by a smooth

and connected basis U, and consider the associated variation of Hodge structure : H3 =
R?n,1,F*H? = H*® C F'H? C H* = H} @ Oy, with HV! = P2 FPHE, HO? =
H?/F'H?, and the corresponding infinitesimal variation of Hodge structure :

V: FPH? - F'H’eQ
! l
V: F'H? - H!Q@Qu
3.1. | |
H - HMEQ

l l

0 0

<

For A € H:(')l) = H¥(Qg,), we have the map :

V(X) : TU) = Hygy = H*(Os,).

We define the C* bundle Hll?’l as the real part of the bundle H''; more precisely, let
HE = HE ® CF(U) and Hy' = C®F'H* N HE. Then Hy' is the sheaf of sections of
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the real vector bundle on U with fiber H,l?‘l(St) = HV1(S,) N H?(S:,R). We shall use the

notation H'lfl for the total space of this vector bundle.

We have then :

3.2. Lemma (M. Green) : Assume that there exists A\ € H'(fs,) such that v :
TUe) — H*(Os,) is surjective. Then the set {(t,A)/A € H*(S:,Q) N H1(S:)} is dense
in H:"l.

Proof : The assumption is a Zariski open property on the algebraic vector bundle H?
on U so if it satisfied at 0, it will also be satisfied in a Zariski open set of U; furthermore
if it is satisfied by A € H¥(fg,) it is also satisfied by A in a Zariski open dense subset of
Hll"l(So), because H!(Sp) = H'lq’l(So) ® C. So we have only to prove :

3.2.1. Let )\ ¢ H:?’l(So), satisfying the condition : V() : TUy — H?(Os,) is surjec-
tive; then there exists a sequence (tn, An) with A\, € H%(S,,Q) N H?(S,), and (n, An)
converges to (0, A) in Hé’l.

In a neighbourhood of 0, the local system H% is trivial, hence we have a flat trivial-

ization of the bundle H2. this gives a diagram of holomorphic maps :

FE? B gYs, 0
N /P
H2

where F!H? is the total space of F*H?, and H? is the total space of H?. P, gives an iso-
morphism H2(S;, C) ~ H2(Sy, C) which preserves the rational structure, and by definition
of a flat trivialization the Gauss-Manin connection is described by P(Vo) = dP(o) for a

section o : U — H? of the bundle H2.

It follows from this and the definition of ¥V, that the condition “V()) surjective ” is
equivalent to : The map P is a submersion at A € F' H, (20) = F1H?(S;). Now A being real,
Py()) € H%(So,R), so it can be approximated by X, € H?(50,Q). P, being submersive
at A, one can find t,, such that lgxorol t, = 0, and X,, € FIH(Zt“),Lig. Xn = A, such that
Pi(Xn) = A, Then X, € FYH?(S,,) N H*(S:,,Q), because the flat trivialization preserves

the rational structure. So the lemma is proved.

3.3. One should notice that this criterion does not work for higher weight variation

of Hodge structures H3*, with F¥+212* £ 0. The point is that one can analogously
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construct the holomorphic map P; : F¥H?¥ — H?"(X,,C) but by transversality it will
not be submersive at any point when F¥+2#2 £ 0.

This suggests that the Noether-Lefschetz locus is not dense in general, and may be
not dense, for example, for four dimensional hypersurfaces of P® of degree at least six
(h*° #°0), but I don’t know how to prove this.
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Lecture 4. Monodromy

In this lecture we describe the theory of Lefschetz degenerations from the point of view
of topology and Hodge theory. This tlﬁeory is fully understood and modern developments
of (mixed) Hodge theory have produced more general results concerning the degenerations
of algebraic varieties. In fact the degenerations that have been considered to give a unified
treatment of monodromy and asymptotic Hodge theory are the degenerations to a normal
crossing variety, which are, by the semi-stable reduction theorem of Mumford, the most
general ones, up to base change. We refer to [10] for an efficient survey of the general

results.

However, for the applications we have in mind, the Lefschetz theory has the advantage
of giving an explicit description of the middle homology of a variety and of the monodromy
action on the middle homology of its hyperplane sections. Furthermore, normal crossing va-
rieties which have been used to give supplementary results in the theory of algebraic cycles
([4], [5], [12]) don’t have triple intersections, so behave locally as a Lefschetz degeneration
with parameters. We refer to [4] for a full treatment of the generalized Picard-Lefschetz

formula and of the degeneration of Hodge structure in this case.

We begin with the description of the vanishing cycle associated to a node, and sketch
the proof of the Picard-Lefschetz formula. We apply this to the Lefschetz description of
the vanishing homology of X and Y, where ¥ C X is a hyperplane section. We give
then several applications of the Picard-Lefschetz formula. We conclude with a concrete
(but non rigorous) description of the behaviour of the Hodge filtration near a Lefschetz
degeneration, in the spirit of [7], [9], and its relations with algebraic cycles : The limit
Hodge class of the vanishing cycle in even dimension, the generalized intermediate jacobian
and its extension class in odd dimension. We refer to [2], {4] for a rigorous treatment, and

for applications of this last point.

1. Let V C C” be a neighbourhood of 0 and let f : U — C be a holomorphic map, such
that df(z) # 0 for z # 0, and df(0) = 0, but Hessg f := E;,;a_z—a%dzidzj' is a non degenerate
symmetric bilinear form. Then the holomorphic Morse lemma says that shrinking U if

necessary, there exists holomorphic coordinates u; centered at zero such that :

111, f=7%ul

Now we assume that U is a closed ball of radius 1 and that f is given by (1.1.1).
Consider for [t| < 1 and for a choice of v/t the sphere S‘"/tTl = {(u1y.--yun) /
u; = V1 vy, v real, Zof = 1} C Up = {u = (u1,...,ua)/f(u) = t}.
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For t #0, u € Uy, if one writes -\%—u; = z; + 1y;, one has :

Z:L,—y,-l Tziyi=0

1.1.2 UEUt<=> Ea.z-—y 'I'—
i i =Tt

and this represents U; as a disk bundle in the tangent bundle of S\"/El.

1.2. The boundaries of the U,’s over the disk A 3 of radius -;- form a compact C* fibration,
and the U;’s themselves form a fibration into varieties with boundary over the circle S 1=
0A%. One can construct a trivialization of the pull-back U[’M,r] of this last fibration to

[027] boxpio Sy, such that the induced trivialization of the boundaries descend to 8Us%
and extends over the disk A;. The resulting homeomorphism

o: Uy ~ U,

satisfies then : <I>|3U%=Id.

The monodromy along the circle S 3 is the action of the map @ on the pair (U: ,0U ! )-
It is in fact described by the maps :ay : H;.(U: ,0Uy) — HL(UO) where U is the mterlor
set of Us, and «, is defined by : ar(y) = @(v)—7, for v ak- chain with boundary in 0U1

Now the action of @ heing trivial on Hy, the only non trivial ay is a,—1 which neces-
sarily sends the generator of H,— 1(U 1,0U 1 ) (called the transverse cycle and represented
by a fiber of the disk bundle U1 — Si‘/_l) to a multiple of the generator § of Hy _1(U°)

(called the vanishing cycle and represented by the sphere S:‘/"—l) One can check by explicit
computation that the missing coefficient is 1, if one gives compatible orientations of these
generators, using the natural real orientation of the tangent disk bundle Uy. In other

words, we have the local Picard-Lefschetz formula :

1.2.1. an—1(y) = (7, 6)6 where the product (,) is the intersection between Hn_l(U% R 8U%)
and H,—1(U9) given by the orientation above.
2

1.3. Now if we have a family of compact complex varieties X — A such that ¢ is smooth
@

over A*, and X, = ¢~1(0) has only one node at g, that is > behaves as in 1.1 at 2o, one
chooses a neighbourhood U of zg as in 1.1, one assumes that A is small (say A = Ay as in

1.2) so that P v ey is a fibration, and one extends the trivialization (1.2) of Y v Ul
t

‘EA‘} tEA%
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to X\ U U}. Restricting this to 53 and taking the pull-back to [027], we glue this last
t
trivialization with the trivialization of U['O,”], and obtain a map :
: X, ~ X

I
X, 5 X

I
o=

satisfying : ® = Id outside U%.

The action p of @ on H.(X %) is called the monodromy action (of the positive generator
of m1(A*)) and because @ = Id outside U 1 &, — Id clearly factors as :

9 (X1).
HL(X%) exci_:ion HL(U%’ 0U%) :k) HL(U%) inclu‘:ion HL(‘ %)

Finally we have to note that the orientation of U 1 used in 1.2 differs from the complex
orientation by a factor ‘(—1)"(1;_1) coming from the rearrangement of variables in 1.1.2
(i, ¥)icr. w = (Y15- > YnsT1s...,Ta). So if we use intersection on Hn_.l(X%) instead of
the product (,) of 1.2, the Picard-Lefschetz formula now reads :

1.3.1. p(y) = v + (=)~
on the other homology groups.

) < 5,6>6,forye€ Hn_l(X%), the monodromy being trivial

2.

2.1. Returning to the local situation 1.1, 1.2, there is a retraction of teL.i U} on the union

3

of U1 and the “cone over the vanishing cycle” I's := U S’\'/Tl, whichisequalon U 09U
? tefod}] V¢ tea

to the retraction given by the trivialization of the boundaries in 1.2. The boundary of I's
is S’\‘/“%_l because Sy~ is shrinked to a point. In the global situation X — A, we can glue
this retraction with the one given by the trivialization of X\U and we obtain : A retracts
on X% U T, where I's is an n-disk glued on the sphere 5:‘/_%—1 C X%‘

2.2. Suppose now that X is a smooth projective variety of dimension n and (Xt)'el,1 is
a Lefschetz pencil of hypersurfaces, that is X; has at most one node, which is not on the
base locus. Assume X, is smooth, and let X be the blow-up of the base locus X N X .
Then X = X\X‘>° admits a map ¢ to C = P!\co which satisfies locally the assumptions
in 1.3. One fixes a regular value 0 of ¢ and for each critical value ¢; of ¢, one chooses a
path 4; from 0 to t;, in such a way that the v;’s meet only at 0. The plane C retracts on

the union of the 4;’s so by smoothness of  outside UA; (A; a small disk around ¢;), X
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retracts first on @~} (UA; U ;). Each Xa, retracts then on Xpp U T, where t; is the
P gnt

intersection of v; with the dA;, and finally ¢ ~![t;0] is naturally isomorphic to Xg x [t},0].

So- X has the homotopy type of X, with disks T'; glued over spheres Sy ~1 C X, the

images of the spheres Sj; =1 in Xy, via the induced isomorphism Xy ~ Xj.

2.3. It follows that the relative homology H,(X,Xg) is generated by the disks Ty, and
that the kernel of the map H,_1(Xg) — Hp-1(X) is generated by the classes é; of the
spheres 5,77, ‘In fact one can deduce from the hard Lefschetz theorem that this result

remains true for X instead of X, [1] (here one needs the assumption that X is smooth).

2.4. As a corollary of this, and the Picard-Lefschetz formula 1.3, one finds a particular case
of the global invariant cycle theorem proved in general by Deligne [6] using the degeneration

of Leray spectral sequence (lecture 2) and the theory of mixed Hodge structures :

Theorem. In the situation of 2.2, if v € H,—1(Xo, Q) ~ H"1(Xy, Q) is invariant under
the monodromy action p : m (P*\{t1,...,tn},0) — Aut H""}(X,,Q), then 7 is in the
image of the restriction map j*: H* (X, Q) — H" }(X,, Q).

This comes from Im j* = (Kerj.)* =< §; >, and the following consequence of 1.3:
v16; & « is invariant under the monodromy action, generated by the Picard-Lefschetz

reflections v — v+ < v, 6; > §;.

We explain now two applications of the Picard-Lefschetz theory : The first one is :

2.5. The Noether-Lefschetz theorem : Let S be a general surface in P? of degree
d > 4. Then Pic S = Z, generated by Os(1).

One notes first the following : If S is general, the Néron-Severi group of S is globally
invariant under the monodromy action. This holds because a line bundle L on a general
S is defined on the universal surface S — U, where U — V is a finite Galois cover of the
moduli space of S. So the monodromy action on ¢1(L) just exchanges c1(L) with ¢3(L,)
where L. is obtained from L by action of the Galois group of U — V. Now if ¢1(L) is
primitive and non zero, for a Lefschetz pencil of surfaces (St)ieps with So = S, there is a
vanishing cycle §; such that ¢;(L). & # 0 because the intersection form (,) on S is non
degenerate on H2(S)°, generated by the §;’s. So if ¢;(L) # 0, NS(S) ® Q contains one &;
by the Picard-Lefschetz formula. Finally we have :

Sublemma. The monodromy acts transitively on the set of vanishing cycles.
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Admitting this, we see that the hypotheses would imply that N.S(S) ® Q contains all
the §;’s, that is contains H2(S,Q)°. This is absurd if H?>(Os) # 0 (see lecture one), that
is when d > 4.

