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Some results on Green’s higher
Abel-Jacobi map

By CLAIRE VOISIN

1. Introduction

This paper is devoted to the study of the first higher Abel-Jacobi invariant
defined by M. Green in [4] for zero-cycles on a surface. Green’s work is a
very original attempt to understand, at least over C, the graded pieces of the
conjecturally defined filtration on Chow groups

CHP(X)g = F°CHP(X)g D F'CHP(X)g
= CHP(X)§™D...D FPTICHP(X)g = 0.

This filtration should satisfy the following properties:

i) First of all it should be stable under correspondences, so that a corre-
spondence I' C X x Y should induce

T, : FFCHP(X)g — FFCHP (Y)q,
where p’ = p+dimY — dim T, and
ii) the induced map
Gr*T, : GriCHP(X)g — GriCHP (Y)q
should vanish when I' is homologous to zero.

A filtration satisfying this last property has been constructed by Saito [11],
but it is not shown that the filtration terminates, that is FPT'CHP(X)g = 0.
A definition has also been proposed by J. P. Murre ([8]), under the assumption
that a strong Kiinneth decomposition of the diagonal exists, but it is not proved
to satisfy condition ii) above. In fact proving the existence of such a filtration
would solve in particular Bloch’s conjecture on zero-cycles of surfaces [1].

In any case, the first steps of the filtration are easy to understand, at least
for zero-cycles. Namely one should have F?CHy(X) = CHg(X)am = Keralb,
where alb : CHy(X )hom — Alb(X) is the Albanese map. More generally for

*Partially supported by the project “Algebraic Geometry in Europe” (AGE).
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the subgroup CHP (X )alg C CHP(X)q of cycles algebraically equivalent to zero,
one should have over C, F2CHP(X )gg = Ker ®%, where

o8 : CHP(X)™ — J¥ " = H¥7Y(X,C)/FPH* (X)) @ H* 7' (X, Z)

is the Abel-Jacobi map, defined by Griffiths [5].
In [4], M. Green suggested constructing directly (over C), from Hodge
theoretic considerations, higher Abel-Jacobi maps

b F"CHP(X) — JP (X),

so that F™T1CHP(X) = Ker 1P,. Hence one should have an induced injective
map

PP Gr"™CHP (X)) — JP (X).
In the case of zero cycles on a surface, he proposed an explicit construction of
(1.1) Y3 . Gr’CH?(S) = CHo(S)amw — J2(S)

that we will review below. The purpose of this paper is to answer some ques-
tions raised in [4], concerning the behaviour of 3. To simplify the notation,
we will assume throughout that S is regular, but this assumption does not
play any role in the arguments. Our first result is the following, which answers
negatively conjecture 3.4 of [4]:

THEOREM 1. The higher Abel-Jacobi map 13 is not, in general, injective.

The noninjectivity is proved here for an explicit example but the argument
should allow us to prove, as we will explain, that 3 is never injective for
surfaces with CHg(.S)ap # 0.

Our second result solves, in particular, conjecture 3.6 of [4]:

THEOREM 2. The map 13 is nontrivial modulo torsion (and has an infinite
dimensional image), when h?9(S) # 0.

As an intermediate step, we explain how Mumford’s pull-back Z*(w) of a
holomorphic two-form w of a surface S on a variety W parametrizing 0-cycles
(Zw)wew of S (cf. [7]) can be computed when one has a family C — W of
curves of S parametrized by W, such that for each w € W, the 0-cycle Z,, is
supported on C,. There are then two associated Abel-Jacobi invariants ec,, s
and fz, c, to be defined below, which play a key role in the construction of
¥3(Z,), and we show that Z*(w) can be computed from the wedge product
de Adf. We then use this result to show that in fact Z*w depends only on the
map 3 o Z, : W — J3(S).

Thus our results show that the first new higher Abel-Jacobi map defined
by Mark Green is not strong enough to capture the whole of CHy(S)am as it
should conjecturally do, but that it is strong enough to determine Mumford’s
invariants, which were used to show that CHg(S)an, is infinite dimensional,
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when h*0(S) # 0. The question of whether it is possible to refine it so as to
get the desired injectivity of 1.1 is still open.

The paper is organized as follows: The result above concerning the pull-
back of holomorphic two forms (Proposition 2) provides the contents of Sec-
tion 3. Theorem 1 is proved in Section 2, and Theorem 2 is proved in Section 4.

We conclude this introduction with a brief description of 12, which will
serve also as an introduction for the notation used throughout the paper.

Let S be a regular surface, and let C' be a smooth (not necessarily con-
nected) curve; let ¢ : C' — S be a morphism generically one-to-one on its
image. We can find an immersion ¢ : C' < S, and a birational morphism
7:8 — S such that ¢ = 70 ¢.

Now let Z be a 0-cycle of C, of degree 0 on each component of C'. We
construct two Abel-Jacobi invariants ec g and fz ¢ as follows:

The mixed Hodge structure on H 2(5 , C) is given by the Hodge filtration
F* on H?(S, C), which fits in the exact sequence

(1.2) 0— HYC,Z) — H*S,C,Z) — Ker(H?*(S,Z) — H*(C,Z)) — 0.
The filtration F" restricts to the Hodge filtration on H!(C) and projects to the
Hodge filtration on Ker(H?(S,Z) — H?(C,Z)).

Define H?(S, Z);; as the quotient H2(S,Z)/NS(S). Then its dual H?(S, Z)i,
is the orthogonal of N.S(S) in H?(S,Z). There is an inclusion of Hodge struc-

tures R
™ H*(S, Z)y — Ker(H?*(S,Z) — H*(C, 7).

