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Representations of Lie Groups and the Orbit Method

MICHELE VERGNE*}

It was a great honor and pleasure to be invited by the Association for Women
Mathematicians, to give an address for Emmy Noether’s 100th birthday.

I have chosen here to talk about my own present mathematical interests, the
theory of Lie group representations, and I would like on this occasion to point
out that many women are now contributing to the development of this field. This
fact would have pteased Emmy Noether. Although she was extraordinary, she
would not have thought of herself in these terms, she would have been against
holding up her name as a yardstick by which to measure all past, present, and
future accomplishments of mathematicians, women and men. We want to celebrate
her as an ordinary woman, who could find at this time, only in herself, the necessary
courage and inner peace to be what she has been: Emmy Noether,

Let G be a Lie group, i.e. G is an analytic manifold with a group structure such
that the group operations are analytic. Let us denote by e the identity element of G.

Consider g the tangent space to G at e. For every X e g, there exists a homo-
morphism R — G:t— exptX such that (X -@)e) = (d/d)plexp tX)),-o for
every differentiable function ¢ on G. The map exp: g — G given by X — exp X is
called the exponential map.. '

If gy € G, the right translation R(g,) - g = ggo defines a right action of G on G.
If X e g = T(G), we denote by X* the vector field on G such that (X*), =
R(go), - X. The bracket of two elements of g is then defined by the relation
[X, Y]* = [X* Y*], where on the right-hand side the bracket is the bracket of
vector ficlds; ie. [X™*, Y*]-¢ = X*Y*. ¢ — Y*X*. ¢ This defines a Lie algebra
structure on g. : '

* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139,
US.A.

+ Iwould like to thank the Association for Women Mathematicians and the Americar Mathematical
Society for organizing this event. I also would like to thank Peter Dourmashkin, Devra Garfinkle,
Linda Keen, Sophie Koulouras, Lisa Mantini, and Kenneth Manning for comments, help, and positive
reinforcements. ) .
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60 . M. Vergne

Consider the adjoint action of G on itself by inner automorphisims (Ad gg) - g =

god9s . The differential of the map Ad go: G — G at the identity gives rise to a -

map (still denoted by Adg) on T,(G) =g We have then g-(exptX)g ! =
exp(t Ad g - X). (We may write g - X for Ad g - X.} This action of G on g is called
the adjoint action. We define also (ad X)- Y = [X, Y], for X, Y egq.

I. Examples of Lie Groups

Lzt us start by giving some examples of Lie groups G. Of course, the most evident
example is '

1.1. EXaMPLE 1: G = Vector Space. G = V is a finite dimensional rea! vector
space (with the addition law).

Clearly g = ¥, and the exponential map is the identity map.

As G is commutative, the adjoint action of G on g is trivial, ie. g - v = v for

everyge G,veg.
A closely felate_d example is the example of a torus.

1.2, ExaMPLE 2: G = Torus. Let us consider G = {z;z € C, |z| = 1} (with the
muitiplicative law).

Y Figure 1

The tangent space g at the identity is
g= iR
The exponential map is the map il — ¢". The adjoint action is trivial.

1.3. More generally, let I" be a lattice in a vector space ¥ and consider
G=T-=VWV[I.
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w:ﬂgebra of G is naturally identified with V.
g="V .

The exponential 'map exp: ¥V — V/T is the natural quotient map.
The adjoint action is trivial, '

1.4. Let us now consider the “basic” example of a Lie group:

ExampeLe 3: The Full Linear Group GL(z, R). Let
G =GL(nR)
" = {n x ninvertible real mairices}.
As G is an open subset of all n % r real matrices, we have:
g = gl(n, R)
= {n % .n real matrices}.
The exponential map is the usual matrix exponential
Xz X"
epr=1+X+ﬁ+-~+n—!+-.
The Lie algebra structure on gl(n,R) is (4, B] = A< B — Be A, The adjoint
action is given by conjugation:
(Ad g)-4 = gAg™".
1.5, For the purpose of this discussion, it will be sufficient to consider here linear
groups G. A linear group G is a closed subgroup of GL{n, R). Thus its Lie algebra
g is a subalgebra of gl(n, R). The corresponding notions of exponential bracket,

and adjoint action are therefore the restrictions to g and G of the preceding
operations, i.e., for:

g = gl(n, R),
G < GL{n, R),
we still have:
f:pr=1+X+-‘§!i+-..+X?r;+.‘., Xeaq,
[4,B]=A-B—BoA, ABeg,
g-X=gXg*, geG, Xeg

