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0 Introduction

In recent years, the notion of K-equivalence has appeared in several contexts, like
motivic integration [9], McKay correspondence [2] and derived category of coherent
sheaves on varieties [12], [23]. A K-equivalence between two algebraic varieties
X and Y is a birational map φ : X 99K Y whose graph Γφ ⊂ X × Y admits a
desingularization

τ : Z → Γφ

such that, denoting f = pr1 ◦τ, g = pr2 ◦τ , f∗KX and g∗KY are linearly equivalent.
Equivalently, the two ramification divisors should satisfy :

Rf = Rg. (0.1)

In this paper, we start the study of what we call K-(iso)correspondences between
smooth varieties or complex manifolds X, Y of the same dimension, which are graphs
of multivalued maps, or analytic subsets in the product X×Y , generically finite over
each factor, such that any desingularization Σ̃ satisfies with the notations above the
condition (0.1) or, in case of K-correspondences, the weakened condition

Rf ≤ Rg.

Hence we simply forget the condition that the degree of the graph over X and Y
should be 1. Such K-isocorrespondences appear naturally in the McKay situation
(cf section 2).

Our main result proved in section 2, is the fact that many K-trivial projective
varieties carry a lot of self-K-isocorrespondences Σ ⊂ X×Y satisfying the condition
that deg pr1|Σ 6= deg pr2|Σ. With the notations above, one can see easily that this
last condition is equivalent to the equality of volume forms on Σ̃

f∗ΩX = λg∗ΩX ,

where λ 6= 1 is a real number, and ΩX is the canonical volume form of X. Equiva-
lently

f∗ωX = µg∗ωX

where ωX is any generator of H0(X,KX), and µ is a complex number of modulus
6= 1. Because of this dilatation property, these self-K-isocorrespondences look like
the multiplication by an integer in an abelian variety.

Section 3 discusses potential applications of this result to the study of intrinsic
pseudovolume forms on complex manifolds (see [13]). Kobayashi and Eisenman have
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introduced an intrinsic pseudovolume form ΨX on any complex manifold X, which
is computed using all holomorphic maps from a polydisk Dn, n = dimX to X. Here
we introduce modified intrinsic pseudovolume forms

ΦX,an ≤ ΦX ≤ ΨX

which are defined essentially by replacing holomorphic maps with holomorphic K-
correspondences in the Eisenman-Kobayashi definition. We show that on one hand,
the following theorem, due to Griffiths [11] and Kobayashi-Ochiai [14], still holds for
the pseudovolume form φX,an :

Theorem 1 If X is a projective variety which is of general type, ΦX,an > 0 on a
dense Zariski open set of X.

On the other hand we show that ΦX is equal to 0 for many types of K-trivial
varieties listed in section 3, and also for varieties which are fibered with fiber of these
types. This gives us a weak version of the Kobayashi conjecture (i.e. the converse to
the Griffiths-Kobayashi-Ochiai theorem) for the modified pseudovolume form ΦX .

Section 4 is devoted to a few supplementary results, remarks and questions con-
cerning K-isocorrespondences. In particular, we provide (cf corollary 1) new exam-
ples of K-trivial varieties satisfying Kobayashi’s conjecture 1.

Acknowledgements. I wish to thank Frédéric Campana, for communicating
to me his article [5], and for asking interesting questions on related topics, which led
me to work on this subject.

1 K-correspondences

In this section, we introduce and discuss the notions of K-correspondences and
K-isocorrespondences, which are straightforward generalizations of the so-called K-
ordering and K-equivalence in birational geometry (cf [12], [23]). We assume that
X and Y are smooth complex manifolds of dimension n.

Definition 1 A K-correspondence from X to Y is a reduced n-dimensional closed
analytic subset Σ ⊂ X × Y , such that on each irreducible component of Σ, the
projections to X and Y are generically of maximal rank, and satisfying the following
two conditions :

1. The restriction pr1|Σ is proper.

2. Let Σ̃ τ→ Σ be a desingularization, and let

f := pr1 ◦ τ : Σ̃ → X, g = pr2 ◦ τ : Σ̃ → Y.

Then we have the inequality of ramification divisors on Σ̃ :

Rf ≤ Rg.

Note that property 2 has to be checked on one desingularization, and then will be
satisfied by all desingularizations, as a standard argument shows. Another way to
phrase it is to say that the generalized Jacobian map

JeΣ := g∗ ◦ f−1
∗ : f∗(

n∧
TX) → g∗(

n∧
TY ) (1.2)
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is holomorphic.
A holomorphic map φ from X to Y leads to a correspondence, obtained by taking

the graph of φ. It turns out that K-correspondences behave with many respects as
maps. Their main common feature with ordinary maps is the fact that for any
desingularization τ : Σ̃ → Σ as above, we get a natural inclusion

g∗KY ⊂ f∗KX ,

as subsheaves of KeΣ. We also have the following important fact :

Proposition 1 K-correspondences can be composed. More precisely, if Σ ⊂ X ×Y
and Σ′ ⊂ Y × Z are K-correspondences, then define Σ′ ◦ Σ to be the union of
the components of p13(p−1

12 (Σ) ∩ p−1
23 (Σ′)) on which the projections to X and Z are

generically of maximal rank. Then Σ′ ◦ Σ is a K-correspondence.

Proof. Note first that the properness of the first projections on Σ and Σ′ implies
that p13(p−1

12 (Σ) ∩ p−1
23 (Σ′)) is a closed analytic subset of X × Z. It also shows that

the projection to X is proper on this analytic subset. Finally it is easy to see that
a component of this set which is generically of maximal rank over both X and Z
must be of dimension n.

Next let Σ̃, Σ̃′ be desingularizations of Σ, Σ′. Denote by f, g the maps from Σ̃
to X and Y , and by f ′ and g′ the maps from Σ̃′ to Y and Z. Let Σ′′ be a component
of Σ̃×Y Σ̃′ on which the maps F := f ◦φ and G := g′ ◦ψ are generically of maximal
rank. Here φ : Σ′′ → Σ̃ and ψ : Σ′′ → Σ̃′ are the two natural maps. Choose a
desingularization Σ̃′′ of Σ′′. Let now σ ∈ Σ̃′′ and let

x = F (σ), z = G(σ), y = g ◦ φ(σ) = f ′ ◦ ψ(σ).

Let ωx be a holomorphic n-form which generates KX near x, and similarly choose
ωy near y and ωz near z. Then property 2 says that we have the following equality
of n-forms on Σ̃ and Σ̃′ respectively:

g∗ωy = χ · f∗ωx, g′∗ωz = χ′ · f ′∗ωy,

where χ is a holomorphic function on Σ̃ and χ′ is a holomorphic function on Σ̃′,
defined respectively on the inverse image in Σ̃ of a neighbourhood of (x, y) in X×Y
and on the inverse image in Σ̃′ of a neighbourhood of (y, z) in Y × Z.

Pulling-back, via φ, ψ respectively, these equalities to Σ̃′′ now gives :

χ ◦ φ · F ∗ωx = φ∗(g∗ωy),

G∗ωz = χ′ ◦ ψ · ψ∗(f ′∗ωy).

Then, using g ◦ φ = f ′ ◦ ψ, we conclude that φ∗(g∗ωy) = ψ∗(f ′∗ωy) and hence

G∗ωz = χ′ ◦ ψ · χ ◦ φ · F ∗ωx

as n-forms on Σ̃′′, where χ′ ◦ ψ · χ ◦ φ is a holomorphic function on Σ̃′′.

