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0. Introduction

On a complex vector space V , a Hermitian bilinear form h is decomposed into
real and imaginary parts as

h = g − iω,

where g is a symmetric real bilinear form and ω is a real 2-form which is of
type (1, 1) for the complex structure on V . Here the notion of (complex valued)
form of type (p, q) on V is the following: the space V ∗ ⊗ C of complex valued
forms on V splits as a direct sum of V ∗1,0 ⊕ V ∗0,1, where V ∗1,0 is the space
of C-linear forms and V ∗0,1 is its complex conjugate. Then the forms of type
(p, q) are generated by the α1 ∧ · · · ∧ αp ∧ β1 ∧ · · · ∧ βq, where αi ∈ V ∗1,0 and
βj ∈ V ∗0,1.

The correspondence h �→ ω is a bijection between Hermitian bilinear forms
and real forms of type (1, 1) on V . Thus the notion of (semi)-positivity for
Hermitian bilinear forms provides a corresponding notion of (semi)-positivity
for real forms of type (1, 1). Note that when h is positive definite, ω is non-
degenerate, i.e., ωn �= 0, n = rkCV .

On a complex manifold X, the tangent space TX,x at any point is endowed
with a complex structure, and the above correspondence induces a bijective
correspondence between Hermitian bilinear forms on TX , and real 2-forms of
type (1, 1) on X, that is of type (1, 1) on TX,x for any x ∈ X. In particular, if
h is a Hermitian metric on TX , one can write

h = g − iω,

where g is a Riemannian metric (compatible with the complex structure), and
ω is a positive real (1, 1)-form.

Definition 0.1. The metric h is said to be Kähler if furthermore the 2-form ω
is closed.

Since ω is non-degenerate, it will provide in particular a symplectic struc-
ture on the Kähler manifold X, thus putting Kähler geometry at the inter-
section of symplectic geometry and complex geometry. The work of Gromov
[20] made the relation between symplectic and Kähler geometry stronger: a
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symplectic manifold (X, ω) can be endowed with a compatible almost com-
plex structure (i.e., a complex structure on each tangent space TX,x, varying
in a smooth way), which is well defined up to deformations. Here “compatible”
means that ωx has to be of type (1, 1) and positive on each TX,x for the given
complex structure.

Assuming X is compact, the Kähler assumption has for main differential-
topological consequence the Hodge decomposition theorem.

Theorem 0.2. If X is Kähler compact, the de Rham cohomology spaces

Hk(X, C) := {closed complex valued k-forms}/{exact ones}
splits as

Hk(X, C) = ⊕p+q=kH
p,q(X), (0.1)

where Hp,q(X) is the space of classes admitting a representative which is a
closed form of type (p, q) (that is of type (p, q) at any point).

Note that by the definition of Hp,q(X), one has

Hp,q(X) = Hq,p(X),

a property which is called Hodge symmetry. The data of the decomposition
(0.1), together with the rational (integral) structure of Hk(X, C), that is the
isomorphism

Hk(X, C) = Hk(X, Q)⊗ C, (Hk(X, C) = Hk(X, Z) ⊗ C),

is exactly what is called a rational (integral) Hodge structure of weight k (see
[19], [10], [36] I, 7.1.1).

A deeper consequence of Hodge theory is the formality theorem [11], which
says that the rational homotopy type of a compact Kähler manifold is deter-
mined by its rational cohomology ring, but we won’t use it here.

Let us now turn to complex projective manifolds. They are defined as the
complex submanifolds of PN (C). A classical theorem due to Chow, later gen-
eralized by Serre [29], says that they are also the smooth algebraic subvarieties
of projective space.

The projective space is Kähler, and by restriction of any Kähler metric,
it follows that complex projective manifolds are Kähler.

The projective space also carries a holomorphic line bundle L = O(1),
whose holomorphic sections identify to linear forms on C

N+1. Namely, L is
defined as the dual of the tautological sub-line bundle whose fiber at u ∈ PN (C)
is the line generated by u in C

N+1. If X ⊂ P
N (C) is a complex submanifold, the

induced holomorphic line bundle admit as holomorphic sections the restrictions
σ0, . . . , σN+1 of the linear forms on C

N+1, and these sections have the property
that for any point x ∈ X, at least one of these does not vanish on the fiber Lx,
and that the map

x �→ (σ0(x), . . . , σN(x)),
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(a non-zero N +1-tuple which is well defined up to a multiplicative coefficient,
according to the trivialization of Lx chosen), is holomorphic and provides the
initial holomorphic embedding to P

N (C).

Definition 0.3. A line bundle on a compact complex manifold is said to be very
ample if its holomorphic sections provide as above an embedding to projective
space. It is said to be ample if some power L⊗k is very ample.

Since the pioneering work of Kodaira [23], line bundles in complex projec-
tive geometry can be considered to have as Kähler analogues real (1, 1)-classes
in Kähler compact geometry.

We survey in this paper classical and recent results which underline both
the similarities and the differences between Kähler and complex projective
geometries.

The first section is devoted to the results by Demailly and his collaborators
showing a complete similarity between various notions of positivity for line
bundles on projective manifolds and for real closed forms of type (1, 1) on
Kähler compact manifolds.

Sections 2 and 3 show in contrast strong differences between these ge-
ometries. On the analytic side, we show that the Hodge conjecture cannot be
possibly extended to Kähler compact manifolds: Hodge classes are not nec-
essarily generated over Q by Chern classes of coherent sheaves. We also show
that coherent sheaves on compact Kähler manifolds do not necessarily admit lo-
cally free resolutions, while the existence of locally free resolutions in algebraic
geometry plays a key role in the proof of central theorems (see, e.g., [30], [2]).

