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Some results on Green’s higher
Abel-Jacobi map

By Claire Voisin*

1. Introduction

This paper is devoted to the study of the first higher Abel-Jacobi invariant

defined by M. Green in [4] for zero-cycles on a surface. Green’s work is a

very original attempt to understand, at least over C, the graded pieces of the

conjecturally defined filtration on Chow groups

CHp(X)Q = F 0CHp(X)Q ⊃ F 1CHp(X)Q

= CHp(X)hom
Q ⊃ . . .⊃ F p+1CHp(X)Q = 0.

This filtration should satisfy the following properties:

i) First of all it should be stable under correspondences, so that a corre-

spondence Γ ⊂ X × Y should induce

Γ∗ : F kCHp(X)Q→ F kCHp′(Y )Q,

where p′ = p+ dimY − dim Γ, and

ii) the induced map

GrkΓ∗ : GrkFCHp(X)Q→ GrkFCHp′(Y )Q

should vanish when Γ is homologous to zero.

A filtration satisfying this last property has been constructed by Saito [11],

but it is not shown that the filtration terminates, that is F p+1CHp(X)Q = 0.

A definition has also been proposed by J. P. Murre ([8]), under the assumption

that a strong Künneth decomposition of the diagonal exists, but it is not proved

to satisfy condition ii) above. In fact proving the existence of such a filtration

would solve in particular Bloch’s conjecture on zero-cycles of surfaces [1].

In any case, the first steps of the filtration are easy to understand, at least

for zero-cycles. Namely one should have F 2CH0(X) = CH0(X)alb = Ker alb,

where alb : CH0(X)hom → Alb(X) is the Albanese map. More generally for

∗Partially supported by the project “Algebraic Geometry in Europe” (AGE).
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the subgroup CHp(X)
alg
Q ⊂ CHp(X)Q of cycles algebraically equivalent to zero,

one should have over C, F 2CHp(X)alg
Q = Ker Φp

X , where

Φp
X : CHp(X)hom

Q → J2p−1
X = H2p−1(X,C)/F pH2p−1(X)⊕H2p−1(X,Z)

is the Abel-Jacobi map, defined by Griffiths [5].

In [4], M. Green suggested constructing directly (over C), from Hodge

theoretic considerations, higher Abel-Jacobi maps

ψpm : FmCHp(X)→ Jpm(X),

so that Fm+1CHp(X) = Kerψpm. Hence one should have an induced injective

map

ψpm : GrmCHp(X)→ Jpm(X).

In the case of zero cycles on a surface, he proposed an explicit construction of

(1.1) ψ2
2 : Gr2CH2(S) = CH0(S)alb→ J2

2 (S)

that we will review below. The purpose of this paper is to answer some ques-

tions raised in [4], concerning the behaviour of ψ2
2. To simplify the notation,

we will assume throughout that S is regular, but this assumption does not

play any role in the arguments. Our first result is the following, which answers

negatively conjecture 3.4 of [4]:

Theorem 1. The higher Abel-Jacobi map ψ2
2 is not, in general, injective.

The noninjectivity is proved here for an explicit example but the argument

should allow us to prove, as we will explain, that ψ2
2 is never injective for

surfaces with CH0(S)alb 6= 0.

Our second result solves, in particular, conjecture 3.6 of [4]:

Theorem 2. The map ψ2
2 is nontrivial modulo torsion (and has an infinite

dimensional image), when h2,0(S) 6= 0.

As an intermediate step, we explain how Mumford’s pull-back Z∗(ω) of a

holomorphic two-form ω of a surface S on a variety W parametrizing 0-cycles

(Zw)w∈W of S (cf. [7]) can be computed when one has a family C → W of

curves of S parametrized by W , such that for each w ∈ W , the 0-cycle Zw is

supported on Cw . There are then two associated Abel-Jacobi invariants eCw ,S
and fZw ,Cw to be defined below, which play a key role in the construction of

ψ2
2(Zw), and we show that Z∗(ω) can be computed from the wedge product

de∧ df . We then use this result to show that in fact Z∗ω depends only on the

map ψ2
2 ◦ Z∗ : W → J2

2 (S).

Thus our results show that the first new higher Abel-Jacobi map defined

by Mark Green is not strong enough to capture the whole of CH0(S)alb as it

should conjecturally do, but that it is strong enough to determine Mumford’s

invariants, which were used to show that CH0(S)alb is infinite dimensional,
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when h2,0(S) 6= 0. The question of whether it is possible to refine it so as to

get the desired injectivity of 1.1 is still open.

The paper is organized as follows: The result above concerning the pull-

back of holomorphic two forms (Proposition 2) provides the contents of Sec-

tion 3. Theorem 1 is proved in Section 2, and Theorem 2 is proved in Section 4.

We conclude this introduction with a brief description of ψ2
2, which will

serve also as an introduction for the notation used throughout the paper.

Let S be a regular surface, and let C be a smooth (not necessarily con-

nected) curve; let ψ : C → S be a morphism generically one-to-one on its

image. We can find an immersion φ : C ↪→ S̃, and a birational morphism

τ : S̃ → S such that ψ = τ ◦ φ.

Now let Z be a 0-cycle of C, of degree 0 on each component of C. We

construct two Abel-Jacobi invariants eC,S and fZ,C as follows:

The mixed Hodge structure on H2(S̃, C) is given by the Hodge filtration

F · on H2(S̃, C), which fits in the exact sequence

(1.2) 0→ H1(C,Z)→ H2(S̃, C,Z)→ Ker(H2(S̃,Z)→ H2(C,Z))→ 0.

The filtration F · restricts to the Hodge filtration on H1(C) and projects to the

Hodge filtration on Ker(H2(S̃,Z)→ H2(C,Z)).

DefineH2(S,Z)tr as the quotientH2(S,Z)/NS(S). Then its dualH2(S,Z)tř

is the orthogonal of NS(S) in H2(S,Z). There is an inclusion of Hodge struc-

tures

τ∗ : H2(S,Z)tř ↪→ Ker(H2(S̃,Z)→ H2(C,Z)).

Restricting the extension (1.2) toH2(S,Z)tř, we get an exact sequence of mixed

Hodge structures

0→ H1(C,Z)→ H2(S̃, C,Z)tr→ H2(S,Z)tř→ 0.

The extension class of this exact sequence is an element eC,S of the complex

torus (cf. [3]),

J(C × S)tr := H1(C,C)⊗H2(S,C)tr/[F
2(H1(C)⊗H2(S)tr)

⊕H1(C,Z)⊗H2(S,Z)tr].

It is not difficult to prove that it can be also computed as the natural projection

of the Abel-Jacobi invariant of the one-cycle obtained from the graph of ψ

(which is a one-cycle of C × S) by adding vertical and horizontal one-cycles of

C × S in order to get a homologically trivial one-cycle.

