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ON THE HILBERT SCHEME OF POINTS

OF AN ALMOST COMPLEX FOURFOLD

by Claire VOISIN

1. Introduction.

If X is an algebraic variety, we can define for each k an algebraic
variety Hilbk(X). It is defined as the set of length k coherent quotient
sheaves of OX . Such quotient is the structural sheaf OZ of a 0-dimensional
subscheme Z of X. Hilbk(X) contains naturally the open subset X

(k)
0 of the

symmetric product X(k) of X parametrizing unordered sets of k distinct
points.

If dim X = 1 and X is smooth, one has Hilbk(X) = X(k) for any k.
In general it is easy to see that X

(k)
0 is open in Hilbk(X) so that its closure

is a schematic component of Hilbk(X), but the following becomes false in
dimension ≥ 3

Theorem 1 (Fogarty), [5]. — If X is a smooth surface, Hilbk(X) is

smooth and irreducible. Furthermore the Hilbert-Chow map

c : Hilbk(X) → X(k),

which to a length k subscheme Z ⊂ X associates its cycle c(Z) =∑
x∈X `x(Z)x is a birational morphism and an isomorphism over X

(k)
0 .
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These Hilbert schemes have recently attracted a lot of attention.
Many beautiful works ([3], [7], [8], [1]) have been done towards the un-
derstanding of their cohomology and Hodge structures-it appears to be
built by universal constructions on several copies of the tensor prod-
uct of H∗(X) with shifts of degree- and a very interesting structure in
the infinite dimensional space ⊕kH∗(Hilbk(X)), endowed with the ac-
tions of H∗(X) on it induced by the natural incidence correspondences
Zk,n ⊂ Hilbk(X)×Hilbk+n(X)×X, has been found in [12].

Our main motivation however comes from the following theorem, due
to Ellingsrud, Göttsche and Lehn [2]

Theorem 2. — The Chern numbers of Hilbk(X), i.e. the integrals∫
Hilbk(X)

P (c1, . . . , c2k),

where P is a weighted homogeneous polynomial of degree 2k, and the ci’s

are the Chern classes of Hilbk(X), depend only on the Chern numbers of

X, i.e. ∫
Hilbk(X)

P (c1, . . . , c2k) = ΦP (c1(X)2, c2(X))

for a function ΦP which depends only on P .

If we work over C, this theorem says that the complex cobordism
class of Hilbk(X) depends only on that of X. Now the complex cobordism
class is determined by a much weaker structure than the complex structure,
namely the almost complex structure (or more precisely the stable almost
complex structure, that is a complex structure on TX ⊕ T , where T is
a trivial vector bundle). Hence this result suggests that one should try to
construct the Hilbert scheme, as a manifold or better as an almost complex
manifold, for any almost complex structure on the underlying fourfold X,
that is without using the integrability condition for the complex structure.
The main result of this paper gives an answer to this problem

Theorem 3. — Let X be a C∞ almost complex fourfold. Then there

exists for each k a manifold Hilbk(X) of real dimension 4k endowed with

a stable almost complex structure, and a continuous map

c : Hilbk(X) → X(k),

which is a diffeomorphism over X
(k)
0 and whose fibers over z ∈ X(k) are

naturally homeomorphic to the fibers of the Hilbert-Chow morphism c over
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HILBERT SCHEME OF AN ALMOST COMPLEX FOURFOLD 691

z for any almost complex structure on X integrable in a neighbourhood of

Sup z.

Our construction is not canonical, and provides in fact a family of
such manifolds, parametrized by a contractible basis, so that the resulting
manifold is well defined up to diffeomorphisms isotopic to identity.

This theorem is proved in Section 3. The construction, contrarily
to the construction of the Hilbert scheme in the integrable case does not
depend only on the almost complex structure, and involves the choice of
supplementary parameters. It remains open whether a construction of a
“pseudoholomorphic Hilbert scheme”, depending canonically on the almost
complex structure, is possible. In Section 2, we consider this problem and
study another possible construction, which is canonical but unfortunately
leads only to the construction of an open part of the Hilbert scheme; we
study, when it is possible to define them, the “pseudoholomorphic finite
subschemes” of X. It turns out that this allows to construct in the almost
complex setting the curvilinear part of the Hilbert scheme, that we will
denote by Hilbk

curv(X) and also the open set Hilbk
curv(X)′ of Hilbk(X)

where at any of their points the schemes are curvilinear or with length
≤ 3. Since a scheme of length 3 is either curvilinear or the infinitesimal
neighbourhood of a point x ∈ X, this last set is a partial compactification
of Hilbk

curv(X) obtained by adding sets of the form
(X(l)

0 ×Hilbk−3l
curv (X))0,

where the first summand parametrizes infinitesimal neighbourhoods of
points, and the two subscripts 0 again mean that we consider the open
sets consisting of cycles with disjoint supports. The construction we give
for Hilbk

curv(X)′ can also be adapted to enlarge further our Hilbert scheme
and construct the analogue of Hilbk

curv(X)′′, the open set of Hilbk(X) where
at any of their points the schemes are curvilinear or with length ≤ 4,
but we do not include the proof here, since it is not very instructive. In
any case it would be interesting to decide whether it is possible to define
pseudoholomorphic finite subschemes in a more general situation than those
we have been considering here.

Finally, this work provides a desingularization of the symmetric
products of an almost complex fourfold, with fibers as in the integrable
case. I have no idea whether a similar desingularization (a “generalized
Hilbert scheme”) exists for any fourfold.

Acknowledgements: I thank the referee for his/her careful reading,
and his/her remarks and corrections.
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692 CLAIRE VOISIN

2. Pseudoholomorphic finite subschemes.

2.1. Pseudoholomorphic curvilinear subschemes.

Let X be a complex variety; we shall denote by Hilbk
curv(X) the (open)

subset of Hilbk(X) parametrizing curvilinear subschemes of X of length k.
Our goal in this section is to prove the following

Theorem 4. — If (X, J) is an almost complex fourfold, the set

Hilbk
curv(X) of pseudoholomorphic curvilinear finite subschemes of length k

has a natural structure of (non compact) manifold. Furthermore the natural

map

c : Hilbk
curv(X) → X(k)

has only smooth fibers and they are naturally diffeomorphic to the fibers of

the corresponding Hilbert-Chow map for an integrable complex structure.

We first begin defining the pseudoholomorphic curvilinear finite sub-
schemes of length k by noting that in the integrable case, z ∈ Hilbk

curv(X)
if and only if z is locally (near each point of its support) contained in a
smooth complex curve. So z = tizi and zi is identified with the ni − 1-th
order infinitesimal neighbourhood of xi in some complex curve Ci ⊂ X.
The cycle c(z) is then equal to

∑
i nixi.

Choosing a uniformizing coordinate t on Ci centered on xi allows to
identify zi with a ni − 1-jet of a holomorphic map from the disk to X with
non zero differential. This space of jets being denoted by Jni−1, we see
that the curvilinear schemes of length ni supported at one point can be
identified with

Wni := Jni−1/ Aut∆ni ,

where ∆ni = Spec C[t]/tni . It is easy to see that the action is free.

In the general case, we will define similarly the pseudoholomorphic
curvilinear subschemes of length ni supported at one point as

Wni
:= J ph

ni−1/ Aut∆ni
,

where J ph
ni−1 is the set of jets of order ni − 1 of pseudoholomorphic map

from the disk to X with non zero differential.

Now, in the integrable case, these spaces of jets are constructed
inductively as follows: J0 = X, J1 = TX − 0-section. In general a jet
of order k is a tangent lifting of the corresponding jet of order k − 1, i.e.

Jk ⊂ TJk−1 ,
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the lifting condition being the following:

Let πk−1 : Jk−1 → Jk−2 be induced by the inclusion Jk−1 ⊂ TJk−2 ,
and denote similarly πk : TJk−1 → Jk−1. Then

(2.1) Jk = {φ ∈ TJk−1/(πk−1)∗φ = πk(φ) ∈ Jk−1 ⊂ TJk−2}.
Notice that these spaces of jets Jk describe as well the jets of real maps from
a real segment to X, that we will denote by J R

k . The complex structure
is used to interpret them as jets of holomorphic maps from the disk to X,
which allows to construct the Aut∆k+1-action on them.

It turns out that we have exactly the same picture in the pseudo-
holomorphic setting (cf. [6]). Namely, let X be endowed with a C∞ almost
complex structure J . We want to study the spaces of k-jets of pseudoholo-
morphic maps from the disk to X with non zero differential. For k = 1 they
are of course identified with the data of a point of X and of a (real) tangent
vector to X at x, with the help of the complex structure on TX,x which
identifies real tangent vector to complex tangent vectors of type (1, 0). This
situation still exists at higher order because of the following lemma

Lemma 1. — If (X, J) is an almost complex variety, TX admits a

natural almost complex structure J̃ which is compatible with J in the sense

that the structural map π : TX → X has a complex linear differential.

Proof. — The formula for J̃ is the following. Let x = (xi) be
local coordinates on X, and let (x, ẋ) be the induced coordinates on
TX . The almost complex structure J is described by a matrix J(x). For
(v, v̇) ∈ TX,(x,ẋ), we define then

J̃(v, v̇) = (Jv, J̇ẋv + Jv̇).

Here, J̇ẋ means the differential of the matrix J(x) with respect to the
tangent vector ẋ. One verifies easily that J̃2 = −1, and that the definition
does not depend on the choice of cordinates. tu

We can apply inductively this lemma to conclude that each space of
k-jets J R

k (X) has an induced almost complex structure. Now we have

Lemma 2. — The elements of J R
k (X) identify naturally with the space

J ph
k (X) of k-jets of pseudoholomorphic maps from the disk to X.

