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1. Introduction.

If C C P¥ is a curve imbedded in projective space, one can consider the secant variety

Yg= U w (Z) swept out by the linear spans of d-uples of points of C'. This ¥; contains
zZeC

the P4~ 1’s parametrized by Z € C(@) (here we are assuming that d is not large with respect
to V). More precisely, 3, is birational to a projective bundle of rank d — 1 over C @, On
the other hand, if d is large enough, C49 also contains positive dimensional projective
spaces, corresponding to linear systems on C'. Deciding whether or not >, contains linear
subspaces other than those contained in some of the P‘é_l’s is thus a non trivial problem.

Some time ago, C. Soulé obtained estimates for the maximal dimension of a linear
subspace contained in X;4, and asked me whether an ad hoc geometric argument would
lead to other results.

One answer in this direction is as follows:

We assume that C' is smooth of genus g > 0 and that the embedding C' C PV is given
by the sections of a line bundle L ® w¢, with deg(L) = m. We then show:

Theorem. Ifm > 2d+3, and § > d—1, any P? contained in X4 is one of the P*~! = (Z),
Z € C9D . In particular, Xq contains no projective space P°, for 6 > d.

Thanks. I wish to thank Christophe Soulé for interesting discussions and for providing
the motivation to write this Note.

2. Proof of the theorem.

We first recall a few basic facts about secant varieties of curves (see [1]). First of all,
since m > 2d + 1, for any effective divisor Z of degree k¥ < 2d on C, we have H'(L ®
we(—=Z)) = 0, hence the linear span of Z is of dimension k — 1. Let now E — C(®
be the vector bundle with fiber H*(L ® wez) at Z € C(D . Since the restriction map
HY(L ® we) — H°(L ® wez) is surjective for any Z € C@ | there is a well defined
morphism «a : P(E*) — PV, whose image is exactly the secant variety ¥4. Since sections
of L ® we separates any 2d points on C, it follows that « is one to one over g5 — ¥4_1.
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An easy computation shows that for any Z € C¥, and for any z in the linear span of
Z, but not in the linear span of any Z’ ¢ Z, the differential of « is of maximal rank, so

that ¥4\X4_1 is smooth of dimension 2d — 1. The projectivized tangent space to ¥, at
d

a(z) is easy to describe, at least when Z is a reduced divisor Y z;: indeed this is a P2¢~1
1

which contains (Z) and also each projective line tangent to C' at some point z; € Z, as one

sees by deforming Z fixing z;, j # . It follows that it must be equal to the linear span
of the divisor 2Z. By continuity, this description of the projectivized tangent space to ¥4
remains true at any point of X5 — X4 1 .

We now start the proof of the theorem. We suppose that 6 > d — 1, and assume that
some projective space P9 is contained in 4. Assuming P° is not contained in one of the

]P’dZ_l’s we shall derive a contradiction.

Note that by induction on d, we may assume that P? is not contained in £4_;. Let
P? be the closure of a=*(PP\P? N 2y_1) in P(E*). Denote by 7 : P* — C@ the restriction
to P? of the structural projection P(E*) — C@. Let W := 7 (P°) and w := dim W. Our
assumption is that w > 0. We shall denote by P, the fiber 7=1(v). It is a projective space
P% N (Z,), which is generically of dimension s = § — w.

We start with the following observation:

Lemma 1. Under our assumption dim W > 0 we have the inequality

(1) w>0—w.

Proof. Indeed, we may assume that for v, v’ two generic distinct points of W, the supports
of the associated divisors Z,, Z,, of C are disjoint. Otherwise, Z, would contain a fixed
point x € C, for any v € W. But projecting C from z, we then get a curve ¢’ C PN—1,
such that ¥/, | contains a P*~! which is not a P%?; since we may assume the theorem
proven for (m — 1,d — 1), this is impossible.

