
ON THE CHOW RING OF A K3 SURFACE

ARNAUD BEAUVILLE AND CLAIRE VOISIN

Abstract. We show that the Chow group of 0-cycles on a K3 surface contains a class of
degree 1 with remarkable properties: any product of divisors is proportional to this class,
and so is the second Chern class c2.

1. Introduction

An important algebraic invariant of a projective manifold X is the Chow ring CH(X) of

algebraic cycles on X modulo rational equivalence. It is graded by the codimension of cycles;

the ring structure comes from the intersection product. For a surface we have

CH(X) = Z⊕ Pic(X)⊕ CH0(X) ,

where the group CH0(X) parametrizes 0-cycles on X. While the structure of the Picard

group Pic(X) is well understood, this is not the case for CH0(X): if X admits a nonzero

holomorphic 2-form, it is a huge group, which cannot be parametrized by an algebraic variety

[M].

Among the simplest examples of such surfaces are the K3 surfaces, which carry a nowhere

vanishing holomorphic 2-form. In this case Pic(X) is a lattice, while CH0(X) is very large;

the following result is therefore somewhat surprising:

Theorem 1. Let X be a K3 surface.

a) All points of X which lie on some (possibly singular) rational curve have the same

class cX in CH0(X).

b) The image of the intersection product

Pic(X)⊗ Pic(X) → CH0(X)

is contained in Z cX .

c) The second Chern class c2(X) ∈ CH0(X) is equal to 24 cX .
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The proof is elementary in the sense that it only appeals to simple geometric constructions,

based on the existence of sufficiently many rational and elliptic curves on X. We prove a) and

b) in section 2; the proof of c), which is more involved, is given in section 3. If we represent

the class cX by a point c of X, a key property of this class is the formula

(x, x)− (x, c)− (c, x) + (c, c) = 0 in CH0(X ×X),

valid for any x ∈ X. In section 4 we discuss the importance of this formula and its relation

with property b) of the Theorem. We prove that an analogous formula holds when X is

replaced by a hyperelliptic curve, but that it cannot hold for a generic curve C of genus ≥ 3

– we show that this would imply that C is algebraically equivalent to −C in its Jacobian,

contradicting a result of Ceresa.

2. The image of the intersection product

We work over the complex numbers. By a rational curve on a surface we mean an irre-

ducible (but possibly singular) curve of geometric genus zero. If V is an algebraic variety

and p ∈ N, we denote by CHp(V ) the group of p-dimensional cycles on V modulo rational

equivalence; we put CHp(V )Q = CHp(V )⊗Q .

2.1. Proof of a) and b). Let R be a rational curve on X; it is the image of a generically

injective map j : P1 → X. Put cR = j∗(p) ∈ CH0(X), where p is an arbitrary point of P1.

For any divisor D on X, we have in CH0(X)

R ·D = j∗j
∗D = j∗(n p) = n cR , with n = deg(R ·D) .

Let S be another rational curve. If deg(R ·S) 6= 0, the above equality applied to R ·S gives

cS = cR (recall that CH0(X) is torsion free [R]). If deg(R ·S) = 0, choose an ample divisor H;

by a theorem of Bogomolov and Mumford [M-M], H is linearly equivalent to a sum of rational

curves (this is proved in [M-M] assuming that the class of H in Pic(X) is primitive; but any

ample class is a multiple of an ample primitive class). Since H is connected, we can find a

chain R0, . . . , Rk of distinct rational curves such that R0 = R, Rk = S and Ri ∩ Ri+1 6= ∅
for i = 0, . . . , k − 1. We conclude from the preceding case that cR = cR1

= . . . = cS. Thus

the class cR does not depend on the choice of R: this is assertion a) of the Theorem. Let us

denote it by cX .