Restricting the extension (1.2) to H2(S, Z)¢;, we get an exact sequence of mixed
Hodge structures

0— HY(C,Z) — H*(S,C,Z), — H?(S,Z) — 0.

The extension class of this exact sequence is an element ec g of the complex
torus (cf. [3]),
J(CxS)y = HYC,C)® H*(S,C)y/[F*(H'(C) @ H*(S)4)
@Hl(cv Z) ® Hz(sv Z)tr]'
It is not difficult to prove that it can be also computed as the natural projection
of the Abel-Jacobi invariant of the one-cycle obtained from the graph of v
(which is a one-cycle of C' x §) by adding vertical and horizontal one-cycles of

C x S in order to get a homologically trivial one-cycle.
It is well-known that the inclusion

HY(C,R)® H*(S,R)i, € H'(C,C) ® H*(S,C)yy
induces an isomorphism

HY(C,R)® H*(S,R)y, = H(C,C) ® H*(S,C)/F2(H(C) @ H*(S)1,),
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and this allows us to identify J(C' x S)¢, to the real torus
Hl(Cv Z) Az Hz(sv Z)tr Sz R/Z

We will view ec s as an element of this real torus.
Now the zero-cycle Z has an Abel-Jacobi invariant (Albanese image)

fzc € J(C) = HY(C,C)/[F'H'(C) ® H'(C, Z)].

Again, the inclusion H*(C,R) ¢ H'(C,C) induces an isomorphism H!(C,R) =
H(C,C)/F*H'(C), which provides the identification

J(C) = HY(C,Z) 2 R/Z.

We will view fz ¢ as an element of the real torus on the right.
The pairing
HY(C,Z) @z H'(C,7) — Z

allows us then to contract ec s and fz ¢ to an element
ec.s - fz.c € R/Z®z R)Z @y H*(S, L)y

Defining now U2 C R/Z ®7 R/Z ®7 H?*(S, Z), as the group generated by the
elements ec s - fz ¢ defined above, for the triples (C, Z, ) such that ¢.(Z) =0
as a zero-cycle of S, it is clear that the projection

ecs - fzc € J22(S) =R/Z®z R/Z®y Hz(s, Z)tr/U22
depends only on the zero-cycle 1,(Z). The resulting map
¢% t Zo(S)hom — J22(S)

is then easily seen to factor through rational equivalence, so that 13 is actually
defined on CHY(S).

Acknowledgements. 1 would like to thank P. Griffiths for his careful read-
ing of the first version of this paper, and for the improvements he suggested.

2. The noninjectivity of 3

In this section we construct a counterexample to the conjectured injectiv-
ity of the map
¥3 : CHo(S)am — J3(9).

The counterexample is based on a refinement of the following argument.
First of all, if ' C C' x S is a correspondence homologous to zero, with
Abel-Jacobi invariant
er € J(C X S)tr,
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we show that
¢% oIy : CHo(C)hom — J22(S)
is given by
P30T, (2) = er - f,mod U3,
where f, = alb(z) € J(C) = H'(C,Z)®R/7Z. Now we view er as an element of
Hom(H?(S,Z)y, HY(C, Z) ® R/Z) and we note that if its image is contained in

a proper real subtorus T of H!(C,Z) ® R/Z, there is a nontrivial real subtorus
T+ of HY(C,Z) ® R/Z such that, if f, € T,

er-f. =0 in H*(S,Z) @ R/Z @ R/Z.

Then the injectivity of 13 would imply that T+ C KerT,, and if J(C) is
simple, this would imply that I'y, = 0, and then er would be a torsion point
in J(C x S). So it suffices to find C, I" as above with er not of torsion
(or 'y # 0), J(C) simple and Imer contained in a proper real subtorus 7' of
HY(C,7Z) ® R/Z to contradict the injectivity of 3.

We start with the simple Lemma 1 below which allows us to extend slightly
the definition of /3. Let S be a regular surface, C' be a smooth curve and I' €
CH;(C x S) be a one-cycle; the homology class of I lies in Ha(C') ® H2(.S)alg, s0
that adding to I' vertical and horizontal cycles we can get a cycle IV homologous
to zero: Then the induced morphisms

I, : CHY(C) — CHY(S), I', : CH}(C) — CH)(S)

coincide, and the Abel-Jacobi image of I” in J(C x S)i, (see Section 1) does
not depend on the choice of I". We will denote it by er. As in Section 1, we
can view er as an element of the real torus

HY(C,7) @z H*(S,Z)y; @7z R/Z.
By contraction and use of the intersection pairing on H'(C,Z), er gives a map
[er] : JC = HY(C,Z) @z R/Z — R/Z @7 R/Z @7 H*(S, Z)1;.
We have now:

LEMMA 1. For z € JO, ¥3(I'x(2)) € J3(S) is equal to the projection of
ler](2) modulo U3(S), using the definition

J2(8) :=R/Z @z R/Z @7 H*(S,Z) /U2
of Section 1.

Proof. This is true by definition if I' is the graph I'y of a morphism ¢

from C to S, generically one-to-one on its image. Now let C} 2. S be the
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desingularization of the inclusion of pro(SuppI') in S. Then I' lifts to a one-
cycle I'y € C x (4, such that

I, =¢,oly, : JC — CHY(S).
We have then
U3(Ca(2)) = ¢3(¢4(T1u(2)))
= projection of [er,](I'1.(2)) in J3(S5).
Now it suffices to prove that
ler] = [er,] oT14: J(C) = R/Z®@zR/Z @ H?(S,Z)1.