For the proof of the sublemma, one uses the inclusion of P! into the space
P(H(Ops(d))) = P*. One knows that m;(P*\{t1,...,tn},0} —» 71(P¥\D) where D is
the discriminant hypersurface. D being irreducible it is easy to see that all the v; LoD s
are conjugate in 7; (P*\D) hence in m1(P*\{t1,...,tn},0}) which proves the lemma, using

the Picard-Lefschetz formula.

2.6. The second application can be found in [9] : Let us consider the family & = U of
smooth automorphism free hypersurfaces of degree d in P?™, modulo PGZ action. There
is the associated family of intermediate Jacobians J — U, with sheaf of holomorphic
sections given by J : H*™~1/FmHIm~1 g H%"‘-], where H%m_l = R¥1p. 7, H*™ 1 =
H%m‘l ® Oy and FF¥H?™1 is the Hodge filtration. A normal function v is a section of
J. (In principle, one should impose to it infinitesimal conditions and growth conditions at
the boundary but we don’t need it). We will say that v is flat if it is locally the projection
in J of a flat section ¥ of H?>™~1, By infinitesimal considerations one can show that such

¢ is then unic up to a section of H ;'““1, and this remain true on an tale cover of U.

Now we have :

2.6. Proposition : Let V — U be an tale cover of U and let v be a flat normal function

.
on V. Then v is a torsion section of 7.

Proof : Fix 0 € V. Then r, : m(V,0) — m(U,0) has image of finite index, say N. Let
% be a flat lifting of » near 0 and let 3(0) € H?>™~1(X,,C) be its value at 0. We have to
check that 3(0) € H2™~1(X,,Q). If v:[01] - V is a loop based at 0, v being locally flat
we can follow ¢ along v and get near (1) a new lifting @' of v which is flat. By the unicity
statement, we have 3'(0) — 3(0) € H2™~1(X,,Z). But by definition of the monodromy on
&'(0) — &(0) = p(v)($'(0)) — ¢'(0). It remains to prove :

the local system Hé’"‘l,
2.6.1. If € H*™ 1(X,,C) satisfies : Yy € m(V,0), p(v)(n) —n € H*™"1(X,,Z), then
n € H2™71(X,,Q). To see this, one chooses a Lefschetz pencil in U, with loops v; acting
by Picard-Lefschetz reflections associated to the §;’s, the vanishing cycles, which generate
H*™=1(X,,Z) by 2.3. Then v € r.(m1(V,0)) and acts by the transformation n — 7+ N <
1,6; > &;. So the assumption implies: Vi, < 7,6; > € @, hence n € H*™~1(X,, Q), because
{,} is non degenerate and defined over Q.
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3. We want now to explain the Hodge theory on the central fiber of a Lefschetz degen-
eration. The results depend on the parity of n. This follows from the Picard-Lefschetz
formula which shows that the monodromy is of order two for n — 1 even, and of infinite
order for n — 1 odd (or trivial).

However, we will use in both cases Griffiths’ arguments which are not completely
general but give quickly a concrete description of the limit Hodge structure, and are well
adapted to the Lefschetz degenerations. For the general case one should work with normal
crossing model of X, and introduce the logarithmic log complex [10] [11].

We will work with families X; C X where X; is a hypersurface of X ample enough
for its (n — 1)** primitive cohomology to be realized by residues of meromorphic n-forms
on X, the Hodge filtration corresponding to the pole order filtration (see the M. Green
lecture on hypersurfaces). So F¥H™1(X,) will be generated by residues of n-forms with

poles of order at most n — k along X;.

A) n — 1 even : To kill the monodromy, which is of order two, one makes a base change

t = u?. The spheres S:/tfl = S""1 give then a univalued locally constant section &y
of Hy 2=1 = H,_,z on the punctured disk with coordinate u. One verifies using the

description of the Uy’s in 1.1, that §2 = £2 (in particular §, # 0) so over Q one has a
splitting HQ =< 6y, > P < 8, >t and < 6, > is by the Picard-Lefschetz formula the
invariant part of H;"l on A}. Cycles 7 in < 6, >1c H,-1(X¢,Z) can be represented by
chains in X;\U; (see 2.1), hence have a limit v in Xo\Up.

Clearly if ¢ is such a cycle, and w,/f¥ is a holomorphically varying family of n-forms
on X with pole of order < k along X; one has }1_{% f_ﬁ Resx, (wi/fF) = f_m Resx,(wo/f&)
where the last term makes sense because ¢ is supported away from Sing Xo.

It remains to study the behaviour of |, 5 Resx, (wy/fF), which is a local problem, since

the §, are supported near zo. The result is then :

3.1. Proposition : Assume %l o does not vanish at zo (Lefschetz assumption).
Then for 2(n — k) > n — 1,}i_n% féu Resy, (wu/fF) = 0 and for 2(n — k) = n — 1,}33})

/, 5u Resy, (w./fF) exists and vanishes if and only if wo vanishes at zo.

This shows concretely how to extend the Hodge filtration F™H »=1(X,) over 0, for
o2m < n—1: Using H*1(X,2) =~ Hn_1(X,2)* one defines F"H""!(X,2) as the space
generated by the limits hm f Resx,,(wu/| f¥), for k = n — m, where 7, is any locally
constant section of H,_;, 1 ove1 A,. One needs supplementary assumptions to check that
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this filtration has correct rank (satisfied for X, ample enough), and one extends it to a
Hodge filtration on Hy™' = }1_{1(1) H"1(X,,2) ® C using complex conjugaison. The fact
that this limit filtration really puts a Hodge structure on Hy~! remains to be proved, and
one has more generally the following theorem, which is proved by the decreasing distance

property of the period map :

3.2. Theorem : [8] For a polarized variation of Hodge structures (H§, F‘H*) on A*

without monodromy, the period map extends at 0 and defines a pure Hodge structure on
k

Hj )

We note finally that by proposition 3.1, the limit &y of the vanishing cycle annihilates
Fm+1gR=1 where 2m = n — 1, hence is a Hodge class. A geometric way of interpreting
it as an algebraic cycle is to construct the normal crossing model of Xy (after base change
t = u?) as the union of the minimal desingularization Xo of X and a (n — 1) quadric
Q which intersect X, along the exceptional divisor, which is identified to a hyperplane
section Q' of Q. Then one can check that the spheres S, converge to the generator of
Hn—1(Q\Q'), that is the difference of the two rullings of Q.

B) n—10dd, n = 2m. In this case the vanishing cycle §, may have trivial homology class
in Xo. Then there is no monodromy and by theorem 3.2 there is a pure Hodge structure
on the fiber Hy™'. More generally, one can consider a central fiber with several nodes,
and define the defect of X, as the number of relations between the homology classes of the
associated vanishing cycles. Under some vanishing assumptions on X, one can identify this
defect to the corank of the restriction map H°(Kx(mXo)) — H*(Kx(mXy)), ), where Z

is the singular locus of Xj [5].

This is strongly related to the following analog of Prop. 3.1 :
3.3. Proposition : 1) for k < m, tlin% f&. Resy, (wi/fF) exists and is equal to zero for
k < m, and is a non zero multiple of wo(z¢) for k = m.

(Notice that now the é;’s give an invariant section of H,,_; z over A*).

2) For v a multivalued section of H,_; 7 over A*, and k < m, fé‘ Resx, (wi/f§) has a log-
arithmic growth near zero and its monodromy is described by 1) and the Picard-Lefschetz
formula.

So for < 74,68, >= 0, that is 9, has a limit vy which is supported in Xo\{z0}, one can

define the limit periods [ o Resx,(wo/fF), k < m, where under some vanishing assumptions
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on (X, X;), the Resx,(wo/f§) = 112}3 Resx, (wi/ f¥) generate the fiber at 0 of the extended
Hodge bundle F™H2™~1  which is characterized by the growth condition in 3.3.2).

The intermediate jacobian J(X) of X, is the compact complex torus F™H?™~1(X,)*/
Hym-1(X:,Z) and the generalized intermediate jacobian J(Xo) of X, is defined as the
partial torus (F™H3™1)*/ periods.

This torus has for quotient the intermediate jacobian of X,, which under the same as-
sumptions is realized by projecting (F™H2™"1)* to (F™H2Z™ 1)%)*, where (F™H3™1)0
is the hyperplane generated by the residues Res(wq/ f§"*), with wo(zo) = 0. (We now assume
that é is non zero). By 3.3 i) [, project to zero in (F™H2™10)* s0 J(Xo) — J(Xo)
represents J(Xo) as an extension of J(Xg) by C*. Such an extension is classified by
J(X0)?/ £1 = J(X,)/ £ 1 and one has the following :

3.4. Theorem : [2], [4], [5] When the vanishing cycle has non zero homology class in
X4, the two rullings of the exceptional divisor of Xy are homologous and the image of their

difference in J(X,) by the Abel-Jacobi map describes the extension :

0— C* = J(Xo) — J(Xo) = 0.
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Lecture 5. O-cycles I.

Lectures 5 and 6 are devoted to 0-cycles modulo rational equivalence, especially for
surfaces. This subject does not seem a priori much related to transcendental aspects of
Hodge theory, and in fact all that we will explain belongs to algebraic geometry, even
if for simplicity we use at some places the usual topology and the Betti cohomology of
complex varieties. However, the relation with our main topic is the discovery by Mumford
that the non-representability of Chow groups (here we will be concerned with CHy), is
related to the transcendental character of the corresponding Hodge theory. In the first
lecture, we have shown that the Hodge theoretic objects related to divisors are the Picard
torus and the set of Hodge classes in H2. The first one is an abelian variety, and the
second one generalizes to the “Tate-Hodge structures”, which are made only of Hodge
classes. These two kinds of objects are the only algebro-geometric objects that can be
extracted from a Hodge structure, and this gives a more transcendental character to the
remaining part of the Hodge theory of a variety. In this lecture, we explain the following
now classical results : Mumford theorem on infinite dimensionality of the CHy group
of a surface having non zero holomorphic two-form, subsequent generalizations of it by
Roitman, and we present Bloch’s conjecture on correspondences between surfaces. We
sketch also the argument of Bloch-Kas-Lieberman, which gives for surfaces not of general
type the following consequence of Bloch’s conjecture : H(Ks) = 0 = CH{(S) = AlbS.
We also sketch Roitman’s proof of his two fundamental theorems : C Hj finite dimensional
= CHYQ = Alb, and tors(C' Hp) ~ tors(Alb). (However we follow largely [2] for the proof

of the later statement).

1.
1.1. Let S be a smooth projective surface, and let G be a smooth projective variety. Let
z 4 5

rl
G

algebraic subset and p is finite; then for w € H%(Ks), one can construct a holomorphic two
form Z[w] on G, either by defining (carefully) the trace p.(¢*w), either by the construction
of the associated map ¢z : G — S such that ¢z(g) = ¢(p~'(g)), where N = d°p,
and S is the symmetric product (unfortunately singular) of S, and by showing that the

symmetric two-form Zfil priw on SW\sing S has a non singular pull-back to G.

be a zero correspondence between G and S, that is Z C G x S is a reduced

For a non reduced Z, Z = nZ’, one defines Z[w] = nZ'[w]. The main theorem is then:

1.2. Theorem : ([{4]). If Z; and Z; are two correspondences between G and S,
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satisfying : Vg € G, ¢z,(g9) and ¢z,(g) are rationally equivalent zero-cycles on S, then
Yw € HY(Ks), Zi|w] = Zo[w] in H*(QF).

The general idea is the following: by countability of the Hilbert scheme of rational
curves in S, k € N, and by definition of rational equivalence, one may assume that
there is an etale map G’ — G, amap ¥ : G' = S*) and a map ® : P! x G’ — S(N+E)
such that: for ¢’ € G', <I>((ig’) =®z (¢") + ¥(g"), and ®(o0,¢') = ¢z,(g'} + ¥(g'), where
we use “4” for the obvious map SV x §(*) — §IN+K) Now, for w € H(Ks), there is
as before a pull-back @*(w) € H°(Qp, ;) which necessarily is of the form 7*a, where
7 : P! x G' — G’ is the projection to G', and a € H°(1%,). By the obvious additivity
with respect to Z of the traces Z[w], and by restriction of the above equalities to {0} x G’
and {0} x G' we find r*Z;[w] + V*[w] = 70|, . = @ = r*Zsw] + ¥*{w], that is
Z1[w] = Z2[w].

