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0. Introduction

It has been conjectured by Bloch and Beilinson that there exists a decreasing
filtration Fi

BBCHk(X)Q on the Chow groups with rational coefficients of any
smooth complex projective variety X, satisfying the following properties:

1. (functoriality) F·
BB is stable under correspondences, i.e. if Γ ∈ CHk(X × Y ),

the induced morphism

Γ∗ : CHl(X)Q → CHk+l−dim X (Y )Q

satisfies: Γ∗ Fi
BBCHl(X)Q ⊂ Fi

BBCHk+l−dim X (Y )Q.
2. (graded) If Γ ∈ CHk(X × Y )hom is a correspondence homologous to 0, the

associated morphism Γ∗ satisfies

Gri
FBB

Γ∗ = 0 : Gri
FBB

CHl(X)Q → Gri
FBB

CHk+l−dim X (Y )Q. (0.1)

Another version which we shall adopt says that the vanishing (0.1) holds once
the Künneth component of [Γ], which lies in

Hom (H2l−i(X,Q), H2k+2l−2dim X−i (Y,Q)),

vanishes. In other words, the graded pieces Gri
FBB

CHl(X)Q are governed by
the cohomology groups H2l−i(X,Q).

3. (finiteness) The filtration ends-up: Fk+1
BB CHk(X)Q = 0, ∀k.

Several filtrations have been constructed, which satisfy some of the properties
stated above. Hiroshi Saito [11] proposes considering the filtration Fi

H CHk(X)Q
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constructed inductively, starting with F1
H CHk(X)Q = CHk(X)hom,Q and defining

Fi+1
H CHk(X) =< Γ∗ Fi

H CHl(Y ), [Γ] = 0 in H2γ (Y × X,Z) >Q,

where k = γ + l − dim Y, γ = codim Γ. A more direct way to define it is to put

Fi
H CHk(X)Q =< Γ∗(z1 · . . . · zi), Γ ∈ CH(Y × X), z j ∈ CH(Y )hom,Q) >Q .

This filtration must clearly be contained in any Bloch–Beilinson filtration, if there
is one, because of property 2. Also, it satisfies property 1 and the first version of
property 2 but nothing is known about 3.

Shuji Saito [10] constructs a filtration Fi
SCHk(X) similar in spirit but closer to

satisfying 3. Roughly speaking, it is defined as follows: one starts with F1
SCHk(X)Q

= CHk(X)hom,Q and one defines

Fi+1
S CHk(X) =< Γ∗ Fi

SCHl(Y ), [Γ]2γ−2k+i,2k−i = 0 >Q,

where k = γ + l − dim Y, γ = codim Γ and

[Γ]2γ−2k+i,2k−i ∈ Hom (H2l−i(Y,Q), H2k−i(X,Q))

denotes the Künneth component of type (2γ − 2k + i, 2k − i) of the cohomology
class of Γ. This filtration obviously contains the previous one, and again, it must
clearly be contained in any Bloch–Beilinson filtration, if there is one, because of
(the strengthened version) of property 2. It also satisfies properties 1 and 2, and,
assuming the Lefschetz standard conjecture, the following version of 3:

Fk+1
S CHk(X)Q = Fk+2

S CHk(X)Q = Fl
SCHk(X)Q, l ≥ k + 1.

(Notice that in the precise version of [10], one does not need the Lefschetz conjec-
ture to get the stationarity above.)

Our purpose in this paper is of several kinds. First of all we introduce a filtration
Fi

naïve on the group CH0(X)Q of 0-cycles with rational coefficients of any smooth
projective variety X. The group Fi

naïveCH0(X) is simply defined as the subgroup
of CH0(X) consisting of elements annihilated by all 0-correspondences from X
to a variety of dimension < i. This filtration satisfies properties 1 (functoriality)
and 3 (finiteness) but we cannot say much about 2. We shall come back to this in
the last section. In the first section we show the following:

Proposition 1. Assume there exists a Bloch–Beilinson filtration. Assume further-
more the Lefschetz standard conjecture is true. Then we must have

Fi
naïve = Fi

BB

on the groups CH0(X)Q = CHn(X)Q, n = dim X.

We turn next to a filtration introduced by Nori [8]. This is an increasing filtration
that we shall denote by NrCHk(X)Q. It satisfies the properties that

N0CHk(X)Q = CHk(X)alg,Q,
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where the right-hand side is the subgroup of cycles algebraically equivalent to 0,
and that for r ≥ n − k, n = dim X one has

NrCHk(X)Q = CHk(X)hom,Q.

We show the following:

Proposition 2. Assume a Bloch–Beilinson filtration exists. Assume furthermore
the Lefschetz standard conjecture holds. Then one has, for r > 0,

Fr
BBCHk(X)Q ⊂ Nk−rCHk(X)Q.