Proof. — Let us consider first the spaces J diff
k (X) of k-jets of dif-

ferentiable maps from the disk to X. They are built inductively as fol-
lows : J diff

k (X) is contained in the fibration over J diff
k−1(X) with fiber
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Hom(T∆, TJ diff
k−1(X)). Elements of J diff

k (X) have to be tangent liftings of

the corresponding element of J diff
k−1(X), that is have to satisfy the analogue

of the compatibility condition (2.1). But they also have to satisfy the fol-
lowing integrability condition: let jk ∈ J diff

k (X) ⊂ Hom(T∆, TJ diff
k−1(X),jk−1

),
where jk−1 is the corresponding k − 1-th order jet. Again view jk−1 as an
element of Hom(T∆, TJ diff

k−2(X),jk−2
). The integrability says:

(*) The composite

jk−1 ◦ jk : T∆ ⊗ T∆ → TJ diff
k−2(X),jk−2

is symmetric.

Now one uses the almost complex structure on each J R
k (X) as follows:

assume the lemma has been proved for k − 1. Hence there is an inclusion

J R
k−1(X) = J ph

k−1(X) ⊂ J diff
k−1(X).

Let now
jk ∈ J R

k (X) ⊂ TJ R
k−1(X).

Using the almost complex structure on the space of jets, we can then extend
jk by C-linearity to an element j̃k of

Hom(T∆, TJ R
k−1(X)) ⊂ Hom(T∆, TJ diff

k−1(X)).

Because the almost complex structures on Jk−1(X) and Jk−2(X) are
compatible, j̃k satisfies the tangent lifting condition. To see that it gives a k-
th order pseudoholomorphic jet, one notes that it satisfies the integrability
condition since the successive elements of Hom(T∆, TJ·) considered are
complex linear, so that the symmetry condition (*) is obviously satisfied.
So one gets a k-th order differentiable jet and it is immediate to verify that
it is pseudoholomorphic. tu

Now that we have identified J R
k (X) as the space of pseudoholomor-

phic k-jets with non zero differential, we have on it the action of Aut ∆k+1,
which is free, hence gives a quotient Wk+1 that we interpret as the set of
pseudoholomorphic curvilinear subschemes of length k + 1 supported at
one point. The set of pseudoholomorphic curvilinear subschemes of X of
length n will then be defined as a set as the disjoint union over all par-
titions n = n1 + . . . + nl, ni 6= 0 of the sets Wn1,...,nl

parametrizing the
data of isomorphism classes of jets ji of length ni supported at one point
xi with the xi’s all distinct. Notice that each Wn1,...,nl

has a differentiable
structure, being the quotient of the open subset of ΠiWni , n1 ≥ . . . ≥ nl

parametrizing l-uple of jets with disjoint supports, by the subgroup of the
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HILBERT SCHEME OF AN ALMOST COMPLEX FOURFOLD 695

symmetric group Sl which permutes factors with equal multiplicities. Note
also that one recovers X

(n)
0 as W1,...,1. Furthermore the description of the

spaces of pseudoholomorphic jets given in Lemma 2 shows that the set of
pseudoholomorphic schemes with given support is diffeomorphic to the set
of holomorphic schemes with the same support for any integrable complex
structure on X defined near this support. This proves the last assertion of
Theorem 4.

To conclude the construction of Hilbn
curv(X), it now remains to put

a differentiable structure on this set theoretic union, and this is the local
(instead of finite order) theory of pseudoholomorphic curves which will
provide the differentiable charts. Let z ∈ Hilbn

curv(X); then z = tizi, where
each zi ∈ Hilbni

curv(X) is supported at one point xi, and
∑

i ni = n. Clearly
Hilbn

curv(X) identifies naturally to Πi Hilbni
curv near z, so that it suffices to

define the local charts for Hilbni
curv(X) near zi and to take the product

charts for Hilbn
curv(X) near z. In the sequel we then put n = ni and z = zi

with x = xi supporting z.

Recall that the space Wn of pseudoholomorphic jets of order n − 1
modulo Aut ∆n is of complex dimension (N − 1)n + 1, N = dimC X. Let
0 ∈ W be a differentiable ball of complex dimension (N−1)n parametrizing
a family of pseudoholomorphic curves

ψ : W ×∆ε → X

satisfying:

i) The map

(2.2) Ψn : W ×∆ε → Wn,

which to (w, x) associates the isomorphism class of the n − 1-jet of ψw at
x is a local diffeomorphism near (0, 0).

ii) The isomorphism class of the n − 1-jet of ψ0 at 0 is the point
z ∈ Hilbn

curv(X).

That such families exist for sufficiently small ε follows from the local
theory of pseudoholomorphic curves (see [13]). The finite order analysis
showed already that there are no finite order obstruction to its existence.
Some supplementary analysis is needed here to ensure the existence of
actual curves instead of formal jets. The charts we will use for Hilbn

curv(X)
near z are then simply given by the maps

Ψ(n) : W ×∆(n)
ε → Hilbn

curv(X),

(w, z) 7→ ψw(z).(2.3)
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From now on we will restrict to the case N = 2, while presumably the result
remains true in any dimension. The proof that these maps provide indeed
charts for a differentiable structure on Hilbcurv(X), compatible with the
differentiable structures on each stratum, follows then from the two next
propositions.

Proposition 1. — Let ψ : W × ∆ε → X, ψ′ : W ′ × ∆ε → X be two

families of pseudoholomorphic disks satisfying the properties i), ii) above.

Then the set

Z ⊂ W ×∆(n)
ε ×W ′ ×∆(n)

ε

consisting of couples ((w, z), (w′, z′)) such that Ψ(n)(w, z) = Ψ′(n)(w′, z′) is

a subvariety of W ×∆(n)
ε ×W ′×∆(n)

ε near ((0, n0), (0, n0)), which projects

(up to shrinking W , W ′, ∆ε if necessary) isomorphically onto each factor

W ×∆(n)
ε , W ′ ×∆(n)

ε .

Proposition 2. — Let ψ : W × ∆ε → X be a family of pseudoholo-

morphic disks satisfying the properties i), ii) above. Then for any point

(w, z′) ∈ W ×∆(n)
ε close enough to (0, n0), with z′ =

∑
1≤j≤r mjxj , xj ∈

∆ε distinct, the map

W ×∆r
ε → Π

1≤j≤r
Wmj (X)

(2.4) (w, (yj)) 7→ ((ψw)mj
(yj)),

where the last notation means that we consider the r−uple of the isomor-

phism classes of the mj − 1-th order jets of ψw at yj , is a local diffeomor-

phism near (w, (xj)).

Proposition 1 shows that the maps Ψ(n) are injective on sufficiently
small neighbourhoods of the considered point. It also shows that the
subsets of Hilbn

curv(X) given as the images of sufficiently small open
neighbourhoods of (0, n0) do not depend on the choice of Ψ, and that
the differentiable structures induced by Ψ(n) on these sets are independent
on the choice of ψ. Proposition 2 shows first of all that the maps Ψ(n)

induce local diffeomorphisms on the strata near (0, n0), (z), where the
stratification on W ×∆(n)

ε is the one given by the multiplicities. It follows
then that this differentiable structure is compatible with the one on each
stratum. Finally, Proposition 2 shows also that our Ψ(n) is in fact also
a product of charts defined similarly at any of its points, so that its
compatibility with the product charts at any of its points follows from
Proposition 1.
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Proof of Proposition 1. — It suffices to do it when ψ and ψ′ satisfy
the conditions that the jets of ψ0 and ψ′0 at 0 coincide to order n − 1 but
are different at order n. Indeed, given ψ and ψ′ as in the proposition, there
exists a ψ′′ satisfying the same property, and the supplementary condition
that the n-th order jet of ψ′′0 at 0 is different from the one of ψ0 and
ψ′0. Then the statement for the couples (ψ, ψ′′) and (ψ′, ψ′′) implies the
statement for the couple (ψ, ψ′).

Now we do the following: the assumptions on ψ and ψ′ are now that
the smooth pseudoholomorphic disks ψ0(∆ε), ψ′0(∆

′
ε) have exactly a contact

of order n at the point ψ0(0) = ψ′0(0) = x. This implies in particular (see for
example [10]) that the pseudoholomorphic disks ψ0(∆ε) and ψ′0(∆ε) have
exactly n as local intersection number (in a sufficiently small neighbourhood
of x), so that, by stability of this local intersection number, up to shrinking
W and W ′ if necessary, each disk Ψw(∆ε) meets the disk Ψ′

w′(∆ε) along
a cycle of length ni still contained in the same neighbourhood of xi, the
multiplicities being given as the order of contact +1 , or equivalently the
local intersection number near each intersection point. It follows that one
has for each w′ ∈ W ′ a map

(2.5) ηw′ : W → ∆′(n)
ε ,

which to w associates the cycle of intersection ψw(∆ε) ∩ ψ′w′(∆′
ε) or more

precisely its inverse image by the map ψ′
(n)
w′ .

The following lemma, which follows easily from [13], shows that ηw,
is differentiable.

Lemma 3. — Let C ⊂ X be a smooth pseudoholomorphic curve, and

let ψ : w×∆ → X be a differentiable family of pseudoholomorphic embed-

dings parametrized by w. Then locally near C, there exists a differentiable

function F : W ×X → C, such that each Fw : X → C is submersive, gives

an equation for ψw(∆), and has holomorphic restriction to C.