On the topological side, we show that there exist Kähler compact mani-
folds which do not have the homotopy type of, and a fortiori cannot be deformed
to, complex projective manifolds.

It is interesting to note that these differences appear only in higher dimen-
sions. Any compact complex curve is projective (hence Kähler). Any compact
Kähler surface has small deformations which are projective (a result due to Ko-
daira). The Hodge conjecture is true for degree 2 classes on complex manifolds
in the form of the Lefschetz theorem on (1, 1)-classes, and coherent sheaves on
compact complex surfaces admit finite locally free resolutions [28].

1. Positivity properties of line bundles and (1, 1)-classes

1.1. Line bundles and their Chern forms and currents. Let L be a holomorphic
line bundle on a complex manifold and h be an Hermitian metric on L. On small
open sets U of X, we can choose non-zero holomorphic sections σU trivializing
L. The function h(σU ) is thus positive where defined and we can define the real
(1, 1)-form

ωL,h,U :=
1

2iπ
∂∂ log h(σU ).

It is immediate to see that this form does not depend on the choice of σU (this
follows from the vanishing ∂∂ log | g |2= 0 for g an invertible holomorphic
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function), so that the ωL,h,U coincide on the overlaps and we have in fact a
globally defined (1, 1)-form ωL,h called the Chern form of (L, h).

If h is changed to euh, for some real function u, ωL,h is changed to ωL,h +
1

2iπ∂∂u, from which it follows that the forms ωL,h determine a class c(L) in the
space H1,1

∂∂
(X, R), defined as the quotient of the space of d-closed real forms of

(1, 1)-type by the space consisting of i∂∂f , f a real functions on X.
Note that since the later space consists of d-exact forms, there is a natural

map
H1,1

∂∂
(X, R) → H2(X, R),

which is an isomorphism onto the subspace

H1,1
R

(X) := H1,1(X) ∩ H2(X, R)

when X is Kähler, by the ∂∂-lemma (cf. [36] I, 6.1.3).
The image of c(L) under this map is the real Chern class c1(L), which is

a topological invariant of L.
As we shall see in next sections, a deep use is made by analysts of a

singular version of this construction. Namely, introduce singular metrics on L,
which are locally of the form

hsing = eφh,

where h is a smooth metric, and φ is an integrable function. Then one can
define locally the closed current TL,hsing by the formula

TL,hsing = ωL,h +
1

2iπ
∂∂ log φ.

This is a real closed current of type (1, 1), that is a linear form on the space of
compactly supported forms of degree 2n − 2 on X, n = dim X, which is real
on real forms, and vanishes on forms of type (p, q) �= (n − 1, n − 1).

Positivity or semi-positivity of (1, 1)-forms makes sense as explained in
the introduction. Similarly, positivity of (1, 1)-currents is defined as follows:

Definition 1.1. A current T is said to be positive if T (α) ≥ 0, for any (n −
1, n − 1)-form α which can be locally written as

α = (iα1 ∧ α1) ∧ · · · ∧ (iαn−1 ∧ αn−1),

where the αi’s are of type (1, 0), and more generally, on any combination of
such forms with coefficients given by non-negative real functions.

A typical example of a positive (1, 1)-current is the current of integration
on an analytic hypersurface of X.

There are on the other hand two different notions of positivity for line
bundles: that of ampleness, (see the introduction), and that of effectivity, where
L is said to be effective if there is a non-zero holomorphic section of L on X.
This last notion is in fact better behaved if one introduces the notion of pseudo-
effectiveness:
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Definition 1.2. (see [13]) A line bundle L on X is said to be pseudo-effective if
its class c(L) is in the closure of the set of classes c(L′), for L′ effective.

These two notions of positivity are strongly different. Indeed, an effective
line bundle may become negative after restriction to the zero locus of one of
its sections, hence may be very far from ample. The typical example is

L = OX(Ep) := I−1
Ep

.

Here τ : Xp → X is the blow-up of a point p ∈ X, and Ep is the exceptional
divisor. Its ideal sheaf IEp

is a holomorphic line bundle, whose inverse admits
a canonical section whose 0-divisor is Ep. On the other hand L|Ep

is negative.
It turns out that these two notions correspond respectively to the notions

of positivity for (1, 1)-forms and (1, 1)-currents:

Lemma 1.3. If L is ample on X, there exists an Hermitian metric h on L whose
Chern form ωL,h is positive.

This follows from the corresponding statement for projective space. The
Fubini-Study Kähler form on projective space is the Chern form of an adequate
metric on the line bundle O(1).

Lemma 1.4. If L is pseudo-effective, there exists a singular Hermitian metric
hsing on L such that the associated Chern current TL,hsing is positive.

When a multiple of L is effective, let σ be a non-zero section of L⊗m. The
metric on L will be defined as h

1
m
m , where hm is the singular Hermitian metric

on Lm for which hm(σ) = 1. The associated current is easily shown to be 1
m

∫
D

,
where D is the divisor of σ.

The converse statements are central in complex algebraic geometry.

Theorem 1.5. (Kodaira [23]) A line bundle L on a compact complex manifold
X is ample if and only if it admits a metric h, such that ωL,h is a positive
(1, 1)-form.

Theorem 1.6. (Demailly [13]) A line bundle on a projective complex manifold
X is pseudo-effective if and only if it admits a singular Hermitian metric whose
associated Chern current is positive.

Kodaira’s theorem has been extended by Siu [31], [32] to the semi-positive
case.