Now CHy(S) contains for each N the quotient of SV ) by the relation of rational
equivalence, which is described in SV x § (N) by a countable union of algebraic subsets.
For a cycle Z € SN, one defines the dimension dz of its orbit 0z under rational equivalence
as the maximal dimension of an algebraic component of {Z' € SW)/Z' E Z}, and clearly
dz is a constant for a general cycle Z. 0z being roughly the fiber through Z of the map
RN . SWN) 5 CHy(S), one defines Im RN := 2N — dz, for a general cycle Z.

Mumford applies then 1.2 to show :

1.3. Theorem : [4]. If HY(Ks) # {0}, Jim  dim Im RN = o0, that is CHy(S) is not
—00

finite dimensional.

The point is the following : Let Z be general in SW) and choose a component Gz
of 0z of maximal dimension dz; then one may assume that Z € Gz, Gz is smooth at
Z, and that Z is made of distinct points {z1,...,zn}. If w € H°(Ks) is non zero, one
may also assume that w(z;) # 0; by theorem 1.2, the foorm Q@ = ¥ prfw on the smooth
variety S\ sing S(V) 5 Z has to vanish on Gz near Z, and w(z;) # 0 implies that £
is non degenerate (as a two form) at Z; it follows that dimz Gz < %dim SV). Hence
dimIm RN > N, which implies 1.3.

1.4. It follows a posteriori [5] that in fact dimIm RY = 2N, when H%(Ks) # {0}, that is,
a general cycle Z has a zero dimensional orbit 0z. A proof of this can be checked as follows
: Assume a general cycle moves in its orbit Oz and fix an ample curve C C S. Then 0z
will meet C + S ¢ SN)| 1t follows by induction on k that for a general cycle Z in
SIN*E) its orbit will meet C*+1) 4 S(N=1) and hecause the image of C¥) in CHy(S) has
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dimension bounded by g = genus of C, this would show that Yk, dim RV+%) < g4+ 2(N -1)
in contradiction with 1.3.

We refer to [5] for generalizations and refinements of this kind of results for higher

dimensional varieties.

1.5. Let us consider now smooth surfaces £,.5, and let Z C £ x S be a codimension two
algebraic cycle, say Z = Ln;Z; with Z; irreducible and generically finite over £. Then as
in 1.1, Z gives amap Z : w — Z{w] = ¥n;Z;[w], H*(Ks) - H%(Kg). (We don’t need that
Z; — ¥ be finite because it has positive dimensional fibers only over a codimension two

P1
subset of X, so we can use Hartog’s theorem).

Now it is easily seen from the definition that the map Z; is the (2,0) Hodge component
of the map Z; : H%(S) — H?(Z) which is a morphism of Hodge structures and can be

constructed alternatively as :

i) consider the Hodge class [Z;] € H*(T x S, Z); then its Kiinneth (2,2) component lies
in H(Z) ® H*(S) ~ Hom(H?*(S), H*(X)), which gives our Z;.

ii) Choose a desingularisation Z,- — Z; of Z; : then one has p; : Z,- — X,pa: Z.- — S and

one can define Z; as the composite :

H(S) o H*(Z) = Ho(Z)) = Ha(%) = H(T)
P3 P,
, where ~ means Poincaré duality isomorphism. Consider the splitting (over Q) of H2(S, Q)
into NS(5)®Q and TH?(S) = NS(S)*. Let ¢ : H%(S) — H?(Z) be a morphism of Hodge
structures which vanishes on H?%°(S); then Kerp N TH2(S) is a sub-Hodge structure
of TH*(S), and contains H>(S). Its orthogonal for <,>| ., . is defined over Q and
perpendicular to H?:%(S) hence is contained in TH2(S)NNS(S)®Q = {0}. So ¢ vanishes
in fact on TH?(S). From this and theorem 1.2 follows :

1.6. Proposition : Let Z C ¥ x S be a codimension two cycle; then the induced map of
Hodge structures TH?(S) — H?(Z) vanishes if the map p},(p3().Z) : CHo(Z) —» CHo(S)
induced by Z is zero.

One can refine 1.6 as follows : coming back to the Mumford argument, one sees easily
that if the map p1.(p3().2) : CHo(Z) — CHy(S) is zero on the set of cycles of degree zero
and in the kernel of the Albanese map of T, then Z : H>%(S) — H?%Y(X) vanishes, hence
Z : TH*S) — H?*(X) also vanishes. Bloch {1] has conjectured the converse of the last

statement :
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1.7. Conjecture : Let Z C £ x S be a codimension two cycle whose (2,2) Kiinneth com-
ponent lies in NS(Z) ® NS(S) (equivalently Z vanishes on TH2(S)). Then p2.(p}().2):
CHQ(Z) — CHy(S) factors through the Albanese variety of I.

Here CHY(Z) is the set of degree 0 cycles on £. We refer to J.P. Murre’s lectures for

the construction of the degree and Albanese map on CHp).

A particular case of Bloch’s conjecture is given by the diagonal As C S x S of a

surface with h%(Ks) = 0. Bloch’s conjecture implies in this case :

1.8. Subconjecture : If A°(Ks) =0, CHJ(S) = Alb S.
We will explain in the next lecture a proof of this for Godeaux type surfaces.

Using classification of surfaces, Bloch-Kas-Lieberman have proved 1.8 for surfaces with
py (= h®(Ks)) = 0 and not of general type : In fact classification will imply with some

work that for minimal surfaces there are essentially three cases to consider :

i) ¢ =dimAlb S =1, and alb: S — E is a smooth fibration, so S = E' x F/G, G acting
on E' by a finite group of translations. Let 7 : E' x F — E' X F/G be the quotient
map.

i) ¢ = dimAlb S = 1, and alb: § — E has elliptic fibres. Then one shows that the

associated jacobian fibration, which has isomorphic C' Hy group, fails into i).

iii) ¢ = 0 and S has an elliptic pencil S — P!. Then they show that the associated
jacobian fibration S’ — P! is a rational surface, hence has CHy = Z, using the
Castelnuovo criterion : ¢(S') = R%(K$?) = 0 = S’ is rational. Now it is easy to see

that CHo(S) = CHo(S").

For case i), one uses the Roitman theorem (2.2) which implies that Ker(alb) ¢ CHJ(S)
has no torsion. So it suffices to check that 7*(Keralb) = 0 in CHS(E' x F) mod torsion.
But if Z € Ker(alb), n*Z = Zi,g ni(& + ¢,9.zi), with Xn;e; = 0 in AlbS = E. Now
h%(Ks) = 0 < F has no non zero 1-form invariant under G & F/G = P!. SoV;, Do, 9% =
h = const. On the other hand, up to torsion, that we don’t consider, Zi’g ni(€i+g,9.2;) =
2ignili,g.2:) = 3o ni(&i * (32, g-wi)) in CHo(E' x F). So 7*Z = (3_;n:i&) * h up to
torsion in CHo(E' x F). Since Y, n;€; = torsion point in CHJ(E'), #*Z = 0 up to torsion,
and we are done. (The product * that we used between C Ho(E') and C Hy(F) is such that
Zx2' = 277‘,-771_,-(2,-,2;‘) for Z =Tniz;,2' = Emyz;).

2. We turn now to the proof of the following fundamental theorems of Roitman :
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2.1. Theorem : [5]. Let X be a projective variety, such that CHy(X) is finite dimen-

sional: then CHY(X) P Alb X is an isomorphism.

2.2. Theorem : [2], [6]. Let X be a projective variety; then the Albanese map induces
an isomorphism alb : Tors C Ho(X) ~ Tors(Alb X).

For the definition of finite dimensionality in 2.1, we have (over the uncountable field
C) different equivalent characterizations. (We use the notations of 1.1 - 1.3 with S replaced
by X).

i) There is an integer d(X) such that VN € N, dimIm RV < d(X).

ii) There exists an integer N such that the difference map : XN x X(V) — CHJ(X) is

surjective.

The equivalence follows from the argument sketched in 1.4. If i) holds, one chooses
N such that Ndim X — d(X) > dimX. Then if C C X is an ample curve and Z € XV )
is a general cycle, 0z meets C x XN-1) 55 any cycle in X is rationally equivalent
to a cycle in C 4+ XM~ As in 1.4 it follows that any cycle in X(N+E) is rationally
equivalent to a cycle in C*tD4 X (V=1 and since CWxC®9 —  CHJ(C)is surjective,

difference
map

ii) follows. ii) = i) comes also from the fact that rational equivalence between cycles in

S is described by a countable union of algebraic sets in S() x §(K),

2.3. Now the argument for theorem 2.1 goes as follows :

Step 1 : If CHo(X) is finite dimensional, there exists an abelian variety 4, and a family of

cycles of degree zero Z C A x X inducing a surjective map of groups A —f-) CHYX), f(a) =
Z(a).

Proof : For any abelian variety A, and for any family of zero-cycles of degree 0 Z C A x X
inducing a map of groups f : 4 — CHJ(X), f(a) = Z(a), the kernel is a countable union
of algebraic subsets of 4, and it is a group. So A4', its connected component through 0, is
an abelian variety and we define dim f(A4) = dim A/A’. Let d(X) be as in i). Then one
checks dim f(4) < d(X). So there exists (4, Z) as above such that dim f(A) is maximal.
Adding to A the jacobian of any curve C' C X, it is then easy to show that f is surjective.

Step 2 : One may assume that A 7 CHY(X) has a countable kernel.

Proof : The kernel of f is a countable union of algebraic subsets and it is a subgroup. So

an algebraic component of it passing through 0 is an abelian subvariety B C A, and we
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can work with an abelian subvariety A' C A, isogenous to A/B, and with the restricted
cycle 7y ,.
Step 3 : In X x 4, the set {(z,a)/z—w0 = = Z(a) = f(a) in CHY(X)} is a countable union
of algeb1 aic subsets, which projects onto X. So one of its components, say R, projects onto
X. Such R is finite over X, because f : A — CHJ(X) has countable kernel. So R gives
rise o a zero correspondence between X and A, and we have the following commutative
di;a.gram :

X = A
2.3.1. AN fo

CH{(X)

where k(z) = n(z — zo), for n = deg(R/X), and g(z) = alb(4) o R(z).

Img generates A as a group, otherwise dini(Img) < Im 4 and dim A = dim CHy(X)
by the fact that f has a countable kernel, would contredict the fact that CHY(X) is
generated by k(X). (Here we define dim CHo(X) = dimIm RY (cf. 1.2, 1.3)). By the
universal property of the Albanese map, we find now a surjective map g" AlbX — A,

such that the following diagram commutes :

x 4 a4 L o)
2.3.2. alb \, /g Lalb
Alb X — Alb X
nx

It follows that the kernel of f is in fact finite, so C HJ(X) is an abelian variety 4’, as a finite
quotient of A. Also the map alb : A' — Alb X is an algebraic map of abelian varieties,

and induces by Theorem 2.2 an isomorphism on torsion points, so it is an isomorphism.

Proof of Theorem 2.2. : We follow partially [2], because there is a point which is not
clear in Roitman’s paper [6]. Notice that the surjectivity is clear because there is a curve
C in X such that JC — Alb X is surjective with connected fibers, by the weak Lefschetz
theorem. So we find that k-torsion (CHS(C)) = k — torsion(JC) — k — torsion(Alb X).
For the injectivity, Bloch does the following :

Step 1 : Let Z = £n;Z; be a k-torsion cycle in X. By definition of rational equivalence,
one can find curves C; in X and rational functions ¢; on C; such that L divy; = kZ. By
birational invariance of C Hy, one can blow up X to .i', and replace UC; by a stable curve
C ), One can choose a smooth surface S containing C such that Alb S — Alb X = Alb X

() An important point here is the fact that one can connect the local components of the

proper transform of UC; by rational curves.
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is an isomorphism. (By the weak Lefschetz theorem, it suffices to choose for S a complete
intersection of ample divisors, and C being stable, smoothness of S is possible). Now,
assuming albx(Z) = 0, one has albg(Z) = 0, and it suffices to show that Z is rationally

equivalent to zero in S.

Finally we may add components to C, so that the new curve C' is a very ample divisor

in S.
Now the technical point in Bloch’s proof (this is curve theory) is the following

Step 2 : We may move Z on C' up to rational equivalence in such a way that it is
supported on the smooth part of C' and determines a k-torsion line bundle L on C’, or

a k-torsion point in the generalized jacobian of C'.
Admitting this, the end of the proof goes as follows :

Step 3 : We can deform C' to a smooth curve C"” in the same linear system on S, and
the line bundle Lj has accordingly a deformation L} as a k-torsion line bundle on C'.

Now one can use here the Roitman argument : Consider the pencil P! on § determined
by C' and C" and let D — P! be the covering parametrizing k-torsion line bundles on fibers
Ct),.p1- Then the map D — CHJ(S) given by d € D — Lq on Cy — jiu(La) € CHY(S) is

constant on connected components of D.