In particular, for k = r we recover a fact observed by Jannsen [4], namely that
under the same assumptions, we have

Fk
BBCHk(X)Q ⊂ CHk(X)alg,Q. (0.2)

In the second and third sections of this paper, we formulate two conjectures,
which together will appear to imply the Bloch conjecture [1] for surfaces. One is
a weak form of the inclusion 0.2:

Conjecture 1. For some N > 0 we have

FN
H CHk(X)Q ⊂ CHk(X)alg,Q,

where FN
H CH is the Hiroshi Saito filtration introduced above.

We shall show the following:

Theorem 1. Assume the generalized Hodge conjecture holds. Assume furthermore
that Conjecture 4 is satisfied. Then if X is a smooth projective variety satisfying
the condition that Hi,0(X) = 0, i > 0, we have

CH0(X)hom,Q = 0.

This is a converse to the higher-dimensional version of Mumford’s theorem [6].
The second conjecture is related to the fact that the Hodge structure on the

transcendental part of the cohomology group Hn(X,Q), n = dim X is naturally
a polarized Hodge structure. It follows from this that if

Γ ∈ CHn(X × Y ), n = dim X = dim Y,

the morphism of Hodge structures

[Γ]∗ : Hn(X,Q)tr → Hn(Y,Q)tr

satisfies

Im [Γ]∗ = Im [Γ ◦ tΓ]∗ ⊂ Hn(Y,Q)tr . (0.3)

Here tΓ ∈ CHn(Y × X) is the transposed cycle and [tΓ]∗ : Hn(Y,Q)tr →
Hn(X,Q)tr is the transpose of [Γ]∗ : Hn(X,Q)tr → Hn(Y,Q)tr with respect
to the intersection pairing.

The equality (0.3) together with the Bloch–Beilinson conjecture then lead to
the following conjecture:
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Conjecture 2. Let Γ ∈ CHn(X × Y ), n = dim X = dim Y be a correspondence.
Then

Im FnΓ∗ = Im Fn(Γ ◦ tΓ)∗ ⊂ FnCHn(Y )Q.

Here FnΓ∗ and Fn(Γ ◦ tΓ)∗ denote, respectively, the restrictions of Γ∗ and Γ ◦ tΓ∗
to FnCHn(X)Q and FnCHn(Y )Q, the filtration being the naïve filtration.

We shall explain several consequences of this conjecture in the case where
n = dim 2 (the conjecture is well known for curves). Recalling that F3

naïveCH0(X)

is made of cycles annihilated by all 0-correspondences from X to a surface, first
of all it allows us to study the naïve filtration for 0-cycles on a threefold by the
following results:

Proposition 3. Assume Conjecture 2 holds. Then if Γ ∈ CH2(X × S) is a corres-
pondence between a smooth complex projective threefold and a smooth complex

projective surface, and if Y
j

↪→ X is the inclusion of any smooth ample surface, we
have

CH0(X) = j∗CH0(Y ) + Ker Γ∗.

Proposition 4. Under the same assumption, let Γ ∈ CH2(X × S), where π :
S → B is a family of smooth surfaces parametrized by a smooth connected
quasiprojective basis B. Then the kernel Ker (F2Γb∗ : F2CH0(X) → F2CH0(Sb))

is constant, where F2CH0 = Ker alb and Sb = π−1(b), Γb = Γ|X×Sb .

Another consequence of Conjecture 2 is the following rigidity statement:

Proposition 5. Assume Conjecture 2. Then if B is a smooth connected quasipro-
jective variety, S → B is a smooth family of surfaces, Σ is a surface, and

Γ ∈ CH2(S × Σ)

is a codimension 2 cycle, the subgroup

Im F2Γb∗ ⊂ F2CH2(Σ)Q

is a constant subgroup, i.e. is independent of b ∈ B.

Finally we show that Conjectures 4 and 2 together imply Bloch’s conjecture
for correspondences between surfaces

Theorem 2. Assume Conjectures 4 and 2. Then if Γ ∈ CH2(S × T ) is a corres-
pondence between smooth surfaces, such that [Γ]∗ : H2,0(S) → H2,0(T ) is equal
to 0, the morphism

F2Γ∗ : F2CH0(S) → F2CH0(T )

is equal to 0.
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1. On some filtrations on Chow groups

1.1. A naïve filtration on CH0(X)

We define a decreasing filtration Fi
naïve on CH0(X), where X is smooth and pro-

jective, by putting

Fi
naïveCH0(X) = ∩ΓKer Γ∗,

where the intersection is taken over all correspondences Γ ∈ CHl(X × Y ) with

l = dim Y < i.

The obvious facts concerning this filtration are the following:

Lemma 1. Fi
naïve is stable under 0-correspondences, i.e. correspondences

Γ ∈ CHl(X × Y ), l = dim Y.

Proof. Indeed, if Γ is such a correspondence and Γ′ ∈ CHk(Y × Z) with k =
dim Z < i, the composed correspondence Γ′ ◦ Γ belongs to CHk(X × Z) and
hence annihilates Fi

naïveCH0(X). This proves that

Γ∗
(
Fi

naïveCH0(X)
) ⊂ Fi

naïveCH0(Y ). 
�
Lemma 2. We have the equalities

F1
naïveCH0(X) = CH0(X)hom

F2
naïveCH0(X)Q = Ker albX ⊂ CH0(X)hom,Q,

where albX : CH0(X)hom → Alb(X) is the Albanese morphism.