Let us consider some examples of such linear groups:

1.6, ExampLE 4: The Heisenberg Group. We consider the group

1 x =z
G={0 1 yEx,pzeRE
00 1
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0 e
g= {(0 q); p.4g,e6 R}.
000 _

We write a basis of g as follows:

It is easy to see that:

o D

01 0 000 00 1
P={o 0 0f, ¢g=|oo0 1} E=]|o o of
00 0 00 0 000

We have the following relations:
[P.Q1=P:Q—-Q:P=E
[P,E] =0,
[0,E]=0.
1.7. E}'(.'.XMPLE 5: G = SU(2). Let us consider the vector space C? with its usual
I:Icrrmnan inner product {z,{* + }z,|% We consider the group U(2) of all complex
linear transformations g of C2 leaving this inner product stable. To be able later

on to illustrate our notions by pictures in R, we will consider the subgroup
SU(R) of U(2) of elements g in U(2) such that det g = 1. It is €asy to see that:

SUR) = {(_g E);a,ﬁec, laf? + | B2 = 1}_

o

* Hence SU(2) is a compact manifold of dimension 3. The Lie algebra su(2)'o'f the

group SU(2) consists of 2 x 2 complex matrices X which are anti-hermitian and
have trace zero, Thus:

g = su(2)

ix —x, + ix
= {( 3 L 2);xie R}.
Xy + ix, —iX3

We remark here for later use that the function X +>det X = x? + x% + xZ is
invariant undef’the adjoint action g- X = gXg~ ! of G on g.

" 1.B. ExaMmpLE 6: SL(2, R). We consider the group of 2 x 2 real matrices with
determinant 1, i.e.

G={(" b);a,b,c,deR;adwbc - 1}.
c d

Thus G is a closed subgroup of GL(2, R). It is easy to see that:

g = s1(2, R) = {matrices of trace zero}

={X= ( *1 x2+x3),xieR}
Xa — X3 —X3
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Let us also remark here that the function Xi—det X = x3 — (x} + x3) is
invariant under the adjoint actiong-X = gXg ' of Gon g.

II. The Dual of G and the Plancherel Formula

2.1, One of the main objects of representation theory of Lie groups is the study
of the dual G of the Lie group G or, “equivalently,” of the characters of the group G
We will now define these notions, allowing some imprecisions from time to time.
Let us refer to the useful book [37] for more details.

- A representation of G on a vector space ¥V is a homomorphism g+ T(g) of G
into the group of linear transformations of V, i.e. we have

T{g192) = T(g)° T(g2),
T(e) = idy.

The representation T of G in ¥ is called a unitary representation of G, if Visa
Hilbert space, the operators T(g) unitary operators and the map (g, ©)— T(g) ' v
continuous,

We have an obvious notion of equivalence of unitary representations. Two
unitary representations T;, T, of G in Hilbert spaces H,, H, are equivalent if there
exists a unitary isomorphism I: H, — H, such that the following diagram:

H —1 . H,

[T:(g) '{thg)

H, 1 H,

is commutative, for every g € G.

If (T, Hy) and (T, H,) are two unitary representations of G, we can form the
representation T = T, @ T, acting on the direct sum H = H, @ H, by T(g) =
Ti{(g) ® T:(g). A representation T is irreducible if T is not obtained as a direct
sum of two representations. Equivalently, (T, H) is irreducible if there exists no
proper Hilbert subspace of H invariant under T. As every unitary representation
T of G in a Hilbert space H is a “sum” (eventually a “contimious sum™) of unitary
irreducible representations of G, the essential objects of unitary representation
theory are the irreducible representations of G.