It is well-known that the inclusion

H1(C,R)⊗H2(S,R)tr ⊂ H1(C,C)⊗H2(S,C)tr

induces an isomorphism

H1(C,R)⊗H2(S,R)tr
∼= H1(C,C)⊗H2(S,C)tr/F

2(H1(C)⊗H2(S)tr),
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and this allows us to identify J(C × S)tr to the real torus

H1(C,Z)⊗Z H2(S,Z)tr⊗Z R/Z.

We will view eC,S as an element of this real torus.

Now the zero-cycle Z has an Abel-Jacobi invariant (Albanese image)

fZ,C ∈ J(C) ∼= H1(C,C)/[F 1H1(C)⊕H1(C,Z)].

Again, the inclusionH1(C,R) ⊂ H1(C,C) induces an isomorphismH1(C,R) ∼=
H1(C,C)/F 1H1(C), which provides the identification

J(C) ∼= H1(C,Z)⊗Z R/Z.

We will view fZ,C as an element of the real torus on the right.

The pairing

H1(C,Z)⊗Z H1(C,Z)→ Z

allows us then to contract eC,S and fZ,C to an element

eC,S · fZ,C ∈ R/Z⊗Z R/Z⊗Z H2(S,Z)tr.

Defining now U2
2 ⊂ R/Z⊗Z R/Z⊗Z H2(S,Z)tr as the group generated by the

elements eC,S ·fZ,C defined above, for the triples (C,Z, ψ) such that ψ∗(Z) = 0

as a zero-cycle of S, it is clear that the projection

eC,S · fZ,C ∈ J2
2 (S) := R/Z⊗Z R/Z⊗Z H2(S,Z)tr/U

2
2

depends only on the zero-cycle ψ∗(Z). The resulting map

ψ2
2 : Z0(S)hom→ J2

2 (S)

is then easily seen to factor through rational equivalence, so that ψ2
2 is actually

defined on CH0
0(S).

Acknowledgements. I would like to thank P. Griffiths for his careful read-

ing of the first version of this paper, and for the improvements he suggested.

2. The noninjectivity of ψ2
2

In this section we construct a counterexample to the conjectured injectiv-

ity of the map

ψ2
2 : CH0(S)alb→ J2

2 (S).

The counterexample is based on a refinement of the following argument.

First of all, if Γ ⊂ C × S is a correspondence homologous to zero, with

Abel-Jacobi invariant

eΓ ∈ J(C × S)tr,
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we show that

ψ2
2 ◦ Γ∗ : CH0(C)hom → J2

2 (S)

is given by

ψ2
2 ◦ Γ∗(z) = eΓ · fz modU2

2 ,

where fz = alb(z) ∈ J(C) = H1(C,Z)⊗R/Z. Now we view eΓ as an element of

Hom(H2(S,Z)tř, H
1(C,Z)⊗R/Z) and we note that if its image is contained in

a proper real subtorus T of H1(C,Z)⊗R/Z, there is a nontrivial real subtorus

T⊥ of H1(C,Z)⊗ R/Z such that, if fz ∈ T⊥,

eΓ · fz = 0 in H2(S,Z)tr⊗ R/Z⊗ R/Z.

Then the injectivity of ψ2
2 would imply that T⊥ ⊂ Ker Γ∗, and if J(C) is

simple, this would imply that Γ∗ = 0, and then eΓ would be a torsion point

in J(C × S)tr. So it suffices to find C, Γ as above with eΓ not of torsion

(or Γ∗ 6= 0), J(C) simple and Im eΓ contained in a proper real subtorus T of

H1(C,Z)⊗ R/Z to contradict the injectivity of ψ2
2.

We start with the simple Lemma 1 below which allows us to extend slightly

the definition of ψ2
2. Let S be a regular surface, C be a smooth curve and Γ ∈

CH1(C×S) be a one-cycle; the homology class of Γ lies in H2(C)⊕H2(S)alg, so

that adding to Γ vertical and horizontal cycles we can get a cycle Γ′ homologous

to zero: Then the induced morphisms

Γ∗ : CH0
0(C)→ CH0

0(S), Γ′∗ : CH0
0(C)→ CH0

0(S)

coincide, and the Abel-Jacobi image of Γ′ in J(C × S)tr (see Section 1) does

not depend on the choice of Γ′. We will denote it by eΓ. As in Section 1, we

can view eΓ as an element of the real torus

H1(C,Z)⊗Z H2(S,Z)tr ⊗Z R/Z.

By contraction and use of the intersection pairing on H1(C,Z), eΓ gives a map

[eΓ] : JC ∼= H1(C,Z)⊗Z R/Z→ R/Z ⊗Z R/Z ⊗Z H2(S,Z)tr.

We have now:

Lemma 1. For z ∈ JC, ψ2
2(Γ∗(z)) ∈ J2

2 (S) is equal to the projection of

[eΓ](z) modulo U2
2 (S), using the definition

J2
2 (S) := R/Z⊗Z R/Z⊗Z H2(S,Z)tr/U

2
2

of Section 1.

Proof. This is true by definition if Γ is the graph Γφ of a morphism φ

from C to S, generically one-to-one on its image. Now let C1
φ→ S be the
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desingularization of the inclusion of pr2(Supp Γ) in S. Then Γ lifts to a one-

cycle Γ1 ∈ C × C1, such that

Γ∗ = φ∗ ◦ Γ1∗ : JC → CH0
0(S).

We have then

ψ2
2(Γ∗(z)) = ψ2

2(φ∗(Γ1∗(z)))

= projection of [eΓφ ](Γ1∗(z)) in J
2
2 (S).

Now it suffices to prove that

[eΓ] = [eΓφ ] ◦ Γ1∗ : J(C) → R/Z⊗Z R/Z⊗Z H2(S,Z)tr.

But Γ1 induces naturally a correspondence Γ̃1 between C × S and C1 × S;

hence a morphism

Γ̃∗1 : CH1(C1 × S)→ CH1(C × S),

such that Γ ≡rat Γ̃∗1(Γφ). It follows that eΓ = Γ̃∗1(eΓφ) in J(C × S)tr, where

Γ̃∗1 also denotes the induced morphism between the intermediate jacobians

J(C1 × S)tr and J(C × S)tr.