Proof. The first equality is obvious: it suffices to consider the correspondences
from each component of X to a point.

The second fact is more difficult, but classically known (cf. [7]). We recall the
argument here: first of all the inclusion

Ker albX ⊂ F2
naïveCH0(X)

follows from the fact that for any correspondence,

Γ ∈ CH1(X × C),

where C is a smooth curve, the morphism

Γ∗ : CH0(X)hom → CH0(C)hom

factors through the Albanese morphism.
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The reverse inclusion is proven as follows: let C
j

↪→ X be the inclusion of
a smooth curve which is the complete intersection of ample hypersurfaces. By the
Lefschetz theorem, the restriction provides an inclusion

j∗ : H1(X,Z) → H1(C,Z).

Tensorized byQ, this morphism is the inclusion of a sub-Hodge structure and using
the polarization on the right-hand side, we get a splitting

H1(C,Q) = H1(X,Q) ⊕ L (1.4)

into a direct sum of rational sub-Hodge structures. Now let γ be the degree 2 rational
Hodge class on C × X whose associated morphisms (or Künneth components)

γ∗ : Hl(C,Q) → Hl(X,Q)

vanish for l = 1 and are equal to the projector on the first factor in (1.4) for l = 1.
There exists a divisor D ∈ CH1(C × X)Q such that [D] = γ . Now we claim that
Ker D∗ : CH0(X)Q → CH0(C)Q is contained in Ker albX ⊗Q. This is because,
by assumption, j∗ ◦ [D]∗ acts as the identity on Alb(X) ⊗Q.

This fact implies that

F2
naïveCH0(X)Q ⊂ Ker D∗ ⊂ Ker albX,

as claimed. 
�
Lemma 3. We have Fn+1

naïveCH0(X)Q = 0, where n = dim X.

Proof. Indeed, it suffices to consider the cycle Γ ∈ CHn(X × X) which is given
by the diagonal. Clearly Ker Γ∗ = 0. On the other hand, we have, by definition,

Fn+1
naïveCH0(X) ⊂ Ker Γ∗. 
�

In conclusion this filtration satisfies the properties 1 and 3 of the Bloch–
Beilinson filtration, but we cannot say anything about property 2. The simplest
question to ask would be an analogue of Mumford’s theorem for this filtration,
namely:

Conjecture 3. Let X be a n-dimensional smooth complex projective variety such
that Fn

naïveCH0(X) = 0. Then we have Hn,0(X) = 0.

In the case n = 2, the answer is affirmative since we know that F2
naïve = Ker alb,

so that the conjecture above is Mumford’s theorem in this case. The first interesting
case is F3

naïveCH0(X) for X a threefold. We shall come back to this in Section 3.
We now show:

Proposition 6. Assume the Lefschetz standard conjecture [5] hold. Assume
a Bloch–Beilinson filtration FBB exists. Then we have

Fi
naïveCH0(X)Q = Fi

BBCH0(X)Q.
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Proof. The inclusion,

Fi
BBCH0(X)Q ⊂ Fi

naïveCH0(X)Q,

follows from the finiteness property 3 of the Bloch–Beilinson filtration. Indeed, if
z ∈ Fi

BBCH0(X)Q and Γ ∈ CHl(X × Y ) with l = dim Y < i we have

Γ∗z ∈ Fi
BBCH0(Y )Q

and this group is 0 because dim Y < i.
The reverse inclusion is proved by induction on n = dim X. We choose an

ample smooth hypersurface Y
j

↪→ X. Since we assume the Lefschetz standard
conjecture, there exists a cycle Γ ∈ CHn−1(Y × X)Q such that

[Γ]∗ ◦ j∗ : Hl(X,Q) → Hl(X,Q)

is the identity for l < n. Dualizing, we get that

j∗ ◦ [tΓ]∗ : Hl(X,Q) → Hl(X,Q)

is the identity for l > n. If Γ j ⊂ Y × X is the graph of j , the cycle Γ j ◦ tΓ ∈
CHn(X × X) has its cohomology class γ acting as j∗ ◦ [tΓ]∗ on the cohomology
groups of X. So it acts as the identity on Hl(X,Q) for l > n. Now if a Bloch–
Beilinson filtration exists, property 2 says that the cycle Γ j ◦ tΓ must act on the
graded pieces

Gri
FBB

CH0(X)Q,

as the identity for i < n.
It remains to see that this implies that Fi

naïveCH0(X)Q ⊂ Fi
BBCH0(X)Q for

all i. We do it now by induction on i. Assume this is proved for i − 1. Let
z ∈ Fi

naïveCH0(X)Q. So by induction on i, z ∈ Fi−1
BB CH0(X)Q. Because we know

that j∗ ◦ tΓ∗ acts as the identity on Gri−1
FBB

CH0(X)Q, we have that

z = j∗ ◦ tΓ∗z modulo Fi
BBCH0(X)Q.