By definition, the dual & of G is the set of equivalence classes of unitary ir-
reducible representations of G. '

2.2. Let us give now an important example of a unitary representation: the regular
representation. Consider on G the left invariant Haar measure dg (unique up to a
positive scalar multiple). Consider the Hilbert space L*(G) of dg-square integrable
functions on G, i.e. :

LXG) = {f; j Lf@F dg < oo}.
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The left action (L{go)f Xg) = f(g5 '¢) defines a unitary representation of G on
L*(G). This representation is highly reducible, and an important problem is to
describe explicitly the decomposition of this representation into irreducible
representations.

2.3. Let us now define the notion of the character of a representation, If T is a
representation of G in a finite dimensional vector space V, the character of T is
the function x¢{g) = tr T(g). It is clear that this function is invariant under
conjugation, i.e. ¥r{goggs ) = xr{g). It is well known that if G is a compact group,
the description of G is equivalent to the description of all the functions y..

Let us now consider the case of an infinite dimensional representation. Define,
for a function ¢ in LY(G), the operator T(¢) = [¢ ¢(¢)T(g) dg. ie.

(T(o)x vy = L o(@)T@x, ¥ dg.

If {T, H) is irreducible and if ¢ is a C* function with compact support on G,
it is often the case (in particular for all our examples) that the operator T(g)}has a
trace. If ¢; is any orthonormal basis of H, we have tr T(@) = ¥, {T(@)e;, &
Furthermore, the map ¢ — tr T{p) happens to be a distribution on G. This
distribution (if defined} is called the character of the representation T. The distri-

bution character tr T depends of the choice of dg. It is clear that, if T is a represen- -

tation of G in a finite dimensional vector space ¥, we have

tr T(p) = L (tr T(@Dp(g) da.

24.A groﬁp G is called unimodular if the left Flaar measure is also right invariant.

" Equivalently, G is unimodular, if | det Ad g| = 1forevery g e G. If Gis unimodular,
 the distribution tr T (if defined) is an invariant (by the adjoint action) distribution

on G, as:
(tr T (Ad go)™ -9) = tr fG Te)o(gogga™) dg

[

= tr L T(gs "9g0)¢(g) dg

as dg is left and right invariant,

= tr | TG0 T@)TG0o(e) 48

= tr T(go)™ ' T(@)T(go)
= tr T(¢).

Consider the é-distribution ¢ - ¢{e). It is an invariant distfibution on G. The
purpose of the Plancherel formula is to express the value of a function @ at e in
function of the values of the characters tr T(¢). It is indeed possible to do so, for
any “tame” unimodular Lie group (we will consider here only real algebraic
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groups, which are “tame” Lie groups), as we have the “abstract Plancherel
theorem ™:

2.5. Theorem (seé [147). Let G be a tame unimodular group. There exists a measure
dpt (called the Plancherel measure) on G such that:

o(0) = [ 1 To) dur)
G
Jor every C® function @ on G with compact support.

Let us first remark here that the support of the measure du may be staller
than G. This already happens for the group SL(2, R). We will denote by G, the
support of du and call G, the reduced dual of G.

2.6. Let us come back to our examples and describe accordingly the dual G of
these groups and the Plancherel formula.

2. BxaMpPLE 1. G = V.

(a) Theset G

Let V be a real finite dimensional vector space and V* be the dual vector space.
If f € V*, we consider 3,(x) = €/, The map x ~» y,(x) defines a character of
the additive group V. (We also use the word character for a 1-dimensional repre-
sentation of a group G.) Thus we have:

Vo~ v+

(b) Characters ‘
Let dx be a Lebesgue measure on V. If ¢ is a C* function with compact support,
we have

1 2,00) = [ ot dx = [ et dx = 901

Thus f > tr 3 {@) is the function on' V* given by the Fourier transform of ¢.

(c) The Plancherel formula
The Plancherel formula is the usual Plancherel inversion formula:

o0 = [ 6,
V‘
where df is the dual Lebesgue measure on V* = V.

2.8, EXaMPLE 2: G = T.