Theorem 1.7. Let L be a line bundle on a compact complex manifold X, which
admits a Hermitian metric whose Chern form is semi-positive, and satisfies∫

X
c1(L)n > 0, where n = dim X. Then h0(X, L⊗m) grows like mn with m and

X is Moishezon.

(Recall that a Moishezon manifold is a compact complex manifold which
is birationally equivalent to a projective manifold.)
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The assumptions in the above theorems are not of an algebraic nature.
The following result, in contrast, gives a purely algebraic criterion for ampleness
of line bundles:

Theorem 1.8. (Nakai-Moishezon criterion) A line bundle on a (complex) pro-
jective manifold X is ample if and only if, for any subvariety Y ⊂ X of dimen-
sion p, one has ∫

Y

c1(L)p > 0.

The proof is by induction on the dimension, using Riemann-Roch theorem
and Serre’s vanishing theorem. Note that, unlike Kodaira’s theorem, one has
to assume first that X is projective.

One might ask what happens when the inequalities in the Nakai-Moishezon
criterion become large. The line bundles which satisfy the conditions

∫

Y

c1(L)p ≥ 0, for any Y ⊂ X of dimension p

are called nef (numerically effective). Applying the Nakai-Moishezon criterion,
and assuming X is projective, one sees that their Chern classes lie in the closure
of the ample cone generated by the Chern classes of ample line bundles. It is
unfortunately not true that we can extend Lemma 1.3 to this case, allowing
ωL,h to be semi-positive (see, e.g., [15] for a counterexample).

To conclude, let us mention the Kleiman-Seshadri criterion which says
that ampleness can be tested on closed complex curves C ⊂ X only:

Theorem 1.9. Let X be projective and L be a line bundle on X. Then L is
ample if and only if its first class c1(L) belongs to the interior of the subset of
H1,1

R
(X) defined by the equations

∫

C

α ≥ 0, ∀C ⊂ X.

1.2. Cones of curves, divisors and (1, 1)-classes. Let us now assume for sim-
plicity that X is Kähler. For a class α in H1,1

R
(X), we want to define various

notions of positivity, extending the ones introduced in the context of line bun-
dles. One important point is that there might be no proper closed analytic
subset of positive dimension in X, so that positivity cannot a priori be tested
by integration over analytic subsets.

Definition 1.10. A class α ∈ H1,1
R

(X) is Kähler if it can be represented (in de
Rham cohomology) by a a Kähler form.

Definition 1.11. A class α ∈ H1,1
R

(X) is pseudo-effective if it can be represented
by a real closed positive current of type (1, 1).

Definition 1.12. A class α ∈ H1,1
R

(X) is numerically effective if for any ε > 0,
it can be represented by a closed real (1, 1)-form α̃ε such that

αε + εω ≥ 0
as a real (1, 1)-form.
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Here ω is a given Kähler form. As shows the example mentioned in the
previous section, this does not imply that α can be represented by a semi-
positive (1, 1)-form.

Definition 1.13. A Kähler current T is a real current of type (1, 1) such that
for some ε > 0, T − εω > 0 as (1, 1)-current.

The set of Kähler classes is an open cone in H1,1
R

(X), called the Kähler
cone. The set of pseudo-effective classes is a closed cone, called the pseudo-
effective cone, which obviously contains the Kähler cone. It is immediate from
the definitions that the closure of the Kähler cone is the numerically effective
cone consisting of numerically effective classes, and that the set of classes of
Kähler currents is the interior of the pseudo-effective cone.

If X is complex projective, it is natural to restrict these definitions to
the Q or R-vector space NS(X) generated by Chern classes of line bundles,
called the rational (or real) Néron-Severi group. Due to the hard Lefschetz the-
orem, this space is dual via Poincaré duality to the Q (or R) vector subspace
of Hn−1,n−1

R
(X) generated by cohomology classes [C] of closed complex curves

in X.
It is clear from Kodaira’s embedding theorem that L is numerically effec-

tive in the sense of the previous section, if and only if its first Chern class c1(L)
is numerically in the sense of Definition 1.12.

A consequence of Kleiman-Seshadri criterion for ampleness is then the
following:

Theorem 1.14. Let X be projective and L be a holomorphic line bundle on X.
Then c1(L) is numerically effective if and only if

∫
C

c1(L) ≥ 0, for any complex
curve C ⊂ X.

Finally, we have the following easy fact concerning pseudo-effective line
bundles (see previous section): for a curve C ⊂ X, consider the Hilbert scheme
M parametrizing deformations of C in X. There is a universal subscheme

C p→ X
q ↓
M .

We have then

Lemma 1.15. If for generic m ∈ M, the curve Cm is irreducible, and the map p
is surjective, then for any pseudo-effective line bundle L, we have

∫
C

c1(L) ≥ 0.

The last inequality turns out to be also true more generally for pseudo-
effective classes.

The proof of the Lemma is as follows. It suffices to show it for line bundles
L such that L⊗k is effective for some k > 0. Next let σ be a section of L⊗k

and D be its divisor. Then by the properties above, the generic curve Cm

has no component contained in D. It follows that the intersection number
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Cm · D ≥ 0. But this is equal to k
∫

C
c1(L) since C and Cm are homologous

and [D] = kc1(L).

1.3. Analytic characterizations of the Kähler and pseudo-effective cones. To
complete the parallel between the positivity properties of line bundles and that
of (1, 1)-classes, and to have a good picture of how positivity can be tested
by restriction to subvarieties, there are two missing statements in the previous
sections, which are
(1) A characterization of the Kähler cone analogous to the characterization

of the ample cone given by Nakai-Moishezon criterion.
(2) A converse to Lemma 1.15, providing a characterization of the pseudo-

effective cone for projective varieties.
These are precisely the two recent theorems proved by Demailly and his col-
laborators.