We have R ·D = deg(R ·D) cX for any divisor D and any rational curve R on X. Since the

group Pic(X) is spanned by the classes of rational curves (again by the Bogomolov-Mumford

theorem), assertion b) follows. �

Remark 2.2. The result (and the proof) hold more generally for any surface X such that:
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a) The Picard group of X is spanned by the classes of rational curves;

b) There exists an ample divisor on X which is a sum of rational curves.

This is the case when X admits a non-trivial elliptic fibration over P1 with a section, or

for some particular surfaces like Fermat surfaces in P3 with degree prime to 6 [S].

Remark 2.3. Let A be an abelian surface. According to [Bl], the image of the product map

Pic(A)⊗ Pic(A) → CH0(A) has finite index, so the situation looks rather different from the

K3 case. There is however an analogue to the Theorem. Let Pic+(A) be the subspace of

Pic(A)Q fixed by the action of the involution a 7→ −a. We have a direct sum decomposition

Pic(A)Q = Pic+(A)⊕ Pico(A)Q ,

so that Pic+(A) is canonically isomorphic to the image of Pic(A)Q in H2(A,Q). Now we claim

that the image of the map µ : Pic+(A)⊗ Pic+(A) → CH0(A)Q is Q [0], where [0] ∈ CH0(A)

denotes the class of the origin 0 ∈ A. This is a direct consequence of the decomposition of

CH(A)Q described in [B]: let k be an integer ≥ 2, and let k be the multiplication by k in A.

We have k∗D = k2D for any element D of Pic+(A), thus k∗c = k4c for any element c in the

image of µ; but the latter property characterizes the multiples of [0]. �

2.4. The cycle class cX has some remarkable properties that we will investigate in the next

section. Let us observe first that for any irreducible curve C on X, there is a rational curve

R 6= C which intersects C; thus we can represent cX by the class of a point c ∈ C (namely

any point of C ∩R).

We will need a more subtle property of cX . Let us first prove a lemma:

Lemma 2.5. Let E be an elliptic curve, x, y two points of E. Then

(x, x)− (x, y)− (y, x) + (y, y) = 0 in CH0(E × E) .

Since the divisors [x] − [y] generate the group Pico(E), this is equivalent to the formula

pr∗1 D · pr∗2 D = 0 in CH0(E × E) for every D in Pico(E).

Proof : Put ξ = (x, x) − (x, y) − (y, x) + (y, y). Then 2ξ is the pull-back of a 0-cycle η =

(x, x)+(y, y)−2(x, y) on the second symmetric product S2E. The addition map a : S2E → E

is a P1-fibration; this implies that the push-down map a∗ : CH0(E × E) → CH0(E) is an

isomorphism. Since a∗η = 0, we have η = 0, hence 2ξ = 0. On the other hand ξ has degree

0 and its image in the Albanese variety of E × E is zero, so ξ = 0 by Rojtman’s result. �

Proposition 2.6. Let ∆ be the diagonal embedding of X into X ×X.

a) For every α ∈ CH1(X), we have

∆∗α = pr∗1 α · pr∗2 cX + pr∗1 cX · pr∗2 α in CH1(X ×X) ;
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b) For every ξ ∈ CH0(X), we have

∆∗ξ = pr∗1 ξ · pr∗2 cX + pr∗1 cX · pr∗2 ξ − (deg ξ) ∆∗cX in CH0(X ×X) .

Proof : a) Since both sides are additive in α, it is enough to check this relation when α is

the class of a rational curve; in that case it follows from the fact that the diagonal of P1×P1

is linearly equivalent to P1 × {0}+ {0} ×P1.

b) Again both sides are additive in ξ, so we may assume that ξ is the class of a point x ∈ X.