We apply this lemma to C = ψ′w′(∆′
ε), and we use the definition of

the differentiable structure on ∆′(n)
ε to get the differentiability of ηw′ .

Now the dimensions of W and ∆′(n)
ε are the same, and this map has

injective differential at w = 0 when w′ = 0, since then the intersection cycle
is equal to z, so that a tangent vector anihilated by the differential would
provide a deformation of ψw still containing the cycle z, in contradiction
with the fact that the map Ψn of (2.2) is a local isomorphism. Hence these
maps are local isomorphisms in a neighbourhood of 0 for all w′ close enough
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to 0. Now consider the set Z defined in proposition 1. It is clearly equal to
the graph of the map

(2.6)
W ×W ′ → ∆(n)

ε ×∆′(n)
ε

(w,w′) 7→ (ψ−1
w (ψw(∆ε) ∩ ψ′w′(∆′

ε)), ψ
′−1
w′ (ψw(∆ε) ∩ ψ′w′(∆′

ε))).

Now this map is differentiable by Lemma 3 above. Hence Z it is a
differentiable variety of the same dimension as W × W ′ or W ′ × ∆(n)

ε as
well.

Finally consider its projection onto W ′×∆′(n)
ε′ . Since the map ηw′ of

(2.5) is a local diffeomorphism for all w′ close enough to 0, this projection
contains w′ ×∆′(n)

ε′ for all w′ close enough to 0. On the other hand, since
Z is a graph, the projection on W ′ is submersive. Hence we conclude that
Z projects submersively onto W ′ ×∆(n)

ε , hence is a local isomorphism by
dimension reasons. tu

Proof of Proposition 2. — Introduce as before a family of pseudo-
holomorphic disks

ψ′ : W ′ ×∆′
ε → X

satisfying properties i) and ii) and the supplementary condition that ψ0

and ψ′0 coincide exactly up to order n − 1. Let now (w, z′) ∈ W × ∆(n)
ε

be sufficiently close to (0, n0). Then the proof of Proposition 1 shows that
there is a pseudoholomorphic disk ψ′w′(∆′

ε) which meets ψw(∆ε) exactly
along ψw(z′). Furthermore the map

ηw′ : W → ∆′(n)
ε , w 7→ (ψ(n)

w′ )−1(ψw(∆ε) ∩ ψ′w′(∆′
ε))

is a local isomorphism near w.

Consider now the map (2.4) near (w, (xj)), where z′ =
∑

j mjxj .
Clearly its differential is injective on the tangent space T∆r

ε ,(xj) since the
disk Ψw(∆ε) is immersed in X. So if u is a non zero tangent vector
anihilated by the differential of this map at (w, (xj)), the projection of
u to TW,w provides a non trivial tangent vector to W at w which is clearly
anihilated by the differential of ηw′ , and this provides a contradiction. So
the map (2.4) is immersive at any point sufficiently close to (0, n0), hence
a local diffeomorphism for reasons of dimensions. tu
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2.2. Hilbk
curv(X)′.

This section is somewhat technical. We have included it because
it provides a canonically defined open part of the Hilbert scheme of an
almost complex fourfold. The reader who is only interested in the abstract
existence Theorem 3 may skip it and go to Section 3.

Recall that Hilbk
curv(S)′ is the open subset of Hilbk(S) made of

subschemes of length k which at each point are either curvilinear or
of length ≤ 3. We want to prove in this section a result similar to
Theorem 4 for Hilbk

curv(S)′. Recall that an element z of Hilb3(S) which
is not curvilinear is the first infinitesimal neighbourhood of a point x of
S, that is Iz = M2

x, and we will denote this by z = x2. Similarly we will
denote by S2 the copy of S naturally contained in Hilb3(S). More generally
one has

Hilbk
curv(S)′ = Hilbk

curv(S)
⊔
l

(S(l)
0 ×Hilbk−3l

curv (S))0,

which set theoretically makes sense as well if S is replaced by an almost
complex fourfold X, so that we can define

Hilbk
curv(X)′ := Hilbk

curv(X)
⊔
l

(X(l)
0 ×Hilbk−3l

curv (X))0.

Notice that to put then a differentiable structure on Hilbk
curv(X)′, it

suffices to put a differentiable structure on Hilb3(X), since we will then
put the product differentiable structure at any point of Hilbk

curv(X)′. So
from now on we will only consider the problem of defining a differentiable
structure on Hilb3(X) which as a set is the disjoint union of Hilb3

curv(X)
and of a copy X2 of X.

The topology is the following: a sequence zn will converge to x2

if the support of zn converges to 3x and no subsequence converges to
a curvilinear scheme : assuming that zn ∈ X

(3)
0 , this means in a local

C∞ identification X ∼= C2, with complex differential at x, that for any
subsequence znk

= z1
nk

+ z2
nk

+ z3
nk

and sequence of numbers hnk
6= 0 such

that the limits (taken in C2)

lim
k→∞

zi
nk
− zj

nk

hnk

exist for any i, j, these limits are not all colinear over C (intrinsically they
are tangent vectors to X at x).
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We want to put a differentiable structure on Hilb3(X). Let us first
analyse the case of an integrable complex structure. We have the following

Lemma 4. — Let X be a complex surface, and let φ be a holomorphic

function defined in a neighbourhood Uof a point x ∈ X, such that dφx 6= 0.
Then the set

Yφ := {z ∈ Hilb3(U)/∃t ∈ C, l(z ∩Xt) ≥ 2}

is a complex hypersurface of Hilb3(X) which contains x2 and is smooth at

x2. In particular Yφ contains a neighbourhood of x2 in X2.

Here Xt is the curve φ−1(t) which will be smooth near x for t close
to φ(x).

Proof. — It is easy to see by a dimension count that Yφ is a
hypersurface. Since x2 corresponds to the ideal M2

x, the subscheme x2∩Xt

of Xt, for t = φ(x) is defined in Xt by M2
x hence has length 2, so that x2

belongs to Yφ. It remains finally to compute the Zariski tangent space of
Yφ at x2. Since l(x2 ∩Xt) is equal to 2, we can identify schematically near
x2, via the projection on Hilb3(X), the hypersurface Yφ with the subset

Y ′
φ = {(z, w, u) ∈ Hilb3(X)×Hilb2(X)× C/w ⊂ z, w ⊂ Xu}.

The Zariski tangent space of Yφ at x2 is the projection to THilb3(X),x2
of

the Zariski tangent space of Y ′
φ at (x2, w, t), with w = x2 ∩Xt, t = φ(x).

The last one is computed as follows:

– The Zariski tangent space THilb3(X),x2
is equal to HomOX

(Ix2 ,Ox2)
and this is easily seen to be equal to HomC(M2

x/M3
x,Mx/M2

x).

– Similarly, the tangent space THilb2(X),w is equal to HomOX
(Iw,Ow)

that is to HomOX
(Iw/I2

w,Ow).

– Finally the tangent space to C at t sends naturally via a map which
we will denote by ρ to a subspace of HomOX

(IXt
,OXt

), by the Kodaira-
Spencer map associated to the family of curves Xu.

Consider now the following diagramm:

HomOX
(Ix2 ,Ox2)

δ−→ HomOX
(Ix2 ,Ow)
↑ γ

HomOX
(IXt ,Ow)

β←− HomOX
(Iw,Ow)

α ↑
HomOX

(IXt ,OXt)
ρ←− C
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where all the maps are the obvious restriction maps. Retracing through the
identifications

THilb,y = HomO(Iy,Oy)

used, it is immediate to see that if (u, v, ε) is tangent to Hilb3(X) ×
Hilb2(X)×C at (z, w, t) the condition δ(u) = γ(v) is then the infinitesimal
condition on the deformations of the pair (z, w) for w to remain contained
in z, while the condition β(v) = α ◦ ρ(ε) is the infinitesimal condition on
the pair (w, t) for w to remain contained in the curve Xt. In conclusion, we
have

TYφ,x2 = {u ∈ THilb3(X),z/∃v ∈ THilb2(X),w, δ(u) = γ(v) andβ(v)∈ Im α◦ρ}.
Now, choose holomorphic coordinates u1, u2 centered at x, so that φ(u1, u2)
= u2+a, a = φ(x). Then Ow admits for basis over C the elements 1, u1, and
Iw/I2

w admits for basis over Ow the elements u2
1, u2. Also M2

x/M3
x admits

for basis over C the elements u2
1, u

2
2, u1u2, while Ox2 admits for basis over

C the elements 1, u1, u2. In these bases, the map γ associates to

h ∈ HomC(< u2
1, u2 >,< 1, u2 >) ' HomOw

(Iw/I2
w,Ow)

the homomorphism h′ ∈ HomC (< u2
1, u

2
2, u1u2 >,< 1, u1 >) given by

h′(u2
1) = h(u2

1), h′(u1u2) = u1h(u2), h′(u2
2) = 0.

This follows indeed from the fact that γ is the restriction map and that it
is OX -linear. Next one checks easily, using the fact that the curves Xt are
given by the equations u2 = t, that h ∈ β−1(Im α ◦ ρ) if and only if h(u2)
is proportional to 1 ∈ Ow. It follows that TYφ,x2 identifies to the set
(2.7)
{H ∈ Hom (<u2

1, u
2
2, u1u2 >,<u1, u2 >), ∃h ∈ Hom (<u2

1, u2 >,<1, u1 >),

h(u2) ∈ 1, H(u2
1) = h(u2

1), H(u1u2) = u1h(u2) andH(u2
2) = 0 modu2}.