Let Γ∗1Z : H1(C1,Z) → H1(C,Z) be the morphism of Hodge structures

induced by the cohomology class of Γ1 in C × C1; then the morphism Γ̃∗1 is

induced by the morphism of Hodge structures

Γ∗1Z ⊗ Id : H1(C1,Z)⊗H2(S,Z)tr→ H1(C,Z)⊗H2(S,Z)tr,

and it follows that we have a commutative diagram

Γ∗1R ⊗ Id : H1(C1,R)⊗H2(S,R)tr → H1(C,R)⊗H2(S,R)tr

↓ ↓
Γ̃∗1CmodF 2 : H1(C1,C)⊗H2(S,C)tr/F

2 → H1(C,C)⊗H2(S,C)tr/F
2,

where the vertical arrows are the identifications already used between real

cohomology and complex cohomology mod F 2, and the last horizontal map

induces

Γ̃∗1 : J(C1 × S)tr → J(C × S)tr

by passing to the quotient modulo integral cohomology. This means that,

viewed as elements of J(C1)⊗ZH2(S,Z)tr and J(C)⊗ZH2(S,Z)tr respectively,

eΓφ and eΓ satisfy the relation

eΓ = Γ∗1 ⊗ Id(eΓφ).

Now it suffices to note that the contraction maps

〈 , 〉C1 : J(C1)⊗Z J(C1) → R/Z⊗Z R/Z,
〈 , 〉C : J(C)⊗Z J(C) → R/Z⊗Z R/Z
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satisfy the relation

〈Γ1∗(z), w〉C1 = 〈z,Γ∗1(w)〉C , z ∈ J(C), w ∈ J(C1),

to get

[eΓφ ](Γ1∗(z)) = 〈Γ1∗(z), eΓφ〉C1

= 〈z,Γ∗1 ⊗ Id(eΓφ)〉C = 〈z, eΓ〉C = [eΓ](z),

as desired.

The following Lemma 2 is quite standard (cf. [10]); let Γ ∈ CH1(C × S)

be a correspondence, and let

Γ∗ : J(C) → CH0
0(S)

be the induced morphism; we have:

Lemma 2. Ker Γ∗ is a countable union of translates of an abelian subva-

riety of J(C).

Proof. Ker Γ∗ is a subgroup of J(C), and is a countable union of algebraic

subsets of J(C). The union of the irreducible algebraic subsets of J(C) passing

through 0 and contained in Ker Γ∗ is stable under difference which implies that

it can be written as an increasing union of irreducible algebraic subsets of J(C).

So it must be in fact an algebraic subset of J(C), stable under difference, that

is an abelian subvariety of J(C). Hence the result.

Now assume some real subtorus T of J(C) = H1(C,R)/H1(C,Z) is con-

tained in Ker Γ∗; then if A ⊂ J(C) is the maximal abelian subvariety contained

in Ker Γ∗, so that by Lemma 2, Ker Γ∗ =
⋃
m∈ZA + tm for some tm ∈ J(C),

then

T =
⋃

m∈Z
T ∩ (A+ tm).

It follows that some T ∩ (A + tm) must contain an open set of T , and this

implies easily that in fact T is contained in A. So we have proved:

Lemma 3. Let T be a real subtorus of J(C) contained in Ker Γ∗; then

there is an abelian subvariety A of J(C) such that T ⊂ A ⊂ Ker Γ∗. In

particular, if T is nontrivial and T ⊂ B where B is a simple abelian subvariety

of J(C) (i.e. there is no proper nontrivial abelian subvariety of B), then B ⊂
Ker Γ∗.

We want to apply these observations to show the noninjectivity of the

higher Abel-Jacobi map ψ2
2 : CH0

0(S) → J2
2 (S). Let C be a curve, and

Γ ∈ CH1(C × S) be a correspondence. Let eΓ ∈ J(C) ⊗Z H2(S,Z)tr be the

corresponding Abel-Jacobi invariant. We can view eΓ as an element

[eΓ]∗ ∈ Hom(H2(S,Z)tř, J(C)).
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Assume there is a proper real subtorus T of J(C) containing Im [eΓ]∗; i.e. there

is a proper sublattice TZ of H1(C,Z) such that Im [eΓ]∗ ⊂ TZ ⊗Z R/Z. Then

by definition of [eΓ]

T⊥ := T⊥Z ⊗Z R/Z ⊂ Ker [eΓ].

Similarly, if B
iB
↪→ J(C) is an abelian subvariety, and B̌ is the corresponding

quotient of J(C), let J(C × S)Btr be the induced quotient of J(C × S)tr; that

is, writing B̌ = B̌C/B̌
1,0 ⊕ B̌Z, then

J(C × S)Btr := B̌C ⊗H2(S,C)tr/F
2(B̌C ⊗H2(S,C)tr)⊕ B̌Z ⊗H2(S,Z)tr.

Let

[eΓ]∗B ∈ Hom(H2(S,Z)tř, B̌)

be the composition of [eΓ]∗ with the projection J(C) → B̌. Let eBΓ ∈ J(C×S)Btr
be the projection of eΓ. Note that [eΓ]∗B is simply eBΓ viewed as an element of

Hom(H2(S,Z)tř, B̌) using the real representations of the (intermediate) jaco-

bians

J(C × S)Btr
∼= HomZ(H2(S,Z)tř, B̌Z ⊗Z R/Z).

If Im [eΓ]∗B is contained in a proper real subtorus T of B̌, the orthogonal torus

T⊥ ⊂ B is contained in Ker [eΓ]|B.

In this situation, assume now that ψ2
2 is injective and that B is simple:

then by Lemma 1, one finds that Γ∗ vanishes on T⊥ ⊂ B, and by Lemma 3,

one concludes that Γ∗ vanishes on B. Now this implies:

Proposition 1. Under the above assumptions, the projection eBΓ of eΓ

in J(C × S)Btr is in fact a torsion point.

This follows from Γ∗|B = 0 and from the following lemma (cf. [4], [2])

applied to the correspondence Γ ◦ πB where πB is a multiple of a projector

from J(C) to B:

Lemma 4. Let Γ ∈ CH1(C ×S) be a correspondence such that the corre-

sponding map Γ∗ : J(C) → CH0
0(S) is zero; then the Abel-Jacobi invariant eΓ

is a torsion point of J(C × S)tr.

In order to contradict the injectivity of ψ2
2 it suffices then to find a smooth

curve C, a simple abelian subvariety B of J(C) and a correspondence Γ ∈
CH1(C × S) satisfying the following properties:

– The projection eBΓ of the Abel-Jacobi invariant eΓ ∈ J(C × S)tr in

J(C × S)Btr is not a torsion point.

– The image of the map

[eΓ]∗B : H2(S,Z)tř → B̌

is contained in a proper real subtorus of B̌.
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To get an explicit example, we use a construction due to Paranjape ([9]).