Our next definition is the following :

Definition 2 A K-isocorrespondence between X and Y is a K-correspondence Σ
from X to Y such that tΣ is a K-correspondence from Y to X, where t means the
image under the natural isomorphism X × Y ∼= Y ×X.
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In other words, Σ has to satisfy the properties that the two projections pri on
X and Y are proper on Σ and that if τ : Σ̃ → Σ is a desingularization, with
f = pr1 ◦ τ, g = pr2 ◦ τ , we have now the equality

Rf = Rg.

K-isocorrespondences look like isomorphisms with certain respects. The most im-
portant point for us will be the fact that with the notations above, a K-isocorrespon-
dence induces a canonical isomorphism

f∗KX
∼= g∗KY .

Indeed they are equal as subsheaves of KeΣ.
With the same arguments as before, one shows that K-correspondences can be

composed.

Example 1 If f : X → Y is a proper étale map, the graph of f and its transpose
are K-isocorrespondences.

Example 2 If G is a finite group acting on X, in such a way that the stabilizer
Gx acts via SL(n) on the tangent bundle TX,x at each point x of X, the quotient
X/G has Gorenstein singularities. If x ∈ X, we can choose a Gx-invariant n-form
ωx near x. The canonical bundle KX/G admits then as a local generator the form
ωX/G such that q∗ωX/G = ωx, where q is the quotient map. Next assume that a
crepant resolution π : Y → X/G exists. This means exactly that in a neighbourhood
of π−1(y), y := q(x), the n-form π∗ωX/G, defined on the open set of Y where π
is a local isomorphism, extends to a holomorphic n-form ωY which generates the
canonical bundle of Y . We now claim that the graph Γ of the meromorphic map

q′ : X 99K Y

is a K-isocorrespondence. Indeed, choose as before x, ωx. Then the equality

q∗ωX/G = ωx,

and the fact that π∗ωX/G = ωY on the smooth locus of Y show that on the smooth
part of Γ, we have

pr∗1ωx = pr∗2ωY .

Since ωY generates KY , this shows immediately that Γ is a K-isocorrespondence.
The simplest example of such a situation is the case of an involution ι acting

with isolated fixed points on a surface X. Then the involution acts on the blow-up
X̃ of X at the fixed points, and the lifted involution ι̃ fixes the exceptional curves
pointwise. Then the quotient map

X̃ → X̃/ι̃

ramifies simply along the exceptional curves. Furthermore the ramification divisor
of the blowing-down map τ : X̃ → X is also the union of the exceptional curves with
multiplicity 1.
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2 Calabi-Yau varieties and K-correspondences

We consider projective n-dimensional complex manifolds with trivial canonical bun-
dle (Calabi-Yau manifolds). We shall denote by ωX a generator for H0(X, KX). It
can be normalized up to a complex coefficient of modulus 1 in such a way that

ΩX = (−1)
n(n−1)

2 inωX ∧ ωX

has integral 1 on X. This ΩX is a canonically defined volume form on X. We want to
show the existence of self-K-isocorrespondences for a large set of Calabi-Yau mani-
folds, which have furthermore the dilating property, like isogenies of abelian varieties,
of multiplying the canonical volume form by a real number > 1. The Calabi-Yau
varieties for which we are able to prove this fall into three classes. Consider the
following properties :

1. X is swept out by abelian varieties.

2. There exists a rationally connected variety Y , such that some embedding j :
X ↪→ Y realizes X as a member of the linear system | −KY | on Y .

3. X is the Fano variety (assumed to be smooth of the right dimension) of linear
subspaces Pr ⊂ M of a complete intersection M ⊂ PN of type (d1, . . . , dk),
with the exception of the case (d1, . . . , dk) = (2, . . . , 2). (Here the numbers
r, N, di are chosen in such a way that KX is trivial. For fixed r, di’s, this
happens in exactly one dimension N (see below).)

Note that the class of Calabi-Yau varieties satisfying property 2 is very large. It
contains all complete intersections in Fano varieties with Picard number 1. It can
be shown however that the varieties in class 3 do not in general satisfy property
stated in 2.

Our result is the following :

Theorem 2 Assume X satisfies 1, 2 or is generic satisfying 3. Then there exists a
self-K-isocorrespondence

Σ ⊂ X ×X

which satisfies the property that

f∗ΩX = λg∗ΩX , λ > 1. (2.3)

Here as always, f and g denote the two projections to X, on a desingularisation of
Σ.

We can rephrase formula (2.3) as follows : since Σ is a self-K-isocorrespondence,
which we may assume to be irreducible, there is a non zero coefficient µ such that

f∗ωX = µg∗ωX . (2.4)

Indeed, because ωX nowhere vanishes, these two n-forms have the same zero divisor
on Σ̃, which is equal to Rf = Rg. So the statement concerning the volume form is
simply the statement that we can find such a self-K-correspondence Σ whose corre-
sponding λ :=| µ |2 satisfies λ 6= 1. Notice that (still assuming Σ to be irreducible),
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this is also equivalent to the fact that the degrees of f and g are not equal. Indeed,
(2.4) gives the formula

f∗ΩX = λg∗ΩX

and λ is then computed by integrating both sides over Σ̃, which gives

deg f = λdeg g. (2.5)

In case 1, the construction of Σ is straightforward. Namely, let

P
ϕ→ X

h ↓
B

be a covering of X by abelian varieties. So φ is dominating and the fibers of h are
abelian varieties. We may assume that there is a rational section of h : P → B.
Hence the smooth fibers of h have a zero, which allows to define multiplication by
any integer m ∈ Z. Now choose two integers m and m′ and define

Σ = {(φ(mx), φ(m′x)), x ∈ P}.
(To be more rigorous, take the closure of the set above defined for x ∈ P 0, the open
set of P where h is of maximal rank.) It is easy to see that Σ has dimension n. The
fact that it is a self-K-isocorrespondence follows, using the fact that KX is trivial,
from the following formula (2.6), where a is the dimension of the abelian varieties
Pb :

1
ma

pr∗1ωX |Σ
=

1
m′a pr∗2ωX |Σ

, (2.6)

as n-forms on the smooth locus of Σ. The formula (2.6) also shows that the coefficient
λ introduced above is equal to ( m

m′ )2a, hence can be made different from 1.
To prove formula (2.6), we note that Σ is the image under (φ, φ) of Σ′ ⊂ P ×B P ,

Σ′ = {(mx,m′x), x ∈ P}.
Next the restriction Σ′b of Σ′ to Pb × Pb is the graph

Σ′b = {(mx,m′x), x ∈ Pb}.
It is obvious that it satisfies

1
ma

pr∗1ωPb |Σ′b
=

1
m′a pr∗2ωPb |Σ′b

,

where ωPb
is a holomorphic a-form on Pb. Now, since Σ′ ⊂ P ×B P , the two

projections pr1, pr2 from Σ′ to P induce

pr∗1 : R0h∗KP/B → R0(h ◦ pr1)∗KΣ′/B, pr∗2 : R0h∗KP/B → R0(h ◦ pr2)∗KΣ′/B,(2.7)

and the maps

pr∗1 : R0h∗KP → R0(h ◦ pr1)∗KΣ′ , pr∗2 : R0h∗KP → R0(h ◦ pr2)∗KΣ′ (2.8)

are simply the above tensorized with the identity of KB. Since we just noticed that
the maps pr∗i in (2.7) satisfy the relation 1

ma pr∗1 = 1
m′a pr∗2, it follows that the same

relation holds for the maps pr∗i of (2.8). Taking global sections, it follows that
1

ma
pr∗1ωP =

1
m′a pr∗2ωP

for any holomorphic n-form ωP on P and in particular for φ∗ωX .
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Proof of Theorem 2 in case 2. The construction is the following : recall that
we have an embedding

j : X ↪→ Y.