Now, since tΓ∗z ∈ Fi
naïveCH0(Y )Q, induction on dim X shows that

tΓ∗z ∈ Fi
BBCH0(Y )Q.

Hence we get that j∗ ◦ tΓ∗z ∈ Fi
BBCH0(X)Q, and also z ∈ Fi

BBCH0(X)Q. 
�

1.2. Nori’s and Bloch–Beilinson’s filtrations

Recall that the (increasing) Nori filtration NrCHk(X) is defined by

NrCHk(X) =< Γ∗z,Γ ∈ CHk+r(Y × X), z ∈ CHr(Y )hom > .
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Here we consider all possible smooth projective Y and all possible correspondences
Γ and look at the group generated by the cycles above. We clearly have

N0CHk(X) = CHk(X)alg,

the subgroup of cycles algebraically equivalent to 0. We also have

NrCHk(X) = CHk(X)hom,

for r ≥ n − k, since for r = n − k, one can take for Γ the diagonal cycle in X × X.
Furthermore the Nori filtration is obviously stable under correspondences. Nori [8]
proves that the graded pieces of his filtration are generally non-trivial modulo
torsion, thus refining Griffiths’ result [3] on the non-triviality of the Griffiths
group CHk(X)hom/CHk(X)alg . We prove the following relation between Nori’s
and Bloch–Beilinson’s filtrations:

Proposition 7. Assume the Lefschetz standard conjecture is true and that a Bloch–
Beilinson filtration exists. Then we have, for any r > 0,

Fr
BBCHk(X)Q ⊂ Nk−rCHk(X)Q.

For r = k we then get the following, which was proved by Jannsen [4]:

Corollary 1. In particular we have the inclusion

Fk
BBCHk(X)Q ⊂ CHk(X)alg,Q.

Proof of Proposition 7. The proof is again by induction on dim X. There are two
possibilities:

a) k − r ≥ n − k. In this case we have Nk−r CHk(X) = CHk(X)hom and
Fr CHk(X) ⊂ CHk(X)hom because r > 0. Hence there is nothing to prove in this
case.

b) k − r < n − k. In this case, we have, as well,

2k − r < n.

We choose an ample smooth hypersurface Y
j

↪→ X. Since we assume the Lefschetz
standard conjecture, there exists a cycle Γ ∈ CHn−1(Y × X)Q such that

[Γ]∗ ◦ j∗ : Hl(X,Q) → Hl(X,Q)

is the identity for l < n. In particular [Γ]∗ ◦ j∗ acts as the identity on Hl(X,Q) for
l ≤ 2k − r. Now if a Bloch–Beilinson filtration exists, the correspondence Γ ◦ tΓ j

must act as the identity on the graded pieces

Grl
FBB

CHk(X)Q

for 2k − l ≤ 2k − r, hence Γ◦ tΓ j must act bijectively on the group Fr
BBCHk(X)Q.

It follows that any z ∈ Fr
BBCHk(X)Q can be written as

z = Γ∗ ◦ j∗z′,
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for some z′ ∈ Fr
BBCHk(X)Q. Now, by induction on dim X, we may assume that

j∗z′ ∈ Nk−r CHk(Y )Q, hence it follows that

z = Γ∗ ◦ j∗z′ ∈ Nk−r CHk(X)Q. 
�

2. A generalized Nori conjecture and its consequences

We have seen in Proposition 7 that if a Bloch–Beilinson filtration exists, and the
Lefschetz conjecture holds, we must have the inclusion

Fk
BBCHk(X)Q ⊂ CHk(X)alg,Q

for r > 0. We do not know if a Bloch–Beilinson filtration exists, but we have the
Hiroshi Saito filtration described in the introduction, which has to be contained in
any Bloch–Beilinson filtration. So we can make the following conjecture, which is
a weak converse to Proposition 7:

Conjecture 4. For some N > 0 (depending on X), we have

FN
H CHk(X)Q ⊂ CHk(X)alg,Q.

We call this a weak generalized Nori conjecture because it extends to any
codimension and weakens the following conjecture by Nori [8]:

Conjecture 5. The kernel of the Abel–Jacobi map for codimension 2 cycles is
contained modulo torsion in the group of cycles algebraically equivalent to 0.

Indeed, it is a standard fact that FN
H CHk(X) is contained in the kernel of the

Abel–Jacobi map for N ≥ 2, (the product of two cycles homologous to 0 is Abel–
Jacobi equivalent to 0), so that Conjecture 4 is a weakening of Nori’s Conjecture 5
in the case of codimension 2 cycles.

In this section we prove the following statement:

Theorem 3. Assume that the generalized Hodge conjecture is true. Assume that
Conjecture 4 holds. Then, if X is a smooth projective complex variety satisfying
the condition

Hi,0(X) = 0, i > 0,

we have

CH0(X)hom = 0.

This “theorem” says that the converse to the generalized Mumford theorem [6]
is implied by Conjecture 4. Indeed, the generalized Mumford theorem says, con-
versely, that the vanishing

CH0(X)hom = 0

implies the vanishing

Hi,0(X) = 0, i > 0.