Consider a K3 surface S which is the desingularization of a general double

cover of P2 branched along the union of six lines. Then rkNS(S) = 16, hence

b2(S)tr = 6. Paranjape constructs a genus 5 curve C, which is a ramified

cover of an elliptic curve E, with an automorphism j of order 4, acting on

B := (KerNm : J(C) → J(E))0, a four dimensional abelian variety. The K3

surface S is birational to a quotient ofC×C by a finite group. Let r : C×C → S

be the quotient (rational) map; for generic c ∈ C, r is everywhere defined along

c× C and we get a family of one-cycles of C × S parametrized by C,

c ∈ Cgen 7→ Γc := graph of r|c×C ⊂ C × S.
This family induces an Abel-Jacobi map

Γ∗ : J(C)→ J(C × S).

Using the projection

J(C × S)→ J(C × S)tr→ J(C × S)Btr

and restricting the map Γ∗ to B ⊂ J(C), we get a morphism (of complex tori)

ΓB∗ : B → J(C × S)Btr.

This morphism corresponds to a morphism of Hodge structures

φΓ : BZ → B̌Z ⊗H2(S,Z)tr,

where B = BC/F
1BC⊕BZ, BZ = B̌Ž. One verifies easily that the correspond-

ing morphism of Hodge structures

ψΓ : H2(S,Z)tř→ B̌Z ⊗ B̌Z
is the composite of the pull-back map

r∗ : H2(S,Z)tř → H1(C,Z)⊗H1(C,Z)

and of the projection map

H1(C,Z)⊗H1(C,Z)→ B̌Z ⊗ B̌Z.
Paranjape ([9]) shows that ψΓ is injective. It follows that φΓ is nonzero.

Now let u ∈ BZ be such that φΓ(u) 6= 0. There are at most countably

many points ui in the real torus (R/Z) · u such that ΓB∗ (ui) is of torsion in

J(C × S)Btr. Let α ∈ R/Z be such that ΓB∗ (α · u) is not of torsion; now view

φΓ(u) as an element [φΓ(u)] of Hom(H2(S,Z)tř, B̌Z). Since b2,tr(S) = 6 and

rk B̌Z = 8, the image of [φΓ(u)] is contained in a proper sublattice of B̌Z. It

follows that [φΓ(u)]⊗α ∈ Hom(H2(S,Z)tř, B̌Z⊗R/Z) has its image contained

in a proper subtorus of BŽ ⊗ R/Z.

Since ΓB∗ is induced by the Abel-Jacobi map, there is a one-cycle Γu·α in

C × S such that eBΓu·α = ΓB∗ (α · u). Consider now the corresponding element
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[eΓu·α ]∗B of Hom(H2(S,Z)tř, B̌Z ⊗ R/Z). Since φΓ is a morphism of Hodge

structures, we have a commutative diagram

φΓ ⊗ R/Z : BZ ⊗ R/Z → Hom(H2(S,Z)tř, B̌Z ⊗ R/Z)

↓ ↓
ΓB∗ : B → J(C × S)Btr

where the vertical maps are the identifications already used above. It follows

that [eΓu·α ]∗B is equal to [φΓ(u)]⊗α, hence has its image contained in a proper

subtorus of B̌Z ⊗ R/Z.

To conclude that this is the desired counterexample, it suffices to note

that for general S, B is a simple abelian variety. This follows from the fact

that (B, j) determines the Hodge structure on H2(S)tr (cf. [9]), which implies

that B has at least four moduli. Then a dimension count shows that the

moduli space of nonsimple abelian varieties A of dimension 4 admitting an

automorphism of order 4, acting on H1,0(A) with two eigenvalues equal to i

and two eigenvalues equal to −i, as is the case in Paranjape’s family, is of

dimension strictly less than 4.

The counterexample given here is quite special, but it seems from the

line of the argument that the noninjectivity of ψ2
2 for a surface with infinite

dimensional CH0 is a general fact; indeed take any such surface S (regular

for simplicity) and choose a finite sufficiently ample and generic morphism

φ : S → P2. Let C be a sufficiently general and ample curve in P2 such that

C̃ = φ−1(C) is smooth, J(C) is simple, and j∗ : B → CH0(S) has an at most

countable kernel, where j is the inclusion of C̃ in S and B := (KerNm :

J(C̃) → J(C))0. Now choose a dimension-1 real subtorus T of φ∗(J(C)) and

let T⊥ ⊂ J(C̃) be its orthogonal. Consider a general small deformation C̃t of

C̃ . The associated element eC̃t,S of J(C̃t × S)tr varies holomorphically with t

and the corresponding element [eC̃t,S ]∗ ∈ Hom(H2(S,Z)tř, H
1(C̃t,Z)⊗R/Z) ∼=

Hom(H2(S,Z)tř, H
1(C̃,Z)⊗ R/Z) varies in a real analytic way. By construc-

tion, we have Im [eC̃0,S
]∗ ⊂ T⊥, and the locus where Im [eC̃t,S ]∗ remains con-

tained in T⊥ is defined by b2(S)tr real analytic equations. Now, the arguments

developed above show that if ψ2
2 is injective, for t in this locus, there is an

abelian subvariety At of J(C̃t) such that

T ⊂ At ⊂ Ker jt∗.

The simplicity of J(C) and the fact that φ∗(J(C)) is the maximal abelian

subvariety of J(C̃0) contained in Ker j0∗ imply now that on a connected positive

dimensional component of this locus containing 0, At ⊂ J(C̃t) is a deformation

of φ∗(J(C)) ⊂ J(C̃0).

A contradiction would follow by proving the following facts:
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– The small deformations C̃t of C̃ = C̃0 such that J(C̃t) contains a de-

formation of φ∗(J(C)) are the curves of the form φ−1
t (Ct) where φt is

a deformation of φ and Ct is a deformation of C. In particular they

form a sublocus of the family of deformations of C̃t of arbitrarily large

codimension.

– The locus where Im [eC̃t,S ]∗ remains contained in T⊥ is actually of real

codimension less or equal to b2(S)tr. (This is not clear since the equations

are only real analytic, and not holomorphic, but this could be proved by

an infinitesimal study: it would suffice to show that the equations have

independent differentials at 0.)

3. A formula for the pull-back of

holomorphic two-forms

Let S be a regular surface. Let W be a complex ball parametrizing the

following data:

C is a smooth complex variety, π : C → W is a proper submersive holo-

morphic map of relative dimension 1.

S is a smooth complex variety, ρ : S → W is a proper submersive holo-

morphic map of relative dimension 2.

There exists a holomorphic map τ : S → W × S, making the following

diagram commutative
S τ→ W × S
ρ ↓ pr1 ↓
W = W

.

Furthermore, τ|Sw : Sw → S is a birational map for each w ∈ W .

Let φ : C → S be a holomorphic immersion making the following diagram

commutative
C φ→ S
π ↓ ρ ↓
W = W

.