But I'; induces naturally a correspondence I'; between C x S and C; x S;
hence a morphism

I : CHy(Cy x S) — CH;(C x S),

such that T' =, [§(Ty). It follows that er = T} (er,) in J(C x S), where
r ] also denotes the induced morphism between the intermediate jacobians
J(C1 x S) and J(C x )¢y

Let I'f, : HY(Cy,Z) — HY(C,Z) be the morphism of Hodge structures
induced by the cohomology class of I'; in C' x Cj; then the morphism T ] is
induced by the morphism of Hodge structures

t2@1d: HY(C,,Z) ® H*(S,Z)y — HY(C,Z) @ H*(S, Z),
and it follows that we have a commutative diagram

Mip®Id cHY(C,R)® H?(S,R)yy  — HY(C,R)® H%*(S,R);,

! !
fcmod F?2 : HY(C,,C)® H?(S,C)y/F? — HYC,C)® H?*(S,C)y/F?,

where the vertical arrows are the identifications already used between real
cohomology and complex cohomology mod F?, and the last horizontal map
induces

f’{ :J(C X )y — J(C X S

by passing to the quotient modulo integral cohomology. This means that,
viewed as elements of J(C1) ®z H%(S, Z)i, and J(C) ®z H?(S, 7). respectively,
er, and er satisfy the relation

er =17 ®Id(ep¢).
Now it suffices to note that the contraction maps

(e J(C) ez J(C1) — R/Z&zR/Z,
(,)e: J(C)®z J(C) —R/ZRzR/Z
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satisfy the relation
(Ty(2),w)e, = (2, (w))e, z € J(C), we J(Cy),
to get
ler,]J(T1(2)) = (T'.(2),er,)e
(z, TT®Id(er,))c = (z,er)c = [er](2),

as desired. O

The following Lemma 2 is quite standard (cf. [10]); let T' € CHy(C x .5)
be a correspondence, and let

I, : J(C) — CHY(S)
be the induced morphism; we have:

LEMMA 2. Ker D', is a countable union of translates of an abelian subva-
riety of J(C).

Proof. Ker T, is a subgroup of J(C), and is a countable union of algebraic
subsets of J(C'). The union of the irreducible algebraic subsets of J(C) passing
through 0 and contained in Ker I', is stable under difference which implies that
it can be written as an increasing union of irreducible algebraic subsets of J(C').
So it must be in fact an algebraic subset of J(C), stable under difference, that
is an abelian subvariety of J(C). Hence the result. O

Now assume some real subtorus 7" of J(C) = H*(C,R)/H(C,Z) is con-
tained in Ker I'y; then if A C J(C') is the maximal abelian subvariety contained
in KerI'y, so that by Lemma 2, KerI', = U,,,cz A + tm for some t,, € J(O),
then

T=JTn(A+tm).
meZ
It follows that some TN (A + t,,) must contain an open set of T, and this
implies easily that in fact T is contained in A. So we have proved:

LEMMA 3. Let T be a real subtorus of J(C) contained in KerT'y; then
there is an abelian subvariety A of J(C) such that T C A C Ker['k. In
particular, if T is nontrivial and T" C B where B is a simple abelian subvariety
of J(C) (i.e. there is no proper nontrivial abelian subvariety of B), then B C
KerT,.

We want to apply these observations to show the noninjectivity of the
higher Abel-Jacobi map 3 : CHY(S) — J2(S). Let C be a curve, and
I' € CHy(C x S) be a correspondence. Let er € J(C) ®z H?(S,Z)¢, be the
corresponding Abel-Jacobi invariant. We can view er as an element

ler]* € Hom(H2(S, Z)ws, J(C)).
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Assume there is a proper real subtorus 7" of J(C) containing Im [er]*; i.e. there
is a proper sublattice Ty of H(C,Z) such that Im [er]* C T ®z R/Z. Then
by definition of [er]

T+ =T} ©7 R/Z C Ker [er)].

Similarly, if B & J(C) is an abelian subvariety, and B is the corresponding
quotient of J(C), let J(C x S)E be the induced quotient of J(C x S)i,; that
is, writing B = Bc/B'Y @ Bz, then
J(C x 8){} = Bec @ H*(S,C)/F*(Be ® H(S,C)y) @ By ® H*(S, L)
Let
ler]ls € Hom(H?(S, Z)y, B)
be the composition of [er]* with the projection J(C) — B. Let e£ € J(C'x 9)&
be the projection of er. Note that [ep]}; is simply 615 viewed as an element of
Hom(H?(S,Z)y, B) using the real representations of the (intermediate) jaco-
bians
J(C x 8)B = Homy (H?(S, Z)y, By, @7, R/Z).

If Im [er|’ is contained in a proper real subtorus T of B, the orthogonal torus
T+ C B is contained in Ker ler]|B-

In this situation, assume now that 12 is injective and that B is simple:
then by Lemma 1, one finds that I, vanishes on T+ C B, and by Lemma 3,
one concludes that I', vanishes on B. Now this implies:

PROPOSITION 1. Under the above assumptions, the projection 615 of er
in J(C x S)B is in fact a torsion point.

This follows from I'yjp = 0 and from the following lemma (cf. [4], [2])
applied to the correspondence I' o mp where mp is a multiple of a projector
from J(C) to B:

LEMMA 4. LetT' € CHy(C x S) be a correspondence such that the corre-
sponding map Ty : J(C) — CHY(S) is zero; then the Abel-Jacobi invariant er
is a torsion point of J(C x S)t;.

In order to contradict the injectivity of 3 it suffices then to find a smooth
curve C, a simple abelian subvariety B of J(C) and a correspondence I' €
CH1(C x S) satisfying the following properties:

— The projection 615 of the Abel-Jacobi invariant ep € J(C' x S) in
J(C x S)B is not a torsion point.