Theorem 1.16. (Demailly-Paun [14]) Let X be a compact Kähler manifold.
Then the Kähler cone of X is a connected component of the subset of H1,1

R
(X)

defined by the equations
∫

Y

αp > 0, Y ⊂ X, dim Y = p. (1.1)

Remark 1.17. It is not clear whether this set is open or not.

Remark 1.18. In contrast to what happens in the projective situation, that is
in the Nakai-Moishezon criterion, the Kähler cone cannot be in general equal to
the whole subset defined above. Indeed, consider the case of a general complex
torus T . Then T does not contain any positive dimensional proper analytic
subset. So we just get the inequality

∫
T

αn > 0. On the other hand, the space
H1,1

R
(T ) identifies to the space of Hermitian forms on Cn, while the Kähler cone

identifies to the set of positive Hermitian forms. Since
∫

T
αn identifies to the

discriminant of the Hermitian form in an adequate basis of C
n, Theorem 1.16

just says that positive Hermitian forms are a component of the set of Hermitian
forms with positive discriminant.

Theorem 1.16 had been proved before by Campana and Peternell for X
projective and α ∈ NS(X)R. An extension of this result to the case of classes
α ∈ H1,1

R
(X) ⊂ H2(X, R) which become rational when pulled-back to the

universal cover of X was proved by Eyssidieux ([17]). More importantly, it had
been established before by Lamari [24] and independently by Buchdahl [5], [6]
in the case of surfaces.

The proof of Theorem 1.16 starts as follows: one wants to show that the
Kähler cone is both open and closed in the set defined by the inequalities (1.1).
It is clearly open. Next consider a class α which is in the closure of the Kähler
cone and satisfies these inequalities. So α is numerically effective (see Definition
1.12) and

∫
αn > 0.
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The first step is then to show:

Theorem 1.19. [14] If a real (1, 1) class α is numerically effective and satis-
fies the condition

∫
αn > 0, then α is representable by a Kähler current (see

Definition 1.13).

The second step is then an induction step, which makes use of earlier
results of Paun:

Theorem 1.20. [27] Let X be a complex analytic space and α ∈ H1,1

∂∂
(X) be a

real class which is representable by a Kähler current. Then if for any proper
closed analytic subset Y of X, the restriction α|Y is a Kähler class, α is a
Kähler class.

Note the shift here from complex manifolds to analytic spaces, necessary
in order to make an induction argument. �

Next, we have the following theorem, due to Boucksom, Demailly, Paun
and Peternell giving a numerical characterization of the pseudo-effective cone:

Theorem 1.21. [3] Let X be a projective manifold. Then the pseudo-effective
cone consisting of pseudo-effective classes (cf. definition 1.11) β ∈ NS(X)R, is
equal to the set

{α ∈ H1,1
R

(X),
∫

C

α ≥ 0},
for all curves C ⊂ X satisfying the assumptions of Lemma 1.15.

The proof of Theorem 1.21 provides another, a priori smaller, set of in-
equalities characterizing the pseudo-effective cone. Namely, there is the notion
of moving intersection of pseudo-effective classes, which is the analytic ana-
logue of the “intersection of the moving part” of an effective divisor. The paper
proves that the pseudo-effective cone is equal to the set

{α ∈ NS(X)R, < α, βn−1
m >≥ 0},

where β runs through the set of pseudo-effective divisors, and

βn−1
m ∈ Hn−1,n−1(X)

is the n − 1th moving intersection of β. (The bracket here is the intersection
pairing between H1,1(X) and Hn−1,n−1(X).)

The proof uses the following: the pseudo-effective cone is certainly con-
tained in the one defined by the above inequalities. So, to show they are equal,
it suffices to show that if a pseudo-effective class in NS(X)R is in the interior
of the cone defined by the above inequalities, it is also in the interior of the
pseudo-effective cone. This is proved eventually using a criterion due to Bouck-
som ([4]) characterizing the interior of the pseudo-effective cone as the set of
pseudo-effective classes β ∈ NS(X)R having a positive moving self-intersection:
βn

m > 0. �
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2. Hodge classes and analytic geometry

2.1. Constructions of Hodge classes. Let X be a compact complex manifold of
dimension n, and k be an integer ≤ n.

Definition 2.1. The space Hdg2k(X) of degree 2k rational Hodge classes is the
set of classes α ∈ H2k(X, Q) which can be represented in de Rham cohomology
by a closed form of type (k, k).

It can be shown that this is equivalent to be representable by a closed
current of type (k, k). When X is Kähler, classes representable by a closed
form of type (k, k) are exactly the elements of the space Hk,k(X) ⊂ H2k(X, C)
(see Introduction), so that in that case

Hdg2k(X) = H2k(X, Q) ∩ Hk,k(X).

There are three standard ways of constructing Hodge classes (in fact integral
ones).

– The class of an analytic subset. Let Z ⊂ Xbe a closed analytic subset of
codimension k. Then there is a closed analytic subset

Zsing ⊂ Z ⊂ X

which is of codimension k + 1, such that Z � Zsing ⊂ X � Zsing is a complex
submanifold of codimension k. Thus we have a class

[Z � Zsing] ∈ H2k(X � Zsing, Z),

and the isomorphism H2k(X, Z) ∼= H2k(X � Zsing, Z), which comes from the
fact that the real codimension of Zsing is ≥ 2k +2, provides us with the desired
class [Z] ∈ H2k(X, Z). This is a Hodge class, as a consequence of Lelong’s
theorem, which says that the current of integration over Z

∫

Z

=
∫

Z�Zsing

is well defined and closed. It is then immediate to check that it represents the
class [Z], and since it is of type (k, k), this concludes the proof.