Finally, let σ1, . . . , σN be holomorphic sections of π, and let m1, . . . , mN be

integers such that the zero-cycle Zw =
∑
imiσi(w) is of degree 0 on each

component of the curve Cw , for each w ∈ W .

For each i, we get a holomorphic map

αi = pr2 ◦ τ ◦ φ ◦ σi : W → S,

and for each complex valued two-form ω on S, we get a two-form

ω̃ =
∑

i

miα
∗
i (ω)
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on W . This two-form ω̃ is Mumford’s pull-back of the two-form ω on S (see

[7]), for the family of zero-cycles (pr2 ◦τ ◦φ(Zw))w∈W of S parametrized by W .

On the other hand, for each w ∈ W , we have the Abel-Jacobi invariant

ew := eCw ,S ∈ J(Cw × S)tr or its real version

ew := eCw ,S ∈ H1(Cw ,Z)⊗Z H2(S,Z)tr ⊗Z R/Z.
Canonically identifying H1(Cw,Z) and H1(C0,Z), we can view (ew)w∈W

as a map

e : W → H1(C0,Z)⊗Z H2(S,Z)tr⊗Z R/Z.
Clearly e is differentiable (and in fact real analytic since the Abel-Jacobi in-

variants vary holomorphically with the parameters).

Next, for w ∈ W , the 0-cycle Zw is homologous to 0 on Cw, hence has

a corresponding Abel-Jacobi invariant fw ∈ J(Cw), or its real version fw ∈
H1(Cw ,Z)⊗Z R/Z. Identifying canonically H1(Cw ,Z) and H1(C0,Z), we can

view (fw)w∈W as a map

f : W → H1(C0,Z)⊗Z R/Z.
Again it is easy to see that f is real analytic.

Now we differentiate e and f to get one-forms

de ∈ ΩRW ⊗Z H1(C0,Z)⊗Z H2(S,Z)tr, df ∈ ΩRW ⊗Z H1(C0,Z).

Finally we can contract de∧ df using the intersection pairing on H1(C0,Z), to

get a two-form

de ∧ df ∈
2∧

ΩRW ⊗Z H2(S,Z)tr.

We can view de∧df as an element [de∧df ] of HomZ(H2(S,Z)tř,
∧2 ΩRW), which we

can extend by C-linearity to an element [de∧ df ] of HomC(H2(S,C)tř,
∧2 ΩCW).

Now let ω be a (2, 0)-form on S, with class [ω] ∈ H2(S,C)tř. Our main

result in this section is the following:

Proposition 2. For a holomorphic two-form ω on S, there is the point-

wise equality of two-forms on W

(3.3) ω̃ = [de∧ df ]([ω]).

The proof of formula (3.3) given below is a simplification of the original

proof, following a suggestion of P. Griffiths. It goes essentially as follows: Note

first that

(3.4) de ∧ df([ω]) = de([ω])∧ df,
where de ∈ Hom (H2(S,C)tř, H

1(C0,C) ⊗ ΩCW ) is the C-linear extension of

de ∈ Hom (H2(S,Z)tř, H
1(C0,Z)⊗ ΩRW ).
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Then if f̃ ∈ C∞(W )⊗H1(C0,R) is a lifting of f , we have

(3.5) de([ω])∧ df = −d(〈de([ω])f̃〉).

Now let ω′ be the two-form on C induced by ω via pr2 ◦ τ ◦φ. Then ω′ induces

a section of ΩC/W ⊗ π∗ΩW on C, that is a section βω of H1,0 ⊗ΩW on W . The

first step is to show (see Lemma 5) that

(3.6) de([ω]) = βω,

via the natural inclusion

H1,0 ⊗ ΩW ⊂ H1
C ⊗ ΩCW

∼= H1(C0,C)⊗ ΩCW .

Next we use the definition of the Abel-Jacobi map which says that there exists

a differentiably varying path γw on Cw such that ∂γw = Zw, and for any

η ∈ H1,0(Cw)

(3.7) 〈η, f̃w〉 =

∫

γw
η.

Combining (3.4), (3.6), and (3.7), we see that we have to show

(3.8) ω̃ = −d(

∫

γ
βω),

where
∫
γ βω is the one-form ψ on W defined by ψ(u) =

∫
γw
βω(u) for u ∈ TW,w.

But (3.8) is essentially the homotopy formula since ω′ is closed.

We now check the details of this outline of the proof and consider first the

form de; we can view it as a map

[de] : H2(S,Z)tř → ΩRW ⊗Z H1(C0,Z),

which can be extended by C-linearity to a map

[de] : H2(S,C)tř→ ΩCW ⊗C H1(C0,C).

On the other hand, we have on C the exact sequence

0→ π∗Ω2
W → Ω2

C → π∗ΩW ⊗ ΩC/W → 0.

The form ω′ = φ∗τ∗ω then has an image

βω ∈ ΩW ⊗H1,0, ΩW = Ω1,0
W

where H1,0 = π∗ΩC/W is the Hodge bundle with fiber H1,0(Cw) ⊂ H1(Cw,C).



464 CLAIRE VOISIN

Lemma 5. For any w ∈ W , the following equality

[de]([ω])w = (βω)w

holds via the inclusion

ΩW,w ⊗H1,0(Cw) ⊂ ΩCW,w ⊗H1(Cw,C) ∼= ΩCW,w ⊗H1(C0,C).

Proof. Recall that ew ∈ Hom (H2(S,Z)tř, H
1(Cw ,Z)⊗Z R/Z) is obtained

from the mixed Hodge structure on H2(Sw, Cw,Z)tr, which fits into the exact

sequence

(3.9) 0→ H1(Cw,Z)→ H2(Sw, Cw,Z)tr → H2(S,Z)tr→ 0,

as follows: the extension class of this extension is the class of the difference
σH − σZ ∈ HomZ(H2(S,Z)tř, H

1(Cw,C)) in the quotient

HomC(H2(S)tř,H
1(Cw))/[F 0HomC(H2(S)tř,H

1(Cw)) ⊕HomZ(H2(S, Z)tř,H
1(Cw,Z))]

where σH is a Hodge splitting of the sequence 3.9, and σZ is an integral splitting

of the sequence 3.9. The identification

HomC(H2(S,C)tř, H
1(Cw ,C))/F 0Hom (H2(S,C)tř, H

1(Cw,C))

∼= HomR(H2(S,R)tř, H
1(Cw ,R)) ∼= HomZ(H2(S,Z)tř, H

1(Cw,R))

means simply that there is a unique splitting σH,R of the sequence 3.9 which

is both Hodge and real. Then ew is the class of

σH,R − σZ ∈ HomZ(H2(S,Z)tř, H
1(Cw ,R))

in the quotient HomZ(H2(S,Z)tř, H
1(Cw ,Z)⊗Z R/Z).