— The image of the map
[eF]*B : Hz(sv Z)trv_’ B

is contained in a proper real subtorus of B.
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To get an explicit example, we use a construction due to Paranjape (]9]).
Consider a K3 surface S which is the desingularization of a general double
cover of P2 branched along the union of six lines. Then rk N.S(S) = 16, hence
ba(S)tr = 6. Paranjape constructs a genus 5 curve C, which is a ramified
cover of an elliptic curve F, with an automorphism j of order 4, acting on
B := (Ker Nm : J(C) — J(FE))° a four dimensional abelian variety. The K3
surface S is birational to a quotient of CxC by a finite group. Let r : CxC — S
be the quotient (rational) map; for generic ¢ € C, r is everywhere defined along
¢ x C' and we get a family of one-cycles of C' x S parametrized by C,

¢ € Cgen — I'c := graph of 7. C C x 5.

This family induces an Abel-Jacobi map

I:JC)— JCxS9).
Using the projection

J(Cx8)— J(C x8)y — J(Cx S)B

and restricting the map I'y to B C J(C'), we get a morphism (of complex tori)

r?.B— JCx8)E.
This morphism corresponds to a morphism of Hodge structures

ér : By — Bz @ H*(S, 7,

where B = B¢ /F'Be ® Bz, By = Bz. One verifies easily that the correspond-
ing morphism of Hodge structures

vr: H*(8,Z)w — By ® By
is the composite of the pull-back map
r*: HX(S,Z) — HY(C,Z) @ HY(C, Z)
and of the projection map
HY(C,7)® H'(C,7) — Bz ® By,

Paranjape ([9]) shows that vr is injective. It follows that ¢r is nonzero.

Now let uw € Bz be such that ¢r(u) # 0. There are at most countably
many points u; in the real torus (R/Z) - u such that I'Z(u;) is of torsion in
J(C x S)E. Let a € R/Z be such that I'Z(«a - u) is not of torsion; now view
ér(u) as an element [¢r(u)] of Hom(H?(S, Z); Bz). Since bg4-(S) = 6 and
tk Bz = 8, the image of [¢r(u)] is contained in a proper sublattice of Bz. It
follows that [¢r(u)] ® o € Hom(H?(S, Z)i;, Bz ®R/Z) has its image contained
in a proper subtorus of By ® R/Z.

Since I'P is induced by the Abel-Jacobi map, there is a one-cycle T'y., in
C x S such that ei.a = I'B(a - u). Consider now the corresponding element
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ler,.. )5 of Hom(H?(S, Z)y, Bz ® R/Z). Since ¢r is a morphism of Hodge
structures, we have a commutative diagram

¢r ®R/Z: By @ R/Z — Hom(H?*(S,Z)is, By @ R/7Z)
! !
rB. B — J(C x S)B

*

where the vertical maps are the identifications already used above. It follows
that [er,..]5; is equal to [¢r(u)] ® a, hence has its image contained in a proper
subtorus of Bz ® R/Z.

To conclude that this is the desired counterexample, it suffices to note
that for general S, B is a simple abelian variety. This follows from the fact
that (B, j) determines the Hodge structure on H?(S); (cf. [9]), which implies
that B has at least four moduli. Then a dimension count shows that the
moduli space of nonsimple abelian varieties A of dimension 4 admitting an
automorphism of order 4, acting on H'%(A4) with two eigenvalues equal to i
and two eigenvalues equal to —i, as is the case in Paranjape’s family, is of
dimension strictly less than 4. O

The counterexample given here is quite special, but it seems from the
line of the argument that the noninjectivity of 13 for a surface with infinite
dimensional CHy is a general fact; indeed take any such surface S (regular
for simplicity) and choose a finite sufficiently ample and generic morphism
¢ : S — P2 Let C be a sufficiently general and ample curve in P? such that
C = ¢~(C) is smooth, J(C) is simple, and j, : B — CHg(S) has an at most
countable kernel, where j is the inclusion of C in S and B := (Ker Nm :
J(C) — J(C))o. Now choose a dimension-1 real subtorus T' of ¢*(J(C)) and
let T+ J (C’) be its orthogonal. Consider a general small deformation C; of
C. The associated element €é,.s of J (C’t X S)¢r varies holomorphically with ¢
and the corresponding element [es, g]* € Hom(H?(S, Z), H(Cy, Z) R Z) =
Hom(H?(S, Z)y, H'(C,Z) ® R/Z) varies in a real analytic way. By construc-
tion, we have Im[es g]* C T L and the locus where Im leg, 5] remains con-

tained in T is defined by by(S)y, real analytic equations. Now, the arguments
developed above show that if 3 is injective, for ¢ in this locus, there is an
abelian subvariety A; of J(C;) such that

T C Ay C Ker jg,.

The simplicity of J(C) and the fact that ¢*(J(C)) is the maximal abelian
subvariety of J (é’o) contained in Ker j(, imply now that on a connected positive
dimensional component of this locus containing 0, A; C J(Cy) is a deformation
of ¢*(J(C)) € J(Ch).

A contradiction would follow by proving the following facts:
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— The small deformations Cy of C' = Cy such that J(C};) contains a de-
formation of ¢*(J(C)) are the curves of the form ¢; ' (Cy) where ¢; is
a deformation of ¢ and C} is a deformation of C'. In particular they
form a sublocus of the family of deformations of Cy of arbitrarily large
codimension.

— The locus where Im [es, ]* remains contained in T' L is actually of real
codimension less or equal to ba(S);. (This is not clear since the equations
are only real analytic, and not holomorphic, but this could be proved by
an infinitesimal study: it would suffice to show that the equations have
independent differentials at 0.)

3. A formula for the pull-back of
holomorphic two-forms

Let S be a regular surface. Let W be a complex ball parametrizing the
following data:

C is a smooth complex variety, m : C — W 1is a proper submersive holo-
morphic map of relative dimension 1.