Now choose v, v’ as above. The projective spaces (Z,) and (Z,/) do not meet, hence
the projective spaces P, = (Z,) NP°, P, = (Z,) NP’ do not meet. Since they are of
dimension s in a P?, it follows that 2s < §, or w > § — w. [

Next we observe that, at each point a(z, Z) of P — (P’ N4 1), P° is contained in
the projectivized tangent space of ¥4 at a(x, Z), that is in (2Z). Hence for any v € W,
the corresponding divisor Z, € C4 satisfies

P C(27,).
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We next study the infinitesimal variation of (2 Z,) C PV. Let H := Opn(1). Then we

have the identification

(2) HPN H)~ HY(C,L ® we),

which by definition of the linear span, induces an identification

(3) H(PY,H ® Ij97,)) ~ H'(C,L ® wc(—2Z,)) .

If h € Ty, the infinitesimal deformation of (2 Z,) in the direction h is described by an

homomorphism:
©p - HO(]P)N,H ®I<2ZU>> — H0(<2 Zv>aH\<2ZU>>-

We have now an isomorphism induced by (2) and (3):
(4) H0(<2Zv>7H\<2ZU)) 2HO(L®‘«UC\QZU)~

We have the following

Lemma 2. Under the isomorphisms (3) and (4), if we identify h to an element uy €
H*(Oc(Zy)\2,), ¢n identifies to the multiplication

up : H(C, L@ we(~22,)) — H(Zy, L ® we(~2y))z,)
followed by the inclusion

H°(Z, L® we(—2)1z,) — H°(2Z,, L ®welez,) -

The proof is straightforward once we recall the construction of ¢ by differentiating
under the parameters the equations vanishing on (2 Z,,). [

We know that the spaces (2 Z,), for v € W, contain P?. Infinitesimally, this translates
into the fact that for any h € Ty, the image of ¢y, vanishes on P?, that is, is contained in

Ker(H°((2 Z,), Hyaz,y) — H°(P°, Hjps)) .
JFrom the description of ¢} given in Lemma 2, we see that Im ¢y, is contained in
K = Ker(H°((2 Z,), H(22,)) = H°((Zy), H\(z.,))) -
Indeed, via the isomorphism (4), K identifies to
Ker(H°(L ® wojpz,) — HY (L ® woiz,)) = Im HY(L @ we(—~2Zy)|2,) — HY(L @ wepez,) -
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Finally, note that the restriction map K — H° (]P’5, H |[p>5) has rank equal to the dimension
of
Ker(H°(P°, Hps) — H°(P° N (Z,), Hpsnz,)))

which is equal to § — s, since P° N (Z,) = P, is of dimension s.
Denote now by V. C H*(O¢(Z,)z,) the tangent space to W at v. Lemma 2 and the
estimate above give us the following conclusion:

Lemma 3. Under our assumptions, the multiplication map
p:VeHC,Lewc(—22,)) — H(L®wc(—2y)z,)
has its image contained in a subspace of codimension at least w. [
We now derive a contradiction. We observe first that since P° is a rational variety
dominating W, W is contained in a linear system |D| C C(9). Hence O¢(D) = O¢(Z,) for

all v € W, and the fact that W C |D| translates infinitesimally into the fact that V' = Ty,
is contained in the image of the restriction map:

H(Oc(Z,)) — H*(Oc(Zy))2,) -

Let now V be the inverse image of V under this restriction map. Then rk V=w+ 1, and
Lemma 3 shows that the multiplication map

[i:VeH(C,L®we(-27,)) — H(C,L ®wc(—Z,))

has its image contained in a space of codimension at least w.

Now we have the equality:
rk H(C, L ® wc(—Z,)) =d+1k H(C, L ® wa(—2Z,)),
since H1(C, L ® we(—2 Z,)) = 0. So we conclude that
(5) tk i < W2 (C, L@ we(-22,))+d—w.

On the other hand, we can apply Hopf lemma to i, and the inequality in Hopf lemma
must be strict here, since the line bundle L ® wo(—2 Z,) is very ample, being of degree at
least 2g + 1, and C' is not rational. This gives us:

(6) kg >w+1+h°(C,Lewc(-227,)) —1.
Combining (5) and (6), we get:
(7) d—w>w.

But this contradicts inequality (1), since § > d — 1. O
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