It is obvious that this is the (proper) hyperplane of the tangent space

THilb3(X),x2
= Hom (< u2

1, u
2
2, u1u2 >,< u1, u2 >),

described as

(2.8) {h ∈ Hom (< u2
1, u

2
2, u1u2 >,< u1, u2 >)/ h(u2

2) = 0 mod u2},
so that Yφ is smooth at x2. tu

This computation shows in fact more

Lemma 5. — The tangent space to Yφ at x2 depends only on the

tangent space to the curve Xt, t = φ(x) at x. Furthermore the map

f : P1 = P(ΩX,x) → P5 = P(ΩHilb3(X),x2
)
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which to the hyperplane TXt,x associates the tangent space to Yφ at x2, is

given by the complete linear system of cubics on P1.

Proof. — We have seen that in local holomorphic coordinates u1, u2

such that φ(u1, u2) = u2 + a, we have

TYφ,x2 = {h ∈ HomC(< u2
1, u

2
2, u1u2 >,< u1, u2 >)/ h(u2

2)

proportional to u2}.

It is immediate to see that this hyperplane remains unchanged under a
change of coordinates such that u′2 = αu2 modM2

x, which proves the first
statement.

Next, the above formula says that the map f : P(ΩX,x) →
P(Hom(S2ΩX,x,ΩX,x)) sends η to the hyperplane

Hη = {h ∈ Hom(S2ΩX,x,ΩX,x))/ h(η2) proportional to η}.

Writing this map explicitely (or arguing by PGl(2)-invariance) shows that
it is given by the complete linear system of cubics on P1. tu

Corollary 1. — The locally defined hypersurfaces Yφ cut out schemat-

ically (and locally) the smooth subvariety X2 ⊂ Hilb3(X).

Indeed, by Lemma 5, the intersection of the tangent spaces to the
hypersurfaces Yφ is of codimension at least 4 in THilb3(X),x2

and this is the
codimension of TX2,x2 . tu

It turns out that the analogue of the hypersurfaces Yφ (near each
point x2 ∈ Hilb3(X)) can be constructed as differentiable varieties in
the almost complex case, so that their intersections with Hilb3

curv(X) are
smooth codimension 2 real subvarieties. This is done as follows : choose in
a neighbourhood U of x ∈ X a submersive map

φ : X → C , φ(x) = 0,

such that each fiber Xt of φ is a pseudoholomorphic curve w.r.t. J . Then
consider

Yφ := {z ∈ Hilb3(U)/∃t ∈ C , l(z ∩Xt) = 2}.

Here the intersection z ∩ Xt is a subscheme of Xt defined in the natural
way : if z is not curvilinear and supported in y ∈ Xt, z ∩ Xt is the first
infinitesimal neighbourhood of y in Xt. Otherwise writing z = tzi with zi

curvilinear supported at yi the intersection z ∩Xt is the union for yi ∈ Xt

of the subschemes of Xt supported at yi and whose length is equal to 1+
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the order of coincidence of the equivalence class of the jets of Xt and zi. It
is easy to see that Yφ is a locally closed subset of Hilb3(X) which contains
U2. We have now another description of Yφ. Let ψ : U → C be a submersive
map satisfying the conditions that its fibers are pseudoholomorphic curves
and that for any y ∈ U , the curves Xφ

y := φ−1(φ(y)) and Xψ
y := ψ−1(ψ(y))

meet transversely at exactly one point (namely y). Define then

Yφ,ψ =
( ⋃

y∈U

˜(Xφ
y )(2) ×Xψ

y

)0

,

where the symbol ˜ means the blow-up along the subvariety (y +Xφ
y )×{y}

and the upperscript 0 means that we consider the complementary set of
the proper transform of the surface (Xφ

y )(2) × {y} (this surface is made of
subschemes which are contained in (Xφ

y )(3)). Clearly Yφ,ψ has a natural
differentiable structure. Furthermore, if E = ∪y∈UEy is the exceptional
divisor, there is a natural map

f : Yφ,ψ − E → Hilb3
curv(X),

which is easily seen to be an immersion whose image is contained in Yφ.
We have now

Proposition 3. — The map f extends to a continuous homeomorphism

Yφ,ψ → Yφ ⊂ Hilb3(X)

which restricts to a differentiable immersion

Yφ,ψ − U∞ ↪→ Hilb3(U)− U2.

In particular, Yφ has a natural differentiable structure.

Here U∞ is a copy of U contained in the exceptional divisor of Yφ,ψ

and is defined as follows: for each y, consider the exceptional divisor Ey

which is a P1-bundle over Xφ
y . Its fiber over y ∈ Xφ

y is isomorphic to P(Ny)
where Ny is the normal bundle of (y+Xφ

y )×{y} in (Xφ
y )(2)×Xψ

y at (y, y, y).
Then P(Ny) contains the hyperplane tangent to the surface (Xφ

y +y)×Xψ
y

at y, and this defines the point y∞.

Proof. — Indeed, for each y ∈ X, the singular curve Xy := Xφ
y ∪yXψ

y

has a natural holomorphic structure, for which the inclusion iy into X

is pseudoholomorphic. Hence we have the Hilbert scheme Hilb3
curv(Xy),

Hilb3(Xy) and inside it the open sets of certain irreducible components

Hilb2,1
curv(Xy), Hilb2,1(Xy)
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which are the sets of subschemes z ⊂ Xy such that l(Xφ
y ∩ z) = 2. Now it

is immediate to check that

Hilb2,1
curv(Xy) ∼= ( ˜(Xφ

y )(2) ×Xψ
y )0 − y∞,Hilb2,1(Xy) ∼= ( ˜(Xφ

y )(2) ×Xψ
y )0.

Now, since iy is a pseudoholomorphic immersion, we have a differentiable
immersion

iy : Hilb3
curv(Xy) → Hilb3

curv(X)

which extends the map f . It is indeed defined using the definition of
Hilbcurv(Xy) using jets, and the differentiability is proved using the de-
scription of Hilbcurv(X) given in the previous section.

This extension varies differentiably with the parameter y, hence
provides the desired extension of f to Yφ,ψ−U∞. Looking at the topologies
near the non curvilinear points, one shows that this extension extends
continuously to a map

f̃ : Yφ,ψ → Hilb3(X).

It is obvious that f̃ takes value in Yφ. That f̃ is a homeomorphism onto
Yφ follows from the fact that one can invert it: an element z ∈ Yφ meets
some curve Xφ

t along a subscheme w of length 2, and t is unique since
Xt ∩ Xt′ = ∅, t 6= t′. On the other hand, there is a well defined residual
point x = z−w and z is contained in the singular curve Xφ

t ∪Xψ
x which is a

curve Xy for some y. But then z ∈ Hilb2,1(Xy) hence determines a point of
Yφ,ψ. The fact that f̃ is an immersion along the curvilinear part Yφ,ψ−U∞
is not difficult to prove using the description of the differentiable structure
of Hilb3

curv(X) given in the previous section. tu

The hypersurfaces Yφ will be used to construct a differentiable struc-
ture on Hilb3(U) near U∞ as follows. First of all, one constructs a map

Φ : U × P1 → S

over P1, where P1 = P(Ω1,0
X,x) and S → P1 is the total space of the bundle

O(1), satisfying the following properties:

i) Each Φt : U → C, t ∈ P1, is submersive, takes value 0 at x and
has pseudoholomorphic fibers.

ii) The map P1 → P(T 1,0
X,x), which to t associates TX

Φ−1
t

(0)
,x ⊂ T 1,0

X,x

is the natural isomorphism P(T 1,0
X,x) ∼= P(Ω1,0

X,x), u 7→ u⊥.

Notice that property ii) will then also imply that the map which to t

associates TX
Φ−1

t
(Φt(y))

,y ⊂ T 1,0
X,y is an isomorphism for y close to x. Hence

we may assume this property to be true in U .
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Then for each t ∈ P1 we have the “hypersurface” Yt := YΦt of
Hilb3(X) which contains U2, has a differentiable structure and is immersed
in Hilb3(X) away from U∞. Now let y ∈ U , t ∈ P1 and denote by Ky,t

the complex threefold ( ˜(XΦt
y )(2) ×Xψ

y )0 which is contained in Yt by the
previous lemma. Here ψ : U → C is an auxiliary map which is submersive,
and has pseudoholomorphic fibers transverse to the fibers of Φt. We can
make explicit infinitesimal computations in Ky,t = Hilb2,1(XΦt

y ∪y Xψ
y )

exactly as in the proof of Lemmas 4, 5, which gives the following result ;
introduce first the surface Sy,t ⊂ Ky,t, parametrizing length 3 subschemes
of Xy = Xφ

y ∪ Xψ
y which are the union of a point of Xφ

y and of a length
2 subscheme of Xy supported on y. Notice that there is a one dimensional
family of such length 2 subschemes, since the Zariski tangent space of Xy

at y has rank 2. We have

Lemma 6. — The subsets Yt′ ∩ Ky,t for t 6= t′ are codimension two

real subvarieties of Ky,t containing the point y∞ and smooth at y∞.

Furthermore their tangent space at y∞ is a complex hyperplane of TKy,t,y∞ .

This remains true for t = t′ if one defines Yt ∩Ky,t near the point y∞ as

the surface Sy,t. Furthermore the map

P1 → TKy,t,y∞

which to t′ ∈ P1 associates the tangent complex hyperplane to Yt′ ∩Ky,t

at y∞ is given by the complete linear system of quadrics on P1.

The proof is exactly the same as for Lemmas 4, 5. The only point to
note here is the smooth convergence of the hypersurfaces Yt′ ∩ Ky,t near
y∞ to the surface Sy,t, which is easy. tu

Corollary 2. — The dimension 4 real subvarieties

Ky,t,t′,t′′ := Ky,t ∩ Yt′ ∩ Yt′′

of Ky,t are smooth at y∞ and the natural differentiable map⊔
t′,t′′

Ky,t,t′,t′′ → Ky,t

identifies differentiably the left hand side to the blow-up of Ky,t at y∞.