(a) The set G
letG=T={z;zeC,|z| = 1}.
If n € Z, define y,(z) = z". We have

GzZV (ne x.h
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(b) Characters
Let us choose on T the Haar measure giving total mass 1 to T.
If @ is a C™ function on T, then

Y .
t = gy ind
I x.(0) fw(e )

is the (~m)th Fourier coefficient of the periodic function 8 — p(e") = ¥ g, &*.

(c) The Plancherel formula :

fl“h_e Plancherel formula is deduced immediately from the expansion of a function
in its Fourier coefficients:

@(1) = 3 tr y (@)

2.9. More generally, let T = V/T be a n-dimensional torus. It is clear that every
re;zresentatxon of T gives, by composition with the natural projection
V35V = T, a representation of ¥, Thus T is included in V*.

1

T T

)‘ exp Id

vV v*
Figure 2

This map is represented for ¥ = R, I’ = 2nZ, by:

] T
o
R/27Z l d
A
2R
//' \\\
= A LS
s / \\ \\
’/ ,/ {_’iu \\ \\
%4 K ] 1 k| Il L 1 L i
—4n —2n 0 n 4n -2 -1 0 1 2
Figure 3

It is obvious that a character x, of ¥ gii'es rise to a character of T, if and only if
xs(x} = €V/+? = 1, for every x in ¥ such that exp x = 1, i.e. for every x in I". Thus
we have identified 4(T) with the dual lattice I'* of T" in V*, Therefore,

(a) T =T*={feV* (f.7) e2nZ, for every yT'}.
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Let us normalize the Lebesgue measure on V such that the volume of the
fundamental parallelepiped spanned by I' is 1. Thus we have, for ¢ a C* function
on V/T"

). tr x ) = j p(x)e® dx, for feT™
vir
‘The Plancherel formula is: '
(© P0) = Y tr x{e)
fe™

for every C*® function ¢ on V/T. \
Let us point out at this occasion that, by an immediate averaging process, this

formula is equivalent to:

(d) The Poisson formula:

Yoem= 3 e
yel' fel*
for every C* function ¢ on V with compact support (or in the Schwartz space of V).

2.10. ExaMpLE 3: G = GL(, R). Let us now consider our basic example of a Lie
Group G = GL{n, R). Now is the time to reveal the truth, The dual G of GL(1, R)
is not known. The case r = 2, the first work in the representation theory of semi-
simple groups, was completed by Valentine Bargmann in 1946 [6]. But since this
time the general case seems still out of reach.

2.11. Let us mention some of the recent results on this question of the determination
of the unitary dual of real semi-simple Lie groups:-

Ifn < 4, the dual G of G = GL(n, R) has been determined by Birgit Speh [60].

The dual ‘G of any complex semi-simple Lie group of rank two (ic.
SL(3, C), Sp(2, C), G,) has been determined by Michel Duflo [16].

The dual G of any semi-simple Lie group of real rank one (i.e. G = SO, 1),
SU(n, 1), Sp(n, 1) or a real form of F,) has been determined by Welleda Baldoni-
Silva and Dan Barbasch [4], [5].

The dual & of G = SU(2, 2) has been determined by Anthony Knapp and
Birgit Speh [38].

Thus we still know very little about unitary representation theory of real semi-
simple Lie groups. However, as remarked before, the Plancherel inversion formula
for a Lie group does not involve the complete description of G, but only of the
reduced dual &,. If G is a real semi-simple Lie group (with finite center), the reduced
dual &, of G as well as the “concrete” Plancherel measure dp(T) on G, has been
determined by Harish-Chandra [26]. We will discuss further some of the corre-
sponding results:
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2.12. ExampLE 4: G = The Heisenberg Group.

(a) The set G

The description of the dual G of the Heisenberg group was the object of the famous

theorem of Stone-Von Neumann [1931] on the “Uniqueness for the Schrédinger
operators™ [47].

Here is the complete list of all equivalence classes of unitary irreducible repre-
sentations of G.

(1) Let H = L¥(R).

~_For each 1 a non-zero real number, consider the representation T, of G in
LXR) given by:

(T; exp(tP) - X3} = (),
(T exp(tQ)- oX¥) = o(y — 1),
(T, exp(tE) - 9Xy) = e'¥g(y) for ¢ € L*(R).