S is a smooth complex variety, p : S — W is a proper submersive holo-
morphic map of relative dimension 2.

There exists a holomorphic map 7 : § — W x S, making the following
diagram commutative

S L WwWxS
pl pry |
W= W

Furthermore, 7|5, : Sw — S is a birational map for each w € W.
Let ¢ : C — S be a holomorphic immersion making the following diagram
commutative

c % s

Tl pl

w = W
Finally, let o1,...,0n be holomorphic sections of 7, and let my,...,my be
integers such that the zero-cycle Z,, = 3, m;o;(w) is of degree 0 on each

component of the curve C,,, for each w € W.
For each ¢, we get a holomorphic map

o; =prgoTogoog;: W — S,
and for each complex valued two-form w on S, we get a two-form

O = Z ma; (w)
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on W. This two-form @ is Mumford’s pull-back of the two-form w on S (see
[7]), for the family of zero-cycles (pryo7o¢(Z,,))wew of S parametrized by W.

On the other hand, for each w € W, we have the Abel-Jacobi invariant
ew = ec,,s € J(Cy X S)ty or its real version

ew = €c,.5 € H'(Cu, Z) @z H*(S, L) @z R/Z.

Canonically identifying H'(C,,,Z) and H*(Cy,Z), we can view (ey)wew
as a map

e: W — HYCy,Z) @z H*(S,Z)y; @z R/Z.

Clearly e is differentiable (and in fact real analytic since the Abel-Jacobi in-
variants vary holomorphically with the parameters).

Next, for w € W, the O-cycle Z,, is homologous to 0 on C,,, hence has
a corresponding Abel-Jacobi invariant f,, € J(Cy), or its real version f,, €
HY(Cy,7) ®z R/Z. Identifying canonically H'(C,,, Z) and H'(Cy,Z), we can
view (fuw)wew as a map

f:W — HY(Cy,7Z) @7 R/Z.

Again it is easy to see that f is real analytic.
Now we differentiate e and f to get one-forms

de € O, @7 HY(Cy, Z) @7 HX(S, L)y, df € O @7 HY(Co, Z).

Finally we can contract de A df using the intersection pairing on H'(Cp, Z), to
get a two-form

2
de Ndf € \ Uy @z H*(S, Z).

We can view de/Adf as an element [deAdf] of Homgz (H?(S, Z); A2 ), which we
can extend by C-linearity to an element [de A df] of Homgc (H?(S, C)ir, A2 Q5).

Now let w be a (2,0)-form on S, with class [w] € H%(S,C). Our main
result in this section is the following:

PROPOSITION 2.  For a holomorphic two-form w on S, there is the point-
wise equality of two-forms on W

(3.3) @ = [de A df]([w]).
The proof of formula (3.3) given below is a simplification of the original

proof, following a suggestion of P. Griffiths. It goes essentially as follows: Note
first that

(34) de N df ([w]) = de([w]) A df,

where de € Hom (H?(S, C)yy, HY(Cp,C) ® QF,) is the C-linear extension of
de € Hom (H?(S, Z)y, HY(Cy, Z) ® QF).
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Then if f € C®°(W)® HY(Cy,R) is a lifting of f, we have

(3.5) de([w]) A df = —d((de([w])[))-

Now let w’ be the two-form on C induced by w via pryo 7o ¢. Then ' induces
a section of Q¢ ® 7*Qy on C, that is a section 3, of HY ® Qu on W. The
first step is to show (see Lemma 5) that

(3.6) de([w]) = B,
via the natural inclusion
HY @ Qw ¢ HE @ QS = HY(Cy, C) ® OF,.

Next we use the definition of the Abel-Jacobi map which says that there exists

a differentiably varying path ~,, on C,, such that 0v, = Z,, and for any
ne Hl’o(Cw)
(3.7) (n, fu) = / .

Combining (3.4), (3.6), and (3.7), we see that we have to show
(38) o= —d([ p.)
gl

where [ (3, is the one-form 1) on W defined by ¢(u) = [, Bu(u) for u € Ty,
But (3.8) is essentially the homotopy formula since w’ is closed.

We now check the details of this outline of the proof and consider first the
form de; we can view it as a map

[de] : H*(S, Z)iw — Qyy @z H' (Co, Z),
which can be extended by C-linearity to a map
[de] : H(S,C)y — Q% @c H(Cy, C).
On the other hand, we have on C the exact sequence
0 — m*Qf — 0 — 7 Qw @ Qe — 0.
The form w’ = ¢*7*w then has an image
By € Qw @ HYO, Qu = O

where H'0 = m,Qcy is the Hodge bundle with fiber H(Cy) C H*(Cy, C).
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LEMMA 5. For any w € W, the following equality
[de]([w])w = (Buw)w

holds via the inclusion

Qe ® HY(Cw) C iy, ® H(Cy, C) = Qfy,, ® H(Co, C).