The proof of the theorem starts with the following, presumably standard, lemma:
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Lemma 4. Assume the generalized Hodge conjecture holds. Then if X is a smooth
projective complex variety satisfying the condition

Hi,0(X) = 0, i > 0,

there exists a cycle

Γ ∈ CHn(X × X)Q, n = dim X

such that

[Γ] = 0 in H2n(X × X,Q),

Γ∗ = Id on CH0(X)hom,Q.

Proof. It suffices to consider the case where X is connected. Because Hi,0(X) = 0,

i > 0, the generalized Hodge–Grothendieck conjecture implies that there exists
a variety Y of dimension n − 1, and a morphism

j : Y → X

such that

j∗ : Hl−2(Y, Q) → Hl(X,Q)

is surjective for l > 0. Consider the morphism

( j, j) : Y × Y → X × X.

It provides a surjective morphism of Hodge structures

( j, j)∗ : Hl−2(Y,Q) ⊗ H2n−l−2(Y,Q) → Hl(X,Q) ⊗ H2n−l(X,Q),

for l > 0 and 2n − l > 0.
Let x ∈ X, ∆X ⊂ X × X be the diagonal and

∆′
X = ∆X − x × X − X × x ∈ CHn(X × X)Q.

Clearly ∆′
X acts as the identity on CH0(X)hom,Q. On the other hand, the class

[∆′
X] is the sum of the Künneth components of [∆X] whose type is different from

(0, 2n) or (2n, 0). It follows then from the above, and from the fact that the Hodge
structures we consider are polarized, that there is a rational Hodge class

γ ′ ∈ H2n−4(Y × Y,Q) ∩ Hn−2,n−2(Y × Y )

such that

( j, j)∗γ ′ = [∆′
X].

Because the Hodge conjecture is supposed to be true, there is a cycle

Γ′ ∈ CHn−2(Y × Y,Q)

such that [Γ′] = γ ′. The cycle

Γ = ∆′
X − ( j, j)∗Γ′ ∈ CHn(X × X)Q

then satisfies our conclusion, since ( j, j)∗Γ′ acts trivially on CH0(X)Q because it
is supported on j(Y ) × j(Y ). 
�
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Proof of Theorem 3. Let X be as in the theorem. Using the above lemma, we get
a cycle Γ ∈ CHn(X × X) such that [Γ] = 0 and Γ∗ = Id on CH0(X)hom,Q. By the
definition of the Hiroshi Saito filtration, [Γ] = 0 implies that

Γ◦N ∈ FN
H CHn(X × X)Q,

for any N > 0. If Conjecture 4 is true, then we have

Γ◦N ∈ CHn(X × X)alg,Q,

for some N.
Now we recall the following result, due independently to Voevodsky [12] and

the author [13]:

Theorem 4. Let z ∈ CH(X × X)alg,Q be a cycle algebraically equivalent to 0.
Then for some M > 0, we have

z◦M = 0 in CH(X × X)Q.

Applying this theorem to Γ◦N we conclude that some power

Γ◦MN

vanishes in CHn(X × X)Q. In particular,

Γ◦MN
∗ = 0 in End (CH0(X)Q).

Now because Γ∗ = Id on CH0(X)hom,Q, it follows that

CH0(X)hom,Q = 0.

Finally Roitman’s theorem [9] implies that CH0(X)hom = 0. 
�

3. Polarizations

In this section, we would like to point out a problem which is the missing in-
gredient to extend Theorem 3 to the case of 0-correspondences between varieties
inducing the 0-maps between spaces of holomorphic forms. The starting point is
the observation that if a Bloch–Beilinson filtration exists for a correspondence

Γ ∈ CHn(X × Y ), n = dim X = dim Y,

the morphism

FnΓ∗ : Fn
BBCH0(X)Q → Fn

BBCH0(Y )Q

is determined by the morphism of Hodge structures

[Γ]∗ : Hn(X,Q) → Hn(Y,Q).
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Furthermore, if the generalized Hodge conjecture is true, it is even governed by
the morphism of Hodge structures

[Γ]∗ : Hn(X,Q)tr → Hn(Y,Q)tr .

(Here the subscript tr stands for the transcendental part and means the orthogonal
with respect to the intersection pairing of the maximal sub-Hodge structure which
has no (n, 0)-part. Equivalently, this is the smallest sub-Hodge structure which is
rational and contains over C the space Hn,0.) This fact is proved in the same way
as Lemma 4.

Next we recall that the intersection pairing on Hn(X,Q) induces a polar-
ized Hodge structure on Hn(X,Q)prim , where the primitive cohomology group
Hn(X,Q)prim is defined as the kernel of the morphism

L = c1(H )∪ : Hn(X,Q) → Hn+2(X,Q),

for a given ample line bundle H on X. The fact that the Hodge structure is polarized
means that if h is the hermitian form deduced from <,> by the rule

h(α, β) = (−1)n < α, β >,

first of all the Hodge decomposition is orthogonal with respect to h and secondly,
the restriction of h to each H p,q is of a definite sign.