– Chern classes of holomorphic vector bundles. If E is a complex vector bun-
dle on a topological manifold X, we have the rational Chern classes ci(E) ∈
H2i(X, Q). (Note that the Chern classes are usually defined as integral coho-
mology classes, ci ∈ H2i(X, Z), but in this text, the notation ci will be used
for the rational ones.) If E is now a holomorphic vector bundle on a complex
manifold X, the Chern classes of E are Hodge classes.

This follows indeed from Chern-Weil theory, which provides de Rham
representatives of ci(E) as follows: If ∇ is a complex connection on E, with
curvature operator R∇ ∈ A2

X ⊗ End E, then a representative of ck(E) is given
by the degree 2k closed form

σk(
i

2π
R∇),
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where σk is the polynomial invariant under conjugation on the space of matri-
ces, which to a matrix associates the kth symmetric function of its eigenvalues.

Now, if E is a holomorphic vector bundle on X, there exists a complex
connection ∇ on E such that R∇ is of type (1, 1), that is R∇ ∈ A1,1

X ⊗ End E.
(Given a Hermitian metric h on E, one can take the so-called Chern connection,
which is compatible with h, and has the property that its (0, 1)-part is equal to
the ∂-operator of E.) This implies that σk( i

2πR∇) ∈ Ak,k(X), and shows that
ck(E) is Hodge.

– Chern classes of coherent sheaves. Coherent sheaves F on a complex manifold
X are sheaves of OX -modules which are locally presented as quotients

Or
X

φ→ Os
X → F → 0,

where φ is a matrix of holomorphic functions.
If X is a smooth projective complex manifold, it is known that coherent

sheaves are algebraic and admit a finite locally free resolution

0 → Fn → · · · → F0 → F → 0,

where the Fi are locally free, i.e., locally isomorphic to some Os
X . Such a locally

free sheaf of OX is the sheaf of sections of a holomorphic vector bundle Fi on
X, and we can define the Chern classes of F by the Whitney formula:

c(F) := Πlc(Fl)εl .

Here the total Chern class c(F) determines the Chern classes ci(F) by the
formula c(F) = 1+c1(F)+ · · ·+cn(F), and we put by definition c(Fl) := c(Fl).
(Here εl = (−1)l, and the series can be inverted because the cohomology ring
is nilpotent in degree > 0.) The Whitney formula and the case of holomorphic
bundles imply that the Chern classes ci(F) are Hodge classes.

On a general compact complex manifold (and even Kähler), such a finite
locally free resolution does not exist in general (see section 2.3). In order to
define the ci(F), one can use a finite locally free resolution

0 → Fn → · · · → F0 → F ⊗HX → 0,

of F ⊗ HX by sheaves of locally free HX -modules, where HX is the sheaf of
real analytic complex functions. The Fl are then the sheaves of real analytic
sections of some complex vector bundles Fl of real analytic class, and one can
then define (using again the definition c(Fl) = c(Fl))

c(F) = c(F ⊗HX), c(F ⊗HX)) = Πlc(Fl)εl .

This defines unambiguously the Chern classes of F , and some further work
allows to show that these classes are Hodge classes.
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2.2. The projective case. The three constructions described above provide us
with three subspaces of Hdg2k(X), namely the Q-vector space generated by the
classes [Z], Z ⊂ X of codimension k, the Q-vector space generated by the Chern
classes ck(E), for all holomorphic vector bundles E on X, and the Q-vector
space generated by the Chern classes ck(F), for all coherent sheaves F on X.

It is always the case that the first space is contained in the last one.
Indeed, if Z ⊂ X is a closed analytic subset of codimension k, one can consider
its ideal sheaf IZ ⊂ OX . It is a coherent sheaf, and one has the relation (cf.
[2], [18] p. 298):

ck(IZ) = (−1)k(k − 1)![Z]. (2.1)

In the projective situation, one has furthermore the following result:

Theorem 2.2. If X is a smooth projective complex variety, these three subspaces
of Hdg2k(X) coincide.

That the second and third space coincide follows from the above men-
tioned fact that coherent sheaves admit finite locally free resolutions.

That the Chern classes of a holomorphic vector bundle E are integral
combinations of classes of subvarieties follows from the following fact: if L is
an ample line bundle on X, the sheaf vector bundles E ⊗ L⊗k is generated by
global holomorphic sections, for large k. It follows that E⊗L⊗k is the pull-back
via a holomorphic map

Φ : X → G

of the tautological quotient vector bundle Q on G, where G is the Grassmannian
of codimension r subspaces of H0(X, E), r = rank E. (Indeed the map Φ is
the map which to x ∈ X associates the subspace Vx ⊂ H0(X, E) consisting of
sections vanishing at x.)

So the Chern classes of E ⊗ L⊗k are the pull-back via Φ of those of Q,
and one uses then the fact that the cohomology of G is generated by classes of
algebraic subvarieties.

Finally, the Hodge conjecture predicts the following:

Conjecture 2.3. (Hodge) If X is smooth projective complex, the Hodge classes of
X are generated over Q by classes [Z] of algebraic subvarieties of X (or equiv-
alently by Chern classes of holomorphic vector bundles or coherent sheaves).