Now choose a rational curve C ⊂ Y with sufficiently ample normal bundle, so that
deformations of C induce arbitrary deformations of the M -th order jet of C at two
points of intersection x, y of C with X. Here M is a fixed integer, and such C
exists since Y is rationally connected ([16]). We may assume furthermore that the
intersection of C with X, as a divisor on C, is of the form

mx + m′y + z,

where x 6= y and z is a reduced zero-cycle on C disjoint from x and y. Here m
and m′ are two distinct fixed integers ≤ M . Now choose a hypersurface W ⊂ X
supporting z. We will then define, for an adequate choice of W , the correspondence
Σ as the closure of the image in X × X via the map (F, G) defined below, of the
following set

Σ′ = {(x′, y′, C ′), C ′ ·X = mx′ + m′y′ + z′, z′ ⊂ W},
where in this definition, C ′ has to be a deformation of C. The map

(F, G) : Σ′ → X ×X

is defined by
(F,G)((x′, y′, C ′)) = (x′, y′).

More precisely, we will consider below the (unique) component of Σ′ passing through
(x, y, C). We first show that dimΣ′ = n for a generic choice of W . This is an easy
dimension count : the Hilbert scheme of C is smooth at C and has dimension

h0(C, NC/Y ) = −KY · C + n− 2.

Next we impose the conditions that the intersection of C ′ with X is finite (this
is open) and of the form mx′ + m′y′ + z′, with z′ ⊂ W . This imposes at most
(m− 1) + (m′ − 1) + deg z′ conditions to the deformations of C ′. Furthermore, one
sees easily that for an adequate choice of W , these conditions are infinitesimally
independent at our initial point (x, y, C). Hence it follows that Σ′ is smooth at
(x, y, C), of dimension

dimΣ′ = −KY · C + n− 2− ((m− 1) + (m′ − 1) + deg z′)

= −KY · C + n− 2− (X · C − 2)

and this is equal to n because X ∈| −KY |.
An easy infinitesimal computation involving the assumption made on the normal

bundle of C shows that Σ is also of dimension n, or more precisely has a component
of dimension n.

It remains now to show that Σ gives a self-K-isocorrespondence satisfying fur-
thermore the condition

m2f∗ΩX = m′2g∗ΩX . (2.9)

(Choosing then m � m′, will give a coefficient λ = m′2
m2 
 1. Formula (2.9) and the

fact that Σ is a K-isocorrespondence will follow from the following fact :

7



Lemma 1 We have

mF ∗ωX + m′G∗ωX = 0 (2.10)

on Σ′, for any holomorphic n-form ωX on X.

Indeed, since (Σ, (pr1, pr2)) is the Stein factorization of (Σ′, (F, G)), the formula will
be true as well for (Σ′, F, G) replaced with (Σ, pr1, pr2) or better by a desingular-
ization (Σ̃, f, g). Now, the canonical bundle of X being trivial, the divisor of f∗ωX

(resp. g∗ωX) is equal to Rf (resp. Rg), so that the formula

mf∗ωX + m′g∗ωX = 0 (2.11)

implies that Σ is a K-isocorrespondence.

Proof of the lemma. We have three 0-correspondences between Σ′ and X.
The first one is ΓC ⊂ Σ′ × X, which has for fiber over σ = (x, y, C) ∈ Σ′ the
0-dimensional subscheme C ∩X of X. If

C ⊂ Σ′ × Y

is the universal subscheme, corresponding to the map from Σ′ to the Hilbert scheme
of curves in Y , then

ΓC = C ∩ (Σ′ ×X).

The second one is Γx,y, whose fiber over σ = (x, y, C) ∈ Σ′ is the 0-cycle mx + m′y.
This correspondence is nothing but the sum mΓF + m′ΓG of the graphs of F and
G. The third one, which we denote by Γz has for fiber over σ = (x, y, C) ∈ Σ′ the
residual cycle z = C ·X −mx−m′y. Hence we obviously have the relation

ΓC = Γz + Γx,y

as n-cycles in Σ′ ×X. It follows from this that for ωX ∈ H0(X, KX), the Mumford
pull-backs Γ∗CωX , Γ∗x,yωX and Γ∗zωX , which are holomorphic n-forms on the smooth
part of Σ′, satisfy the relation

Γ∗CωX = Γ∗zωX + Γ∗x,yωX . (2.12)

Since Γx,y = mΓF + m′ΓG, we have

Γ∗x,yωX = mF ∗ωX + m′G∗ωX ,

and hence (2.12) gives

mF ∗ωX + m′G∗ωX = Γ∗CωX − Γ∗zωX .

To prove (2.10), it suffices now to prove that Γ∗CωX and Γ∗zωX vanish.
For the second one, this is quite easy. Indeed, by definition of Σ′, the cycle Γz

is supported on Σ′×W . On the other hand the n-form ωX vanishes on W , because
dimW < n. So Γ∗zωX = 0.

As for the second one, we already noticed the fact that

ΓC = (Id, j)∗C, (2.13)
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where we see C as a codimension n-cycle in Σ′ × Y . This last cycle induces a
cohomological correspondence

[C]∗ : H1(Y, Ωn+1
Y ) → H0(Σ′,KΣ′).

Formula (2.13) then shows immediately that

Γ∗CωX = [C]∗(j∗ωX).

So to conclude the proof that Γ∗CωX = 0, it suffices to see that j∗ωX = 0 in
H1(Y, Ωn+1

Y ). But this last space is in fact 0, because it is Serre dual to Hn(Y,OY )
and Y is rationally connected.

Remark 1 Another way to understand the proof above is to say that that we have
for any (x, y) ∈ Σ the relation

mx + m′y ∈ j∗CH1(Y ) + k∗CH0(W ) (2.14)

in the group CH0(X), where k is the inclusion of W in X. But since Y is rationally
connected, Bloch-Srinivas argument (cf [4]) shows that CH1(Y ) is a direct factor in
CH0(W ) for some n−1-dimensional variety W . Hence the relation (2.14) shows that
the 0-cycles mx + m′y, (x, y) ∈ Σ of X are up to rational equivalence parameterized
by 0-cycles in a n− 1-dimensional variety. Hence the higher dimensional version of
Mumford’s theorem [20] applies to give the relation mF ∗ωX + m′G∗ωX = 0.

Proof of Theorem 2 in case 3. The construction in this case is as follows.
We assume the complete intersection M ⊂ PN is a generic complete intersection of
multidegree d1 6 . . . 6 dk, so that its Fano variety X of r-planes is smooth of the
right dimension. Let

G = Grass(r + 1, N + 1).

Then the canonical bundle KG is equal to −(N +1)L, where L = det E is the Plücker
line bundle, E is the dual of the tautological subbundle. Now X ⊂ G is defined as the
0-set of the section (σ̃1, . . . , σ̃k) of the vector bundle Sd1E ⊕ . . .⊕SdkE corresponding
to the section (σ1, . . . , σk) of OPN (d1)⊕ . . .⊕OPN (dk) defining M .

It follows from adjunction that the canonical bundle of X is given by the formula

KX = −(N + 1)L|X +
∑

i

det SdiE .

We use the following lemma :

Lemma 2 Let E be a vector bundle of rank k. Then for any integer l, we have

det SlE ∼= (detE)⊗α,

where α = h0(Pk,OPk(l − 1)).