Now we can let y move, and since everything varies differentiably with
y, we conclude

Corollary 3. — Hilb3(U) contains for each triple {t, t′, t′′} ∈ (P1)(3)

the smooth real 6-dimensional variety Yt ∩ Yt′ ∩ Yt′′ , which contains U2.
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This variety varies differentiably with the parameter {t, t′, t′′} ∈ (P1)(3).
Furthermore the natural map⊔

{t′,t′′}∈P1

Yt ∩ Yt′ ∩ Yt′′ → Yt

identifies the left hand side to the blow-up of Yt along X2.

This blow-up indeed makes sense in the differentiable category, since it
is clear that the normal bundle of X2 in Yt has a natural complex structure :
it is indeed isomorphic at y2 to the tangent space to Ky,t at y∞. tu

Now we are almost done. From the last corollary, we get a 12-
dimensional differentiable variety

Y =
⊔

{t,t′,t′′}∈(P1)(3)

Yt ∩ Yt′ ∩ Yt′′

and a map
g : Y → Hilb3(U)

which is continuous and clearly differentiable where this makes sense, i.e in
g−1(Hilb3

curv(X)). We show now

Lemma 7. — The map g induces a diffeomorphism from Y − F onto

V − X2, where V ⊂ Hilb3(U) is the neighbourhood of U2 consisting of

those subschemes not contained in any fiber of one of the maps Φt, and

F := g−1(U2).

Proof. — The inverse map is obtained by constructing a differen-
tiable map

χ : Hilb3
curv(X) → (P1)(3)

defined in V − X2. This map is obtained by noting that for any pseudo-
holomorphic subscheme of length 2 supported in U there exists exactly one
t ∈ P1 such that w is contained in one fiber of the map Φt. Hence we get a
differentiable map

µ : Hilb2(X) → P1.

Next one can use the incidence variety

Hilb2,3
curv(X) = {(w, z) ∈ Hilb2(X)×Hilb3

curv(X) | w ⊂ z}.

Using the description of Hilbcurv(X) given in the previous section, it is easy
to show that this is a smooth variety and that the natural map

pr2 : Hilb2,3
curv(X) → Hilb3

curv(X)
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is finite of degree 3 (i.e. every fiber is a set of 3 points counted with positive
multiplicities). It follows that we have a composite (differentiable) map

ν : Hilb3
curv(X) → (Hilb2

curv(X))(3)
µ(3)

−→ (P1)(3).

By construction and by definition of V , ν−1({t, t′, t′′}) ∩ V is contained in
Yt ∩ Yt′ ∩ Yt′′ ⊂ Y, which gives the inverse map g−1. tu

Finally, over each y2 ∈ X2 the fiber g−1(y2) clearly identifies to (P1)(3)

since all the varieties Yt∩Yt′∩Yt′′ contain U2. But (P1)(3) is also isomorphic
to P3 so that the subvariety (of real codimension 2) F of Y is a P3-bundle
over U2. To get a differentiable structure on Hilb3(U) it suffices now to
show that F can be contracted in Y onto U2 in the differentiable category.
For this it suffices to show that the Euler class of the (real oriented rank
two) normal bundle of F in Y restricts on each P3

y2
(fiber of g over y2)

to the Chern class c1(OP3(−1)). But this follows from Corollary 3, since it
says that for each t, the subvariety

Ỹt := U{t′,t′′}∈P1Yt ∩ Yt′ ∩ Yt′′

is the blow-up of Yt along X2, so that the exceptional variety Ft = Ỹt ∩ F

has a normal bundle in Ỹt which restricts on each P2
y2

(fiber of g|Ỹt
over y2)

to the Chern class c1(OP2(−1)). On the other hand NFt/Ỹt
is the restriction

of NF/Y to Ft and the last P2-fibers are hyperplanes sections P3
y∩ Ỹt. Hence

we have
e(NF/Y)|P2

y2
= c1(OP2(−1))

which implies
e(NF/Y)|P3

y2
= c1(OP3(−1)).

To be more precise, one can show using the above construction that there
exists a unique differentiable structure on the contraction of F to U2 in Y,
for which the map g is differentiable, and which induces the differentiable
structure already defined on each of the hypersurfaces

Yφ ⊂ Hilb3(U).

tu

To conclude the construction of a differentiable structure on Hilb3(X),
it would suffice to show the compatibility of these local constructions, which
we leave to the reader.

A similar (more complicated) study can be done in the case of
Hilb4(X), hence more generally for the open set Hilbk

curv(X)′′ parametriz-
ing pseudoholomorphic subschemes which are at each of their points either

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)
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curvilinear or of length ≤ 4. The point is that all the length 4 finite sub-
schemes of a complex surface X can be described using only the almost
complex structure. Namely they are either curvilinear, or the union of the
first infinitesimal neighbourhood of a point and of another reduced point,
or supported at one point x and defined by a colength 4 ideal containing
M3

x and contained in M2
x; such an ideal is determined by an hyperplane

in
M2

x/M3
x
∼= S2ΩX,x.

So this last set that we denote by X ′
2 is parametrized by the P2-bundle

P(S2ΩX) over X. Hence we can define similarly in the almost complex case
Hilb4(X) as the disjoint union of Hilb4

curv(X), X2 × X − Diag and X ′
2 =

P(S2Ω(1,0)
X ). We have a similar set theoretic description of Hilbk

curv(X)
′′

as
the quotient by the adequate permutation group of an open set of a union
of products of the above with smaller dimensional Hilbert schemes.

Then in the case of Hilb4(X) one can show that there is a differ-
entiable structure on this set, which makes it a 16-dimensional compact
variety. This gives immediately the analogous result for Hilbk

curv(X)′′.

3. A general construction for the Hilbert scheme.

We will consider in this section a differentiable fourfold X endowed
with an almost complex structure J of class C∞. Our goal is to construct
for each n a manifold Hilbn(X) of real dimension 4n having the following
properties:

i) There is a continuous proper map

c : Hilbn(X) → X(n),

which is a diffeomorphism over X
(n)
0 . More generally the fiber of c over a

cycle z =
∑

i nixi ∈ X(n) admits an identification to the product over i of
the singular varieties Hilbni(C2)0 parametrizing subschemes of length ni

supported at 0. (This is exactly the description of the fibers of the Hilbert-
Chow map for the Hilbert scheme associated with an integrable complex
structure.)

ii) When the almost complex structure J is integrable, Hilbn(X) is
diffeomorphic to the Hilbert scheme relative to the complex structure I.

iii) The construction behaves well under deformation. In particular,
the manifold Hilbn(X) depends only on the deformation class of J .
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iv) Hilbn(X) has a stable almost complex structure, which is in the
same cobordism class as the one given by the complex structure when J is
a deformation of an integrable complex structure.

v) The manifold Hilbn(X) is well defined up to diffeomorphisms
isotopic to the identity.

Remark 1. — The symmetric product X(n) can (and will in the se-
quel) be considered as a singular differentiable variety (its set of differ-
entiable functions is given by the differentiable functions on Xn that are
invariant under the symmetric group Sn). However the map c is never dif-
ferentiable for this differentiable structure.

The construction is as follows: Consider Z ⊂ X(n)×X, the incidence
subset

Z = {(z, x) ∈ X(n) ×X/x ∈ z}.
We will show

Proposition 4. — There exists a neighbourhood W ⊂ X(n) × X of

Z, and a relative integrable complex structure I on W/X(n), which varies

differentiably with the parameter z ∈ X(n).

Concretely, this means that for each z ∈ X(n), there is a neighbour-
hood Wz ⊂ X of Sup z, and a (integrable) complex structure Iz on Wz,
which varies differentiably with z. Notice that such an object implies con-
versely that X has an almost complex structure. Indeed it suffices to restrict
I to the subset Wn = pr−1

1 (X(n)
n ) of W , where X

(n)
n

∼= X is the set of cycles
supported at one point. Then Wn is a neighbourhood of the diagonal ∆ in
X ×X and the relative complex structure I provides a complex structure
on the relative (with respect to pr1) tangent bundle TX×X/X |∆, which is
isomorphic to TX .

The proof of the proposition will in fact exhibit a family of such
relative integrable complex structures, parametrized by a contractible basis,
so that the construction below gives a family of manifolds (compact when
X is) parametrized by a contractible basis, hence, by Ehresman fibration
theorem, a manifold well defined up to diffeomorphisms isotopic to the
identity.

We use this integrable complex structure I as follows: first of all we
perform the relative construction of the Hilbert scheme for the family of
complex structures Iz on Wz. This gives a singular differentiable variety

Hilbn
I (W/X(n)) π→ X(n),
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which is relatively smooth by [5]. Next consider the relative Hilbert-Chow
map

crel : Hilbn
I (W/X(n)) → W (n)/X(n)

.

Since W is open in X(n)×X and the map W → X(n) is the first projection,
we have also an open inclusion

i : W (n)/X(n)
→ X(n) ×X(n).

Defining
Crel := i ◦ crel : Hilbn

I (W/X(n)) → X(n) ×X(n),

we have π = pr1 ◦Crel.The Hilbert scheme Hilbn(X) will then be defined
as

(3.9) Hilbn(X) = C−1
rel (Diag),

where now Diag ⊂ X(n) × X(n) is the diagonal. We will then define
c : Hilbn(X) → X(n) as pr1 ◦Crel = pr2 ◦Crel. By definition, the fiber
of c over z ∈ X(n) is equal to the fiber of cz : Hilbn

Iz
(Wz) → W

(n)
z , which

proves assertion i).