This is because for a component D' of D, CHQ(D') is divisible and the image of the
induced map CH§(D') — CHJ(S) is contained in the k-torsion of CHZ(S), so is 0.

Step 4 : ([2], [6]). Now we have a smooth curve C very ample on S, and may assume
that it belongs to a Lefschetz pencil on S. We have a k-torsion line bundle on it, which
sends to 0 in Alb S, via j, : JC — Alb S, and we want to show that it goes to zero in
CHJY(S) , via ju. : JC — CHJ(S). The kernel of j. : JC — Alb S is a finite quotient
of the connected abelian variety (JC)° = (H°(Q¢)*)°/H1(C,Z)° where (H°(Q2c)*)? =
Ker(j. : H'(Qc)* — (H°(Qs))*), and Hi(C,2)° = Ker(ju : H1(C,Z) — H1(S,Z)). The
connectedness follows from the surjectivity of this last j. (Lefschetz). k-torsion points in
Ker j. lift to k'-torsion points in (JC)° for some k'.

One knows by Lefschetz theory that Hy(C,Z)° is generated by the vanishing cycles of
the pencil (see Lecture 4) and that if the discriminant hypersurface for the linear system
associated to C is irreducible, which is true for very ample C, the vanishing cycles are all

conjugate under the monodromy action.

The k'-torsion of (JC)° is generated by the 2 §; module H(C,Z)° and by the Roitman

argument in step 3 they all have the same image in CHQ(S). More precisely, it follows
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from this argument that the map j. : k' — torsion((JC)®) — CHJ(S) is invariant under
monodromy.

~ So for v € £ H1(C,Z)" and §; a vanishing cycle, the Picard-Lefschetz formula gives
Ju(®) = ju(v + (8:[v).6;) where ~ means reduction modulo H{(C,Z)°. Hence :

241 (Koléi) - J(F6) =0.

Finally, the last trick in Bloch’s proof is :

2.4.2. Given § a vanishing cycle, the integers (6]6;) have no common multiple, where §;
runs through the set of vanishing cycles.
Otherwise by the Picard-Lefschetz formula the cycles §' obtained from § by mon-

odromy action would satisfy §' = § modulo dH;(C,Z)°, which is absurd because H;(C,Z)°

is generated by those §'’s and, if it is non zero (which one may assume !), it has rank > 2.
Using 2.4.1, with v = 117 6, one deduces from 2.4.2 that there exists integers m;, with

Tm; = 1, such that ;m;j.(6;) = 0, and because all j,(6;) = 0 are equal, we find that

J« vanishes on the k'-torsion of (JC)°.
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Lecture 6 : Zero-cycles 11

0. We continue on zero-cycles and turn now to more recent contributions. We first explain
the ideas of Bloch-Srinivas [2], which are based on an elementary lemma, but which shed a
new light on Mumford’s theorem. In Mumford’s approach the accent was put on the (local)
relation zero-cycles « holomorphic forms. In the Bloch-Srinivas approach correspondences
are considered as global objects which are shown to be essentially controlled by their action
on the CHy group. This approach leads more immediately to global results on the effect
of a correspondence on the Hodge theory of a variety (more precisely on its “motive”),
and we shall describe a few applications of it. The rest of the lecture is devoted to a proof
[6] of Bloch’s “subconjecture” (see lecture 5) for Godeaux surfaces, which are surfaces of
the general type with ¢ = p, = 0 obtained as quotients of complete intersection surfaces
by a finite group, and to a generalization of the Mumford criterion, in the case of families
of surfaces [7]. There we consider a family of O-cycles (Z)sep in a family of surfaces
(Ss)eeB, and we give a Hodge theoretic criterion for Zy to be rationally equivalent to
zero in Sy, ¥V b € B. We explain the two following applications: (Here the restriction to
surfaces in P2 is not essential and simply motivated by the fact that the algebra related to
infinitesimal variations of Hodge structures is well understood in this case (see M. Green

lectures)):

1) If C C S is a general plane section of a general surface of degree d > 5 in P3, Kerj. :
JC — CHJ(S) is equal to the torsion of JC.

2) If § C P® is a general surface of degree d > 7 , two distinct points of 5 are not

rationally equivalent.

It should be noticed that for the second statement, we come back to the local approach
of Mumford, in the sense that we study restrictions of holomorphic forms to families of

rationally equivalent cycles.

1) 1.1. Let X,Y be smooth algebraic varieties over C, and V C Y an algebraic subset.
Let Z C X x Y be a zero correspondence between X and Y, so Z = n;Z; withZ; )—r: X
generically finite. There is a common algebraically closed field I of definition of X,Y,V Z;,
and we may assume that & has finite transcendance degree over Q. Then the function
field k(X) and any algebraic extension of it admits embeddings to C, extending a given
embedding k¥ C C. The Z; can be considered as points of Y defined over k(Z;), and we
can find a Galois extension L of k(X) containing all k(Z;). For each inclusion v, of k(Z;)
in L over k(X), £ = 1,...,d°k(Z;)/k(X), one has the L point Z! of Y obtained frgm
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Z; by extension of scalars k(Z;) — L. One has then a zero-cycle of Y, defined over
G
L:Zr=3%, nZE.

Let us choose compatible embeddings

EX) - C

N /o
L

Then Zg gives a zero-cycle Z¢ € Yg¢ by extension of scalars L «— C, and the diagonal
A C X x X, seen as a point of X defined over k(X), gives a point A¢c € X¢. Clearly
Zg = Z(Ac) = pras(pri(Ac)-2) .

Now assume that X,Y,V satisfy the following property:
1.1.1. V 2 € Ag, Z(z) is rationally equivalent to zero in Yc\Ve.

It follows that Z¢ is rationally equivalent to zero in Yg\Vg. Then Zp is rationally
equivalent to zero in Y'\V, over a finite extension of L, which means that there exists a
Zariski open set V C X, and a finite, flat and proper morphism ¢ : U’ — U such that
(¢ x I)*(Zjuxy\v) is rationally equivalent to zero. It follows that (v x Idy\v)«(p X
Id)*(Ziyxy\v) = do(,p(Zwa\v) is rationally equivalent to zero.

Let D = X\U. Then the exact sequence:
CHDXYUX xV)— CH(X xY)— CH{U xY\V) —0
shows that d°p.Z is rationally equivalent to a cycle supported on D x Y UX x V. So we

have

1.2. Proposition: Let X,Y,V,Z be as Before, and assume that 1.1.1 holds: V 2 €
Xc, Z(z) = 01in Yc\Ve. Then there exists a divisor D of X such that a multiple of Z is

supported on D x Y U X x V, modulo rational equivalence.

(Note that in 1.2, one can obviously allow Z to have components of codimension dim Y

which are not finite over X).

Let us give an easy but useful corollary:
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1.2.1. Corollary: Let X,Y be two varieties of the same dimension n and Z C X x Y be
a codimension n cycle. Then if Z satisfies property 1.1.1, for some proper algebraic subset
VofY, 'Z CY x X also satisfies this property. In particular if X and Y are surfaces
Z : CHY(X) — CHY(Y) factors through Alb X, if and only if 'Z : CH{(Y) — CH{(X)
factors through AlbY.

For the last statement, one notes the existence of a curve C C X such that JC—» Alb X.
Obviously there is a curve C' C Y such that Z{CHJ(C)) is supported on C'; then one
takes for V the curve C’, and there exists a curve D C X and an integer N such that NZ
is supported up to rational equivalence in D x Y U X x C'. It follows that N*Z factors
through a map (given by an algebraic correspondence (T' : CH{(Y') — CHY(D), hence by

the universal property of the Albanese map, N"ZIC Ho(y) factors through AlbY. The same

is true for 'Z by divisibility of Ker(C H(Y) 2, Alb 4). Notice that divisibility of CHJ is

also used in the proof of the first statement.

For the applications in Bloch-Srinivas one considers the diagonal cycle A C X x X.

Proposition 1.2 then gives:

1.3. Proposition: Assume that 3 V' C X such that CHe(Xc\Vg) = 0 then for some
integer N, NA is up to rational equivalence supported on D x X UX x V, for some divisor
D of X. We will write NA =T+ T, withl; CD xY andTy CX x V.

Remark: It is a very interesting problem to decide whether the integer N can be set equal
to 1. This is the case if X is a rational variety, and the minimal such N is a birational

invariant.

1.3.1. The correspondence A acts on all Chow groups as the identity. The action is
given by v — pro.(priy.A) or by v — pri.(pr3y.A). Replacing NA by I'y + I'z, one
finds that this decomposition, which is obtained only by the consideration of the action
of A on CHy, has many implications on the other Chow groups. Let us first recover the

Mumford-Roitman theorem:

1.4. Proposition: With the notations of proposition 1.3, one has

H"(X) =0, fork > dim V.

Proof: Let D — X be a desingularization of D < X. There exists a cycle FhcDxY
; i
3

such that NA = F*f‘l + Ty with T's € X x V. The action of T3 on HY¥(X), Ty =

prl,.(pr; ( ).I'y), factors through the restriction to V', hence annihilates H*(X), for k\ >
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dimV, so we find: Vw € H*(X), Nw = j.(‘fl(w)). But j,. is a morphism of Hodge
structures of bidegree (1, 1), so its image does not contain a non zero element of type (k,0),
and we find:Nw = 0.

Now Bloch and Srinivas give the analogous consequences on Chow groups. As an

example they assume dim V < 3 and give the following consequences of 1.3 on CH 2(X):

1.5. Theorem: i) If diimV < 3, the Hodge conjecture for rational (2,2) classes on X
holds.

ii) If dimV < 2, homological equivalence and algebraic equivalence coincide on
CH?*(X).
i) fdimV <1, CH?(X)hom is isomorphic to J2(X) via the Abel-Jacobi map ®x.

We will show ii) and iii) only up to torsion, the argument being then very easy. For

the analysis of the torsion in the Chow groups we refer to J. Murre’s lectures.

Proof of 1.5. i) Let a be a (2,2) integral class in H*(X'). We want to show that a multiple
of & is algebraic, and by 1.3.1 we need only to show that 'T';(a), 'T'z(a) are algebraic. Using
desingularizations of D and V, we have 'T'1(a) = 7.(8), where 8 is a (1,1) integral class
on D, and 'T 2(a) = ’fg(aﬁ;), where T, is the desingularized correspondence I'y, between
X and V. By the Lefschetz theorem on (1,1) classes, § is algebraic. From dimV < 3,

we conclude that a multiple of « = is also algebraic, because the Hodge conjecture is true

v
in degree 4, for varieties of dimension less than 3. (By the hard Lefschetz theorem, the
Lefschetz theorem on (1,1) classes implies the Hodge conjecture in degree 2dimg( ) — 2).
So 'T'; (@) and 'T'y(«) are algebraic, and i) is proved.

i) Let Z be a codimension two cycle homologous to zero. Then dimV <2 = zv
is algebraically equivalent to zero on V. Also 'Ty(Z) C D is a divisor in D homologous,
hence algebraically equivalent, to zero. So NZ = j, ('f;(Z ) + 1T,(2.V) is algebraically
equivalent to zero.

i) dimV <1 = T, vanishes on CH*(X). So we have N Id = j, o T on CHY(X),
and on CH?(X )hom, we have the following diagram:

. T ~ -
CIT[?(“i )hom _" CH! (D)hom - CI'I"(—X )hom

Je
1.5.1. Py l 4’51 l Py

BX) —  JYD) —  J¥X).
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We refer to [6] for the commutativity of 1.5.1. On the last line ‘T and J« are the morphisms
between abelian varieties corresponding to the morphisms of Hodge structures T, and Jx
(J3(X) is an abelian variety by 1.4 and (Lecture 2)). Now 'T'; annihilates H3(X), as
dimV < 1, so on the last line, j. o ‘fl = N x Id. <I>5 being an isomorphism it follows
immediately from 1.5.1 that ®x is surjective with kernel contained in the N-torsion of
CH*(X).

Remark: 1.5. i) generalizes [3], and 1.5. ii) generalizes [1] and other works on Fano
threefolds.

2) 2.1. We explain now the method of [7] to prove the conjecture 1.8 of lecture 5 for the

following type of surfaces:

1) Consider G = Z/5Z acting on P? by ¢¥(Xo,...,X3) = ((Xo,...,(*X3), for ( a
primitive 5" root of unity. For a generic F' € H(Ops(5)), satisfying @ (F)=F S=V(F)
is smooth, G acts freely on it, ¥ := §/G is of general type, and H*(Ksg) = H'(Ks Yinv =0,

where “inv” means “invariant part under G”.