We conclude from this and the fact that

rk E = r + 1, det E = L,
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that the triviality of the canonical bundle of X is equivalent to the equality

N + 1 =
∑

i

h0(Pr+1,OPr+1(di − 1)). (2.15)

Since dk ≥ 3, we can choose two integers m < m′ such that m + m′ = dk. Let Z be
the complete intersection defined by (σ1, . . . , σk−1). We consider now

Σ̃ = {(P1, P2, P ), P ∼= Pr+1 ⊂ Z,

P1, P2 ⊂ M, P ∩M k mP1 + m′P2}.
(Note that M ⊂ Z is defined by one equation of degree dk so that we have then
either P ∩M = mP1 + m′P2 or P ⊂ X.)

We define the maps f and g from Σ̃ to X by

f(P1, P2, P ) = P1 ∈ X, g(P1, P2, P ) = P2 ∈ X.

Lemma 3 We have dim Σ̃ = n = dimX and f, g are dominating.

The variety W parametrizing the Pr+1’s contained in Z is the 0-set of the natural
section

(σ̃′1, . . . , σ̃
′
d−1)

of the bundle Sd1E ′ ⊕ . . .⊕ Sdk−1E ′ on the Grassmannian Grass(r + 2, N + 1). By
genericity of Z, it is smooth of dimension

(r + 2)(N − r − 1)−
∑

i≤k−1

rk SdiE ′, (2.16)

where
rk SdiE ′ = h0(Pr+1,OPr+1(di)).

On W there is a Pr+1×Pr+1-bundle, whose fiber over P ∈ W parametrizes pairs
of hyperplanes in P . Let us call it W ′. Then we have

Σ̃ ⊂ W ′,

and Σ̃ is defined by the condition that (P1, P2, P ) ∈ Σ̃ if and only if the restriction
σk |P is proportional to τm

1 τm′
2 , where τi are linear equations defining Pi in P . In other

words, Σ̃ ⊂ W ′ is the zero locus of the section of the vector bundle π∗SdkE ′/H, where
π is the projection from W ′ to W and H is the line subbunble with fiber < τm

1 τm′
2 >

at (P1, P2, P ). It follows that

dim Σ̃ > dimW + 2(r + 1)− rk SdkE ′ + 1, (2.17)

and since our equations are generic, a standard argument shows that we have in fact
equality and that Σ̃ is smooth. Combining (2.16) and (2.17), we get

dim Σ̃ = (r + 2)(N − r − 1)−
∑

i

rk SdiE ′ + 2(r + 1) + 1.

Next we note that, since X is the zero locus of a transverse section of the vector
bundle ⊕iS

diE on Grass(r + 1, N + 1), we have

dimX = (r + 1)(N − r)−
∑

i

rk SdiE .
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Noting finally that if E is of rank r + 1, then rk SkE = h0(Pr,OPr(k)), and that
E , E ′ are of respective ranks r + 1, r + 2, we get

dim Σ̃− dimX

= −(
∑

i

h0(Pr+1,OPr+1(di))−h0(Pr,OPr(di)))+(r+2)(N−r−1)−(r+1)(N−r)+2r+3

= −
∑

i

h0(Pr+1,OPr+1(di − 1) + (r + 2)(N − r − 1)− (r + 1)(N − r) + 2r + 3.

Using equality (2.15), this gives us dim Σ̃− dimX = 0.
To conclude the proof of the lemma, we have to show that the maps f, g are

dominating. We do it for f : the fiber of f over P1 ∈ X is the zero locus of a section s
of a vector bundle over the variety W ′

P1
parametrizing Pr+1’s containing P1, together

with a hyperplane P2 in them. Precisely, this vector bundle has for fiber

⊕i<kH
0(P,OP (di − 1))⊕H0(P,OP (dk − 1))/ < τm−1

1 τm′
2 >

at (P, P2). The section s takes the value

((σi|P /τ1)i<k, σk |P /τ1 mod τm−1
1 τm′

2

at (P, P2), where τi is a defining equation for Pi ⊂ P . We use here the fact that
P1 ⊂ M , so that σi|P vanishes along P1. The vector bundle has the same rank as
the variety W ′

P1
, as shows the previous computation. To show that f is dominating,

it suffices to show that this vector bundle has a non zero top Chern class, which is
not hard.

To conclude the proof of the theorem in case 3, it remains to prove the following

Lemma 4 The two ramification divisors Rf and Rg are equal.

Indeed, the lemma shows that Σ̃ provides a self-K-isocorrespondence of X. Next, we
have explained after the statement of the theorem that for a self-K-isocorrespondence
of a K-trivial variety, the fact that it multiplies the volume by a real coefficient dif-
ferent from 1 as in formula (2.3) is equivalent to the fact that the degrees of the
maps f and g are different (cf (2.5)). Now the degree of f and g are the top Chern
classes of the vector bundles described above. From this it is easy to show that for
m > m′ we have deg f < deg g.

Proof of lemma 4. We observe first that the set K of (P1, P2) ∈ Σ such that
the linear space generated by P1 and P2 is a Pr+1 contained in M is of dimension
< n−1. Suppose that we show that Rf = Rg away from (f, g)−1(K) : then Rf −Rg

is a divisor which is rationally equivalent to 0 (since both Rf and Rg are members of
the linear system KeΣ), and supported on (f, g)−1(K) which is contracted by (f, g).
But it is well known that the components of a contractible divisor are rationally
independent. Hence this suffices to imply that Rf = Rg. Next, we show by a
dimension count (recall that our parameters are generic) and the description given
above of the fibers of f and g that, away from (f, g)−1(K), the ramification of f
and g is simple, i.e. the ramification divisor is reduced. In conclusion, it suffices to
show that we have the set theoretic equality Rf = Rg away from (f, g)−1(K). Next
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we note that the set of (P1, P2, P ) ∈ Σ̃ such that P1 = P2 is of codimension greater
than 1 in Σ̃. Hence it suffices to show the set theoretic equality Rf = Rg away from
(f, g)−1(K) and at points (P1, P2, P ) where P1 6= P2.

We do it by an explicit computation : let P1 ∈ X, and let (P1, P2, P ), P1 6=
P2, P 6⊂ M be a point of Σ̃ where f ramifies. So there is a first order deformation Pε

of P in Z, fixing P1, and such that σk|Pε
remains to first order of the form τm

1,ετ
m′
2,ε ,

where τ1,ε is a defining equation of P1 in Pε. Since the first order deformation
Pε fixes P1, it is contained in a Pr+2 that we shall denote by P ′. Let us choose
coordinates X0, . . . , Xr+2 on P ′ so that P is defined by Xr+2 = 0, P1 is defined by
Xr+2 = Xr+1 = 0 and P2 is defined by Xr+2 = Xr = 0.

The deformation Pε is then given by the equation

Xr+2 = εXr+1.

We have by assumption :

σk |P ′ = Xm
r+1X

m′
r + Xr+2G.

It follows that in the coordinates X0, . . . , Xr+1 for Pε, we have to first order in ε :

σk |Pε
= Xm

r+1X
m′
r + εXr+1G

′,

where G′ is the restriction of G to P . Since τ1,ε is proportional to Xr+1, the condition
that σk |Pε

remains to first order of the form τm
1,ετ

m′
2,ε is then clearly

G′ = Xm−1
r+1 Xm′−1

r A

for some linear form A on P . Hence our condition is that

σk |P ′ = Xm
r+1X

m′
r + Xm−1

r+1 Xm′−1
r Xr+2A + X2

r+2H (2.18)

= Xm−1
r+1 Xm′−1

r (Xr+1Xr + Xr+2A)modX2
r+2. (2.19)

Furthermore, we note that the fact that P has a deformation in P ′ which remains
contained in Z can be written as the fact that σi|P ′ , i < k vanish at order 2 along
P , hence it does not depend on P1. Now the equation (2.18) is symmetric in P1

and P2. This shows that g ramifies as well at (P1, P2, P ), and concludes the proof
of lemma 4.