The conjecture is known to be true for degree 2 Hodge classes (it is then
known as the Lefschetz theorem on (1, 1)-classes). It is in this case an easy
consequence of the exponential exact sequence

0 → Z
2iπ→ OX

exp→ O∗
X → 0,

and the fact that the space H1(X,O∗
X) identifies to the set of isomorphism

classes of holomorphic line bundles on X. �
Note that this proof shows that for X compact Kähler, degree 2 integral

Hodge classes are of the form c1(L), for L a holomorphic line bundle on X.
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The Hodge conjecture is also true for degree 2n − 2 Hodge classes. This
is a consequence of the above and of the hard Lefschetz theorem, a particular
case of which will say the following: let L be an ample line bundle on X. Then
cup-product with the class c1(L)n−2 induces an isomorphism

∪c1(L)n−2 : H2(X, Q) ∼= H2n−2(X, Q).

One can show that this induces an isomorphism on Hodge classes:

∪c1(L)n−2 : Hdg2(X, Q) ∼= Hdg2n−2(X, Q). �

Note that this proof already fails in the general Kähler case, since in
general there will not be anymore a Hodge class α of degree 2 inducing a
Lefschetz isomorphism ∪αn−2 as above.

2.3. The Kähler case. In the Kähler case, it was classically known that the
construction of Hodge classes via analytic subsets and via holomorphic vector
bundles may not generate the same subspace of Hdg(X). There are examples
of Chern classes of holomorphic vector bundles on a compact Kähler manifold
X which are not in Q-vector space generated by classes of analytic subsets.
Namely take for X a complex torus which has Hdg2(X) ∼= Q generated by
c1(L), where c1(L) is represented by a real (1, 1)-form on Cn which is non
degenerate but neither positive nor negative. (We use here the fact that for a
torus X = C

n/Γ, the space H1,1(X) identifies naturally to the space of real
(1, 1)-forms with constant coefficients on Cn.) Then such a torus contains no
complex hypersurface, because such an hypersurface D ⊂ X is the zero set of
a holomorphic section σD of a line bundle LD on X, and c1(LD) is represented
by a semi-positive non zero (1, 1)-form on C

n. �
Next, we proved in [34] that on compact Kähler manifolds of dimension

≥ 3, Chern classes of coherent sheaves may generate a subspace of Hdg(X)
which is strictly larger than the space generated by Chern classes of vector
bundles.

Theorem 2.4. (Voisin [34]) Let X be a compact Kähler manifold which satisfies
the assumptions

Hdg2(X) = Hdg4(X) = 0.

Then any holomorphic vector bundle E on X satisfies the property

ci(E) = 0, ∀i > 0.

Note that a general complex torus of dimension ≥ 3 satisfies these as-
sumptions.

On the other hand, let X be as in Theorem 2.4, and let x ∈ X. Then
the Hodge class [x] ∈ Hdg2n(X) is non zero, and by (2.1) this is up to a
coefficient the Chern class of the coherent sheaf Ix. This provides the announced
example, since in this case no non-zero Hodge classes comes from Chern classes
of holomorphic vector bundles. �
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Note that this result also implies the following:

Corollary 2.5. There exist compact Kähler manifolds X and coherent sheaves
on them which do not admit a locally free resolution by sheaves of OX -modules.

Indeed, consider the above example: if the coherent sheaf Ix admitted a
locally free resolution

0 → Fn → · · · → F0 → Ix,

Whitney formula would give:

c(Ix) = Πlc(F εl

l .

But the theorem says that the right-hand side is equal to 1, while the left-hand
side has the non zero term cn(Ix) proportional to [x] in top degree. �
Remark 2.6. The existence of locally free resolutions has been proved for co-
herent sheaves on compact complex surfaces by Schuster [28].

Theorem 2.4 is a consequence of the Bando-Siu extension of Uhlenbeck-
Yau theorem to reflexive sheaves F on compact Kähler manifolds. A reflexive
sheaf is a sheaf which has the Hartogs extension property that any section
defined away from a codimension 2 closed analytic subset extends. Equivalently,
F should be equal to its bidual.

Theorem 2.7. (Bando-Siu [1]) Let F be a reflexive coherent on compact Kähler
manifold X. Assume F is stable with respect to some Kähler form ω. Then F
admits a Hermite-Einstein metric relative to ω.

It follows that if furthermore c1(F) = 0 = c2(F), then F is locally free
and admits a flat holomorphic connection, so that ci(F) = 0, i > 0.

We shall explain later on the notions of stability and Hermite-Einstein
metrics in the easier context of locally free sheaves.

From the above results, one concludes that the only possible way to extend
the Hodge conjecture to the Kähler case would be the following:

Question 2.8. Are the Hodge classes on a compact Kähler manifold generated
by Chern classes of coherent sheaves?

This question was answered negatively in [34]:

Theorem 2.9. (Voisin [34]) Let X be a compact Kähler manifold of dimension
n, with Kähler form ω. Assume the following:
(1) Hdg2(X) = 0.
(2) 〈Hdg4(X), [ω]n−2〉 = 0. (Here [ω] ∈ H2(X, R) is the de Rham class

of ω and the intersection is the Poincaré pairing between H4(X) and
H2n−4(X).)

(3) X does not contain proper positive dimensional analytic subset.
Then any coherent sheaf F on X satisfies the condition c2(F) = 0.

On the other hand there exist compact complex manifolds X satisfying the
assumptions but have Hdg4(X) �= 0.
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The examples are general 4-dimensional Weil tori. The algebraic Weil tori
were proposed as candidates for a counterexample to the Hodge conjecture even
in projective geometry. Weil tori are constructed as follows: one starts with a
rank 4n lattice Γ endowed with an endomorphism I such that I2 = −IdΓ. Let
ΓC := Γ ⊗ C. The torus will be of the form

X = ΓC/W ⊕ Γ,

where W ⊂ ΓC is a rank 2n complex vector subspace, which is stable under I,
satisfies the property that

W ⊕ W = ΓC,

and is such that the eigenvalues of I acting on W consist of n eigenvalues equal
to i and n eigenvalues equal to −i.