DLetH=C )
For each («, $) a pair of real numbers, consider the character

T, s(exp xP exp yQ exp zE) = &%,

@h

RZ

Figure 4

Remark. Differentiating formally the representation T}, we obtain

d
dT(P) = = T, exp(tP)|;=o = iy,
d d
ATAQ) = 7 Tr exp(tQ)le=0 = ~%

d
dT(E) = — Ty exp(tE) ;=0 = il.

The operators idy, — 6/fy determine a representation of the “Schrodinger oper-
ators” by skew-adjoint operators, in particular these operators satisfy the canonical
commutation relation; Po Q — Q< P = il Id.

Representations of Lie Groups and the Orbit Method 69

(b) Characters . -
Let us determine the characters of the corresponding representations, It 1s not
difficult to compute that, for ¢ a C* function on G with compact support:

2 ,
 To) = 7 [ plexp 2B as,
R

with the Haar measure on G given by dx dy dz.

(¢) The Plancherel formula
We have the Plancherel formula

AdA
o) = Ltr @) e

Proof. From the formula given in (b) for the characters, the Plancherel formula is
immediately deduced from the usual Fourier inversion formula.
2.13. BExaMpLE 5: G = SUQ).

(a) Theset G
Let n be a positive integer and consider:

¥, = {Polynomials on C? of homogeneous degree n — 1}
(the dimension of the vector space V, is n).

The group SU(2) acts on €2, and thus acts on polynomials on Cvia{g P)z) =
P(g~"-z). It is clear thiat this action preserves the space ¥,. We have

G~N
by [n (T{g)P)z) = P(g"'z), Pe V1.

1 2 3
G = f :

Figure 5

(b) Characters

8 ) e
Let (f) E)m) be an element of SU(2). The polynomials zy25 ( +j=n — 1)
e
ig

. e ) .
are eigenvectors for the transformation T;,( ) Thus we can easily compute:

0 e—iﬂ

€ 0 - itn—1—2K)8
I e
ir T;I(O e——lﬂ) Z :

k=0
gind _ o= ind
PN

(This formula is a special case of the Weyl formula for characters [641)
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{c} The Plancherel formula
We have the Plancherel formula

oe) = zuntr ().

A proof of this will be given in Appendix 2.

2.14. EXAMPLE6: G = SL(_2, R).

(2) The reduced dual G, _

The set G has been determined in the classical article of V. Bargmann [6], still the
best reference on this subject. The complete list of the unitary irreducible represen-
tations of SL(2, R) consists of “discrete series,” “principal series,”™ and “comple-
mentary series.” Only the first two series contribute to the Plancherel measure.
Furthermore, the description of the complementary series is more subtle, 50 we
will list here only the set G,. It consists of:

(1) The discrete series

(1.1) Let n be a positive integer. Let us consider the upper half-plane P* =
{z=x+iy;x, yeR, y > O}. The group SL(2, R) acts as a group of holomorphic
transformations on P* by z+»g -z = (az + b)f(cz + d).

Let n be a positive integer. Consider

H, = {qo, helomorphic functions on P such that

f @2y~ dx dy < 00}.
P+ :

(This Hilbert space would be {0}, if n were negative.)
For

a b
g= (c d) &SL(2, R),
- define

' b
(T{g™Do)2) = (ez + d)“"””‘"(jz_j-d).

The map g T,(g) defines a unitary irreducible representation of G in H -
 The series of representations (T,,, H,) (# > 1) is called the holomorphic discrete
series.

(1.2) Let n be a negative integer. Consider

H, = {qo, antiholomorphic functions on P* such that

f l@|*yim=1 dx dy < oo}.
P+
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Then, for
g={ P)esam),
¢ d
consider

-1 | TTh-(l-m az +b
(Tg™ Do)z} = (cz + d) o\ d)

The map g+ T,(g) defines a unitary irreducible rep_resentation of G_iu H,. _
The series of representations (T, H,) (1 < —1) is called the antiholomorphic

discrete series.

(2) The principal series ‘
Let H = L3(R), let 5 be a non-negative real number. Define the representations
TZ of Gin LY(R) by:

 fax+b
(THg™ /)X = lex + dl‘”“f(‘z . d),

. c + by a b
(TSN = signlex + dlex + I (i—"iu)’ ﬂg:(c d).'