Proof. Recall that e,, € Hom (H?%(S, Z);, HY(Cy, Z) ®7 R/Z) is obtained
from the mixed Hodge structure on H2(Sw, Cw, Z)tr, which fits into the exact
sequence

(3.9) 0 — HYCy,Z) — H*(Sy, Co, Z)r — H?*(S,Z)4y — 0,

as follows: the extension class of this extension is the class of the difference
oy — oz € Homz(H?(S,Z), H(Cy, C)) in the quotient

Homg (H?(8)r, H' (Cw))/[F Homg (H?(S)wr, H (Cw)) @ Homy (H?(S, Z)wr, H' (Cuw, 2))]

where o is a Hodge splitting of the sequence 3.9, and o7 is an integral splitting
of the sequence 3.9. The identification

Homc (H?(S, C)ir, H'(Cw, C))/F'Hom (H*(S, C)iy, H'(Cu, C))
>~ Hompg (H?(S,R), HY(Cy, R)) 2 Homy(H%(S, Z), HY(Cyy, R))

means simply that there is a unique splitting oy r of the sequence 3.9 which
is both Hodge and real. Then e, is the class of

o r — 0z € Homgz(H?(S, Z)iy, H(Cy,R))

in the quotient Homgz (H?(S, Z)y, HY(Cyw, Z) @7 R/Z).
Now we have the following;:

LEMMA 6. Forw a holomorphic two-form on S, ogr([w])(w) is the class
of T (w) in H*(Sy, Cw, C)tr, (which is well-defined since 7w vanishes on Cy,).

Proof. This follows from the fact that
F2H*(Sy, Co)uw &2 FPH*(Sw)u = F2H?(S)u,

so that there is a unique Hodge splitting of the sequence 3.9 over F2H?(S)i,.
On the other hand the map [w] — class of 7 (w) in H%(Sy, Cw, C): gives such
a splitting as does OHR|[g20(5)" O

Let H{ be the flat vector bundle on W with fiber H'(C,,, C), and V¢ be
its Gauss-Manin connection. Similarly let Hé s/c be the flat vector bundle on

W with fiber H?(S,,, Cy, C)tr, and VS/€ be its Gauss-Manin connection. By
definition, and by Lemma 6 we have the equality:

(3.10) [de]([w]) = V/C([r*w]),
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where [7*w] denotes the section of HZ g Jc Whose value at w is the class of
Tiw in H?(Sy, Cy, C). (Notice that VS/€([r*w]) belongs to Qf, ® HE, since
the projection of [7*w] in the quotient bundle H?QS with fiber H?(S,, C)y, is
obviously flat.) The proof of Lemma 5 follows now from the equality 3.10, and
from the following general statement:

LEMMA 7.  Consider a commutative diagram of differentiable smooth
fibrations

C — S
] Lo
w = W

and let § be a closed r-form on S, such that Qc,, =0, for any w € W. Then
for the corresponding section [ of the bundle Hse VS/C([Q)) (which belongs
to Qw ® HE_I/HQ_I) can be described as follows: the restriction of € to C

projects naturally to a section of QE?VIV ® 7 (Qw ), which is in fact vertically

closed, hence gives a section Bq of Qw ®HE_1; its 1mage in Qyy ®HE_1/H§>~_1
is equal to VS/C([Q)).

Proof. Since the result is local, we may assume that our diagram of
fibrations is trivial, that is, identifies to the inclusion C x W C S x W for some
CcS. ForweW, ue Ty, V“ug/c([ﬂ]) is the class of the form (d(intz(2) +
intg(d€2))|sxw, Which is closed and restricts to 0 on C, in H"(Sy, Cy), where
4 is the section of Ty, defined along S x w and lifting u. Since €2 is closed,
we get

vS/C([Q]) = class of d(intz82)|sxw in H"(S,C).

Of course d(intz2)|cxw = 0, and the class of intzQcy, in H™Y(C) is by
definition equal to Bq(u). To conclude, it suffices to note that for an exact
r-form 3 = dv on S vanishing on C, its class in H"~Y(C)/H"~1(S) c H"(S,C)
is the projection of the class of y|¢ € H™(C). So, Lemma 7, hence Lemma 5
are proved. O

Now let f be a C™ lifting of f to a function with value in HY(Cy,R). It
is clear that we have

(3.11) de N df ([w]) = —d({de([w]), f)),

where (,) is the intersection form on H!(Cp, C). Now we use the definition
of the Abel-Jacobi map or Albanese map to compute this bracket; the point
fw € HY(Cy, R) projects to

fut € H%Y(Cw) = (HY(Cy))

and we have the equality, for n € H"0(C,))
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(312 mF) = o0 = [

for an adequate choice of a path 7, in C, such that 0v,, = Z,,.
Next, by Lemma 5, we can use this formula to compute (de([w]), f) and

this gives
(3.13) (el F) = (B ) = [ B
2l
where the right-hand side is the one-form v on W defined by
Y(u)= [ Bulu),
Yw
for u € Tyyq.

By (3.11) and (3.13), to conclude the proof of Proposition 2 we have now
only to prove the following:

LEMMA 8. Let ' be a closed holomorphic two-form on C with induced
section B, of H"? @ Qu. Let v, C Cy be a differentiably varying family of
paths such that 0y, = Zy; then

(3.14) zi:miafw/ =—d (/7 ﬁw> .

Proof. Tt is clear that it suffices to prove equality (3.14) when we have
only two sections o1, 09, and m1 = 1, mg = —1. We may furthermore assume
o1(w) # og(w) for all w € W, since it suffices by continuity to prove the
equality at the generic point of W, where this is true. (Otherwise the two
sections coincide, and both sides of the equality are equal to zero.) Next, since
the result is local, we can assume there is a C* trivialization of the family
7 : C — W in such a way that the two sections become constant and that
there is an induced trivialization of the family of paths ~,,:

C =2 WxC
lﬂ- lprl )
W = w

with 03(w) = (1w, &) and 7 () = (w0, 7(8)), £ € [0, 1], with 7(0) = e3, 7(1) = er.
Denote by ' : W x [0, 1] — C the map

Idx~y:Wx[0,1] =W xC=C,
and let w” = T'(w’). The form w” can be written
(3.15) W =n+6Adt,
where 1 € pr’{Q%MC, 0 € priQw,c. Then we have

(3.16) 01 (w') = o2(w') = Mwx1 = Mwxo-
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Furthermore, since w” is closed, the homotopy formula says

1
(3.17) Mwx1 — Mo = —d /0 5,dt).