2) Consider G = 7/8Z acting on P® by g¥(Xo,...,Xe) = (¢Xo,...,("X¢). Let
Qi € H°(Ops(2)) be general quadrics satisfying 9:Qi = ¢*Q;,i=1,...,4. Then S = NQ;

satisfies the same conclusion as in 1. We shall prove:
2.2, Theorem: [7] for £ = §/G as in 1) or 2), CHJ(Z) = 0.

Let us first give the argument for case 1):

Step 1: The linear system H made of G-invariant quintic polynomials on P2 has no
base point. So S is covered by smooth curves C = SN S, with §' = V(F'), F' € H. If
z,y € S are generic there is such a C containing = and y. Let ¢ : § — ¥ be the quotient
map. By the Roitman theorem, and Alb(E) = 0, CHY(T) has no torsion and it suffices

to prove 0*CHY(Z) = 0. ¢*CHY(Z) is generated by cycles Z = } g.x — g.y, for generic
9€G

z,y € S. Let C <—> S be a curve as above containing x and y. .Then E gr—gyisa

G-invariant 0- cycle Z' of degree zero on C and Z = j.Z'. So it suffices to prove:

2.2.1. For C as above, the map j. : (JC)™ — CHo(S) is 0, where (JC)™ is the
Je
invariant part of JC under G.

Step 2: Let us consider the pencil (S;),epr determined by S and S'. Each S is

defined by a G-invariant quintic polynomial so has no invariant holomorphic two form.
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By the Lefschetz theorem on (1,1) classes, it follows that H 2(S;,Z)'" is generated by
classes of G-invariant line bundles on S, and because H2(S;,Z)™" is finitely generated,

we conclude:

2.2.2. There exists a smooth ramified cover D — P!, such that D parametrizes G-
invariant line bundles on fibers S, (i.e. tod € D corrresponds a line bundle Ly on Sy, t =
r(d)), and such that, over the open set U of P! parametrizing smooth S’s, the map
a:r.iy — (R*m.Z)™y, which sends 14 to ¢1(La), is surjective. Here 7: & — P! is the
family of surfaces (S¢);ep:-

We have a natural map 8 : D — (Pic C)™Y, which associates j;(La) to d € D, where
j1 is the inclusion of C in S;. We also write 8 for the induced map JD — (Pic® C) =
(JC)™. Now we show that:

2.2.3. (JC)™ is generated by Im 3 and by the various j;, (Pico(gti)i“") where the Sy,’s

are the singular surfaces of the pencil and S;; — Sy, is a G-invariant desingularization.

To prove 2.2.3, we blow up C in P3, so that § = P3 and G acts on P?. It is well

known that there is a natural isomorphism
2.2.4. JC ~ J3(ﬁ3)‘ (_]C)inv ~ J3(ﬁ3)i"v.

The surjective ma‘p‘a' tralyy — (R27r*Z)i"V|U induces a surjective map a : H(rsZ)y) —
H? ((R27T.Z)i""lu). By the Leray spectral sequence for 7 : V := x~!(U) — U one has:
H3(V,Q)™ = H'((R?7.Q)™|v). So we have:

a: H? (7'_1(U), Q) — Hs(V, Q)i"".
The map B : JD — (JC)*¥ = J¥(B3)™ induces a map B, : H'(D,Z) — H3(P?,Z)™ and

it is not difficult to check that the following diagram commutes:

a : H'(r~YU),Q) — HV,Q™
2.2.5. T restriction T restriction

ﬂ* % HI(D,Q) — H3(ﬁ3’Q)inv .

a and f, are morphisms of mixed Hodge structures [4], and it follows from the strictness

of such maps for the W-filtration that the surjectivity of a implies that of:

2.2.6. B.: HY(D,Q) — H3(P?, Q)™ / Ker(restriction).
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On the other hand, the kernel of the restriction map H3(P3, Q)™ — H3(V, Q)™ is equal
to:

2.2.7. > Fi. HY(Sy, @)™,
i

where §t.~ — P3is composed of the desingularization map and of the inclusion ky; : Sy, —
. ke,

Ps. 75,,- is induced on rational homology by the corresponding maps:
2.2.8. Frpu : Pico(gt,.)i“" — CHy(PH)™Y, — Ja(ﬁa)i’“’,
Abel—Jacobi

which can also be identified to j;, : Pic’(S,)nv — (JC)™. From 2.2.5, 2.2.7 and 2.2.8 we
conclude that the map of abelian varieties 3 & _ j7. : JD © D Pic’(Sy, )™ — JC induces

(2
a surjective map on rational homology, hence is surjective.

Step 3. We have shown that (JC)™ is generated by line bundles of degree 0 in

@D i b Pic(S,)™ — PicC, (where Sy = Sy if Sy is non singular).
teP1 teP?

To conclude that j, : (JC)™ — CHJ(S)™ is 0 it suffices to note the commutativity
of the following diagram: (for S; singular or not)

Picd, % CHi(PY)
2.2.9. 1 Le
PicC — CHo(S),

Je

where k; : 5, — P? is the inclusion, eventually composed with desingularization. If
Zng j¥(Ly), Ly € Pic 5~'t, has degree 0 on C, Tnqk+(L¢) is homologous to zero in P3, so
is rationally equivalent to 0, hence j.(En.j;(L¢)) = k*(Enike(Ls)) = 0 in CHE(S), and
2.2.1 is proved.

2.3. The second case is treated similarly, replacing P by X = @1 N Q2 N @3 which is
a Fano threefold with a representable C H'™ group , and H by the linear system {Q4}.
Going thru the proof one concludes by the analog of the diagram 2.2.9 that the map
E* 1 CHi(X)hom — CHY(S)™ is surjective. So CHJ(X) is finite dimensional, hence is
zero by Alb £ = 0, and by Roitman’s theorem (lecture 5).
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3) 3.1. We explain now a generalization of Mumford’s criterion for 0-cycles in a family of

surfaces: [8]

We consider a family of smooth regular projective surfaces over a smooth quasi-
projective basis B : S — B. Let Z C S be a codimension two cycle flat over B such that
Vb€ B, Zy has degreeﬂzero on Sy. The cycle Z has a class in H2(02%) (see [5]). Hence
there is an induced section 6z of Ker H*(R?r.Q%) — HO(R*1.Q% 5). We write now the

exact sequence: 0 — 7*Qp — Qs — Qs/p — 0, which gives:
3.1.1.a) 0 » K = Q% —» Q% 5 — 0 defining K,
b) 0 — Q% - K - n*Qp ® Qs — 0.

It follows that &7 identifies to a section of R?m, K, and then to a section of 2% ®
RZW,OS/\P(QB ® Rlﬂ'*Qs/ p) where ¥ is obtained by the long exact sequence associ-
ated to 3.1.1. b). In terms of variations of Hodge structure, we have on B the “VHS”
H} = R*n,1, H?* = H} ® Op, with Hodge filtration FiH?, such that H%? = H?/F'H? =
R7n,0s, HY! = F'H?/F*H? = R! 7«(Qs/p). The infinitesimal variation of Hodge struc-
ture gives V : H*!' — Qp @ H%?, and then Vo :HM1 @05 - Q3 ® H®2(V, (a Qw) =
wA Voz). Griffith’s description of V gives that V, = 0.

So we have associated to Z the infinitesimal invariant 67 € H%? @ Q%/Im V.
3.2. Suppose now that Z satisfies:

3.2.1. V b € B, Z, is rationally equivalent to zero in S,: arguing as in Bloch-Srinivas, we
see that up to torsion, modulo rational equivalence, Z is supported over a proper algebraic
subset of B. By [5] it follows then that the class of Z vanishes over the complementary of

this subset and we conclude:
3.3. Proposition. Assume H%? @ A2Qp/ImV, has constant rank. Then, if Z satisfies
3.2.1, 8§z vanishes on B.

Notice that 3.3 is exactly Mumford’s theorem in the case where S does not vary,
i.e. § = § x B, because 6z identifies to the trace map Z : H°([{s) — H®(Q%) in this case.

For the applications, we give two descriptions of §z:

3.4. Assume now that Z is a divisor of relative degree 0 in C, where C — B is a smooth

family of curves over B, and that C < § is an inclusion over B.
j
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Then Z has an infinitesimal invariant §vz € Hg' ® Qp/Im V¢ (see M. Green’s lec-
tures), and if the maps Vo : Hg® — H*' @ Qp, Voo : HE® ®@ Q5 — HE' @ A?Qp
(infinitesimal variation of Hodge structure of the family C) are injective one has:

3.4.1. évz =0 =»> locally a flat section of H}, projecting onto vz (the normal function

associated to Z), unique up to a section of Hi. Now we have:

3.5. Proposition: There exists a natural map j. : Htgl ® Qp/ImVe — H*? ®
0%/ Im ¥V, such that j.(évz) = 6z, where §z is the invariant of 3.1 for the cycle j(Z).

3.6. Assume finally that Z C &S is given by 5 n;o;(B), with 0; : B — S, sections of =,
i
and Tn; = 0.

Then if N = dim B one has an isomorphism at 0 € B:

36.1. My ® 0%/ Im Vo) = [HO(Qg’ @ K5l )/H (x*(QF ®I{gl)|50)]

Then one proves:

3.7. Proposition: 6Z(0), as an element of the dual of HO(Q:;Y ® W*I"Eﬁso )/Ho(w*Qg ®
Kgz's,), is equal to

Snior : HO(QY @ 7 K5l is,) — H(Q0) © K5)) = C-

(Notice that ¥n; =0 = Xn;o} vanishes on H“(W*Q‘g ? I{§1|50)). Now we explain two
applications of 3.3, 3.5, 3.7:

3.8. Theorem: [8] Let S C P? be a general surface of degree d > 5, and C' C S a general
plane section. Then Kerj. : JC — CH(S) is equal to the torsion of JC.

Sketch of proof: Let B be the moduli space of the pair (C,S) (or its smooth part). We

have to show: If U — B is étale and
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is as in 3.4 and satisfies V u € U, j.(Z,) is rationally equivalent to zero in Sy, then Z, is
of torsion in JCy. Now we use the following (this uses the nice properties of the jacobian

rings describing the variation of Hodge structure of the pair (C, 5)):

3.8.1. For d > 5, the map j,. of 3.5 is injective, for

c ¢ S
J

N v
B

as above, when B is the universal deformation of (C, S). So if we have such Zy, we find that
bvz, =0, by 3.3 and 3.5, and then from -V—g, -V‘Z,C, v injective, which is also a consequence
of the general properties of jacobian rings, we conclude that vz, is a locally flat normal
function. We use then the monodromy argument of lecture 4 to conclude that vz, is a

torsion normal function, that is: Z, € Tors(JC,) for v € U.

3.9. Theorem: [8] Let S be a surface in P3 general of degree d > 7. Then if p # ¢ are

points of S, they are not rationally equivalent in S.

Sketch of proof: Again by standard arguments it suffices to show: Let U — B be an
étale cover of the moduli space of S. Let o3, 09 : U — Sy be two distinct sections of
the universal surface Sy. Then for u general in U, o;(u) and o2(u) are not rationally
equivalent in S,. )

If this is not the case, we apply 3.3 and 3.7 and this gives: For any 0 € U, the maps
oy : HO(QF @ n*Kj'is, — C and o3 : HY(QY @ 7* K" |s,) — C are equal (N = dimU).
For 01(0) # 02(0), this contradicts the following:

3.10. Proposition: [8] For d > 7, § — B the local universal deformation of Sp, N =

dim B, the vector bundle Qiylso is very ample on Sp.

From 3.8, one deduces another proof of a theorem of Xu: for d > 5, a general surface

S in P3 of degree d contains no rational curve.

From 3.10, one has also the following geometric corollary: let d > 7, and C be a fixed
curve ; then for a general surface S of degree d, there is no non constant map from C to

S.
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Lecture 7 : Griffiths group.

This lecture is devoted to another phenomenon which holds only for cycles of
codimension > 2 : The non triviality of the Griffiths group {cycles homologous to zero
modulo.cycles algebraically equivalent to zero}, [6], and more spectacularly in contrast

with the divisor case, its non finite generation {3].

This last fact was discovered only recently, and this is related to the difficulty of
constructing interesting cycles of codimension at least two, (excepted for the zero-cycles,
for which the above-mentioned phenomena do not hold). We will devote the next lecture

to this problem.

For codimension two cycles, it is at the moment conjectured that the Griffiths group
can be detected using the Abel-Jacobi map, more precisely its projection in the transcen-
dental part of the intermediate jacobian J3 ([6], [8]). However, in the paper [8], it is shown
that for higher codimension cycles, the Griffiths group can be non trivial modulo torsion,

even if the corresponding intermediate jacobian is trivial.