The Bogomolov-Mumford theorem tells us that x lies on the image of a curve E of genus

≤ 1; by 2.4 we can represent cX by a point c ∈ E. We have (x, x)− (x, c)− (c, x) + (c, c) = 0

in CH0(E×E) by lemma 2.5 (the case when E is rational is trivial); by push-down this gives

the same formula in CH0(X ×X). �

3. The formula c2(X) = 24 cX

3.1. Let c be a point of X lying on some rational curve. We will denote by (x, x, x),

(x, x, c), (x, c, c), etc... the classes in CH2(X × X × X) of the image of X by the maps

x 7→ (x, x, x) , x 7→ (x, x, c) , x 7→ (x, c, c) , etc... With this notation we have the following

key result:

Proposition 3.2. The cycle

X = (x, x, x)− (c, x, x)− (x, c, x)− (x, x, c) + (x, c, c) + (c, x, c) + (c, c, x)

is zero in CH2(X ×X ×X)Q .

Corollary 3.3. Let ∆, ic and jc be the maps of X into X × X defined by ∆(x) = (x, x),

ic(x) = (x, c) and jc(x) = (c, x). For every ξ in CH2(X×X), we have an equality in CH0(X)

∆∗ξ = i∗cξ + j∗c ξ + n c, with n = deg(∆∗ξ − i∗cξ − j∗c ξ) .

From this formula we recover part b) of the Theorem by taking ξ = pr∗1α · pr∗2β, with

α, β ∈ Pic(X), and we get part c) by taking for ξ the class of the diagonal, so that ∆∗ξ =

c2(X).

3.4. Proof of the Corollary. We will denote by pi, for 1 ≤ i ≤ 3, the projection of X×X×X

onto the i-th factor, and by pij, for 1 ≤ i < j ≤ 3, the projection (x1, x2, x3) 7→ (xi, xj).

Let us compute p3∗(X · p∗12ξ). Let δ : X → X ×X ×X be the map x 7→ (x, x, x). We have

p3 ◦δ = IdX and p12 ◦δ = ∆, hence

p3∗((x, x, x) · p∗12ξ) = p3∗δ∗(δ
∗p∗12ξ) = ∆∗ξ .
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The same argument applied to the maps x 7→ (c, x, x), x 7→ (x, c, x), ... , gives

p3∗((c, x, x) · p∗12ξ) = i∗cξ p3∗((x, c, x) · p∗12ξ) = j∗c ξ

p3∗((x, x, c) · p∗12ξ) = deg(∆∗ξ) · c p3∗((x, c, c) · p∗12ξ) = deg(i∗cξ) · c
p3∗((c, x, c) · p∗12ξ) = deg(j∗c ξ) · c p3∗((c, c, x) · p∗12ξ) = 0 ,

hence our formula. �

Remark 3.5. One also recovers Proposition 2.6 b) by restricting the class X to the slices

X ×X × {x} ⊂ X ×X ×X corresponding to all x ∈ X.

For the proof of the proposition we will need two results on products of elliptic curves.

Let F be an elliptic curve over an arbitrary field. We denote by Pic(F 3)inv the subgroup of

elements of Pic(F 3)Q which are invariant under permutations of the factors and under the

involution (−1F 3). We keep the notation of 3.1.

Lemma 3.6. a) The cycle class

v = (u, u, u)− (0, u, u)− (u, 0, u)− (u, u, 0) + (u, 0, 0) + (0, u, 0) + (0, 0, u)

in CH1(F
3)Q is zero.

b) The divisors αF =
∑

i

p∗i 0 and βF =
∑
i<j

p∗ij∆ form a basis of Pic(F 3)inv.

Proof : a) The class v is symmetric, hence comes from a cycle class v̄ in the third symmetric

product S3F . This variety is a P2-bundle over F , through the addition map a : S3F → F .

Thus we have CH1(S
3F ) = a∗ Pic(F ) · h ⊕ Zh2, where h is any divisor class on S3F which

induces on a fibre a−1(u) ∼= P2 the class of a line.

Write v̄ = (a∗d)·h+nh2. We have n = deg(v̄·a∗0) = 32−3·22+3·1 = 0, hence d = a∗(v̄·h).