Finally let v € Ty and let @ be its natural lifting in 7¢ given by the trivial-
ization: then by definition of 3, we have (,(u) = intg(w’) Pulling this
back to W x [0, 1] via I', and using (3.15) we get

Ou,t(@)dt = 7" ((B)w(w))-

Fixing w, u and integrating over t, we get

[ Gout) = [ duatwrat

Aﬁ“ _ /Olétdt.

Then formula 3.14 follows from the equality above and from (3.16), (3.17).
Thus Lemma 8 and Proposition 2 are proved. O

[Te/w+

that is,

4. The nontriviality of 3

We will prove in this section the following theorem:

THEOREM 3. Let S be a surface with h?>? # 0; then 3(S) is nontrivial
modulo torsion. (In fact the proof will show that Tm3(S) mod. torsion is
infinite dimensional.)

The proof will be based on Propositions 3 and 4, which allow us to apply
Proposition 2.

We work with the notation introduced at the beginning of Section 3, that
is with the diagram

c 4 s I wWxS

7T~L Pl Pr1l 9
w = W = W

together with sections o; of 7, and integers m;, defining a family of zero-cycles
Z,w homologous to zero on C,,. They allow us to define functions

w — ey, € HY(Cy, Z) @7 H*(S, Z)y @7 R/Z,
w— fo, € HY(Cy,Z) @z R/ Z,

and by definition ¥3((pry o T 0 ¢)«Z,,) is the projection modulo UZ(S) of the
product
ew fuw € H*(S,2)y @z R/Z @7 R/ Z.
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This product has the following explicit form: let {a;, 5}, 1 < i < g, be a
symplectic basis of H'(Cy,Z) and let {v;} be a basis of H*(S, Z),; then we
can write

ew = pr )@ @75+ X (w) ® Bi @,
7-7

Jo = Z¢z ®az+z¢z ®ﬁza

and we have

(4.18) ew-fw—z me ) ®z ti(w wa ) ®z ¢i(w)) @ ;.

We prove now:

PROPOSITION 3. Let V C W be a smooth real analytic subset, such that
for any w € V', the product ey, - f., vanishes in H*(S, Q)i ®go R/Q ®g R/Q.
Then the H?(S,R)y-valued two-form de A df (see Section 3) vanishes on V.

Proof. Tt suffices to prove that for any index j the hypothesis (€, fi); =0
in R/Q, for any w € V, implies that (de Adf); = 0 on V. We may assume that
V' is connected. We have then:

LEMMA 9. There exist Iy, I C {1,...,g}, a dense subset V' C V and
coefficients

wir € Qyielh,ke{l,...,g}— I,
we € Qlel,ke{l,....g}—1,
Vim € Q,iel,med{l,...;g}— I,
v, € Qlelh,me{l,...,.g}— I,

such that for v € V', the elements ¢;(v)icr,, Yi1(v)icr, form a Q-basis of the
Q-vector subspace of R/Q generated by the ¢;(v), Pi(v), 1 < i < g. Also, the
following relations hold everywhere on V.

(4.19)
i€l lelr
Ym(w) = D vimdi(w) + > Vpth(w) in R/Q,m e {1,...,g9} — L.
i€l lely

Proof. Any relation Y-, vidi(w)+>"; vi;(w) = 0 in R/Q holds everywhere
on V or only on a countable union of proper real analytic subsets of V. If
we consider all possible such relations, it follows from Baire’s theorem that
there is a dense subset V/ C V such that for any wy € V', any relation

>0 Yidi(wo)+>2; vivbi(wo) = 0 in R/Q implies that =, vids (w)+>_; vivbi(w) = 0
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in R/Q, for any w € V. Choosing for such wy a basis ¢;(wq), ¥i(wq), i € I, | €
I, of the Q-vector subspace of R/Q generated by the ¢;(wg), ¥;(wp), 1 <i < g,
gives the result. O

Now in formula (4.18) we replace ¢g(w) and 1, (w) by their expressions
n (4.19), which gives

(ew fw Zplj ®¢l + Z pmg

lely mgly
Z Vzm¢z + Z Vlm¢l
i€l lely

- Z Xzy ® ¢z Z ij
i€ly kg[l

® > padi(w) + Y pgthn(w
i€l lely

where the equality holds in R/Q ®qg R/Q.
Now we use the fact that ¢;(w) and ;(w) are independent over Q for
w in the dense subset V’. Then for w € V' the condition (e, - fi); = 0 in

R/Q ®g R/Q implies

(4.20)  pj(w) + Z VP (W Z pXkj(w) =0 in R/Q, VI € I,
mé[g kgll

_Xzy ‘|‘ Z Vzmpmj Z /szXky =0 in R/Q, Vie .
mé[g kgll

But recall that V"’ is the complementary set in V of a countable union of proper
real analytic subsets. So the equalities (4.20), being satisfied on V', must hold
everywhere on V.