Note that the construction above defines Hilbn(X) only as a topolog-
ical space, since the map Crel is continuous but not differentiable. We have
now

Theorem 5. — For an adequate (family of) choice of the relative

integrable complex structure I (which will be explicitely described in

Proposition 5), Hilbn(X) can be naturally endowed with the structure of

a smooth manifold of dimension 4n.

Notice that by properness of the (relative) Hilbert-Chow map,
Hilbn(X) is always compact, when X is compact. Finally, we will show
assertion iv)

Theorem 6. — The variety Hilbn(X) defined above has a stable almost

complex structure (i.e. there exists a complex structure on THilbn(X) ⊕ T ,

for some trivial bundle T on Hilbn(X)), whose complex cobordism class

depends only on the deformation class of I.

We now turn to the proofs of these statements. Let us first introduce
the following notation: for each partition S = {S1, . . . , Sr} of {1, . . . , n}
into disjoint subsets, let ∆S ⊂ Xn be the corresponding diagonal

∆S = {(x1, . . . , xn) ∈ Xn/ xi = xj if i, j ∈ Sl for some l}.
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If S′ is a refinement of S, one has ∆S ⊂ ∆S′ . The number | S |= r is also
the number of distinct points in the n-uple corresponding to the general
point of ∆S . The symmetric product Sn acts in an obvious way on the set
of partitions of {1, . . . , n} and we have ∆σ(S) = σ(∆S), where on the right
Sn acts on Xn.

Everything will then follow from the following

Proposition 5. — There exists a relative complex structure Ĩ defined

on a neighbourhood W of the incidence set Z̃ ⊂ Xn × X and for each

partition S as above a differentiable retraction RS : Xn → ∆S defined in

a neighbourhood of ∆S , satisfying the following conditions:

1. Everything is equivariant under the action of Sn. Hence we have

σ∗Ĩ = Ĩ and Rσ(S) = σ ◦RS ◦ σ−1 for σ ∈ Sn.

2. The retractions RS are compatible in the sense that if S′ refines

S, so that ∆S ⊂ ∆S′ , one has RS = RS ◦RS′ near ∆S .

3. One has Ĩ = (RS)∗(IS) near ∆S , where IS := Ĩ|∆S
.

4. For x ∈ ∆S the fiber R−1
S (x) is a holomorphic subvariety of a

neighbourhood of x in Xn for the complex structure induced by Ix.

(More precisely if x = (x1, . . . , xn), Ĩx is a complex structure on

Vx1 ∪ . . . ∪ Vxn
, where the Vxi

are neighbourhoods of xi in X, and we

consider the induced complex structure on Vx1 × . . . Vxn .)

We postpone the proof of this proposition until the end of the section.
From now on we will denote by I the relative complex structure on
W ⊂ X(n)×X obtained by passage to the quotient from a Ĩ satisfying the
properties of Proposition 5 and we perform the construction of Hilbn(X) as
explained above. We show that for this I, Hilbn(X) satisfies the conclusions
of Theorems 5, 6.

Proof of Theorem 5. — We have to show that for Ĩ as in the Propo-
sition 5, Hilbn(X) = C−1

rel (Diag) has a natural differentiable structure. In-
deed, let z ∈ X(n), z =

∑
1≤i≤r nixi and let z̃ ∈ Xn be a lift of z. Let ∆S

be the minimal diagonal in which z̃ lies, and let U, V be neighbourhoods of
z̃ in ∆S and in Xn respectively, in which the retraction map RS : V → U

is defined. If V is sufficiently small, the quotient V/SS is naturally an open
neighbourhood V ′ of z in X(n) and by Property 1, RS induces a map

R′
S : V ′ → U.

Here SS is the subgroup of Sn leaving ∆S pointwise invariant.
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By Property 3, the complex structure Iz, z ∈ V ′ satisfies the property
that there is a relative integrable complex structure IS on an open subset
W ′ of U × X, whose pull-back by R′

S is equal to I. Hence we get the
following alternative definition of Hilbn(X) over V ′: Consider the relative
Hilbert scheme

π : Hilbn
IS

(W ′/U) → U.

It is smooth since U is smooth, and the Hilbert scheme is relatively smooth
over U . Then we have the relative Hilbert-Chow map

c′rel : Hilbn
IS

(W ′/U) → W ′(n)/V

which combined with the open inclusion

W ′(n)/U ⊂ U ×X(n)

gives a continuous map

C ′
rel : Hilbn

IS
(W ′/U) → U ×X(n).

Then using the Cartesian diagram

Hilbn
I (WV ′/V ′) −→ Hilbn

IS
(W ′/U)

↓ ↓
R′

S : V ′ −→ U

which is obtained using the fact that I = R′∗
S .IS , we get a natural

identification, as topological spaces

Hilbn(X) ∩ c−1(V ′) = C ′−1
rel (ΓR)

where ΓR ⊂ U × V ′ is the graph of R′
S .

But this can be also translated as follows: let

ρ : Hilbn(X) ∩ c−1(V ′) → U

denote the restriction of π to Hilbn(X) ⊂ Hilbn(W ′/U); then the fiber
ρ−1(y) ⊂ Hilbn(W ′

y) is equal to

(R′
S ◦ cy)−1(y) = c−1

y (R′
S
−1(y)).

But by Property 4 in Proposition 5, we know that R′
S
−1(y) is an analytic

subset of X(n). More precisely it is the image in V ′ = V/SS of the SS-
invariant holomorphic subvariety R−1

S (z̃) of Xn, which passes through
z̃ and is transversal to ∆S at z̃. It is then easy to see that the fiber
ρ−1(y) = c−1

y (R′
S
−1(y)) is a smooth holomorphic subvariety of Hilbn(W ′

y),
varying differentiably with y, as R−1

S (z̃) ⊂ Xn varies differentiably with y.
Hence

Hilbn(X) ∩ c−1(V ′) ⊂ Hilbn(W ′/U)
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is a smooth submanifold.

To conclude that there is a differentiable structure on Hilbn(X), it
suffices now to verify the compatibility of the differentiable structures de-
fined above on different open sets of Hilbn(X). But this follows immediately
from the compatibility Properties 2 and 3 satisfied by the RS , Ĩ. tu

Proof of Theorem 6. — The existence of a stable almost complex
structure on Hilbn(X) is proved as follows. If one forgets the singularities of
X(n), one has just to note the two exact sequences of real “vector bundles”
given by the relative tangent bundles sequence of π : Hilbn

I (W/X(n)) →
X(n) and the normal bundle sequence of Hilbn(X) in Hilbn

I (W/X(n)):

(3.10) 0 → THilbn
I
(W/X(n))/X(n) → THilbn

I
(W/X(n))

π∗→ π∗TX(n) → 0,

defining the relative tangent bundle of π, and

(3.11) 0 → THilbn(X) → THilbn
I
(W/X(n))|Hilbn(X)

→ π∗TX(n) |Hilbn(X) → 0,

where π∗TX(n) |Hilbn(X) has been identified to the “normal bundle” of
Hilbn(X) in Hilbn

I (W/X(n)), since TX(n) is canonically identified to the
normal bundle of Diag in X(n) ×X(n).

Restricting now (3.10) to Hilbn(X) and choosing a vector bundle K

of even rank such that π∗TX(n) |Hilbn(X)⊕K is a trivial vector bundle T on
Hilbn(X), we deduce from (3.10) and (3.11) isomorphisms

(3.12)
THilbn

I
(W/X(n))|Hilbn(X)

⊕K ∼= THilbn
I
(W/X(n))/X(n)

|Hilbn(X)
⊕T

THilbn
I
(W/X(n))|Hilbn(X)

⊕K ∼= THilbn(X) ⊕ T.

But the trivial bundle T is of even rank, hence has a complex structure
and THilbn

I
(W/X(n))/X(n) has a complex structure induced by the integrable

complex structure on each fiber of π. Hence we conclude, combining these
two isomorphisms that

THilbn(X) ⊕ T ∼= THilbn
I
(W/X(n))/X(n)

|Hilbn(X)
⊕ T

has a complex structure.

In order to make this argument correct, that is to take into account the
singularities of X(n), we do the following. Notice that by the construction
of the differentiable structure on Hilbn(X), the locally defined maps

R′
S ◦ c : Hilbn(X) → ∆S

introduced in the Proof of Theorem 5 are differentiable.
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Now we will prove

Lemma 8. — There exists a differentiable map

φ̃ : Xn → Xn

which is arbitrarily close to Id, commutes with the action of the symmetric

group Sn and satisfies the following properties:

– Near ∆S , φ̃ takes value in ∆S and factors through the retraction

RS .

– The relative complex structure Ĩ satisfies φ̃∗Ĩ = Ĩ.

Assuming the lemma, let φ : X(n) → X(n) be map induced by φ̃. We
can choose then a differentiable embedding

i : X(n) ↪→ M

into a smooth manifold and extend the relative complex structure I to
a relative complex structure IM on WM → M , a neighbourhood of Z in
M ×X.

We then have the relative Hilbert-Chow map

Crel : Hilbn(WM/M) crel−→ W
(n)/M
M ↪→ M ×X(n)

and there is a natural homeomorphism

χ : Hilbn(X) ∼= C−1
rel (Γφ) ⊂ Hilbn(WM/M),

where Γφ ⊂ M × X(n) is the graph of i ◦ φ. Here χ is obtained as the
composite of the inclusion

Hilbn(X) ⊂ Hilbn(W/X(n))

and of the natural map induced by i ◦ φ

Hilbn(W/X(n)) → Hilbn(WM/M),

using the fact that (i ◦ φ)∗IM = I.