3 Intrinsic pseudo-volume forms and a problem of
Kobayashi

The Kobayashi-Eisenman pseudo-volume form ΨX on a complex manifold X is de-
fined as follows : for x ∈ X, u ∈ ∧n TX,x, put

ΨX(u) =
1
λ

, (3.20)

where

λ = Maxφ:Dn 7→X, φ(0)=x {| µ |, φ∗(
∂

∂z1
∧ . . . ∧ ∂

∂zn
) = µu}. (3.21)

Here D is the unit disk in C.
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Remark 2 A similar definition can be made using the ball instead of the polydisk
, cf [7]. The resulting pseudo-volume forms so obtained are equivalent, and all the
results that follow will be true as well with this definition of ΨX .

Denoting κn the hyperbolic form on the polydisk :

κn = inΠn
1

1
(1− | zj |2)2 dzj ∧ dzj , (3.22)

we see immediately, using the fact that κn coincides with the standard volume form
at 0, is invariant under the automorphisms of Dn, and that the later act transitively
on Dn, that we can express ΨX as follows :

ΨX,x = infφ:Dn→X, φ(b)=x{(φ−1
b )∗κn}. (3.23)

Here we consider only the holomorphic maps φ : Dn → X which are unramified at
b, φ(b) = x, and φb is then defined as the local inverse of φ near b. It is obvious
from either definition that ΨX satisfies the decreasing volume property with respect
to holomorphic maps :

For any holomorphic map φ : X → Y between n-dimensional complex manifolds,
we have

φ∗ΨY ≤ ΨX .

Also, the following theorem is a consequence of Ahlfors-Schwarz lemma (cf [7]) :

Theorem 3 If X is isomorphic to Dn (resp. to the quotient of Dn by a group acting
freely and properly discontinuously, eg X is a product of curves), then ΨX = κn,
(resp. to the hyperbolic volume form on the quotient induced by κn).

There is also a meromorphic version Ψ̃X introduced by Yau [24], which has the
advantage of being invariant under birational maps : namely put

Ψ̃X,x = infφ:Dn99KX, φ(b)=x{(φ−1
b )∗κn}. (3.24)

Here we consider the meromorphic maps φ : Dn 99K X which are defined at b and
unramified at b, φ(b) = x, and φb is then defined as the local inverse of φ near b.

The following result is proved in [11], [15], [24] :

Theorem 4 If X is a projective complex manifold which is of general type, then
Ψ̃X is non degenerate outside a proper closed algebraic subset of X.

(The result is proved in [11] for ΨX and for the varieties with ample canonical bundle,
and in [15] for ΨX .) Kobayashi [13] conjectures the converse to this statement :

Conjecture 1 If X is a projective complex manifold which is not of general type,
then Ψ̃X = 0 on a dense Zariski open set of X.

Remark 3 A priori, Ψ̃X is only uppersemicontinuous, hence the equality Ψ̃X = 0
on a dense Zariski open set of X does not imply that Ψ̃X = 0 everywhere.
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This conjecture is known in dimension ≤ 2, [10]. In dimension 2, it uses the classi-
fication of surfaces, and the fact that K3-surfaces are swept out by elliptic curves.
The proof shows more generally that ΨX = 0 on a dense Zariski open set, for a
variety which is swept out by abelian varieties, and Ψ̃X = 0 on a dense Zariski open
set, for a variety which is rationally swept out by abelian varieties.

We start this section with the definition of modified versions ΦX , ΦX,an of ΨX ,
together with their meromorphic counterparts Φ̃X , φ̃X,an.

Definition 3 We put

ΦX,x = inf
Σ⊂X×X,K−iso, σ∈eΣ, g(σ)=x

(f∗ΨX)σ.

Here Σ runs through the self-K-isocorrespondences of X, and we denote as usual

Σ̃
g→ X

f ↓
X

a desingularization. We use then the fact that Σ̃ induces a canonical isomorphism

f∗KX
∼= g∗KX

to see that (f∗ΨX)σ gives a pseudo-volume element for X at x, g(σ) = x.
Another equivalent way to define ΦX is by the following formula, closer to (3.20),

(3.21) : for x ∈ X, ζ ∈ ∧n TX,x, ΦX,x(ζ) = 1
λ , where

λ = sup
Σ⊂X×X,φ:Dn→X,σ∈eΣ′,f(σ)=0,g(σ)=x

{| µ |, JeΣ′,σ(
∂

∂z1
∧ . . . ∧ ∂

∂zn
) = µζ}.

Here φ is any holomorphic map from Dn to X which is generically of maximal
rank, Σ is any self-K-isocorrespondence of X, Σ̃′ is a desingularization of the K-
correspondence Σ◦graph(φ) between Dn and X, and JeΣ′,σ is the Jacobian morphism
defined in (1.2).

The definition of ΦX,an is similar : instead of considering only K-correspondences
from Dn to X which are of the form Σ◦graph(φ), we consider all K-correspondences
from Dn to X :

Definition 4 We put

ΦX,an,x = inf
Σ⊂Y×X,K−corresp, σ∈eΣ, g(σ)=x

(f∗ΨY )σ.

Here Σ runs through the set of all K-correspondences from Y to X, and the condition
on the point σ is that Σ is unramified at σ, namely that near σ ∈ Σ̃, we have the
equality Rf = Rg. Then exactly as above, (f∗ΨY )σ gives a pseudo-volume element
for X at x, g(σ) = x so that our definition makes sense.

Equivalently, ΦX,an,x(ζ) = 1
λ , where

λ = sup
Σ⊂Dn×X,σ∈eΣ,f(σ)=0,g(σ)=x

{| µ |, JeΣ,σ
(

∂

∂z1
∧ . . . ∧ ∂

∂zn
) = µζ}.

Note that since κn is the Euclidean volume form at 0, ΦX,x,an can also be com-
puted as

ΦX,an,x = inf
Σ⊂Dn×X,K−corresp, σ∈eΣ, g(σ)=x

(f∗κn)σ. (3.25)
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Remark 4 There are other intermediate possible definitions for a modified version
of ΨX using K-correspondences. For example, we could restrict in the definition of
ΦX,an to the proper K-correspondences, i.e. those for which g is also proper. In the
definition of ΦX , we could consider all K-isocorrespondences from Y to X, instead
of the self-K-isocorrespondences from X to X. We restricted to the two extremal
cases, which seem to be the most interesting, because on one side ΦX is of course
the closest to ΨX , while on the other side ΦX,an satisfies the following version of the
decreasing volume property, as follows immediately from its definition.

Lemma 5 If Y is a complex manifold of dimension n, and Σ ⊂ Y × X is a K-
correspondence, then with the notations used before for the desingularization :

g∗ΦX,an ≤ f∗ΦY,an.

Note also that from the definition of ΦX we get the following :

Lemma 6 If Σ ⊂ X × X is a self-K-isocorrespondence, we have with the same
notations :

f∗ΦX = g∗ΦX .

Finally, we define the meromorphic versions Φ̃X , Φ̃X,an by the formula :

Φ̃X,x = infφ:X99KY, φ(x)=y {φ∗ΦY,y},

Φ̃X,an,x = infφ:X99KY, φ(x)=y {φ∗ΦY,an,y}.
In both formulas, we consider only the birational maps φ : X 99K Y which are
defined at x and such that φ−1 is defined at y = φ(x).