Note now that we have the inclusion

Hn(X,Q)tr ⊂ Hn(X,Q)prim,

for any choice of polarization H , because Hn(X,Q)prim is also the orthogonal of
the sub-Hodge structure

Im ∪ c1(H ) : Hn−2(X,Q) → Hn(X,Q),

which has no (n, 0)-part. It follows that <,> induces a polarized Hodge structure
on Hn(X,Q)tr as well. Now we have the following lemma:

Lemma 5. Let φ : H → H ′ be a morphism of Hodge structures which are
polarized. Then

Im φ = Im φ ◦ tφ,

where tφ : H ′ → H is the transpose of φ with respect to the polarizations. More
precisely, there exists a morphism ψ : H → H ′ of Hodge structures such that

φ = φ ◦ tφ ◦ ψ.

Proof. Let L = Ker φ. This is a sub-Hodge structure of H . Because H is polar-
ized, the pairing on H remains non degenerate after restriction to L, because the
associated hermitian form remains non degenerate after restriction to each L p,q ,
and it follows that we have a decomposition

H = L ⊕ L⊥.

Furthermore L⊥ is also a sub-Hodge structure of H .
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Similarly we have an orthogonal decomposition

H ′ = L ′ ⊕ L ′⊥,

where L ′ := Im φ. The morphism φ now induces an isomorphism of Hodge
structures φ0 : L⊥ ∼= L ′ and we can write

φ = jL ′ ◦ φ0 ◦ πL⊥, (3.5)

where jL ′ is the inclusion of L ′ into H ′, and πL⊥ is the orthogonal projection onto
L⊥. The three morphisms here are morphisms of Hodge structures. It follows from
(3.5) that

φ ◦ tφ = jL ′ ◦ φ0 ◦ tφ0 ◦ πL ′, (3.6)

where tφ0 : L ′ → L⊥ is the transpose of φ0 with respect to the restricted pairings.
Now there obviously exists a morphism of Hodge structures

ψ0 : L⊥ → L ′,

such that

φ0 = φ0 ◦ tφ0 ◦ ψ0, (3.7)

namely it suffices to take ψ0 = tφ−1
0 . Then equations (3.7) and (3.5) give

φ = jL ′ ◦ φ0 ◦ tφ0 ◦ ψ0 ◦ πL⊥,

which is obviously equal to

jL ′ ◦ φ0 ◦ tφ0 ◦ πL ′ ◦ ψ,

where ψ = jL ′ ◦ ψ0 ◦ πL⊥ : H → H ′. Hence applying (3.6) again we have written

φ = φ ◦ tφ ◦ ψ. 
�
Now let Γ ∈ CHn(X × Y )Q, n = dim X = dim Y , and let us apply the above

to

[Γ]∗ : Hn(X,Q)tr → Hn(Y,Q)tr .

The lemma above gives a morphism of Hodge structures

ψ : Hn(X,Q)tr → Hn(Y,Q)tr

such that

[Γ]∗ = [Γ]∗ ◦ t[Γ]∗ ◦ ψ.

If the Hodge conjecture is true, this ψ is equal to [Ψ]∗ for some cycle

Ψ ∈ CHn(X × Y )Q.
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Furthermore we know that

t[Γ]∗ = [tΓ]∗,
where tΓ ∈ CHn(Y × X)Q is the transpose of Γ. In conclusion we have the equality

[Γ]∗ = [Γ ◦ tΓ ◦ Ψ]∗ : Hn(X,Q)tr → Hn(Y,Q)tr .

According to Bloch and Beilinson, we should have the corresponding equality

FnΓ∗ = Fn(Γ ◦ tΓ ◦ Ψ)∗ : Fn
BBCHn(X)Q → Fn

BBCHn(Y )Q

and, in particular,

Im FnΓ∗ = Im Fn(Γ ◦ tΓ)∗ ⊂ Fn
BBCHn(Y )Q.

Recall that here Fn
BBCHn(Y )Q should be equal to Fn

naïveCHn(Y )Q, which is well
defined. We thus are led to the following conjecture:

Conjecture 6. Let Γ ∈ CHn(X × Y )Q, n = dim X = dim Y . Then

Im FnΓ∗ = Im Fn(Γ ◦ tΓ)∗ ⊂ Fn
naïveCHn(Y )Q,

where FnΓ∗ denotes the restriction of Γ∗ to Fn
naïveCH0.

Remark 1. A stronger form of the conjecture would ask the existence of a cycle
Ψ ∈ CHn(X × Y )Q such that

FnΓ∗ = Fn(Γ ◦ tΓ ◦ Ψ)∗ : Fn
naïveCHn(X)Q → Fn

naïveCHn(Y )Q.

It turns out that, in the case n = 2 that we will be considering below, these two
versions are equivalent. Note also that when n = 1, the conjecture is true.