The lecture is organized as follows : We first describe Griffiths’ argument [6] for the
non triviality of the Griffiths group, and continue with a sketch of Clemens’ method to get
infinite generation of the Griffiths group. We follow then [8], and explain the application of
“Hodge theoretic connectivity” to non triviality in the Griffiths group of cycles restricted
to general complete intersection subvarieties. We finally describe the ideas of Bloch and
Ogus, and present, in a non rigorous way, the Bloch-Ogus resolution and the Bloch-Ogus

formula for the group of cycles modulo algebraic equivalence [2].

1.

1.1. Griffiths [6] worked with quintic hypersurfaces in P1. This is the smallest degree
for which these hypersurfaces have 7% # 0. These varieties also satisfy the following
property, which suggests that they have an interesting C H? group, by analogy of what

was known previously for cubics and quartics :

1.1.1. Fact : A generic quintic in P? has a finite number N > 1 of (rigid) lines.
Now Griffiths proved, using 1.1.. that the group Hom? / Alg? of cycles of codimension

two homologous to zero modulo algebraic equivalence is generally a non torsion group :

1.2. Theorem : Let X C P* be a general quintic 3-fold. ¢; # £, two distinct lines of X.

Then ¢; — £, is a non-torsion element of Hom> /Algz(X').
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Step I : One has Ho(X,Z) = H*(X,Z)* = H}(P*,Z)* by weak Lefschetz theorem, and ¢;
and ¢, have the same degree, so they are homologous. So one can use ®x, the Abel-Jacobi

map of X, which gives

Bx(ly — ) € J3(X) = H}(X,C)/F*HY(X) ® H*(X,Z).

As explained by M. Green, the image of ®x on cycles algebraically equivalent to zero
is contained in J(X)*8 := the maximal abelian subvariety of J3(X), with tangent space
contained in H12(X) C H¥(X,C)/F?H*(X,C).

From the injectivity of V: HV2(X) — Hom(H(Tx),H?(Ox)) (see M. Green,
Lecture 4), one deduces now :
1.2.1. If X is general (), no non zero integral class a € H*(X,Z) is contained in F* H3(X).
It follows that J(X)*8 = 0, for general X. So we conclude that Theorem 1.2 follows

from :

1.2.2. Proposition : If X is general. ®x(f; — (2) is a non torsion point of J3(X), for
£y # {5 two lines in X.

Step IT : Let X C ¥, with ¥ a smooth quintic in P® containing two planes Py and P,
such that LNX = {;, P,NX = {;. Let (X,,)'EP1 be a Lefschetz pencil of hyperplane

sections of Y, such that Xy, = X.

On the open set U C P? parametrizing smooth X’s, there is a holomorphic section v
of the fibration J — U of intermediate jacobians with fiber J, = J3(X}), given by :

1.2.3. v(t) = By, (¢ — 04), where ¢{ = P;N X, is a line in Xy, ¢ = 1,2.
1.2.2 is then equivalent to :
1.2.4. Proposition : v is not a torsion section of J.

Step III : The sheaf of holomorphic sections of J over U is given by : J=H/F*H? EBH%,
where if Xy - U is our family of threefolds, as usual H% = R¥n.2.H® = H% ® Oy, and
F27'{(,> =F? H3( X,) C H¥X,,C).

(1) Here “general” has not the usual sense : it means : locally outside a countable union

of analytic subsets, instead of : outside a countable union of algebraic subsets.
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Using the exact sequence :

1.25. 0 — H} —» H}Y/F*H® - J — 0. v € H%(J) gives a natural element
[v] € H\(U, H}) = Kex(H*(Ay,Z) — H*(X,,Z)).

Then an important fact is :

1.2.6. Proposition : Let ¥ be the blow-up of ¥ along the base-locus of the pencil; let
7:Y = Pland 7:Y — Y be the natural maps. Then Xy = #~}(U) — Y, and we have:
[v] = restriction to Xy of 7*([P1 — P,)) € Ker H4(Y) — H*(X,).

Now 1.2.4 follows from 1.2.6, because [P — P} € H*(Y, Z) is not of torsion (this follows
from the computation of the intersection (P — P;)?), and more precisely no multiple of it
is supported on some fiber of the pencil, by the Lefschetz assumption. This implies easily

that the restriction of 7*[P, — P} to Ay is not of torsion, so v is not of torsion.

Finally, 1.2.6 is proved as follows : Consider the restrictions 7,y of 7 to the proper
transforms ﬁl,ﬁz of P;.Ps in ¥. There is a finite number of points s1,...,8r of U,
over which m; U 7y fails to be a fibration. Let ¥V = U\{s1....,sr}. The restriction
HYU,R*n.2) — HY(V,R3m,Z) being injective it suffices to prove 1.2.6 on V. Let 0 €
V,and G = m(V,0). Let Ly = H3(Xo,Z). Then G acts on Lo by the monodromy
representation, and HY(V.R¥7,Z) = H'(G..Ly) is represented by cocycles g — a, €
Lo, well defined up to coboundary ag = 9 — 3, 3 € Lo. To find a representative of
[P —P2]|XV in HY(G, Ly), one notes that on the universal cover V of V, one can trivialize
the pulled-back family of pairs ((P1 U Pp)y, X¢7). Because (P — P2).X, is homologous
to zero in Xp, one can then find on ¥ a continuously varying family of real 3-chains
(v = 7 C Xy) oy such that Vo € 7,01 = AN Xy — PN X, = ()~ 3. HO € Visa
point of V over 0, for any g € G, there is a canonical isomorphism g : Xg_l(ﬁ) ~ Xj, such
that g(@fﬂé) = ﬁ?, for 2 = 1,2, and we can construct the cocycle g — g.¥,-15) — V5 €
H3(X;5,2Z) = H*(X3,Z) = Lo. This gives our representative. On the other hand, by
definition of the Abel-Jacobi map. the 7,’s give a global lifting ¥ of v on V to FZ’H%;, if
one defines v(v) = f% € FPH3(X,)* forv € V. Then clearly, by the definition of [v] in
1.2.5, a representative of [] in H'(G. Ly) is given by the cocycle : g — g.Z(g‘la) - '17(6) €
Hiy(X5,Z) € FPH3(X;)*. that is by : g — fg% , 50 1.2.6 is proved.

=16 T

2. Griffiths’ discovery left open the possibility that the group Hom? / Alg® (which is in
any case a countable group, because there are only countably many components of Chow

varieties parametrizing effective cycles of codimension two in a given variety) is a finitely



207

generated group. However, Clemens, working also with the quintic hypersurfaces, has
shown that this is not the case, even modulo torsion ([3}) : {See also [7] for generalization

to other K-trivial complete intersections.

2.1. Theorem : Let X be a general quintic threefold in P*; then Hom® / Alg?(X) has
infinite rank over Q. More precisely its image in JX (see 1.2, Step I), tensorized by Q has
infinite rank over Q.

The proof is somewhat delicate, and we will only sketch the main ideas. First of all,
there is an interesting statement, of independent interest from the point of view of the

geometry of Calabi-Yau threefolds :

2.2. Theorem : (Clemens) If X is general as above, X contains infinitely many rigid

rational curves.

This step is done as follows : One construct to begin with a surface S C P® smooth of
degree 4, having infinitely many smooth rational curves L,,. Then if X is a generic quintic
containing S, one shows that singularities of X are nodes which are not on the Ly’s, and
that the normal bundle of L, in X is Op1(—=1) & Opi(—1) (L, = P!). Such curves then

deform with X, by the Kodaira stability theorem.

The second geometric point is to show, again working with the surface S, that one

can specialize X to X having a node on any given L,,, and no node on the other L,’s.

Finally a careful study of the generic normal bundle of L, in the desingularization X,
of X, shows that under deformations of Xy smoothing the node on Ly, Ly, deforms with
Xq, only when one takes a double cover B; of the basis B ramified along the discriminant

locus (the locus where the node is preserved).

Consider now

X — B
1} T,
‘ 1’2 — B 2

and let  be the involution of By over B. Then on Bs one has the cycle Lny(b) — Ln,(ib) C

Xp. Now, the most difficult part of Clemens’ argument is :

2.3. The family of intermediate jacobians J3(X}) for smooth X, b € Bs, extends over the
discriminant locus: the central fiber J3(X) has two components, and the normal function
VL., () = @x,(Lay(b) — Lny(id)) extends over 0 in the component which does not pass

through 0. (This uses essentially Theorem 3.4 of Lecture 5).
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Admitting this, the rest of the argument goes as follows : Let C be a plane section
of X. For each L,, of degree d,,, 5L, — d,C is homologous to zero in X, so we have

Ox(5L, — dnC) € J3(X). Assume there is for general X -a relation :

(%) Tncn@x (5L, —dsC) =0, cn € Z. Then going to Xy having a node on Lx,, and letting
the monodromy act on (*) by Ly, (5) = Lag(ib), Ln(b) — La(b), for n # no, one concludes

that c,, must be even. So all ¢, must be even, and it remains only to prove :

2.4. Let G C J3(X) be a countable subgroup such that G ® Z/2Z has infinite rank. Then
G ® Q has infinite rank.

We will give in the next lecture a somewhat different approach to the infinite genera-
tion of ®x(CH*(X)hom).

3. Now we turn to the results of Nori, which are essentially new for codimension > 3

cycles. One of the most striking consequences of [§] is :

3.1 Theorem : [8]. For d > 3, n > d. there exist varieties X of dimension n with a cycle
Z C X of codimension d. homologous to zero and. Abel-Jacobi equivalent to zero, such

that no multiple of Z is algebraically equivalent to zero.

This results in fact of the following more precise statement :

3.2 Theorem : [8] Let X be a variety and Z be a cycle of codimension d, satisfying
[2) # 0in H?%(X,Q). Then for n > d and ¥ C X a general complete intersection of
sufficiently ample divisors in X, such that dimY =n > d, ZNY is not algebraically

equivalent to zero in Y.

3.2 implies 2.1 because we can take in 3.2 a variety X of dimension 2d, having no
odd dimensional cohomology, with an algebraic cycle Z of codimension d, primitive with
respect to an ample divisor L, and consider a complete intersection ¥ C X of dimension
n satisfying d < n < 2d — 2 (here one needs d > 3), of divisors in (L™), satisfying
3.9. Then J2¢~1(Y) = 0. and Z), satisfies 3.1. This way we get all (rn,d) satisfying
d >3, 2d —2 > n > d. We can take products with a projective space to obtain the other

(n,d)’s.

The theorem 3.2 is a consequence of the following Theorem 3.3, the proof of which
will be given by M. Green.

Let X be a projective variety of dimension n + k, L; ¢ = 1,...,k be ample divisors

o . .. . k -
on X. Fix positive integers ny,...,ny and let § =& HO(X, L™).
1
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Let Ys C S x X be the universal complete intersection. Then :

3.3 Theorem : For n; > 0, m < 2n. and any smooth base change T — S, one has
H™T x X,Yr,Q) = 0. '

3.4. Now we show how Theorem 3.3 implies Theorem 3.2. So, under the assumptions of
Theorem 3.1, and ¥ being a general complete intersection of divisors in |L™ |, ni asin 3.3,

assume that Z NY is algebraically equivalent to zero.

Then there exists an etale morphism §' — S, a smooth family of curves C — §,
@
a divisor D on C, homologous to zero onthe fibers of ¢, a cycle T' of codimension d in

C xg Yg, such that, writing j for the natural map Y — X, one has :

3.4.1. j*Z = pa.(I'.pi D). in CH%Ys) (this is the definition of algebraic equivalence, put

in family). Here we work with the diagram :

Cxs Yo
(%) nJ/ N P2
C Yoo —» X

J
Now let T = C. So C xs Y's = Yr. The cycle T' has a class v in H2?4(¥7,Q), and by
Theorem 3.3 and 2d < 2n, one finds that this class extends to 5 € H*(TxX,Q). Consider

then :

3.4.2. B = p.(pi[D].7) € H2(S' x X.Q), where we consider now the following diagram :

TxX
(*) n/ Ne
T S'x X
which contains (*). Then by 3.4.1. Sh,.g, = j*[Z] € H*(Y.Q), where j is as before the
natural map ¥s — X. But by Theorem 3.3 applied to ', the restriction map H24(S' x

X,Q) - H*(Ys,Q) is injective, so we find :

3.4.3. B = p3[Z]. where p; is the second projection S'x X —X.

But if one chooses s € S'. one finds that in H?(X,Q), Bl.x = 12}
= 0ou(PI[Ds) e, xx )» Where one works with the diagram :
Cyx X

(% * %) s N Ps = 2e,
Cs s x X

s x X
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So B},.x =0, because [D,] = 0 and [Z] =0 in H?4(X,Q), hence Theorem 3.2 is proved.