Now we have the following:

Lemma 6. For ω a holomorphic two-form on S, σH,R([ω])(w) is the class

of τ∗w(ω) in H2(Sw, Cw,C)tr, (which is well-defined since τ∗wω vanishes on Cw).

Proof. This follows from the fact that

F 2H2(Sw, Cw)tr
∼= F 2H2(Sw)tr

∼= F 2H2(S)tr,

so that there is a unique Hodge splitting of the sequence 3.9 over F 2H2(S)tr.

On the other hand the map [ω] 7→ class of τ∗w(ω) in H2(Sw, Cw,C)tr gives such

a splitting as does σH,R|H2,0(S).

Let H1
C be the flat vector bundle on W with fiber H1(Cw,C), and ∇C be

its Gauss-Manin connection. Similarly let H2
C,S/C be the flat vector bundle on

W with fiber H2(Sw, Cw,C)tr, and ∇S/C be its Gauss-Manin connection. By

definition, and by Lemma 6 we have the equality:

(3.10) [de]([ω]) = ∇S/C([τ∗ω]),



GREEN’S HIGHER ABEL-JACOBI MAP 465

where [τ∗ω] denotes the section of H2
C,S/C whose value at w is the class of

τ∗wω in H2(Sw, Cw,C). (Notice that ∇S/C([τ∗ω]) belongs to ΩCW ⊗ H1
C, since

the projection of [τ∗ω] in the quotient bundle H2
C,S with fiber H2(Sw,C)tr is

obviously flat.) The proof of Lemma 5 follows now from the equality 3.10, and

from the following general statement:

Lemma 7. Consider a commutative diagram of differentiable smooth

fibrations
C ↪→ S
π ↓ ↓ ρ
W = W

,

and let Ω be a closed r-form on S, such that Ω|Cw = 0, for any w ∈ W . Then

for the corresponding section [Ω] of the bundle HrS/C , ∇S/C([Ω]) (which belongs

to ΩW ⊗ Hr−1
C /Hr−1

S ) can be described as follows : the restriction of Ω to C
projects naturally to a section of Ωr−1

C/W ⊗ π∗(ΩW ), which is in fact vertically

closed, hence gives a section βΩ of ΩW ⊗Hr−1
C ; its image in ΩW ⊗Hr−1

C /Hr−1
S

is equal to ∇S/C([Ω]).

Proof. Since the result is local, we may assume that our diagram of

fibrations is trivial, that is, identifies to the inclusion C×W ⊂ S×W for some

C ⊂ S. For w ∈ W, u ∈ TW,w, ∇S/Cu ([Ω]) is the class of the form (d(intũΩ) +

intũ(dΩ))|S×w, which is closed and restricts to 0 on Cw, in Hr(Sw, Cw), where

ũ is the section of TS×W , defined along S × w and lifting u. Since Ω is closed,

we get

∇S/Cu ([Ω]) = class of d(intũΩ)|S×w in Hr(S, C).

Of course d(intũΩ)|C×w = 0, and the class of intũΩ|C×w in Hr−1(C) is by

definition equal to βΩ(u). To conclude, it suffices to note that for an exact

r-form β = dγ on S vanishing on C, its class in Hr−1(C)/Hr−1(S) ⊂ Hr(S, C)

is the projection of the class of γ|C ∈ Hr−1(C). So, Lemma 7, hence Lemma 5

are proved.

Now let f̃ be a C∞ lifting of f to a function with value in H1(C0,R). It

is clear that we have

(3.11) de ∧ df([ω]) = −d(〈de([ω]), f̃〉),

where 〈 , 〉 is the intersection form on H1(C0,C). Now we use the definition

of the Abel-Jacobi map or Albanese map to compute this bracket; the point

f̃w ∈ H1(Cw,R) projects to

f0,1
w ∈ H0,1(Cw) ∼= (H1,0(Cw))∗

and we have the equality, for η ∈ H1,0(Cw))
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(3.12) 〈η, f̃w〉 = 〈η, f̃0,1
w 〉 =

∫

γw
η,

for an adequate choice of a path γw in Cw such that ∂γw = Zw.

Next, by Lemma 5, we can use this formula to compute 〈de([ω]), f̃〉 and

this gives

(3.13) 〈[de]([ω]), f̃〉 = 〈βω, f̃0,1〉 =

∫

γ
βω,

where the right-hand side is the one-form ψ on W defined by

ψ(u) =

∫

γw
βω(u),

for u ∈ TW,w.

By (3.11) and (3.13), to conclude the proof of Proposition 2 we have now

only to prove the following:

Lemma 8. Let ω′ be a closed holomorphic two-form on C with induced

section βω of H1,0 ⊗ ΩW . Let γw ⊂ Cw be a differentiably varying family of

paths such that ∂γw = Zw; then

(3.14)
∑

i

miσ
∗
i ω
′ = −d

(∫

γ
βω

)
.

Proof. It is clear that it suffices to prove equality (3.14) when we have

only two sections σ1, σ2, and m1 = 1, m2 = −1. We may furthermore assume

σ1(w) 6= σ2(w) for all w ∈ W , since it suffices by continuity to prove the

equality at the generic point of W , where this is true. (Otherwise the two

sections coincide, and both sides of the equality are equal to zero.) Next, since

the result is local, we can assume there is a C∞ trivialization of the family

π : C → W in such a way that the two sections become constant and that

there is an induced trivialization of the family of paths γw:

C ∼= W × C
↓ π ↓ pr1

W = W

,

with σi(w) = (w, ci) and γw(t) = (w, γ(t)), t ∈ [0, 1], with γ(0) = c2, γ(1) = c1.

Denote by Γ : W × [0, 1]→ C the map

Id × γ : W × [0, 1]→ W × C ∼= C,
and let ω′′ = Γ∗(ω′). The form ω′′ can be written

(3.15) ω′′ = η + δ ∧ dt,
where η ∈ pr∗1Ω2

W,C, δ ∈ pr∗1ΩW,C. Then we have

(3.16) σ∗1(ω′)− σ2(ω′) = η|W×1 − η|W×0.
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Furthermore, since ω′′ is closed, the homotopy formula says

(3.17) η|W×1 − η|W×0 = −d(

∫ 1

0
δtdt).

Finally let u ∈ TW and let ũ be its natural lifting in TC given by the trivial-

ization: then by definition of βω we have βω(u) = intũ(ω′)|TC/W . Pulling this

back to W × [0, 1] via Γ, and using (3.15) we get

δw,t(ũ)dt = γ∗((βω)w(u)).