We can represent h by the image of the divisor p∗10 in F × F × F ; since v · p∗10 = 0, we get

d = 0 and finally v = 0.

b) As above we have Pic(S3F ) = a∗ Pic(F )⊕ Zh. Taking the invariants under (−1F 3) we

see that Pic(F 3)inv has rank 2. Thus it suffices to prove that the divisors αF and βF are not

proportional in Pic(F 3); but their restriction to F 2 (embedded in F 3 by (u, v) 7→ (u, v, 0))

are p∗10 + p∗20 and ∆ + p∗10 + p∗20, which are clearly non-proportional. �

3.7. Proof of Proposition 3.2. It will make our life easier to assume that Pic(X) is generated

by an ample divisor class H; the general case will follow by specialization (see [SGA6],

X.7.14). By the Bogomolov-Mumford theorem, we can find in the linear system |H| a one-

dimensional family (E ′
b)b∈B of (singular) elliptic curves; that is, we can find a surface E with

a fibration p : E → B onto a smooth curve, with general fibre a smooth curve Eb of genus
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1, and a generically finite map π : E → X which maps each fibre Eb of p birationally onto

the singular curve E ′
b. Passing to a covering of B if necessary, we may assume that:

a) p has a section 0 : B → E;

b) The curve π(0B) is rational.

(To see b), replace B by a component of π−1(R), where R is a rational curve on X not

contained in any E ′
b.)

Note that because of the assumption on Pic(X) every fibre Eb is irreducible.

3.8. Using again the notation of 3.1, we consider on the fibre product E3
B = E ×B E ×B E

the cycle class

u = (u, u, u)− (0pu, u, u)− (u, 0pu, u)− (u, u, 0pu) + (u, 0pu, 0pu) + (0pu, u, 0pu) + (0pu, 0pu, u) .

For b ∈ B, the class in CH2(X ×X ×X) of the cycle

{c} × E ′
b × E ′

b + E ′
b × {c} × E ′

b + {c} × E ′
b × E ′

b

does not depend on b, since the curves E ′
b all belong to the same linear system |H|; let us

denote it by z. Let π3 : E3
B → X3 be the morphism deduced from π.

Lemma 3.9. The class π3
∗(u) is proportional to z.

Proof : By lemma 3.6.a), the restriction of u to the generic fibre of the fibration E3
B → B

is zero. It follows that u is a sum of cycles of the form ib∗Db, where ib is the inclusion of E3
b

into E3
B and Db a (Weil) divisor on E3

b [Bl-S].

The involution σ of E which coincides with u 7→ −u on each smooth fibre gives rise to an

involution σ3 of E3
B which commutes with the action of S3 by permutations of the factors.

The cycle u is invariant by this action of S3×Z/2. By averaging on this group we may choose

the above divisor classes Db in the invariant subgroup of CH2(E
3
b )Q. We want to prove that

each cycle class ib∗Db is pushed down to a multiple of z by π3.

Assume first that the curve Eb is smooth. By lemma 3.6.b) the class Db is a Q-linear combi-

nation of αEb
and βEb

. By 3.7.b) π(0b) is linearly equivalent to c, thus we have π3
∗(ib∗ αEb

) = z.

The cycle π3
∗(ib∗ βEb

) is the sum of (∆∗E
′
b) × E ′

b and of the two cycles obtained by permu-

tation of the factors. Now using lemma 2.4 this class is equivalent to 2z, hence the result in

this case.

If Eb is singular, its normalization Ẽb is a smooth rational curve, and we have a surjective

homomorphism CH2(Ẽ
3
b )Q → CH2(E

3
b )Q. The S3-invariant part of CH2(Ẽ

3
b )Q is spanned by

the divisor α
Ẽb

=
∑

p∗i 0 which again maps to a cycle linearly equivalent to z under π3. �
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Lemma 3.10. Let d = deg π, and let X be the cycle class defined in 3.2. Then

π3
∗(u) = d X .