4. To conclude this lecture we want to describe the Bloch-Ogus resolution and Bloch-Ogus

formula for the group of cycles modulo algebraic equivalence [2].

Recall the following classical result :

4.1. Lemma : Let X be a smooth projective variety and D = In;D; be a divisor on X.
Then a multiple of D is homologous to zero if and only if there exists a (necessarily closed)
holomorphic one form w with logarithmic poles along the support | D] of D, and such that

Respjw = En;lp,.

The notion of logarithmic pole is well defined when |D| is a divisor with normal
crossings, which we can achieve by blowing up X. Then locally |D| admits for equation

Z1,..., 2k, in some coordinate systems (zj,....2,) on X, and w has logarithmic pole if it

k

. 1z . .

is of the form : E fi ;—: + E gidz;, for holomorphic functions fi, g;.
1 Y

The residues of w are then the fonctions —,% fi on D;. They are constant if w is closed.

The lemma follows from the exact sequence :

Res

4.1.1. 0- Qy - Qx(log|D)) =& Op, — 0. See [9].

It is easy to show that the induced map : @ H%Op,;) — H'(1x) sends Ln;1p, to the
De Rham class of D in H}(Qx). So if C'F(Sn,—D;) =0, &;n;lp, = Resw, as we wanted.
Such a form w is closed by the degeneration at E; of the Hodge-DeRham spectral sequence

for the logarithmic complex Q% (log|D]). See [9]).

4.2. More generally, if X is smooth not necessarily compact and ¥ C X is a smooth
hypersurface, one has a residue Resy : H*(X\Y) — H*1(Y) see [6], and if one has

Y1,Y2 C X intersecting transversally, one has :

Resy2 Resyl AY,

HY X\ UY?) H'(15\Y N 1)) HE2(Y; N Yy)
421

HY(X\T7 UY3) N HY(Y\Y2 nYY) — H2(Y1nYy)

esyy Resy._,ny1

Now the very important point is the following fact :

4.2.2. l) Resnmrz o Res;--, = — R(—‘S)-:‘,ny‘ OR.G’S\"l
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i) Resy H*(X) = 0.

Furthermore Lemma 4.1 has now the following integral version :

4.2.3. ¥n;D; is homologous to zero <= Tn;ly;, = T Resy, (), for some n € H‘(X\UY,-, 7).

422 is the essential point for the construction of the Bloch-Ogus resolution, although

there are in fact big difficulties coming from the singularities of the subvarieties we consider.

4.3. Define the Zariski sheaf H* on X as associated to the presheaf U — H¥(U, A) (where
A may be integral, rational or complex coefficients), and define H¥(C(X)) = lim H*(X).

vVcx
Then H* is also R¥j.(4) where j : X3 — X" is the continuous map from the usual

topology to the Zariski topology.

4.2.2 (with a lot of work) gives a complex :

0 H — HNC(X) —» & H(CD) — 3  HC(2) -
Bireed Girrea

4.3.1 o= = Az — 0.
Grrea

Here one sees HY(C(Z)) as a constant sheaf supported on the irreducible subvariety Z.

The main result of Bloch-Ogus is then :

4.4, Theorem : [2]. 4.3.1 is exact.

So we have a resolution of H* by acyclic sheaves, for the Zariski topology, which has

length < k.

If one considers the end of this resolution, for 4 = Z, one finds :

4.5. HE (Hs)= & (Zz)/Res( & H'(C(D),1)).
ierea “Dirred

But now by 4.2.3, one sees that n,1z,. codim Z; = k defines a zero element in HE(HE)
if and only if it is a combinaison of cycles homologous to zero in varieties of codimension
k — 1, that is iff Sn;Z; is algebraically equivalent to zero. In other words, one has the

Bloch-Ogus formula :

4.6. CH¥(X)/alg.eq ~ HE (H*).
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4.7. This fascinating formula did not prove very useful for the understanding of the groups
CH*/alg.eq., but the Bloch-Ogus theory has very interesting consequences on the spectral

sequence associated to the map j of 4.3. An important consequence of Theorem 4.4 is :

4.7.1. H?P, (R?) =0 for p>q.
For p+¢ = 3,4 it follows that the spectral sequence HP, (H7) = HP*9(X) degenerates

quickly, and gives rise to the following exact sequence.

4.7.2. H3(X) — HE.(H®) % H2 (H?) — H*. where the first map is given by the
restrictions H3(X) — H3(U,Z),U C X, and is in many cases injective, and the last one
identifies to the cycle class defined on CH?(X)/alg.eq.

For complex coefficients a section of H® can be understood as a meromorphic form
which is locally the sum of a holomorphic form and of an exact form. The obstruction for
such a form to define a global cohomology class lies in the group (Hom?/ Alg?(X)) @ C,

which is generally non trivial by the Griffiths theorem 1.2 (see [1], [2]).
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Lecture 8 : Application of the Noether-Lefschetz locus to threefolds.

This last lecture describes the applications of the criterion of M. Green (see
Lecture 3) for the existence and density of the Noether-Lefschetz locus, to the study of
one-cycles on threefolds, which were worked out in [15], [16], [17].

The simplest application is a purely infinitesimal (hence algebraic) method to solve the
Hodge conjecture for the algebraic part of the intermediate jacobian of certain threefolds
[15]. Of course to apply the method, one needs information which depend on the particular
case we consider, but the method applies well in some cases where the geometry is so

intricated that the existence of interesting codimension two cycles is not obvious.

We also sketch an infinitesimal proof of Clemens’ theorem [17]. Here we don’t use the
full power of M. Green’s criterion, because we specialize to quintics containing the Fermat

“infinite generation” is the fact that

surface S of degree five : A crucial point to get the
rank(Pic S)P'™ > 2, and the existence of such surface is not predicted by this criterion.
(Note that one can always construct surfaces S with rank(Pic §) large in a given threefold,
but they will not correspond to components of the Noether-Lefschetz locus of the right

codimension, a condition which is important for all computations).

The most convincing application is the generalization of the Griffiths theorem ([6], and
Th. 1.2 of Lecture 7) to any non-rigid Calabi-Yau threefold, that is a smooth projective
threefold X satisfying H!(Ox) = H}(Ox) = {0} and Kx trivial) : we prove :

Theorem [16] : Let X be a Calabi-Yau threefold satisfying H*(Tx) # 0. Then for a
general deformation X' of X, one has : Hom?/Alg?(X') is not a torsion group. More

precisely, the Abel-Jacobi map ®x/ of X' is not of torsion.

1.

1.1. For complete intersection threefolds X which have a negative canonical bundle, it is
known how to parametrize the intermediate jacobian J3(X) using the Abel-Jacobi map,
as predicted by the Hodge conjecture (see J.P. Murre’s lecture on the Hodge conjecture):
These varieties contain a positive dimensional family D of lines, and the Abel-Jacobi map
®x : Alb D — J3(X) is surjective. Bardelli {11] has constructed an example of a complete
intersection X with effective canonical bundle and with an involution 7 without fixed
point such that (JX)~ is contained in the algebraic part of JX, that is H*°(X)~ =0,
and has constructed geometrically interesting codimension two cycles in X, which give a

parametrization of (JX)~ by algebraic cycles.
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1.2. We sketch now an argument which works for other varieties X of dimension 3 with a
group of automorphisms G, such that the invariant part of J3(X) under G, or its orthogonal
is contained in J3(X)*# [15]. Assuming that one of these two possibilities occurs, we will

refer to them respectively as case i) and case ii).

Case i) is then equivalent to H30(X)™ = 0, case ii) is equivalent to G acts trivially
on H3°(X).

1.3. Now assume that X carries a G-invariant line bundle with enough G-invariant sec-

tions, and such that :

Case i) for a smooth § = V(c), o € H(L)™, the number h29($)™ := dim H20(§)n
satisfies : R20(S)MY < hO(NgX)inv.

Case ii) for a smooth § € V(0), o € HO(L)™, the number h*%(S)! := dim(h?°(S)! :=
dim(H%2(S) 1) satisfies : h>0(S)! < AO(NgX)v.

These assumptions are made plausible by the adjunction formula, which gives :
HYKs)™ = HY(Kx(L), )™ « H'(Kx)™ ® H'(NsX)™ (= 0 in case i))

HY(Ks)' = HY(Kx(S))! « HY(Kx)' ® H'(NsX)™ (=0 in case ii))

Is

Now as explained in Lecture 3, (A%°)"" (resp. h29(S)! is the expected codimension of the
components of the Noether-Lefschetz loci corresponding to invariant (resp. skew) classes
A, on the space of G-invariant surfaces. So assumption 1.3 means that in both cases, the
Noether-Lefschetz locus, if non empty has positive dimensional components. For (S, ) in
a component Sy of the Noether-Lefschetz locus, with A € H?(S,Z)™ N H-(S) in case
i), A € H*(S, 2} n HY!(S) in case ii), one considers A as an element of CH{(S)™ (resp.
CH;(S)! in case ii), where a one-cycle Z is skew, if Z gZ = 0). Here one assumes that
g€eG

HY(Os) = 0, for simplicity.

If j : S — X is the inclusion, j, A gives an element of CHy(X )™ (resp. CH1(X)! in

case ii).
Using theAbel-Jacobi map ®x, one deduces a map :
1.3.1. S, " (JX)™ (resp. (JX)!) in case ii), depending on the choice of a base point,
A

that is well defined up to constant, and S, being positive dimensional, one can hope that

the image of oy generates (JX )™ (resp. (JX)).
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1.4. Now we explain how one can make this work with only algebraic assumptions on the
infinitesimal variation of Hodge structure of S C X.

Let U C P(H°(L)™) parametrizeé the smooth invariant surfaces § C X, so TU(g) =
HY(NsX)»v = H%L,)™". On U, we consider in case i) the invariant variation of Hodge
structure H3™v, H?inv FEH2inY with infinitesimal variation described at (S) € U by =

V: HY(Qs)™ — Hom(TU(S),HZ(Os)i“")

'H:’Sl)im' —  Hom(TU(s), 'H?‘;)inv)

and we write A € H(Qs)™ — V(\) € Hom(TU(s), H2(Os)™). In case ii) we work with
H2' and the associated VHS. Now to apply M. Green’s Lemma, we refine assumption

1.3 as follows :

1.4.1. For S generic in U,3) € HY(Qs)™ (resp. H(Qs)! in case ii)), such that V(}) :
TU(sy — H*(Os)™ is surjective (resp. V() : TUs) —= H?(Os)*) in case ii)).

Then M. Green's Lemma says that for generic S and generic A in H*(Qs)§" (resp.
HI(QS)”R) we can approximate it by (S,,A,) such that : A, € H?(Sn, Q)™ N HY(S,),
(resp. An € H2(Sn, Q)Y N HL(S,)).

Also for large enough n, (A, S,) also satisfies assumption 1.4.1 so that S, is smooth

of maximal codimension at S,. (See Lecture 3). This is the existence step for our

construction.
Next we explain which infinitesimal condition is needed for the Abel-J acobi map ay,,

of 1.3.1 to be non trivial.

For A € HY(Qs)™ (resp. H'(Qs)! in case ii)) one defines : TUy := KerV(}) :
TUisy — H*(Os)™ (vesp. H2(Os)!). Then let ay, : TUx — H?(Qx) be defined as
follows : One has TU(s) C H%(Lj )™, hence a map :

g TU(s) — HY(Qs(L))™ (resp. H'(Qs(D))P).

Consider the exact sequence : 0 — Os(—L) — x5 — Qs — 0, which gives
§ : H(Qs(L))™ — H*(Os)™ (resp. 6 : HY (Qs(L))! —» H?*(Os)). Then one has
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(See M. Green’s lecture on hypersurfaces) :
§oux=V(N)

One concludes that ux(TUy)) C H (Qx(L))s )™ (vesp. H (2x(L))s )¥), using H*(Os) =
0, "~ and this goes naturally to H?(Qx )™ (resp.
H2(Qx)"), using the exact sequence 0 — Qx — Qx(L) — Qx(L)); — 0.

This defines our a,, and one can check :

1.4.2. Lemma: If A € H'(Qs)NH?(S,Z), ay, is the differential of the map a of 1.3.1,
where one identifies TU(») to TSx(s). (See Lecture 3).

If ) is only rational, NA € H?(S,Z)NH'(s), for some N € N, and one has obviously:
ay, = -}v (differential of any).

Consider now the following assumption (a formal assumption on IVHS).

1.4.3. For generic § € U, X € HY(Qs)™ (resp. H(0s)'), the map ax, : TUpy —
H?(Q2x) is non zero.

If 1.4.3 is true for (S, \), satisfying assumption 1.4.1, it is also true for some (S, A),
with X real satisfying 1.4.1. Then we approximate (.S, A) by (S, An) asin 1.4.1. For n large
enough, TU(, ) has the minimal dimension, so 1.4.3 will also hold at (Sx, An). According
to 1.4.2, this means that (ay, )* is non zero at (Sp,An) and Sy, being smooth at Sy, it

follows that ay, is non zero.