We show now

Lemma 9. — The continuous map χ is a differentiable immersion. Fur-

thermore the normal bundle of Hilbn(X) ∼= χ(Hilbn(X)) in Hilbn(WM/M)
is naturally isomorphic to (φ ◦ c)∗TM .

Proof. — Let z ∈ X(n) and let z̃ be a lifting of z in Xn. Let ∆S be the
smallest diagonal in which z̃ lies, and let U , V be small neighbourhoods of

ANNALES DE L’INSTITUT FOURIER



HILBERT SCHEME OF AN ALMOST COMPLEX FOURFOLD 715

z̃ in ∆S and Xn respectively so that the retraction RS induces a retraction
RS : V → U . Then the notations being as in the proof of Theorem 5,
we have an open set c−1(V ′) of Hilbn(X) containing c−1(z), which is a
differentiable submanifold of Hilbn(W ′/U). We will give the proof when
φ is equal to R′

S near z. (In general, one can by assumption write locally
φ = φ′ ◦ R′

S with φ′ a differentiable map from U to ∆S preserving the
relative complex structure IS and the result follows in the same way.)

Now, when φ = R′
S , the map χ is simply the composite of the

differentiable inclusions c−1(V ′) ↪→ Hilbn(W ′/U) (written above) and

Hilbn(W ′/U)
i
↪→ Hilbn(WM/M). This proves the first statement.

It remains to compute the normal bundle of the immersion χ. Even
if χ(Hilbn(X)) = C−1

rel (Γφ), it is not obvious that its normal bundle is
isomorphic to (φ ◦ c)∗TM , that is to the pull-back of the “normal bundle”
of the graph of Γφ, because Crel is not a differentiable map for the product
differentiable structure on the open set W

(n)/M
M of M×X(n). However, using

the relative complex structure IM we get a relative analytic structure on
W

(n)/M
M , hence a differentiable structure on it. (The differentiable functions

are defined locally as the restrictions of differentiable functions on CN for
some local differentiable imbedding over M

W
(n)/M
M ↪→ M × CN

which is holomorphic on the fibers.)

Then since crel is holomorphic on fibers, Crel is clearly differentiable
for this differentiable structure. On the other hand, we note that the subsets
M×z, z ∈ X(n) of M×X(n) are also differentiable subvarieties of M×X(n)

for this differentiable structure, (but they do not vary differentiably with
z). Hence there is a natural continuous inclusion

pr∗1 TM ⊂ TM×X(n)

where the right hand side is the “Zariski” tangent sheaf for the refined
differentiable structure.

Finally we note that Γφ is a differentiable subvariety of M ×X(n) for
this differentiable structure: indeed we have inclusions

Γφ ⊂ U ×X(n) ⊂ M ×X(n),

where the second inclusion is an immersion, and the fiber of Γφ over z′ ∈ U

in the first inclusion is equal to R′
S
−1(z′), which is an analytic subset of

X(n) for the complex structure Iz′ by property 4 in Proposition 5.
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This description of Γφ shows also easily that it can be locally defined
in M × X(n) by dimR M equations with independent differentials for the
refined differentiable structure. Indeed each fiber R′

S
−1(z′) ⊂ W ′(n)

z′ is a
local complete intersection of complex codimension equal to dim U and
transversal to the singularities of W ′(n)

z′ . Hence Γφ ⊂ U × X(n) is clearly
a singular differentiable subvariety for the refined differentiable structure.
Furthermore Γφ has a locally free normal bundle and one sees easily that
the composite map

pr∗1 TM ⊂ TM×X(n) → NΓφ

is an isomorphism. Then the isomorphism
(3.13) (φ ◦ c)∗TM

∼= Nχ(Hilbn(X))/ Hilbn(WM /M)

is obtained as the pull-back by Crel of this isomorphism.

Note that the isomorphism 3.13 is continuous but not necessarily
differentiable although both sides have the structure of differentiable vector
bundles. tu

Using Lemma 9, we conclude exactly as before. Indeed we have the
relative tangent bundle sequence for Hilbn(WM/M) and the normal bundle
sequence of Hilbn(X) in Hilbn(WM/M). Since by the above computation
the normal bundle is naturally isomorphic to the pull-back of the tangent
bundle of the basis, we get a stable isomorphism between THilbn(X) and the
restriction to Hilbn(X) of the relative tangent bundle THilbn(WM /M)/M .
Then the stable almost complex structure on Hilbn(X) will come as before
from the natural complex structure on the vector bundle THilbn(WM /M)/M .

The fact that the isotopy class of the variety Hilbn(X) and the
cobordism class of this stable almost complex structure depend only on
the deformation class of J will follow from the fact that the data Ĩ , RS ,
which are the supplementary parameters introduced in our construction
are well defined up to homotopy preserving the properties stated in
Proposition 5. More precisely, assuming they are constructed as in the
proof of Proposition 5, one checks easily that they are parametrized by a
contractible basis, at least for those which are close enough to Jg

S , Rg
S , a

metric g on X being fixed (here the notations are those of Proposition 5).
Hence the proof of Theorem 6 is finished, assuming Lemma 8. tu

Proof of Lemma 8. — Let ∆k be the union of the diagonals ∆S with
| S |≤ k. We will construct inductively a differentiable map φ̃k : Xn → Xn,
defined in a neighbourhood of ∆k, taking value in ∆k and satisfying all the
properties stated. Since ∆n = Xn, we will then put φ̃ = φ̃n.
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To start the induction, we define φ̃1 = RS1 where S1 is the smallest
diagonal. By the properties of Ĩ stated in Proposition 5, it satisfies the
properties needed.

Assume now that φ̃k has been constructed. Let Wk be a neighbour-
hood of ∆k in which φ̃k is defined and let W ′

k be another neighbourhood
such that W ′

k ⊂ Wk. Let now Wk+1 be a neighbourhood of ∆k+1 such
that Wk+1 − W ′

k is a disjoint union of components WS
k+1 indexed by the

partitions S with | S |= k+1. We may assume that RS is defined in WS
k+1.

We will define φ̃k+1 to be equal to φ̃k in W ′
k and to RS in WS

k+1. It
remains now to construct φ̃k in Wk+1 ∩ (Wk −W ′

k) = tSWS
k+1 ∩Wk. To

do this we construct on each WS
k+1 ∩Wk a homotopy (Ht)t∈[0,1] between

φ̃k and RS ; then choosing a function f , which takes value 0 near ∂W ′
k and

1 near ∂Wk, we define φ̃k+1 in WS
k+1 ∩Wk by the formula

(3.14) φ̃k+1 = Hf(x)(x).

It clearly will glue with the previously defined φ̃k+1 to give a differentiable
map defined in Wk+1. This differentiable map satisfies the properties stated
in the lemma outside Wk+1 ∩ (Wk −W ′

k) because φ̃k and the R′
Ss do.

It remains to see that we can construct the homotopy and the function
f in order to satisfy these properties in Wk+1 ∩ (Wk −W ′

k). But we know
that φ̃k takes value in ∆k and factors locally through the retractions RS′ on
∆S′ , | S′ |≤ k. Since by Proposition 5, each retraction RS′ factors through
RS in each WS

k+1 ∩Wk we can write (up to shrinking Wk)

φ̃k = ψS ◦RS

in WS
k+1 ∩Wk, where ψS is a differentiable map from ∆k into itself which

satisfies the property that ψ∗S(Ĩ|∆S
) = Ĩ|∆S

.( Here we use the fact that
by choosing Wk+1 sufficiently small we may assume that in each WS

k+1 we
have Ĩ = R∗

SIS .)

We then simply choose a homotopy (Kt)t∈[0,1] between ψS and Id on
∆k so that K∗

t (Ĩ|∆k
) = Ĩ|∆k

and define

(3.15) Ht = Kt ◦RS .

Furthermore we ask that the function f factors through RS which is
possible if Wk+1 is sufficiently small.

It is not difficult to see using the inductive construction of φ̃k, that
such a homotopy exists and that everything can be choosen to commute
with the Sn-action. Then it is immediate to see, using the fact that Kt leaves
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Ĩ invariant, and the fact that in WS
k+1 the relative complex structure Ĩ is

of the form R∗
SIS , that the differentiable map φ̃k+1 defined by the formulas

(3.14), (3.15) in Wk+1 ∩ (Wk −W ′
k) leaves Ĩ invariant and factors locally

through the retractions RS . tu

To conclude, it remains now only to prove Proposition 5.

Proof of Proposition 5. — Let g be a riemannian metric on X. For
each S, let ∆0

S be the open set of points of ∆S which do not belong to a
smaller diagonal. We first construct a relative complex structure Ig

S defined
in a neighbourhood of the incidence set ZS ⊂ ∆0

S × X, and a retraction
Rg

S : Xn → ∆S defined in a neighbourhood of ∆S , satisfying the property
that for each x ∈ ∆0

S the fiber (Rg
S)−1(x) is holomorphic for the complex

structure induced by Ig
S,x.

For this we use the exponential map
(3.16) exp : N∆S/Xn → Xn,

which is a diffeomorphism in the neighbourhood of the 0-section. Then we
set Rg

S = exp ◦πS ◦ exp−1, where πS : N∆S/Xn → ∆S is the natural bundle
map. Also for x = (x1, . . . , xn) with xi1 , . . . , xik

distinct, k =| S | we define
Wx as the disjoint union of exponential balls Wxi

∼= Bεi
TX,xi

centered
at xi and we define Ig

x to be exp(Jxi) on Wxi , where Jxi is the constant
hence integrable complex structure on TX,xi

given by the almost complex
structure J .