Now we can differentiate (4.19) and (4.20): indeed these equalities mean
that for liftings of the functions ¢;, 45, xij, px; to functions with values in R,
the corresponding equalities hold modulo some (necessarily constant) rational
numbers. This gives

(4.21) dpp = Y paeddi+ Y pdipn, ke {1,...,9} — I

icly lely
d¢m = Zyimd¢i+zyl/md¢lame{17--'79}_12-
i€l lely
(4.22) dpij + Z Vimdpmj — Z wrdxe; = 0, foralll el
méls k&I
—dxij + Z Vimdpmj — Z pikdxy; = 0, forallie Iy.

méls kel
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Next we have

(de N df); = (de); Ndf =D dpi A dips = 3 dxij 1 dep,

which shows that this is equal to zero, by (4.21) and (4.22). Now Proposition 3
is proved. O

Combining Proposition 2 and Proposition 3, we conclude:

COROLLARY 1. Under the assumptions of Proposition 3, the pull-back
0= z:mi(pr2 oT oo (w)
i

of any holomorphic two-form w on S vanishes on V.
Next we have the following:

PROPOSITION 4.  Assume the map 13(S) vanishes modulo torsion in
J2(S); then there exist data

c 4 s I wxs

Tl pl pryl

w = W = w
together with sections o; of w, and integers m;, defining a family of zero-cycles
Zw homologous to zero on C,, satisfying the following properties:

— There exists a map ¥ = (P1,1¢2) : W — S x S such that
(proo 70 ¢)uZy = P1(w) — a(w)

as a zero-cycle of S, for any w € W.

— There is a smooth locally closed real analytic subset V-C W such that for
any w €V, ey - fu vanishes in H*(S,Q)y ®g R/Q ®g R/Q, and Yy is
a submersion.

Clearly this proposition implies Theorem 3; indeed, if 3(.S) vanishes mod-
ulo torsion in J3(S), Proposition 4 and Corollary 1 give a submersive map
PV — 8§ x S such that for any holomorphic two-form w on S,

Pi(w) = ¢5(w) =Y mi(pryoTod o) (w)
vanishes on V. It follows that prj(w)—prj(w) vanishes on an open set of S x S,
hence that w = 0. So we have proved that 13(S) = 0 modulo torsion implies
H?9(8) = {0}, that is, Theorem 3. O
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Proof of Proposition 4. By definition of 13, the assumption implies that for
any (x1,x2) € S xS, there exist a smooth curve C, a zero-cycle Z homologous
to zero on C, and an immersion ¢ : C < S of C in a surface S = S birational to
S, such that 70¢,(Z) = z1—r2 and ec 5+ fzc = 0in H%(S, Q)®oR/QxoR/Q.
Now note that there are countably many quasi-projective varieties (that we
may assume smooth by desingularization) W,,, together with data

c. 4 S, L W,xS

Tm | pm | pril
Wi = Wi = Wy

with sections o} of m,,, and integers m;"*, defining a family of zero-cycles Z}

homologous to zero on C7', and satisfying the following properties:

— There exists a map ¢, = @ ¢5) : W, — S x S such that
(Tm © Om )« Z3t = YM(w) — Y5 (w) as a zero-cycle of S, for any w € W,.

— Any set of data ((x1,x2),C, Z,¢,7) as above, such that 7 o ¢.(Z) =
x1 — o identifies with the data parametrized by some point w € Wy,

with (21, z2) = ¥ (w).
On each W,,, we have the locally defined maps
em: Wm — HYCY',Z)®z H*(S,Z)y: @2 R/Z,
fm Wi — HYCJ',Z) ®z R/Z,
(which are globally defined as sections of a flat bundle), and their product
em  fin : Wi — H?(S,Q)ur ®g R/Q ®o R/Q.

So the assumption of Proposition 4 is that
S x 8= Jvm((em - fin)7H(0)).

We have now:

LEMMA 10.  Locally (ey, - fm)~1(0)) is a countable union of real analytic
subsets of Wi,.

Assuming Lemma 10 we have countably many locally closed real analytic
subsets W C Wy, on which e,, - f,, vanishes, and such that
S x 8= bm(W2).
m,n
Stratifying each W)} into smooth real analytic subsets, we may assume the W)
are smooth. The theorems of Baire and Sard imply now that for some (m,n),

Ypwr must be submersive at some point of Wy, hence on an open subset V
of it. So Proposition 4 is proved, with W = W,,, ¥ = ¥p,. O
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Proof of Lemma 10. The proof was almost completed in the course of the
proof of Proposition 3. With the notation introduced there (and forgetting the
subscript m), it follows from the computations made there that, for the j*'-
component (e- f); of e- f, (e-f)j_l(O) C W can be written locally as the count-
able union of the sets Wh,lz,uik,u’_lk,wm,u{m C W where the equations (4.19)
and (4.20) are satisfied. But choosing (locally) liftings of the ¢;, ¥, pij, Xij
to real analytic functions with values in R, one sees immediately that each
W Lo sty vim /18 8 countable union of real analytic subsets of W. Now

the lemma is proved, since (e - f)~1(0) = ;(e - f)j_l(O). O

Remark 1. More generally, we have proved that in S x S/ the set Z of
points (21, z2) such that 13(z; — 22) = 0 mod torsion is covered by a countable
union of images of real analytic sets V.o : V. — S x S such that for any
holomorphic two-form w on S with induced form wy on S, Yiwg — Yiwk
vanishes on V. Hence, the Mumford argument (see [7]) applies to show that
Im 42 mod torsion is infinite dimensional. Indeed, if z € S %] is a general point,
the two-form ¥jwy — ¥swy is nondegenerate at (z, z), so that its real part is
also nondegenerate, and the fact that it vanishes on Z implies that the real

dimension of any component of Z passing through (z, z) is at most equal to

i [k] x Slk]
M = dimg S¥. But any component of Z passing through (z, z) has

to dominate an open set of S by the first projection, if z is chosen outside a
countable union of real analytic sets. It follows that the map 2’ +— ¥3(2 — 2)
has almost all of its fibers countable in some neighbourhood of z. Hence the
dimension of its image, defined as dimg S¥ — dimp (general fiber), is equal to
dimg S/, which tends to co with k. Here general is with respect to the real
analytic Zariski topology and the dimension of a fiber is well-defined since the
fiber is covered by a countable union of real analytic sets.
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