Proof : We compute the images under π3
∗ of the cycles which appear in the definition of X.

a) We have π3
∗(u, u, u) = d (x, x, x) in CH2(X ×X ×X).

b) Let Γ ⊂ X × X be the image of the surface (u, 0pu) (that is, the graph of 0◦p) in

E × E. We have π3
∗(u, u, 0pu) = p∗12∆ · p∗23Γ. The normalization R̃ of R = π(0B) is a smooth

rational curve (3.7.b). Since our cycle Γ is supported by X × R, it comes from a divisor Γ0

in X × R̃. Such a divisor is of the form D × R̃ + mX × {r} for some divisor D on X, some

point r ∈ R̃ and some integer m; this integer is equal to the degree of Γ0 over X, that is d.

Therefore Γ is linearly equivalent to d (X × c) + D × R; since we assume Pic(X) = Z we

have D×R = a E ′
b×E ′

b in CH2(X ×X) for some integer a and any b ∈ B. Intersecting with

p∗12∆ we get

π3
∗(u, u, 0pu) = d (x, x, c) + a (∆∗E

′
b)× E ′

b .

c) We have π3
∗(u, 0pu, 0pu) = p∗12Γ · p∗23∆; reasoning as in b) we find

π3
∗(u, 0pu, 0pu) = d (x, c, c) + a E ′

b × (∆∗E
′
b) .

d) The lemma follows by permuting and summing. �

3.11. Therefore X = d−1 π3
∗(u) is proportional to the effective cycle z (Lemma 3.9). On the

other hand X is homologically trivial: this follows from the Künneth formula and the fact

that the cycles pij∗X are identically zero. Thus we obtain X = 0, which concludes the proof

of the Proposition. �

4. 0-cycles on a product

4.1. The cycle cX has two remarkable properties, namely the intersection property b) of

the Theorem, and the diagonal property (x, x)− (x, c)− (c, x)+(c, c) = 0 in CH0(X×X) for

any x ∈ X. These two properties may seem unrelated. However we can rephrase them in the

following way, which shows that they are in some sense dual to each other: since the Picard

group of X is isomorphic to its Néron-Severi group, the degree 1 zero-cycle cX provides a

splitting of CH(X) as

CH(X) = CH(X)hom ⊕ H,

where CH(X)hom is the subgroup of 0-cycles homologous to 0, and H the image of CH(X)

into H∗(X,Z) via the cycle map. This splitting induces the splitting

CH(X)⊗ CH(X) =

(CH(X)hom ⊗ CH(X)hom) ⊕ (CH(X)hom ⊗ H) ⊕ (H⊗ CH(X)hom) ⊕ (H⊗ H)
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of CH(X)⊗CH(X). It is immediate to see that it induces one on the image CH(X ×X)dec

of CH(X)⊗CH(X) in CH(X ×X). We can see these decompositions as giving gradings on

CH(X) and CH(X ×X)dec. (Here it is natural from the point of view of the Bloch-Beilinson

conjectures to assign the degree 0 to H and the degree 2 to CH(X)hom since our surface is

regular.) Then the intersection property b) says that if ∆ : X → X × X is the diagonal

embedding, the homomorphism

∆∗ : CH(X ×X)dec → CH(X)

is compatible with the gradings, while the diagonal relations a) and b) of Proposition 2.6

say that for p > 0 the homomorphism

∆∗ : CHp(X) → CHp(X ×X)

takes values in CHp(X ×X)dec and is also compatible with the gradings.

We are now going to investigate the corresponding diagonal property for a curve.

Proposition 4.2. Let C be a hyperelliptic curve, and w a Weierstrass point of C. For any

x ∈ C, we have

(x, x)− (x, w)− (w, x) + (w, w) = 0 in CH0(C × C) .

(Note that the class of w is well-defined in CH0(C)Q.)

Proof : Let J be the Jacobian variety of C; choose an Abel-Jacobi embedding C ↪−→ J .

The induced map C × C → J × J is an Albanese map for C × C.