It is easy to see that the following properties are satisfied:

– Everything is Sn-equivariant. Namely we have σ◦Rg
S ◦σ−1 = Rg

σ(S),
for σ ∈ Sn, and σ∗Iσ−1(S)g = Ig

S .

– For x ∈ ∆0
S the fiber (Rg

S)−1(x) is a complex subvariety of Xn for
the complex structure induced by Ig

x near x.

Unfortunately, the Rg
S , Ig

S do not satisfy the conditions Rg
S = Rg

S◦R
g
S′

near ∆S , for ∆S ⊂ ∆S′ and Ig
S′ = (Rg

S)∗Ig
S near ∆S .

So we will modify the Rg
S , Ig

S near the smaller diagonal ∆S′ contained
in ∆S in order to satisfy these properties. To do this, note that we can define
more generally for each pair of diagonals ∆S ⊂ ∆S′ a retraction RS

S′ of Xn

to ∆S′ , defined in a neighbourhood of ∆S . For this denote by
RS′

S,lin : N∆S/Xn → N∆S/∆S′

the linear invariant projector associated to the SS′ -action on N∆S/Xn . Then
exp being as in (3.16) we put

RS
S′ = exp ◦RS′

S,lin ◦ exp−1 .
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Note that for S = S′, we have RS
S′ = Rg

S . The relative complex structure

IS
S′ := (Rg

S)∗(Ig
S)|∆S′

and the retraction RS
S′ also satisfy the property that for x ∈ ∆S′ , the

fiber (RS
S′)

−1(x) is a complex subvariety of Xn for the complex structure
induced by (IS

S′)x near x. Furthermore they also satisfy properties 2 and 3
of Proposition 5. (More precisely property 2 is satisfied by RS′′

S and RS′′

S′

near ∆S′′ for ∆S′′ ⊂ ∆S ⊂ ∆S′ .)

So what we will do now is to modify inductively the Ig
S′′ ’s and

RS′′

S′ ’s near a smaller diagonal ∆S ⊂ ∆S′′ using the IS
S′′ ’s and RS

S′ ’s. To
start with, let ∆S be the smallest diagonal, i.e. | S |= 1. We first put
RS = Rg

S , IS = Ig
S . Next consider the diagonals ∆S′′ with | S′′ |= 2: we

want to construct a relative complex structure IS′′ on ∆S′′×X defined in a
neighbourhood of the incidence set in ∆S′′×X, and a system of retractions
R′S′′

S′ on ∆S′ defined near ∆S′′ for any ∆S′ containing ∆S′′ . We ask that

1. IS′′ = IS
S′′ and R′S′′

S′ = RS
S′ in a neighbourhood V of ∆S .

2. IS′′ = Ig
S′′ and R′S′′

S′ = RS′′

S′ away from a neighbourhood W containing
V of ∆S .

3. The retractions R′S′′
S′ satisfy the compatibility relations R′S′′

S′ =
R′S′′

S′ ◦R′S′′
S′′′ for ∆S′′ ⊂ ∆S′ ⊂ ∆S′′′ .

4. For x ∈ ∆S′ close to ∆S′′ the fiber (R′S′′
S′ )−1(x) is a complex

subvariety of Xn for the complex structure on Xn defined near x

and induced by the complex structure I ′
S′′

S′ (x) := IS′′(R′
S′′(x)) on X

near Sup x.

5. Everything is equivariant with respect to the Sn−action.

(Note that the three last properties are satisfied already in V and
outside W ). Now we will put RS′′ = R′S′′

S′′ , which is a retraction of Xn onto
∆S′′ defined in a neighbourhood of ∆S′′ . At the next step, we will modify
the Rg

S′′′ , for | S′′′ |= 3 near the diagonals ∆S′′ ⊂ ∆S′′′ using the R′S′′
S′′′

and so on.

The relative complex structure IS′′ so defined satisfies by property 1
the condition 3 of Proposition 5. Also the property 4 for S′ = S′′ will give
condition 4 of Proposition 5. Finally the compatibility conditions 3 will
give the compatibility conditions 2 of Proposition 5 for the diagonals ∆S′

containing ∆S′′ , and the fact that RS′′ = R′S′′
S′′ = RS

S′′ near ∆S will also
imply that RS ◦RS′′ = RS near ∆S .
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So it remains only to explain the construction of the R′S′′
S′ ’s and IS′′ .

For this one shows easily that the relative complex structures Ig
S′′ , IS

S′′ ,
and the systems of compatible retractions (RS′′

S′ )∆S′′⊂∆S′ , (RS
S′)∆S′′⊂∆S′ ,

defined in (W − V ) ∩ ∆S′′ and W − V respectively have the following
common construction.

Let pri : ∆S′′ → X be the composition of the inclusion ∆S′′ ⊂ Xn

and the i-th projection. Start with a complex structure Ki on the vector
bundle pr∗i (TX) and from a local diffeomorphism over ∆S′′

ψi : pr∗i TX → ∆S′′ ×X

defined in the neighbourhood of the 0-section, onto a neighbourhood of
(pri, Id)−1(diag). We assume that ψi,x = ψj,x for x ∈ ∆S′′ such that
xi = xj and similarly for the Ki’s. Then we deduce from the ψi’s a
local diffeomorphism over ∆S′′ from a neighbourhood of the 0-section to a
neighbourhood of the graph of the inclusion

Ψ = (ψi) : (TXn)|∆S′′
∼= ∆S′′ ×Xn.

Now on TXn |∆S′′
we have the linear projector onto the invariant part

πS′

lin : TXn |∆S′′
→ T∆S′ |∆S′′

given by the SS′−action. Then Ψ ◦ πS′

lin ◦Ψ−1 gives a differentiable map

χS′ : ∆S′′ ×Xn → ∆S′′ ×∆S′

defined in a neighbourhood of the graph of the inclusion of ∆S′′ into Xn,
such that for each x ∈ ∆S′′ , χx is a retraction on ∆S′ . Next

χ−1
S′′(diag) ⊂ ∆S′′ ×Xn

is easily seen to be diffeomorphic to a neighbourhood of ∆S′′ in Xn by the
second projection. We get then a retraction TS′ : Xn → ∆S′ defined in a
neighbourhood of ∆S′′ by the formula

TS′ = pr2 ◦χS′
|χ−1

S′′
(diag), χ−1

S′′(diag)
pr2∼= Xn.

One constructs a relative complex structure IS′′ using the ψi’s and Ki’s
by the formula IS′′(x) = (ψi)∗(Ki) in a small neighbourhood of xi, where
Ki(xi) is seen as a complex structure on TX,xi

.

In the case of RS′′

S′ , ψS′′

i is the exponential map for g and KS′′

i is
given by J . In the case of RS

S′ , we have the following description : let
y = (yi)i=1,...,n ∈ ∆S′′ and let Rg

S(y) = x = (xi)i=1,...,n ∈ ∆S . Then
yi = expxi

(ui) for some ui ∈ TX,xi
, and the differential (expxi

)∗ : TX,xi
∼=
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TTX,xi
,ui → TX,yi is an isomorphism. Then KS

i (y) is the complex structure
on TX,yi

induced by J on TX,xi
, and ψS

i is the composite expxi,ui
◦(expxi

)−1
∗

where expxi,ui
(v) := expxi

(ui + v).

Note that conversely, any set of retractions (TS′)∆S′′⊂∆S′ and complex
structure IS′′ defined as above satisfy the properties 3 to 5 above.

Now we note that if W is sufficiently small, the KS
i and KS′′

i are very
close, and similarly for the ψS

i and ψS′′

i . So to construct the IS′′ and the
R′S′′

S′ we just do the following: we choose a homotopy (Kt
i )t∈[0,1] between

KS
i and KS′′

i and a homotopy (ψt
i)t∈[0,1] between ψS

i and ψS′′

i . Next we
choose a function f on W − V which takes the value 0 near ∂V and the
value 1 near ∂W . We then define ψi(x) = ψ

f(x)
i (x) and Ki(x) = K

f(x)
i (x).

The retractions TS′ constructed using these Ki’s and ψi’s will agree with
RS

S′ near ∂V and with RS′′

S′ with ∂W , hence together with them will give
our R′S′′

S′ . Similarly the relative complex structure IS′′ constructed using
these Ki’s and ψi’s will coincide with R∗

SIS near ∂V and with Ig
S′′ near

∂W . Hence we get our IS′′ .

So the proof of Proposition 5, and hence of Theorem 3 is now
finished. tu

Remark 2. — It would be interesting to compare the approaches
given in Sections 2 and 3, the first one providing only a construction
for an open part Hilbk

curv(X)J or Hilbk
curv(X)′J of the Hilbert scheme,

depending only on the almost complex structure J on X. The construction
provided in Section 3 also provides non-compact manifolds Hilbk

curv(X)I

and Hilbk
curv(X)′I . Namely inside

Hilbk(X) :=
⊔

z∈X(k)

Hilbk(Wz) ∩ c−1
z (z)

we can consider the open sets

Hilbk
curv(X)I :=

⊔
z∈X(k)

Hilbk
curv(Wz) ∩ c−1

z (z)

or
Hilbk

curv(X)′I :=
⊔

z∈X(k)

Hilbk
curv(Wz)′ ∩ c−1

z (z).

The question is whether they are diffeomorphic to the corresponding
manifolds Hilbk

curv(X)J or Hilbk
curv(X)′J .
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