Of course we have, for any birational map φ : X 99K Y , the equalities

φ∗Φ̃Y = ΦX ,

φ∗Φ̃Y,an = ΦX,an,

which are satisfied on the open set U of X where φ is defined and is a local isomor-
phism. In particular, if U ↪→ X is the inclusion of a Zariski open set, we have

Φ̃X|U = ΦU , Φ̃X,an|U = ΦU,an. (3.26)

Our main result towards the comparison of ΦX , ΦX,an and ΨX is the following :

Theorem 5 If X is the polydisk Dn, or any quotient of the polydisk by a free prop-
erly discontinuous action of a group on Dn, eg X is a product of curves, then

ΦX,an = ΨX .

Since
ΦX,an ≤ ΦX ≤ ΨX ,

it follows that ΦX = ΨX too.
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Proof. We do it for Dn, the general case follows exactly in the same way,
using the fact that ΨX in this case is the hyperbolic volume form, which satisfies
the Kähler-Einstein equation (3.29). The proof is very similar to the proof that
ΨDn = κn (theorem 3), namely it uses the Ahlfors-Schwarz lemma. We want however
to explain carefully why it works as well in the context of K-correspondences.

By formula 3.25, what we have to prove is the following :
If

Σ̃
g→ Dn

f ↓
Dn

is the desingularization of a K-correspondence from Dn to itself, then

g∗κn ≤ f∗κn. (3.27)

Let
Σ̃ε

gε→ Dn

fε ↓
Dn

be the restriction of the K-correspondence Σ to the polydisk of radius 1 − ε. In
other words, we intersect Σ with Dn

1−ε ×Dn and we identify Dn
1−ε with Dn via the

dilatation of coefficient 1
1−ε . It suffices to show that

g∗ε κn ≤ f∗ε κn. (3.28)

Next because Σ is a K-correspondence, the ratio

ψε :=
g∗ε κn

f∗ε κn

is a non negative C∞-function (which is even real analytic) on Σ̃ε. Furthermore, as
we have restricted to Dn

1−ε, the numerator stays bounded near the boundary while
the denominator tends to ∞ generically on the boundary of Dn, so we have

lim
f(x)→∂Dn

ψε(x) = 0.

It follows then from the properness of the map fε that ψε has a maximum on Σ̃ε.
Let ψε(x) be maximum. Formula (3.28) is equivalent to

ψε(x) ≤ 1.

Assume the contrary and let c := ψε(x) > 1. Choose α generic, 1 < α < c. Let

Σ̃ε,α := {y ∈ Σ̃ε, ψε(x) ≥ α}.

Then since α is generic, and ψε tends to 0 near ∂Σ̃ε, Σ̃ε,α is compact and has a
smooth boundary. Now let χ = inΠj=n

j=1
1

(1−|zj |2)2
. By definition of κn (cf (3.22)), we

have
ψε =

g∗ε χ
f∗ε χ

| G |2,

16



where G is holomorphic. Furthermore, we have the Kähler-Einstein equation

(
i

2
∂∂log χ)n = n!κn. (3.29)

Denoting by ω = i
2∂∂log χ, we have

i

2
∂∂log ψε = g∗ε ω − f∗ε ω, ωn = n!κn. (3.30)

Now, in Σ̃ε,α, we have ψε > 1, which implies that

f∗ε κn ≤ g∗ε κn, (3.31)

with strict inequality away from the ramification divisor Rf . Let

θ := g∗ε ω
n−1 + g∗ε ω

n−2f∗ε ω + . . . + f∗ε ωn−1.

This is a semipositive (n− 1, n− 1)-form, which is positive away from Rf . Further-
more formulae (3.30) and (3.31) say that

(
i

2
∂∂log ψε)θ ≥ 0 (3.32)

in Σ̃ε,α with strict inequality away from the ramification divisor Rf . Of course, if
we knew that x 6∈ Rf then we would conclude that the hypothesis that log ψε has
a maximum at x is absurd, because its Hessian should then be seminegative at x,
contradicting the strict inequality in (3.32). In general, one can apply the following
(standard) argument : choose a number α′, such that α < α′ < log c. Put

µ+ = Sup (0, log ψε − α′).

Then µ+ is non negative, vanishes identically near the boundary of Σ̃ε,α, and is
positive at x. Now consider

∫
eΣε,α

µ+(
i

2
∂∂log ψε)θ.

This is strictly positive. On the other hand, integration by parts, using the fact that
the derivatives of µ+ are integrable, gives :

∫
eΣε,α

µ+(
i

2
∂∂log ψε)θ = −

∫
eΣε,α

i

2
(∂µ+ ∧ ∂log ψε)θ.

But since µ+ = log ψε − α′ when it is non zero, the integral on the right is equal to

−
∫
eΣε,α′

i

2
(∂log ψε ∧ ∂log ψε)θ,

where
Σ̃ε,α′ = {y ∈ Σ̃ε,α, log ψε(y) ≥ α′}.

But this last integral is obviously negative, which is a contradiction.
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Next we have the following strenghtening of Theorem 4.

Theorem 6 If X is a projective complex manifold which is of general type, we have
ΦX,an > 0 (and in particular ΦX > 0) away from a proper closed algebraic subset of
X.

Proof. We just sketch the argument, since it is a combination of the con-
struction in [11], [14] and of the arguments given above in the specific case of K-
correspondences.

Since X is of general type, there exists an inclusion of sheaves

L ⊂ K⊗α
X

for sufficiently large α, where L is an ample line bundle on X. Then, if hL is a
hermitian metric on L such that the associated Chern form

ωL,h =
1

2iπ
∂∂hL

is a Kähler form, we can see µ := 1

h
1
α
L

as a pseudovolume form on X, vanishing along

a divisor, which satisfies, in local coordinates where µ = inχdz1∧dz1∧. . .∧dzn∧dzn,
the equation

i∂∂log χ =
1
α

ωL,h. (3.33)

Now after a rescaling, we may assume that

(
1
2α

ωL,h)n ≥ n!µ. (3.34)

So the theorem is a consequence of the following proposition, which is proved exactly
as theorem 5 :

Proposition 2 Assume X is equipped with a pseudo-volume form µ satisfying equa-
tions (3.33) and (3.34). Then for any K-correspondence Σ ⊂ Dn ×X, we have

g∗µn ≤ f∗κn.

Remark 5 One can show similarly that the same result holds for Φ̃X,an.

The two theorems above obviously lead to the following

Conjecture 2 Assume that X is projective. Then ΦX,an is equivalent to ΨX . This
means that there exists a non zero constant α depending on X such that

αΨX ≤ ΦX,an ≤ ΨX .

We conclude this section with the proof of the following theorems, which prove
a number of special cases of Kobayashi’s conjecture 1 for our pseudovolume forms
ΦX , Φ̃X .
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Theorem 7 Assume X is a K-trivial projective variety which is as in the statement
of theorem 2, that is satisfies 1, 2 or is generic satisfying 3. Then ΦX = 0.

Theorem 8 Assume X is birational to X ′, and there exists a projective morphism
φ : X → B such that dimB < dimX and the generic fiber X ′

b is a K-trivial variety
as in the previous theorem. Then Φ̃X = 0 on a dense Zariski open set of X.

Proof of theorem 7. By theorem 2, there exists a self-K-isocorrespondence Σ ⊂
X ×X such that, with the notation

Σ̃
g→ X

f ↓
X

for a desingularization of Σ, we have

f∗ΩX = λg∗ΩX ,

for some λ > 1. By lemma 6, we know that

f∗ΦX = g∗ΦX .