The subgroup of degree 0 cycles in CH0(C × C) maps onto the Albanese variety J × J ;

let T (C × C) be the kernel of this map. The surjective map

CH0(C)⊗ CH0(C) −→ CH0(C × C)

induces a surjective map

J ⊗ J −→ T (C × C) .

Let ι be the hyperelliptic involution of C; since ι acts as (−1) on J , we see that the

involution (ι, ι) of C × C acts trivially on T (C × C).

Let c : J → CH0(C × C) be the homomorphism defined by

c(α) = ∆∗α− pr∗1 α · pr∗2 w − pr∗1 w · pr∗2 α .

The cycle c(α) is of degree zero, and its image in J × J is (α, α)− (α, 0)− (0, α) = 0, hence

it is invariant under (ι, ι). On the other hand we have

(ι, ι)∗c(α) = c(ι∗α) = c(−α) = −c(α) .



ON THE CHOW RING OF A K3 SURFACE 9

Therefore 2c(α) = 0, and actually c(α) = 0 by Rojtman’s result. Applying this to α = [x]−[w]

gives the result. �

In contrast, we have now :

Proposition 4.3. Let C be a general curve of genus ≥ 3. There exists no divisor c on C

such that the 0-cycle1 (x, x)− (x, c)− (c, x) in CH0(C × C) is independent of x ∈ C.

Proof : As above the hypothesis on c is equivalent to the relation

∆∗α = pr∗1 α · pr∗2 c + pr∗1 c · pr∗2 α

for all α in J . Applying pr1 ∗ we observe that this formula implies deg c = 1.

Put c′ = (x, c) + (c, x)− (x, x), and assume that this class in CH0(C × C) is independent

of x. With the notation of 3.1, we consider in CH1(C × C × C)Q the cycle

z = (x, x, x)− (c, x, x)− (x, c, x)− (x, x, c) + (c, c, x) + (c, x, c) + (x, c′) .

Our hypothesis ensures that the restriction of z to the generic fibre of p1 is zero. As in [Bl-S]

we conclude that z is a sum of 1-cycles of the form ib∗Db, where ib : C × C → C × C × C is

the embedding (x, y) 7→ (b, x, y) and Db is a divisor on C × C.

Let us now work in the group A1(C ×C ×C)Q of cycles modulo algebraic equivalence. In

this group the class of ib∗D, for D ∈ CH1(C × C)Q, is independent of b ∈ C; thus we can

write z = ib∗D for some fixed b ∈ C and some divisor D in C × C. Since p12 ◦ib = IdC×C we

have D = p12∗z.

Now the cycle z is homologically trivial: as in 3.11 it suffices to check this for the projections

pij∗z on C×C, and this is straightforward. Thus, the divisor D is homologically, and therefore

algebraically, trivial in C × C; we conclude that z is zero in A1(C × C × C)Q.

Now let J be the Jacobian variety of C, and α : C → J the Abel-Jacobi map which maps

a point x of C to the divisor class [x] − c; we will identify C with its image under α. Let

α3 : C3 → J be the map deduced from α. We have

(α3)∗(z) = 3∗C − 3(2∗C) + 3C = 0 in A1(J)Q ,

where k denotes the multiplication in J by the integer k.

According to [B] we have a decomposition

A1(J)Q = A1(J)0 ⊕ · · · ⊕ A1(J)g−1 ,

where k∗ acts by multiplication by k2+s on A1(J)s. Since 3` − 3 · 2` + 3 > 0 for ` ≥ 3, the

above equality implies that the components of the 1-cycle C in A1(J)i are zero for i ≥ 1,

1Here (x, c) stands for the 0-cycle pr∗1 x · pr∗2 c
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that is, [C] ∈ A1(J)0. Taking k = −1 we see that C is algebraically equivalent to −C; this

contradicts the result of Ceresa [C]. �

Remark 4.4. The cycle class z is studied in [G-S].
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Université de Nice, Parc Valrose, F-06108 Nice cedex 2

E-mail address: beauville@math.unice.fr
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