Remark 2. For n = 2, the conjecture also has the following consequence: for any
correspondenceΓ ∈ CH2(X ×Y )Q, where X and Y are smooth complex projective
surfaces, we have the equality Ker F2Γ∗ = Ker F2(tΓ ◦ Γ)∗. Indeed, as noticed
above, the conjecture for n = 2 implies the existence of a Ψ ∈ CH2(X ×Y )Q such
that

F2Γ∗ = F2(Γ ◦ tΓ ◦ Ψ)∗.

This implies the equality of the actions of the transposed correspondences on the
F2 level, namely

F2 tΓ∗ = F2( tΨ ◦ Γ ◦ tΓ)∗ : F2CH0(Y )Q → F2CH0(X)Q,

as follows from the Bloch–Srinivas decomposition (cf [2]). This last equality
obviously implies that Ker F2 tΓ∗ = Ker F2(Γ ◦ tΓ)∗.

Example 1. Let X, Y be two smooth projective surfaces which are fibered over a
1-dimensional smooth basis B. Let Γ ⊂ X ×B Y be a 2-cycle. So Γ ⊂ X × Y is
the union over b ∈ B of the one-dimensional correspondences Γb, and of finitely
many cycles supported on products Xb × Yb. Such a correspondence Γ satisfies
Conjecture 6 because each Γb does.
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The first consequence of Conjecture 6 for surfaces is the following:

Proposition 8. Assume Conjecture 6 holds for n = 2. Let Γ ∈ CH2(X × S) be
a 0-correspondence, where X is a smooth projective threefold and S is a smooth
projective surface. Then for any very ample smooth surface

Y
j

↪→ X,

we have CH0(X) = j∗CH0(Y ) + Ker Γ∗, or equivalently

Im Γ∗ = Im (Γ∗ ◦ j∗).

Proof. Let (Yt)t∈P1 be a Lefschetz pencil of surfaces, with Y0 = Y . Let Γt ∈
CH2(Yt × S) be the restriction of Γ. Then the cycle Γt ◦ tΓt ∈ CH2(S × S) is
constant because t varies in P1. It follows that Im F2(Γt ◦ tΓt)∗ is constant. If
Conjecture 6 is true, this is also equal to Im F2Γt∗, hence Im F2Γt∗ is independent
of t for smooth Yt and this easily implies the same for any t. On the other hand, let
C = Y0 ∩ Y∞ be the base curve of the pencil. C is ample in each Yt , hence by the
Lefschetz theorem, we have

CH0(Yt) = F2CH0(Yt) + kt∗CH0(C),

where kt is the inclusion of C in Yt . It follows that

Γt∗(CH0(Yt)) = Im F2Γt∗ + Γ∗CH0(C),

which is independent of t. Hence Im Γ∗, which is generated by the Im Γt∗ must be
equal to Im Γt∗ for any t. 
�

Next we have the following two rigidity statements:

Proposition 9. Assume Conjecture 6 holds for surfaces. Let S
π→ B be a family of

smooth complex projective surfaces parametrized by a smooth connected quasipro-
jective basis B. Let Γ ∈ CH2(S × Σ), where Σ is a smooth complex projective
surface. Then

Im F2Γb∗ ⊂ F2CH0(Σ)Q

is a constant subgroup, independent of b ∈ B.

Here of course Γb ∈ CH2(Sb×Σ) is the restriction of Γ to Sb×Σ, Sb = π−1(b).

Proposition 10. Assume Conjecture 6 holds for surfaces. Let S
π→ B be as above,

and let Γ ∈ CH2(X ×S), where X is any smooth projective complex variety. Then

Ker F2Γb∗ ⊂ F2CH0(X)Q = Ker albX ⊗Q
is a constant subgroup of F2CH0(X)Q, independent of b ∈ B.

Here Γb ∈ CH2(X × Sb) is the restriction of Γ to X × Sb, Sb = π−1(b).
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Proof of Proposition 9. If Conjecture 6 holds, we have

Im F2Γb∗ = Im F2(Γb ◦ tΓb)∗.

It follows that it suffices to prove the result when S = Σ × B and each cycle
Γb ∈ CH2(Σ × Σ) is self-adjoint, i.e. satisfies tΓb = Γb.

Fix now 0 ∈ B. Since B is irreducible, each cycle Γb − Γ0 is algebraically
equivalent to 0 in Σ × Σ. So by Theorem 4, some power

(Γb − Γ0)
◦N

vanishes in CH2(Σ × Σ)Q, which implies that

F2(Γb − Γ0)
◦N
∗ : F2CH0(Σ)Q → F2CH0(Σ)Q

vanishes. Now since Γb − Γ0 is self-adjoint, Conjecture 6 implies that

Im F2(Γb − Γ0)∗ = Im F2(Γb − Γ0)
◦2
∗ = . . . = Im F2(Γb − Γ0)

◦N
∗ .