Fixing w, u and integrating over t, we get
∫

γw
(βω)w(u) =

∫ 1

0
δw,t(u)dt;

that is, ∫

γ
βω =

∫ 1

0
δtdt.

Then formula 3.14 follows from the equality above and from (3.16), (3.17).

Thus Lemma 8 and Proposition 2 are proved.

4. The nontriviality of ψ2
2

We will prove in this section the following theorem:

Theorem 3. Let S be a surface with h2,0 6= 0; then ψ2
2(S) is nontrivial

modulo torsion. (In fact the proof will show that Imψ2
2(S) mod. torsion is

infinite dimensional.)

The proof will be based on Propositions 3 and 4, which allow us to apply

Proposition 2.

We work with the notation introduced at the beginning of Section 3, that

is with the diagram

C φ→ S τ→ W × S
π ↓ ρ ↓ pr1 ↓
W = W = W

,

together with sections σi of π, and integers mi, defining a family of zero-cycles

Zw homologous to zero on Cw . They allow us to define functions

w 7→ ew ∈ H1(C0,Z)⊗Z H2(S,Z)tr ⊗Z R/Z,
w 7→ fw ∈ H1(C0,Z)⊗Z R/Z,

and by definition ψ2
2((pr2 ◦ τ ◦ φ)∗Zw) is the projection modulo U2

2 (S) of the

product

ew · fw ∈ H2(S,Z)tr ⊗Z R/Z ⊗Z R/Z.
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This product has the following explicit form: let {αi, βi}, 1 ≤ i ≤ g, be a

symplectic basis of H1(C0,Z) and let {γj} be a basis of H2(S,Z)tr; then we

can write

ew =
∑

i,j

ρi,j(w)⊗ αi ⊗ γj +
∑

i,j

χi,j(w)⊗ βi ⊗ γj ,

fw =
∑

i

φi(w)⊗ αi +
∑

i

ψi(w)⊗ βi,

and we have

(4.18) ew · fw =
∑

j

(
∑

i

ρi,j(w)⊗Z ψi(w)−
∑

i

χi,j(w)⊗Z φi(w))⊗ γj .

We prove now:

Proposition 3. Let V ⊂ W be a smooth real analytic subset, such that

for any w ∈ V , the product ew · fw vanishes in H2(S,Q)tr ⊗Q R/Q⊗Q R/Q.

Then the H2(S,R)tr-valued two-form de ∧ df (see Section 3) vanishes on V .

Proof. It suffices to prove that for any index j the hypothesis (ew ·fw)j = 0

in R/Q, for any w ∈ V , implies that (de∧df)j = 0 on V . We may assume that

V is connected. We have then:

Lemma 9. There exist I1, I2 ⊂ {1, . . . , g}, a dense subset V ′ ⊂ V and

coefficients

µik ∈ Q, i ∈ I1, k ∈ {1, . . . , g}− I1,

µ′lk ∈ Q, l ∈ I2, k ∈ {1, . . . , g}− I1,

νim ∈ Q, i ∈ I1, m ∈ {1, . . . , g}− I2,

ν ′lm ∈ Q, l ∈ I2, m ∈ {1, . . . , g} − I2,

such that for v ∈ V ′, the elements φi(v)i∈I1, ψl(v)l∈I2 form a Q-basis of the

Q-vector subspace of R/Q generated by the φi(v), ψi(v), 1 ≤ i ≤ g. Also, the

following relations hold everywhere on V

(4.19)
φk(w) =

∑

i∈I1
µikφi(w) +

∑

l∈I2
µ′lkψl(w) in R/Q, k ∈ {1, . . . , g}− I1

ψm(w) =
∑

i∈I1
νimφi(w) +

∑

l∈I2
ν ′lmψl(w) in R/Q, m ∈ {1, . . . , g}− I2.

Proof. Any relation
∑
i γiφi(w)+

∑
i γ
′
iψi(w) = 0 in R/Q holds everywhere

on V or only on a countable union of proper real analytic subsets of V . If

we consider all possible such relations, it follows from Baire’s theorem that

there is a dense subset V ′ ⊂ V such that for any w0 ∈ V ′, any relation∑
i γiφi(w0)+

∑
i γ
′
iψi(w0) = 0 in R/Q implies that

∑
i γiφi(w)+

∑
i γ
′
iψi(w) = 0
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in R/Q, for any w ∈ V . Choosing for such w0 a basis φi(w0), ψl(w0), i ∈ I1, l ∈
I2 of the Q-vector subspace of R/Q generated by the φi(w0), ψi(w0), 1 ≤ i ≤ g,

gives the result.

Now in formula (4.18) we replace φk(w) and ψm(w) by their expressions

in (4.19), which gives

(ew · fw)j =
∑

l∈I2
ρlj(w)⊗ ψl(w) +

∑

m6∈I2
ρmj(w)

⊗(
∑

i∈I1
νimφi(w) +

∑

l∈I2
ν ′lmψl(w))

−
∑

i∈I1
χij(w)⊗ φi(w)−

∑

k 6∈I1
χkj(w)

⊗
∑

i∈I1
µikφi(w) +

∑

l∈I2
µ′lkψl(w)),

where the equality holds in R/Q⊗Q R/Q.

Now we use the fact that φi(w) and ψl(w) are independent over Q for

w in the dense subset V ′. Then for w ∈ V ′ the condition (ew · fw)j = 0 in

R/Q⊗Q R/Q implies

ρlj(w) +
∑

m6∈I2
ν ′lmρmj(w)−

∑

k 6∈I1
µ′lkχkj(w) = 0 in R/Q, ∀l ∈ I2(4.20)

−χij(w) +
∑

m6∈I2
νimρmj(w)−

∑

k 6∈I1
µikχkj(w) = 0 in R/Q, ∀i ∈ I1.

But recall that V ′ is the complementary set in V of a countable union of proper

real analytic subsets. So the equalities (4.20), being satisfied on V ′, must hold

everywhere on V .

Now we can differentiate (4.19) and (4.20): indeed these equalities mean

that for liftings of the functions φi, ψi, χij , ρkj to functions with values in R,

the corresponding equalities hold modulo some (necessarily constant) rational

numbers. This gives

dφk =
∑

i∈I1
µikdφi +

∑

l∈I2
µ′lkdψl, k ∈ {1, . . . , g} − I1(4.21)

dψm =
∑

i∈I1
νimdφi +

∑

l∈I2
ν ′lmdψl, m ∈ {1, . . . , g} − I2.

dρlj +
∑

m6∈I2
ν ′lmdρmj −

∑

k 6∈I1
µ′lkdχkj = 0, for all l ∈ I2(4.22)

−dχij +
∑

m6∈I2
νimdρmj −

∑

k 6∈I1
µikdχkj = 0, for all i ∈ I1.
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Next we have

(de ∧ df)j = (de)j ∧ df =
∑

i

dρij ∧ dψi −
∑

i

dχij ∧ dφi,

which shows that this is equal to zero, by (4.21) and (4.22). Now Proposition 3

is proved.