Writing ΦX = χΩX and combining these two equalities gives

f∗χ = λg∗χ.

But the function χ is uppersemicontinuous and bounded, hence it has a maximum.
Let x be a point where χ(x) is maximum. Let σ ∈ Σ̃ be such that g(σ) = x. Then for
y = f(x), we get χ(y) = λχ(x). Since χ(x) is maximum, we also have χ(y) ≤ χ(x),
which implies χ(x) = 0 because λ > 1. So χ = 0.

Proof of theorem 8. By the birational invariance of Φ̃X , it suffices to show
that Φ̃X′ = 0 on a dense Zariski open set X ′′ of X ′, or equivalently that, for some
dense open X ′′, one has Φ̃X′′ = 0.

But the construction of self-K-isocorrespondence given in the proof of theorem
2 can be made in families at least over a Zariski open set B′′ of B. Letting X ′′ =
φ−1(B′′), we get a relative self-K-isocorrespondence

Σ ⊂ X ′′ ×B′′ X
′′.

Denote by ΩX′′/B the relative volume form on X ′′ which restricts to the canonical
volume form on each fiber of X ′′ → B. Then Σ satisfies the property that as relative
pseudovolume forms on Σ̃ over B′′, we have

f∗ΩX′′/B = λg∗ΩX′′/B, λ > 1. (3.35)

(Indeed, note that the coefficient λ is constant in families, by the formula (2.5).)
Now, since Σ ⊂ X ′′ ×B′′ X

′′, we have φ ◦ f = φ ◦ g =: π and for ΩB a volume form
on B, we have

f∗(ΩX′′/B ⊗ φ∗ΩB) = (f∗ΩX′′/B)⊗ π∗ΩB,
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and similarly for g. Hence (3.35) gives

f∗(ΩX′′/B ⊗ φ∗ΩB) = λg∗(ΩX′′/B ⊗ φ∗ΩB). (3.36)

Denoting by Ω′′ the volume form ΩX′′/B ⊗ φ∗ΩB on X ′′, we have a relation ΦX′′ =
χΩ′′ for some function χ, and formula (3.36), together with the relation

f∗ΦX′′ = g∗ΦX′′

show that
f∗χ = λg∗χ.

One concludes then as in the previous proof that χ = 0, hence ΦX′′ = 0, using the
fact that Σ ⊂ X ′′ ×B X ′′ and the properness of φ : X ′′ → B′′.

4 Concluding remarks and questions

4.1 Fano varieties of r-planes in a hypersurface

Our first question concerns the Chow-theoretic interpretation of our construction
of a self-K-correspondence in case 3, that is when X is the variety of r-planes in a
hypersurface of degree d (or more generally a complete intersection). Unlike case 2,
we did not deduce formula

f∗ωX = µg∗ωX (4.37)

from a relation between 0-cycles, of the form

∀σ ∈ Σ, αf(σ) + βg(σ) ≡ z, (4.38)

where z is supported on a proper algebraic subset of X, and α, β are fixed integers
depending on the integers m, m′. Of course, by Mumford’s theorem [20], (4.38) im-
plies (4.37), with µ = −β

α . Bloch-Beilinson’s conjectures predict also that conversely
(4.37) implies relations like (4.38). So our first question is : how to prove a formula
like (4.38), for Σ constructed as in the proof of theorem 2, case 3?

Let us do it in the case where M is the cubic fourfold, m = 2, m′ = 1 and r = 1.
In this case X is 4-dimensional and is hyperKähler (cf [3]).

Recall that Σ parametrizes the pairs (L1, L2) of lines in M such that there exists
a plane P ⊂ P5, with

P ∩M = 2L1 + L2.

For each line L ⊂ M , let us denote by l the corresponding point in X. For a generic
l ∈ X there is an incidence surface in X (cf [21])

Sl := {l′ ∈ X, L ∩ L′ 6= ∅}.

Note that if
P

q→ M
p ↓
X
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is the incidence correspondence, we have

Sl = p∗q∗L in CH2(X).

It follows that, denoting by h the class of a plane section of M , we have for any
(l1, l2) ∈ Σ the relation

2Sl1 + Sl2 = p∗q∗h in CH2(X). (4.39)

Now, it is not hard to prove the following

Lemma 7 There exists an integer α 6= 0 and a proper algebraic subset Z ⊂ X such
that for any l ∈ X the following relation holds in CH(X) :

S2
l = αl + z, (4.40)

where z is a 0-cycle supported on Z.

We now combine formulas (4.40) and (4.39) to get for any (l1, l2) ∈ Σ the relations

4S2
l1 = S2

l2 + z′,

4αl1 = αl2 + z′ + z′′,

where z′ and z′′ are supported on a fixed algebraic subset of X. This gives us the
formula (4.38) in this case. This also shows that µ = 1

4 hence λ = 1
16 = deg f

deg g in this
case.

4.2 Some examples satisfying the Kobayashi conjecture

In a different direction we observe that our construction in case 3 provides for d = 3
a true rational map φ : X 99K X. Here we consider the Fano variety of r-planes in
a hypersurface M of degree 3 in Pn, with the relation

n + 1 = h0(Pr+1,OPr+1(2)) (4.41)

which implies that KX is trivial (cf (2.15)). Now let as in section 2

Σ = {(P1, P2) ∈ X ×X, ∃P ⊂ Pn, P ∩M = 2P1 + P2}.
Here P has to be a r + 1-plane and we in fact have to consider the Zariski closure
of the set above.

We have the following

Lemma 8 The first projection pr1 : Σ → X is of degree 1. Hence Σ is the graph of
a rational map φ.

Proof. Let P1 be generic in X. Consider

P :=
⋂

x∈P1

TM,x.

Here TX,x is the projective hyperplane tangent to M at x. Then P has dimension
n− h0((Pr,OPr(2)) because the Gauss map of M is given by polynomials of degree
2. But we have by (4.41)

n− h0((Pr,OPr(2)) = −1 + h0(Pr+1,OPr+1(2))− h0((Pr,OPr(2))
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= −1 + h0(Pr+1,OPr+1(1)) = r + 1.

Hence P is a Pr+1 everywhere tangent to M along P1. Since P1 is generic, it is not
contained in a Pr+1 contained in M . Hence we have

P ∩M = 2P1 + P2,

for some P2 which must be the only point in the fiber of Σ over P1.

Corollary 1 For such X, we have

Ψ̃X = 0

on a Zariski open set of X. In other words, Kobayashi’s conjecture 1 is true for X.

Proof. The decreasing volume property for Ψ̃X will say that

φ∗Ψ̃X ≤ Ψ̃X

on the open set where φ is defined. On the other hand, we have seen that

φ∗ΩX = λΩX , λ = deg φ,

where ΩX is the canonical volume form of X. Now we conclude as in the proof of
Theorem 7, using the fact that deg φ > 1, (for example deg φ = 16 in the case of the
cubic fourfold).

Remark 6 The existence of the self-map φ of degree > 1, hence multiplying the
volume form by a coefficient > 1, suggests that not only the Kobayashi pseudovol-
ume form of X vanishes but also the Kobayashi pseudodistance of X vanishes, as
conjectured in [5], [13]. This would follow, as the following argument shows, from a
dynamical study of the map φ but we have not been able to do it. In fact, what is
easily seen is the fact that the Kobayashi pseudodistance dK of X as above is 0 if,
for general y ∈ X, the orbit {φk(y), k ∈ Z} is dense in X. Indeed, one sees easily
that φ has one fixed point x. Next consider the function χ(y) = dK(x, y) on X. By
the decreasing distance property, we have

dK(x, φ(y)) ≤ dK(x, y).