It is easy to verify that T and T, are unitary representations of G in LZ(B).
Furthermore, T and T are irreducible, except for the representation +T° v_vl:uch
breaks up into two irreducible pieces. The series of representations (T, T, ) for
s = 0 forms the two principal series of SL(2, R).

A schematic diagram of G, for G = 5L(2, R) is thus:

3} ~— Holomorphic discrete series
24
1 2 Principal series, s*

G,= \

~2t+— Antiholomorphic discrete series

Figure 6

b) Characters . :
(W)e give here the résults on the characters of the representations of SL(2, R) as

© proven by Harish-Chandra [24]. First of all, as the case for any real semi-simple
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I:ie grqup_G, the character distribution ¢ — tr 'T(}p) is well defined for every T in
G and is given by integration against a locally L*-function ®,, ie.

tr( [ 7@t dg) = [ ext@ote)ds

for ¢ a C* function on G with compact support.

Clearly @1(gog90 ') = O1(g). Thus @ is determined by its restriction to the

subsets
cosf sinf
B= :
{( —sin @ cos 9)’ be R}’

a={fs Lipeen)

as almost all (for dg) elements of SL{2, R) are conjugated to an element of onc of
these two sets [SL(2, R) has two conjugacy classes of Cartan subgroups].
We have the following formulae:

and

(1) Discrete series ‘
{1.1) Holomorphic discrete series n = 1

cos @ —sind gt
®T . = e a—
"\sin0 cosf) e® —¢F
e’ 0 e—-|m| .
@ —pehtl_* —
T"(O se") s et — 7" o= £1.

(1.2) Antiholomorphic discrete series n < —1

0. (¢ # —sinf e
T\sinf® cosf) &P —e @

e 0 el
(2] = plmn
T"(O ee") = e’’’

(2) Principal series

@ (cos # —sin 6)

sin @ cos & 0’

e 0 ¥ g™
ff 25

0 e e —e |’
ae‘ 0 e:'s: + e—r‘:t
@)T\-— e Y =T
10 e e —e™|
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(c) The Plancherel formula for G

We have the fomuia ;
2np(e) = ), Inltr (o)
i

+%j stanh 2 tr TH(p) ds
R+ 2
+13 f s coth "y T (@) ds,
R+ 2
which can be deduced from the preceding forraula for the characters (see [41]).

2.15. Let Gbe a general real semi-simple Lie group. We give now a cursory summary
of results on unitary representation theory of G. As we pointed out before, only the

-part G, of Gisknown, while a complete description of G is still an unsolved problem.

Let us, for example, mention that a most remarkable representation of the sym-
plectic group, the Shale-Weil representation, is a singular unitary representation
(singular in the sense that its two components are not in G,) and that its existence
has not been recaptured by ary systematic procedure.

Let us center our attention on &, and the Plancherel formula. The central
reference for this topic is the work of Harish-Chandra. As in the case of SL(2, R},
we may list representations in &, by series. Let Car G be the set of conjugacy classes

_of Cartan subgroups of G. There is as many series as ¢lements in Car G: to a con-

jugacy class of a Cartan subgroup H of G corresponds a series of representations
{T;, i € Iy} The elements of this series may be indexed by a subset Iy of B [y
parametrizes the set of regular characters of H modulo the action of a finite group.
For example, in the case of SL(2, R), there are two conjugacy classes of Cartan
subgroups, namely the conjugacy class of B and the one of 4. The discrete series is
indexed by the set of characters of B, except the trivial character, i.c. by Z — {0}.
The principal series is indexed by A = Z/2Z x R modulo the action (g, s)—
(Es - S)]

In general, if G has a compact Cartan subgroup B, the corresponding series
{T,, A€ B, A regular}, is indexed by a discrete set. The corresponding representa-
tion T, whose existence was proven “abstractly” by Harish-Chandra occurs as a
discrete summand in the regular representation of G in L*(G). Thus this series is
called the discrete series of G. Let T, be a representation of the discrete series.
Harish-Chandra gave an explicit formula [25] for the character ®,(g) dg of T, in

the case g is a regular elliptic element of G. This formula is a finite sum over the =

fixed points for the action of g on G/B and is formally similar to the Atiyah—Bott
fixed point formula [1] for the twisted Dirac operator. It was a remarkable result
of W. Schmid [52] that, indeed the representation T, can be realized in the space
of L2-solutions of the twisted Dirac operator D; on G/B.