One can generally conclude that @, is in fact surjective, by checking that (JX )=V

or (JX)! is a simple abelian variety. Hence we have shown under the formal assumptions
1.4.1 and 1.4.3 that the Hodge conjecture holds for (JX )™ or (JX)!.

1.5. Examples and variant i) ([15]). Consider a generic quintic polynomial in P*
invariant under the involution : acting by i*(Xo,...,Xs) = (=Xo, —X1, X2, X35, X4) then
R39(X)~ = 0. One considers the quintic fourfolds ¥ C P?® invariant under the extended
involution i acting on P® : i*(Xy,...,Xs5) = (=Xo,—X1,X2,...,X5), and containing X.
These quintics have 1*° = 0, and by Bloch-Srinivas the Hodge conjecture is true for them
in degree 4. So the method of the Noether-Lefschetz locus can be applied and it is verified
in [15] that the analogs of 1.4.1, 1.4.3 hold true.

ii) More generally, the method works for all K-trivial complete intersections with an

involution, excepted the one constructed by Bardelli.
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2. We explain now how one can prove Clemens’ theorem by infinitesimal methods [17].

2.1 Theorem : Let X be a general quintic threefold in P4. Then the one-cycles on X
homologous to zero, and supported on a hyperplane section of X generate by the Abel-
Jacobi map a countable subgroup of JX of infinite rank over Q.

. Let' S C X be a hyperplane section, and let A € H!(Qs)P""™ N H?2(S,Z) be an algebraic
class.

Note that by Kx trivial, and the adjunction formula, one has dim H°(NgX) =
dim H%(Ks) = dim H%*(Os).

Working with the same notations as in 1, with U C P(H%(Ox(1)) the Zariski open

set parametrizing smooth surfaces, we suppose now :

2.2. Assumption : The map V(}): H'(NsX) — H?(Os) is an isomorphism.

Then consider V C P(H%(Op(5))) the open set parametrizing smooth quintics, and
let U — V be the fibration with fiber U; = open set in P(H%(Ox,(1))) parametrizing
smooth”surfaces in X;. (S, X) is a point of &, and one can consider the component Sy C U
of the Noether-Lefschetz locus passing through (S, X). By the surjectivity of the map
T(X) in 2.2 Sy is smooth of codimension A2 at (S, X), and the kernel of 7. : TSx(s,x) =
TVx) is clearly equal to Ker(V()) : HY(NsX) — H?(Os)). Also 7, is surjective by the
surjectivity of V()). So we conclude :

2.3 Lemma : Assumption 2.2 implies that Sy - V is etale in a neighbourhood of (S, X).

2.4. Consider the Fermat quintic surface S : Zg X? = 0. It has a primitive Picard group
of rank pprim > 2. Let us denote by NSLL c H'(Qs)PH™ the subspace of H(Qs)PHm™

prim

generated over C by algebraic classes.

Using an easy algebraic characterization of J\’S;;ilm, and the jacobian description of
the IVHS of S (cf. M. Green’s Lecture), one checks now :

2.5 Lemma. Let X be a generic quintic threefold containing S, and let A be a generic
element of NS%} . Then the map V(1)) : H*(NsX) — H?(Os) is an isomorphism.

prim*
Because NS;;ilm is a C-vector space with a Q-structure given by NSprim ® Q, and
because the asumption on A is Zariski open, it follows that the conclusion of 2.5 holds for

infinitely many elements of P(N Sprim ® Q).
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In other words, assumption 2.2 holds for infinitely many non proportional algebraic

classes in S, for some fixed X contammg S.

2.6. By 2.3 and 2.5, we have now ina neighbourhood of a generic X € V containing
S, countably many components S»,, tales over V and to each of them we associate a
holomorphic family of one-cycles homologous to zero in the fibers (X,)vev : tov € V

we associate jy«(An,v), where v — S, ‘—+ X, is a local section of Sy, - V,and Any €
H?(Sy, L)psim N HV(Sy) ~ CHI(SI.)p,,m, because S, € Sy,

We consider the associated germs of normal functions v, € J(V), defined as v,(v) =
®x, (Jox(An,v))-
To each such germ, we associate its infinitesimal invariant at X (See M. Green’s

Lecture on normal functions), that is :

2.6.1: 5Vn(X) € HI‘Q(.X) ® QV(X)/—V—(HZ‘I (_X')).

Now the technical point is the following :

2.6.2 Lemma : Let S be the Fermat quintic. Then there exists two non proportional
algebraic classes A1, A2 € NS(S)prim, satisfying : For X general containing S, there exists
an infinite number of non proportional combinations aA; + A2, @,f € Z, such that :

i) ad; + B satisfies 2.2, for the inclusion S C X.

ii) the associated germs of normal functions vax,+3x, on V near X have infinitesimal
invariants §vga,+gr,(X) which are independent over Q, in H1?(X)® Qv (x)/V(H(X)).

Now the infinitesimal proof of Theorem 2.1 is almost finished. Assume there is for
a general point near X a relation with a finite number of integral coeflicients between
the normal functions vaa,+82,, defined in a common open set of V' containing X. By a
countability argument one may assume that a fixed relation holds in this open set. But
this relation will then also hold between the associated dvqa, 42, at X which contredicts

their independence over Q.

2.7 Remark : This method has been successfully applied in [12], where the authors use to
begin with the Noether-Lefschetz locus and conclude with Clemens argument, and in [10]
where theorem 2.1 is proved for cycles of dimension 3 in cubic hypersurfaces of dimension
7.

3. We conclude our lecture with the following theorem, which makes a full use of M.

Green'’s criterion :
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3.1 Theorem : [16] Let X be a non-rigid Calabi-Yau threefold. Then for a general
deformation X' of X, the Abel-Jacobi map ®x: of X' is not of torsion.

As in Griffiths’ theorem, this implies that Hom? / AlgZ(X') is not of torsion, because
for a Calabi-Yau threefold, the map V : A2 — Hom(H*(Tx ), H}(Ox)) is an isomorphism
(which identifies, via Kx trivial = Tx =~ Q%, to the Serre duality) and its injectivity
implies as in Lecture 7 that JX' has no algebraic part, for general X'.

The first step is done in [18], where one checks M. Green’s criterion for sufficiently

ample surfaces in X :

3.2 Theorem : Let X be a Calabi-Yau threefold, and L — X an ample line bundle. Then
for n large enough, there is a smooth S € |L"|, and a A € H}(Q2s)? := Ker(H(Qs) —
H%(Q%)) satisfying :

3.2.1. V()\): H'(NsX) — H?*(Og) is an isomorphism.

Notice, and this point was also crucial for the proof of 2.1 that “Kx trivial” =
dim H%(Ks) = dim H(NsX), and this fact suggested the use of the Noether-Lefschetz
locus instead of the rigid rational curves of Clemens, because one expected from it that

the Noether-Lefschetz locus for surfaces in X is essentially 0-dimensional.

In fact, applying M. Green’s criterion and using 3.2, we find now :
pplymg g

'3.3 Corollary : For n 3> 0, the Noether-Lefschetz locus in U C P(H?(X, L™)) (the open
set parametrizing smooth surfaces) has countably many reduced 0-dimensional compo-

nents, which are dense in U.

Note also the following very important refinement of 3.3, which is part of M. Green’s

Lemma :

The couples (Sn, An) where A, is rational algebraic on S, and {S,} is a zero-dimen-
sional reduced component of Sy, are dense in the total space of 'H;"Ylpﬁm on U. (See Lecture

3 for notations).
3.4. Now we do the same construction as in §2.

3.4.1. One knows that the local universal deformation V of X is smooth. For n large
enough, let U4 — V parametrizing smooth surfaces S, € |L7| on X,, v € V. Let
S C X, Ae H*S,7)° N HY'(S) be an algebraic class satisfying 3.2.1. Then as in 2.3 it
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follows that Sx C U is smooth of codimension h*%(S) = dim (fibers of 7 : ¥ — V), and
that m|, - : Sx — V is etale over a neighbourhood of (X) in V.

3.4.2. Asin 2.6, we conclude that we have now countably many germs of families (Z(v))
on V near (X), of 1-cycles homologous to zero in the fibers X,, and countably many
corresponding germs of normal functions v(v) on V near (X), which are in bijection with

the countably many 0-dimensional reduced components of the Noether-Lefschetz locus of
U =Ux).

The Theorem 3.1 then follows from :

3.5 Theorem : There is at least one v, which is not of torsion.
We want to sketch the proof of this. The invariant used here is a refinement of the

infinitesimal invariant of a normal function, and we want to describe it.

3.5.1. Let § < X be smooth, and A € H*(S5,Z)° N HV1(S). Then A € CHy(S)° (H(Os)
j
= 0}, so we have j,(A) € CH1(X)hom, and we have also ®x(j.A) € J3(X).

Now using the Deligne description of the Abel-Jacobi map [14], ®x(j.)) can be
described as follows :

Let ¥ = X\S. Then there is an exact sequence :

3.5.2. 0 — H3(X,2) - H3(Y,7) . H?*(S,7)°, and H3(Y,C) has a Hodge filtration
FH3(Y), [13], such that :

3.5.3. ResFPHY(Y) = Fim'HX(S)®, FiHS(Y)n HY(X) = FiH3(X). By 3.5.2, A ad-
mits a lifting Az € H*(Y,Z). By 3.5.3, A admits a lkifting Ap in F2H3(Y). Then
Az — Ar € H3(X,C) and is well defined modulo H3(X,Z) and F2H?(X). This gives
our point ®x(j.\) € J3(X) = H3(X,C)/F*H3(X) ® H3}(X,2).

As a corollary, we have :

3.5.2. ®x(j.\) is a torsion point of J3(X) < A admits a lifting in H3(Y,Q) N FZH3(Y).

Consider W C H3(Y,R) defined as W = F?H3(Y)n H3(Y,R). Then by the residue,
W is isomorphicte H, é’l(S )% 3 X and Corollary 3.5.4 rewrites as :

3.5.5. ®x(j.)) is of torsion « the lifting X of X in W lies in H3(¥, Q) C H3(Y,R).
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We put this in family : consider the normal function vx(v) = @x, (Jve(Av)) € J3(Xy).
Let Y, = X,\S,, where S, ‘J—» X, is the point of Sy ——  V over v near S.
local isom.
Then we have a C® real bundle W on Sy, with fiber W,y = H3(Y,),R) N F2H3(Y,),
and W is isomorphic to (’H‘l"l)o. On S», A gives a section of (’H,la’l)" and has a unic lifting
Ain WC 'H%,Y (the flat real C*°-bundle with fiber H3(Y,,R)). 3.5.5 gives now :

3.5.6. If vy is of torsion, X, is in fact in H3(Y,,Q) for any v € V, so in particular, via the

inclusion W C 'Hf‘ v ) is a flat section of ’H% ye

3.5.7. The infinitesimal variation of the Hodge filtration of the open sets Y, over Sa, and
more generally of the sets ¥; = X,\Sy, for v € V, t € U, n(t) = v, gives the following
diagrams :

3.5.8.

v PH, - ML @Qu
l l ;
. PP - FYFMML @ Qu

which restricts on Sy to :

v oo FPHy - F'M3 Qs
v ! l ,
V' . FYPH}, — FY/F'H} ©Qs,

55 is a C* section of F2H3, on Sy, which is flat. One deduces then from 3.5.8 :

3.5.9. Yv € S,, VY(XV) vanishes in F!/F*H3, ® Qs, (v), where X, is the value at v of
the projection in F2/F3H3, of . Note that X, belongs to the image W, of W ® C in
F?/F3H3(Y,), and that via Res, TV, is isomorphic to H(Qs,)°.

We conclude now the proof of 3.5.

3.5.10. If all the v)’s of 3.4.2 were of torsion, one would have, using 3.5.9 and the density
statement in 3.3. : For generic $ C X, § € |L"|, for generic A € H'(Qs)°, the natural
lifting X of A in W(Ys) (¥Ys = X\S) satisfies :

3.5.11. V' (V) € Qu ® F!/F2H3(Ys) vanishes in (Ker V()))* @ F'/F2H(Ys).

It is shown in [16], using the results of [18], that 3.5.11 is not true. Note that 3.5.11
is an algebraic statement except for the data of the space W c F?/F3H3(Ys) which does
not vary holomorphically with S. We prove that 3.5.11 is false for any subspace W of
F?/F3H3(Ys) isomorphic to H!(Qs)? via Res, (for S generic). So 3.5 is proved.
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