Combining Proposition 2 and Proposition 3, we conclude:

Corollary 1. Under the assumptions of Proposition 3, the pull-back

ω̃ =
∑

i

mi(pr2 ◦ τ ◦ φ ◦ σi)∗(ω)

of any holomorphic two-form ω on S vanishes on V .

Next we have the following:

Proposition 4. Assume the map ψ2
2(S) vanishes modulo torsion in

J2
2 (S); then there exist data

C φ→ S τ→ W × S
π ↓ ρ ↓ pr1 ↓
W = W = W

,

together with sections σi of π, and integers mi, defining a family of zero-cycles

Zw homologous to zero on Cw satisfying the following properties :

– There exists a map ψ = (ψ1, ψ2) : W → S × S such that

(pr2 ◦ τ ◦ φ)∗Zw = ψ1(w)− ψ2(w)

as a zero-cycle of S, for any w ∈ W .

– There is a smooth locally closed real analytic subset V ⊂ W such that for

any w ∈ V , ew · fw vanishes in H2(S,Q)tr⊗Q R/Q⊗Q R/Q, and ψ|V is

a submersion.

Clearly this proposition implies Theorem 3; indeed, if ψ2
2(S) vanishes mod-

ulo torsion in J2
2 (S), Proposition 4 and Corollary 1 give a submersive map

ψ : V → S × S such that for any holomorphic two-form ω on S,

ψ∗1(ω)− ψ∗2(ω) =
∑

i

mi(pr2 ◦ τ ◦ φ ◦ σi)∗(ω)

vanishes on V . It follows that pr∗1(ω)−pr∗2(ω) vanishes on an open set of S×S,

hence that ω = 0. So we have proved that ψ2
2(S) = 0 modulo torsion implies

H2,0(S) = {0}, that is, Theorem 3.
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Proof of Proposition 4. By definition of ψ2
2, the assumption implies that for

any (x1, x2) ∈ S×S, there exist a smooth curve C, a zero-cycle Z homologous

to zero on C, and an immersion φ : C ↪→ S̃ of C in a surface S̃
τ→ S birational to

S, such that τ◦φ∗(Z) = x1−x2 and eC,S ·fZ,C = 0 inH2(S,Q)tr⊗QR/Q⊗QR/Q.

Now note that there are countably many quasi-projective varieties (that we

may assume smooth by desingularization) Wm, together with data

Cm φ→ Sm τ→ Wm × S
πm ↓ ρm ↓ pr1 ↓
Wm = Wm = Wm

,

with sections σmi of πm, and integers mm
i , defining a family of zero-cycles Zmw

homologous to zero on Cmw , and satisfying the following properties:

– There exists a map ψm = (ψm1 , ψ
m
2 ) : Wm → S × S such that

(τm ◦ φm)∗Zmw = ψm1 (w)− ψm2 (w) as a zero-cycle of S, for any w ∈ Wm.

– Any set of data ((x1, x2), C, Z, φ, τ) as above, such that τ ◦ φ∗(Z) =

x1 − x2 identifies with the data parametrized by some point w ∈ Wm,

with (x1, x2) = ψm(w).

On each Wm, we have the locally defined maps

em : Wm → H1(Cm0 ,Z)⊗Z H2(S,Z)tr ⊗Z R/Z,
fm : Wm → H1(Cm0 ,Z)⊗Z R/Z,

(which are globally defined as sections of a flat bundle), and their product

em · fm : Wm → H2(S,Q)tr⊗Q R/Q⊗Q R/Q.
So the assumption of Proposition 4 is that

S × S =
⋃

m

ψm((em · fm)−1(0)).

We have now:

Lemma 10. Locally (em · fm)−1(0)) is a countable union of real analytic

subsets of Wm.

Assuming Lemma 10 we have countably many locally closed real analytic

subsets Wn
m ⊂ Wm on which em · fm vanishes, and such that

S × S =
⋃

m,n

ψm(Wn
m).

Stratifying each Wn
m into smooth real analytic subsets, we may assume the Wn

m

are smooth. The theorems of Baire and Sard imply now that for some (m,n),

ψm|Wn
m

must be submersive at some point of Wn
m, hence on an open subset V

of it. So Proposition 4 is proved, with W = Wm, ψ = ψm.
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Proof of Lemma 10. The proof was almost completed in the course of the

proof of Proposition 3. With the notation introduced there (and forgetting the

subscript m), it follows from the computations made there that, for the jth-

component (e ·f)j of e ·f , (e ·f)−1
j (0) ⊂ W can be written locally as the count-

able union of the sets WI1 ,I2,µik ,µ′ lk,νim ,ν′lm
⊂ W where the equations (4.19)

and (4.20) are satisfied. But choosing (locally) liftings of the φi, ψi, ρij , χij
to real analytic functions with values in R, one sees immediately that each

WI1 ,I2,µik ,µ
′
lk ,νim ,ν

′
lm

is a countable union of real analytic subsets of W . Now

the lemma is proved, since (e · f)−1(0) =
⋂
j(e · f)−1

j (0).

Remark 1. More generally, we have proved that in S [k]×S [k], the set Z of

points (z1, z2) such that ψ2
2(z1− z2) = 0 mod torsion is covered by a countable

union of images of real analytic sets V ,ψ : V → S [k] × S [k], such that for any

holomorphic two-form ω on S with induced form ωk on S [k], ψ∗1ωk − ψ∗2ωk
vanishes on V . Hence, the Mumford argument (see [7]) applies to show that

Imψ2
2 mod torsion is infinite dimensional. Indeed, if z ∈ S [k] is a general point,

the two-form ψ∗1ωk − ψ∗2ωk is nondegenerate at (z, z), so that its real part is

also nondegenerate, and the fact that it vanishes on Z implies that the real

dimension of any component of Z passing through (z, z) is at most equal to
dimR S

[k]×S[k]

2 = dimR S
[k]. But any component of Z passing through (z, z) has

to dominate an open set of S [k] by the first projection, if z is chosen outside a

countable union of real analytic sets. It follows that the map z′ 7→ ψ2
2(z′ − z)

has almost all of its fibers countable in some neighbourhood of z. Hence the

dimension of its image, defined as dimR S
[k]− dimR (general fiber), is equal to

dimR S
[k], which tends to ∞ with k. Here general is with respect to the real

analytic Zariski topology and the dimension of a fiber is well-defined since the

fiber is covered by a countable union of real analytic sets.
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