The other series {T;; i € Iy} of representations of G are constructed in a simple
way from. representations of discrete series of reductive subgroups of G.
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The Plancherel measure is thus the measure du(T) on the set G, = Usecarala
such that

216 ople) = f tr T(g)} du(T).

(e
The explicit formula for du(T) has been determined by Harish-Chandra, and the
Plancherel formula proven [26]. MayI confess that I never understood the original
proof of Harish-Chandra and that I am very grateful to Rebecca Herb to have
given recently a more accessible proof?

2.17. For this proof and on its own right, the integrand tr T{¢} is worth detailing.
It is a difficult question and there have been several attempts to find explicit
formulae for it. In an article on this subject [53], W. Schmid went so far as to
declare: “ For a general group G, it will be very difficult to express the discrete series
characters by a completely explicit global formula in closed form—if it can be done
at all.” But, one should never give up hope and recently Rebecca Herb [27], [31]
gave formulae for the locally L!-function ®; defining the distribution character
®1(g) dg of a representation T of G,. Some of the ingredients for her formulae are
related to the work of Diana Shelstad on “Orbital integrals and base change”
[54], [57].

When having explicit formulae for the integrand tr T(g) and the Harish-
Chandra formula for du(T), it was then (theoretically) siraple to reprove 2.17. This
was also accomplished by Rebecca Herb for linear semi-simple Lie groups [31],
[32].

2.18. We would like now to discuss representation theory of general Lie groups.

We will try to give a glimpse on some beautiful and deep results on general Lie
groups and show how a large part of the specific results we have described here fit
in the general theory of the “orbit method.,” However, as shown exemplarily by
the case of G = GL(n, R), it would be too much to hope that a single mode of
explanation will lead to a total understanding of G.

IH. The Orbit Methed

Let us consider a general Lie group G. What kind of parameters should we look
for to describe G7 It was A. A. Kirillov [35], who discovered universal parameters
for G, whatever the Lie group G is. This idea is very simple and is referred to as the
“orbit method.”

3.1. Let G be a general Lie group, g the Lie algebra of G and g* the dual vector
space of g. As G operates on g by the adjoint action, G operates on g* in such a
way that : :

g-f9-X>=Lf X5 Jegh Xeg

This action of G in g* is called the coadjoint action. Let us consider the orbits of
G in g* under the coadjoint action of G. Kirillov's idea is that the dual G of G
should be related to the dual vector space g* of g, or more exactly, related to the
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set g*/G of orbits of G in g*. Let us quote here the first striking fesult of Kirillov
[35].

3.2. Theorem. Let G be a simply connected nilpotent Lie group, then G is isomorphic
to g*/G.

I would like to comment here on this theorem. Once the principle of the corre-
spondence is stated (the irreducible representations associated to orbits are
constructed by induction) the proof follows in a straightforward manner from
G. W. Mackey theory [43]. However, it is the statement itself which is remarkable.
This idea generated many new insights on many aspects of representation theory
of Lie groups and Lie algebras.

Let us first take a look at the space of orbits for our examples of nilpotent groups,
i.e. Examples 1, 2, and 4. (If G is a connected nilpotent Lie group, with universal
covering G, the set G is a subset of G. Thus & is identified with a subset of G-orbits
in g*, depending on G.)

3.3. EXAMPLE 1: G = Vector Space. Let G = V.
Then '
g=¥V
gt = V* ~ g%G ~ G.

Thus the theorem of Kirillov is true in this case. (Fortunately!)

34 ExaMPLe 2: G = T Let G = T = V[T

Then
g=V
g* = V* = g%/,
G=T*cg

3.5. ExamPLE 3; The Heisenberg Group. Recall that

1 z
G._—,{O, yLx y.zeRy,
0 1
0 e
g={0 qimgeche,
0 0
with basis P, Q, E.