Hence F2(Γb − Γ0)∗ already vanishes, and a fortiori

Im F2Γb∗ = Im F2Γ0∗. 
�
Proof of Proposition 10. We note to begin with that we can assume that X is
a surface because, by the Lefschetz theorem, the group

Ker
(
F2Γb∗ : F2CH0(X)Q → F2CH0(Sb)Q

)

is generated by the groups Ker (F2ΓY
b∗ : F2CH0(Y )Q → F2CH0(Sb)Q), for all

ample surfaces Y ⊂ X, where ΓY
b denotes the restriction of Γb to Y × Sb. Next by

Remark 2, Conjecture 6 for surfaces implies that

Ker F2(tΨ ◦ Ψ)∗ = Ker F2Ψ∗

for any correspondence Ψ between surfaces. Hence, if Conjecture 6 is true for
surfaces, it suffices to prove the statement in the case where X is a surface, S =
X × B , and Γb ∈ CH2(X × X)Q is self-adjoint. (We replace for this the cycle
Γb by tΓb ◦ Γb.) Now we conclude as before: the cycle Γb − Γ0 is algebraically
equivalent to 0 for any b ∈ B, so, by Theorem 4, some power of it is rationally
equivalent to 0, hence we have

F2(Γb − Γ0)
◦N
∗ = 0 : F2CH0(X)Q → F2CH0(X)Q.

On the other hand, Conjecture 6 implies that Im F2(Γb−Γ0)
◦N∗ = Im F2(Γb−Γ0)∗,

so that F2(Γb − Γ0)
◦N∗ = 0 implies F2Γb∗ = F2Γ0∗ and a fortiori

Ker F2Γb∗ = Ker F2Γ0∗. 
�
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Propositions 8 and 10 say the following about the naïve filtration on CH0(X),
where X is a threefold: recall that

F3
naïveCH0(X) = ∩ΓKer Γ∗,

where Γ runs over all 0-correspondencesbetween X and a smooth surface. Proposi-
tion 8 says that, assuming Conjecture 6, for a given correspondenceΓ∈CH2(X×S),
where S is a surface, we have

CH0(X) = j∗CH0(Y ) + Ker Γ∗,

where Y
j→ X is a smooth hyperplane section of X. Next, Proposition 10 says

that, assuming Conjecture 6, if we have a family of correspondences Γb between
X and a varying surface Sb parametrized by an irreducible quasiprojective basis B,
the kernel of F2Γb∗ is constant. But there are countably many such families of
correspondences (Γn,b)b∈Bn such that any correspondence between X and a surface
is one fiber Γn,b. Hence it follows from the above that, assuming Conjecture 6, we
have

F3
naïveCH0(X) = ∩n Ker Γn∗,

and that for each n, we have

CH0(X) = j∗CH0(Y ) + Ker Γn∗.

Unfortunately we cannot, however, conclude from this that

CH0(X) = j∗CH0(Y ) + ∩n Ker Γn∗ = j∗CH0(Y ) + F3
naïveCH0(X). (3.8)

Indeed, Im j∗ could be a complement of each Ker Γn∗, which can even be assumed
to be decreasing, without being a complement of their intersection.

Remark 3. Notice that by Mumford’s theorem [6], the equality (3.8) would imply
Conjecture 3 for threefolds. Indeed, if F3

naïveCH0(X) = 0, this equality would say
that CH0(X) is supported on a surface, and the generalized Mumford theorem then
allows us to conclude that H3,0(X) = 0.

We conclude this section by proving that Conjectures 4 and 6 together imply
Bloch’s conjecture for surfaces.

Theorem 5. Assume Conjecture 4 for codimension 2 cycles and Conjecture 6 for
surfaces hold. Then if Γ ∈ CH2(S×T ) is a correspondence between surfaces such
that

[Γ]∗ : H2,0(T ) → H2,0(S)

vanishes, the morphism

F2Γ∗ : F2CH0(S) → F2CH0(T )

is equal to 0.
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Proof. Using the Chow–Künneth decomposition for surfaces [7] and the Lefschetz
theorem on (1, 1)-classes, the assumption on Γ implies that there exists a cycle
Γ′ ∈ CH2(S × T ) such that:

1. [Γ′] = 0 in H4(S × T,Q).
2. F2Γ′∗ = F2Γ∗ : F2CH0(S) → F2CH0(T ).

So it suffices to show that F2Γ′∗ = 0. Next, using Conjecture 6, we may replace Γ′
by tΓ′ ◦Γ′, and hence assume that Γ′ is self-adjoint in CH2(S×S) and homologous
to 0. But if Conjecture 4 holds, Γ′◦N = 0 is algebraically equivalent to 0 up to
torsion for sufficiently large N. Then by Theorem 4, some multiple of Γ′ is equal
to 0 in CH2(S × S)Q. In particular,

(F2Γ′
∗)

◦N′ = 0

for some integer N ′. But as already used, if Conjecture 6 is true, the self-adjointness
of Γ′ now implies that F2Γ′∗ = 0. 
�

In conclusion, we just established relations between several conjectures, which
does not actually constitute a theorem. However we have split Bloch’s conjecture
into two parts: Conjecture 4 which might be easier than Bloch’s conjecture itself
since it concerns a filtration on a countable group, and Conjecture 6 which seems
to be a very interesting geometric problem.
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