So it follows that we have the inequality of pseudo-volume forms :

φ∗(χ · ΩX) ≤ χ · φ∗ΩX .

Now we have
φ∗ΩX = deg φ · ΩX .

So
φ∗(χ · ΩX) ≤ deg φ · χ · ΩX .

But the integrals of both sides over X are equal. Hence we conclude that

f∗χ = χ

almost everywhere on X. So we have dK(x, φ(y)) = dK(x, y) for almost all y. So
if the φk(y) are dense in X for almost every y, (for k negative or positive), hence
arbitrary close to x, we find that dK(x, y) = 0 for almost every y.
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4.3 K-correspondences and the Kodaira dimension

The following two propositions relate the Kodaira dimension and K-correspondences.

Proposition 3 Let Σ ⊂ Y ×X be a K-correspondence, where X and Y are smooth
and projective. Then

κ(Y ) ≥ κ(X).

Proof. Let
Σ̃

g→ X
f ↓
Y

be a desingularization of Σ. If κ(X) = −∞ there is nothing to prove. If κ(X) ≥ 0
there is a non zero section of K⊗m

X for some m ≥ 1. Since g∗KX ⊂ f∗KY , there is a
non zero section of f∗K⊗m

Y , and it follows that there is a non zero section of K⊗Nm
Y ,

where N is the degree of f . So κ(Y ) ≥ 0. So we can consider the Iitaka fibration

Y 99K B

whose generic fiber Yb satisfies

κ(KY |Yb
) = 0.

Let Ỹb := f−1(Yb). Then
κ(f∗KY |eYb

) = 0.

Since g∗KX ⊂ f∗KY , it follows that

κ(g∗KX |eYb
) = 0.

Hence the components of g(Ỹb) are contained in a fiber of the Iitaka fibration X 99K
B′ of X. It follows that dimB′ ≤ dimB.

Proposition 4 If X is a projective variety which is of general type, any self-K-
isocorrespondence

Σ̃
g→ X

f ↓
X

satisfies
deg f = deg g.

Proof. For a line bundle L on a projective variety, whose Iitaka dimension is equal
to n = dimX, define

d+(L) = Supm{deg φm(X)
mn

}

where φm is the rational map to projective space given by the sections of L⊗m

assuming there are any. This is a finite positive number. Also, it is immediate to
see that if

φ : X ′ → X

23



is a generically finite cover, we have

d+(φ∗L) = deg φ d+(L).

We can apply this to KX and to f : Σ̃ → X and g : Σ̃ → X, since the Iitaka
dimension of KX is equal to n, and using the fact f∗KX

∼= g∗KX , we find that

deg f d+(KX) = deg g d+(KX).

Hence deg f = deg g.

Note that in the above propositions, we used only the fact that f∗KX
∼= g∗KX ,

which is weaker than the equality of the ramification divisors. Note also that the
hypothesis in proposition 4 is necessary. Indeed we know the existence of self-K-
isocorrespondences Σ of arbitrary large degree deg g/deg f for K-trivial varieties X
(eg take for X an elliptic curve). Considering a product Y × X, and the self-K-
isocorrespondences ∆Y ×Σ of Y ×X, we find examples of self-K-isocorrespondences
of degree 6= 1 on varieties with any possible Kodaira dimension, except for the
maximal one.

Let us conclude now with the case where X is a curve. We have proved above
that any self-K-isocorrespondence has to be of the same degree over each factor. In
[6], Clozel and Ullmo provide examples of curves C having infinitely many self-K-
isocorrespondences satisfying furthermore the very restrictive property that they are
unramified over each factor (while the K-isocorrespondence property just asks that
the correspondence has the same ramification over each factor). They call them
modular correspondences. They show that possessing such non trivial modular
correspondence is a very restrictive condition on the curve.

We have the following results :

Proposition 5 Assume X is a smooth curve of genus > 1, then any self-K-isocorres-

pondence of X is rigid.

Proof. Let Σ̃
(f,g)→ X×X be the desingularization of Σ. By rigid, we mean here that

there is no deformation of the triple (Σ̃, f, g), keeping the property that Rf = Rg.
But, since both f and g ramify exactly along Rf , the torsion free part of the normal
bundle

(f, g)∗(TX×X)/(f, g)∗TeΣ
is isomorphic to f∗TX , which has negative degree on any component of Σ̃. Hence it
has no non zero section.

Proposition 6 Let X be a generic smooth complex curve of genus g ≥ 3. Then X
does not carry any non trivial self-K-isocorrespondence.

Proof. It suffices to show that if X is any smooth curve of genus g ≥ 3 and Σ is a
self-K-isocorrespondence, with desingularization

Σ̃
f→ X

g ↓
X
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then the map (f, g) : Σ̃ → X × X does not deform with X to first order in every
direction.

If u ∈ H1(X, TX) is a first order deformation of X, inducing the corresponding
deformation pr∗1u + pr∗2u ∈ H1(X ×X, TX×X) of X ×X, the obstruction to deform
(f, g) with X ×X lies in the image of pr∗1u + pr∗2u in H1(Σ̃, Nf

eΣ), where Nf
eΣ is the

torsion free part of the sheaf

(f, g)∗TX×X/(f, g)∗TeΣ.

We observed in the previous proof that Nf
eΣ is isomorphic to f∗TX

∼= g∗TX , (where
the isomorphism is canonical, given by g∗ ◦ f−1∗ ). It is easy to see that up to a sign,
the composite map

H1(X,TX)
pr∗1→ H1(X ×X, TX×X)

(f,g)∗→ H1(Σ̃, (f, g)∗TX×X) → H1(Σ̃, Nf
eΣ)

is equal to the natural map H1(X, TX)
f∗→ H1(Σ̃, f∗TX).

So it suffices to prove is that via the isomorphism f∗TX
∼= g∗TX , the two maps

f∗ and g∗ from H1(X,TX) to H1(Σ̃, f∗TX) cannot be proportional. Indeed that will
show that the map

H1(X,TX)
pr∗1+pr∗2→ H1(X ×X, TX×X)

(f,g)∗→ H1(Σ̃, (f, g)∗TX×X) → H1(Σ̃, Nf
eΣ),

which is the obstruction map, is non zero.
Let us dualize the maps f∗ and g∗ above. We get as duals the trace maps

f∗, g∗ : H0(Σ̃,KeΣ ⊗ f∗KX) → H0(X,K⊗2
X ).

Let now x ∈ X be a generic point. We may assume that no component of Σ is the
diagonal of X ×X, and then it follows that f−1(x) and g−1(x) are disjoint divisors
D1, D2 of Σ̃. Since the genus of X is at least three, the divisor f∗KX(−D1 −D2)
has positive degree, and it follows that the restriction map

H0(Σ̃,KeΣ ⊗ f∗KX) → H0(D1 ∪D2, (KeΣ ⊗ f∗KX)|D1∪D2
)

is surjective. It follows that we can find a section σ of KeΣ ⊗ f∗KX which vanishes
on D1 and at every point of D2 except for one. Then f∗σ vanishes at x, while g∗σ
does not vanish at x. So f∗ and g∗ are not proportional.
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[19] E. Looijenga. Motivic measures, Séminaire Bourbaki, 52ème année, 1999-2000,
n0 874.

26



[20] D. Mumford. Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto
Univ. 9 (1968), 195-204.
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