The Weil classes on such tori are the degree 2n Hodge classes constructed
as follows: let K = Q[I]. Then, using the action of I on X, K acts on the space
Γ∗

Q
= H1(T, Q), and this way Γ∗

Q
is a K-vector space of rank 2n. There is a

natural trace map
2n∧

K

Γ∗
Q →

2n∧

Q

Γ∗
Q
∼= H2n(X, Q).

One shows that the image of this map consists of Hodge classes. (This is a rank
2 Q-vector subspace.)

It was known to Zucker [37] that for general Weil tori, the Weil classes
are not in the space generated by classes of analytic subsets. The assumptions
of Theorem 2.9 were also essentially checked there.

The proof of Theorem 2.9 uses the Uhlenbeck-Yau Theorem.

Theorem 2.10. (Uhlenbeck-Yau [33]) Let X be a compact complex manifold of
dimension n with Kähler form ω. Let E be a holomorphic vector bundle on X,
which is stable with respect to ω. Then E admits a Hermite-Einstein metric h
relative to ω.

Here the stability condition is the following: Denote by E the sheaf of
holomorphic sections of E. Then E is ω-stable if for any subsheaf F ⊂ E such
that 0 < rkF < rk E , one has

〈c1(F), [ω]n−1〉
rk F <

〈c1(E), [ω]n−1〉
rk E .

The Hermite-Einstein condition on h is the following. Associated to h is the
Chern connection ∇h, with curvature operator R∇h

∈ A1,1
X ⊗ End E. Then h

is Hermite-Einstein if
R∇h

= µωIdE + R0
∇h

,

where µ ∈ C is determined by the equation
i

2π
rk E[ω]nµ = 〈c1(E), [ω]n−1〉,
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and the form valued matrix R0
∇h

has primitive coefficient. (A 2-form α on X

is said to be primitive if ωn−1 ∧ α = 0 everywhere on X.)
An important consequence of Uhlenbeck-Yau’s theorem is the following:

Corollary 2.11. If E is ω-stable and satisfies the conditions

c1(E) = 0, < c2(E), [ω]n−2 >= 0,

then E admits a flat holomorphic connection and thus the rational Chern classes
of E vanish, ci(E) = 0, ∀i > 0.

The corollary shows that under the assumptions of theorem 2.9, we have
c2(E) = 0 for all ω-stable vector bundles on X. Induction on the rank and
arguments involving desingularizations of non locally free sheaves give the result
for all coherent sheaves on X. �

3. The topology of projective and Kähler manifolds

3.1. Kodaira’s theorem on surfaces. Let X be a Kähler compact manifold.
Kodaira’s embedding theorem gives the following.

Theorem 3.1. (Kodaira [23]) X is projective if and only if X carries a Kähler
form ω whose cohomology class is rational, [ω] ∈ H2(X, Q).

Indeed, by multiplying ω by an integer, we may assume its class is integral.
The Lefschetz theorem on (1, 1)-classes then says that

[ω] = c1(L),

for some line bundle on X. Finally, the isomorphism

H1,1

∂∂
(X) ∼= H1,1

R
(X)

and the construction of the Chern forms ωL,h show that for some metric h on
L, we have ω = ωL,h. Kodaira’s Theorem 1.5 then says that L is ample. �

Note that, in particular, if X is Kähler and H2,0(X) = 0, then X is
projective. Indeed in that case H1,1

R
(X) = H2(X, R). Since the Kähler cone is

then open in H2(X, R), it has to contain rational classes, since they are dense
in H2(X, R).

Starting with a Kähler manifold X, one can deform the complex structure.
It is known that the small deformations preserve the Kähler property and that
the spaces Hp,q vary smoothly inside the fixed space Hp+q(X, C), which does
not depend on the complex structure (see, e.g., [36] I, 9.3.2). Given a family
(Xt)t∈B of deformations of the complex structure on X, one can consider the set

∪t∈BH1,1
R

(Xt) ⊂ H2(X, R),

inside which sits as an open set the union of the Kähler cones Kt ⊂ H1,1
R

(Xt).
Assuming the union of the Kt contains an open set of H2(X, R), then by the
same density argument, it must contain a rational class, which means by Ko-
daira’s theorem 3.1 that some Xt is projective.
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It turns out that this is precisely what happens in the case of Kähler
surfaces.

Theorem 3.2. (Kodaira [22]) A compact Kähler surface admits a (arbitrarily
small) deformation which is projective.

Kodaira’s proof was obtained as a consequence of his classification of
surfaces. A more direct proof was given recently by Buchdahl [7], in the case
of unobstructed surfaces. His proof uses the following criterion, valid in any
dimension, for X to admit small projective deformations.

Proposition 3.3. Assume an unobstructed compact Kähler manifold X has a
Kähler class

ω ∈ H1,1
R

(X) ⊂ H1,1(X) ∼= H1(X, ΩX)
satisfying the following condition: the interior product (combined with cup-
product in cohomology)

�ω : H1(X, TX) → H2(X,OX) (3.1)

is surjective. Then X admits arbitrarily small deformations which are projec-
tive.

Let us explain the relation between this criterion with the previous ar-
gument: The space H1(X, TX) is the space of first-order deformations of the
complex structure up to isomorphisms. Assume that there is an actual fam-
ily of deformations (Xt)t∈B of the complex structure on X ∼= X0 such that
the tangent space TB,0 identifies to H1(X, TX), by the Kodaira-Spencer map
which to a tangent vector to B at 0 associates the corresponding infinitesimal
deformation of X0. Then the surjectivity of the map (3.1) means exactly that
the natural map

�t∈BH1,1
R

(Xt) → H2(X, R)
has a surjective differential at the point ω (see [36] II, 5.3.4).

This certainly implies that, even after shrinking B, the union of the Kähler
cones of the Xt contains an open set of H2(X, R), so that we are reduced to
the previous situation.

However, in general, the family (Xt)t∈B does not exist (there are usually
obstructed first-order deformations, which do not extend to all higher-orders).
This problem limits Buchdahl’s proof, which has a more analytic flavor, to the
unobstructed case. �
3.2. Higher-dimensional case. In higher dimension, the Kodaira theorem left
open the question whether a compact Kähler manifold can be deformed to a
projective one, a problem known as the Kodaira problem (see [12]), although
it is not clear whether the question was asked by Kodaira himself.

Here we are considering more generally large deformation, that is, we say
that X is a deformation of X ′ if there exist connected analytic spaces

X , B,
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a smooth proper holomorphic map

φ : X → B,

and two points t, t′ ∈ B such that Xt
∼= X, Xt′ ∼= X ′. Clearly, if X and X ′ are

deformations of each other, they are diffeomorphic, (although the diffeomor-
phism between them may not be canonically determined up to isotopy, because
of the monodromy group of the fibration given by φ). Indeed, this fibration can
be trivialized way in a C-infinite way over paths in B, and B is path connected.

So, a fortiori, X and X ′ are homeomorphic and in particular have the same
homotopy type. Hence a weakening of the Kodaira problem asks the following:

Question 3.4. Does any compact Kähler manifold have the homotopy type of
a projective complex manifold?

Note that there are no symplectic obstructions, by the work of Donaldson
[16], Munoz et al [26] on approximate holomorphic sections of line bundles on
symplectic manifolds, which show that any symplectic manifold can be realized
as a symplectic submanifold of projective space.

Unfortunately, the answer to this question is negative.

Theorem 3.5. (Voisin [35]) In any dimension ≥ 4, there exist compact Kähler
manifolds which do not have the homotopy type of complex projective manifolds.

In any dimension ≥ 6 there exist simply connected such examples.

The examples constructed in [35] have the following shape (at least in
the non simply-connected case). One considers complex tori T admitting an
endomorphism φT . Later on, we will make an assumption on φT , but for the
moment we just assume that the eigenvalues of φT ∗ acting on the tangent space
of T at 0 are all different from 0 or 1.

It follows that inside T × T the four subtori

T1 := T × 0, T2 = 0 × T,

T3 = Tdiag = {(x, x), x ∈ T}, T4 = Tgraph = {(x, φT (x)), x ∈ T}
meet pairwise transversally at finitely many points.

We first blow-up the finitely many pairwise intersection points of these
tori; then the proper transforms T̃i of the Ti’s are smooth and do not meet any-
more. So we can blow-up them again. The resulting compact complex manifold
is Kähler because the Kähler property is stable under blow-ups.

We prove next that for adequate choice of (T, φT ), the manifold X so
constructed does not have the homotopy type of a complex projective manifold.
More precisely, let us make the following assumptions on (T, φT ):
(∗) the dimension n of T is ≥ 2 and the endomorphism φ := φT∗ of H1(T, Z)

satisfies the properties that all of its eigenvalues are distinct, none is real,
and the Galois group of its characteristic polynomial acts as the symmetric
group of 2n elements on the set of eigenvalues.
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The precise statement is then the following:

Theorem 3.6. Assume the assumptions (*). If X ′ is a Kähler compact manifold
such that there exists a graded ring isomorphism

γ : H∗(X ′, Z) ∼= H∗(X, Z),

then X ′ is not projective.

The key point is the notion of polarized Hodge structure. Consider a
Hodge structure of weight r, that is, a lattice H and a decomposition

HC = ⊕p+q=rH
p,q.

Definition 3.7. A polarization of this Hodge structure is a bilinear form

q : H × H → Z

which is skew-symmetric if r is odd and symmetric otherwise, and satisfies the
conditions:

q(α, β) = 0, α ∈ Hp,q, β ∈ Hp′,q′
, (p, ) �= (p′, q′).

(α, β) �→ ip−qq(α, β)

is a positive definite Hermitian form on Hp,q.

Hodge theory and the Kähler identities show the following (see [36] I,
6.2.3). Let X be a complex projective manifold, and η = c1(L) ∈ H2(X, Z) be
the first Chern class of an ample line bundle on X. Then defining the primitive
cohomology

Hr(X, Z)prim := Ker ∪ ηn−r+1 ⊂ Hr(X, Z,

the form

qη(α, β) =
∫

X

α ∪ ηn−r ∪ β

defines up to sign a polarization on Hr(X, Z)prim. (Here we are working with
cohomology modulo torsion.)

Note that for r = 1, we have H1(X, Z)prim = H1(X, Z) and for r = 2, we
have H2(X, Q)prim ⊕ Qη = H2(X, Q).

In other words, the cohomology groups of a projective complex mani-
folds carry Hodge structures which are compatible with the cup-product, and
furthermore, for degree 1 and 2, these Hodge structures can be polarized.

The proof of Theorem 3.6 consists in showing that if we have X ′, X and γ
as stated there, the Hodge structure on H1(X ′, Z) (which has to be compatible
via the cup-product with the Hodge structures on higher cohomology groups)
cannot be polarized.
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