It is casy to compute the adjoint action of Gong:

1 x 25 0 p & /1 x z\"! 0 p etgx—py
01 yjlo 0 g}lo 1 y =100 q .
0 0 I 0 0 0 \0 0 1 o 0 0

o O D e
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The coadjoint action of G in g* is:

001

Thus we see that the orbit of the point AE* for 4 # 0 is the 2-dimensional plane

defined by (f, E) = 4, while the points «P* + f0* are O-dimensional orbits. We
obtain the following pictures of ¢* and g*/G:

1 x z\°t ’
(0 1 y) (@P* + BO* + AE*) = (a0 — Ay)P* + (B + Ax)Q* + AE*.

Figure 7

Note that the element /= aP* + BQ* of g* is a 1-dimensional character of the
Lie algebra g (ie. f[X, Y] = 0, for every X, Yeg). As expected, the Kirillov
correspondence assigns to this point f of g* the character of G givenby T {exp X) =
¢*¥ which is the representation 7, ; of Section II, Example 4. The Kirillov corre-
spondence assigns to the orbit of the point AE* the representation T;. Thus we see
clearly by comparison of 2.12, Figure 3 and 3.5, Figure 6, how a*/G becomes a
natural set of parameters for G. '

3.6. This striking result for nilpotent groups leads to the foliowing question, Is
there also for any general Lie group G a relation between & and 0*/G7 The answer
is “yes.” An explanation of the relation calls to my mind many diverse thoughts
including analogies, conjectures, and expectations, and it is not possible to give
such a simple answer in the general case as in the nilpotent case, I will select here
the analytic aspect of these relations given by the Kirillov universal character
- formula, leaving out many other equally rich aspects, such as the algebraic or
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geometric ones. For example, the power of Kirillov’s orbit method for the study
of enveloping algebras was foreshadowed by the work of J. Dixmier [13]. See the
book [15] by Dixmier and, among other recent articles, those of Colette Moeglin
[44], [45] and Moeglin and Rentschler [46].

3.7. Let g be a Lie algebra. Consider the analytic function

dX/2 e—adx,fl)

. &
.J(X)—det( d X

on the Lie aigebra g, and define j*/? the analytic square root of j (defined at least
in a neighborhood of (),

Kirillov [36] conjectured the following universal formula for characters: Let
G be a tame unjmodular Lie group. For almost every representation T in G,,
there exists an orbit @4 {of maximal dimension) of G in g* such that we have the
equality of generalized functions (at least in a neighborhood of 0),

tr Texp X)5200) = | 6™ du)
ap
where du(£) is a G-invariant measure on @. (The normalization of du(&) will be
made precise later on.)
For this equality to hold, we should have:

tr [ Teexp )7 *)000 X = | ( [ e mon) dX) du(®)
8 [ g
at least, for every C* function ¢ on g supported in a small neighborhood of 0.

3.8. The Kirillov character formula defines conjecturally a map T — @r from G,
to g*/G. Of course, in Example 1: G = V, the map fe V* - y{x) = &V is
also the one compatible with this universal character formula.

What is the image of G, under this map? Asitis obvious from the case of compact
groups (G being a discrete set), not every orbit corresponds to a representation of
G. The corresponding orbit should satisfy some integrality conditions, which appear
naturally when considering the inverse problem: How to construct from an orbit

" @ of the coadjoint representation a “natural” representation T, associated to @

having the prescribed character formula. This inverse problem is referred to as the
“quantization” of an orbit and, from my point of view, has no completely satis-
factory answer. The reader should consult the book [23] by Guillemin and Stern-
berg for insights on possible “quantization methods.” '

3.9. Let us now discuss these integrability conditions on @, which arise already
naturally in a preliminary step, the Kostant—Sourian prequantization of the orbit
& [40], [58].

Let @ be an orbit of the coadjoint representation. If f € O, wehave 0 = G- f =
G/G(f). The stabilizer G(f) of f has Lie algebra g(f)

9(f) = {X g, f([X, Y]) = 0, for every Y e g}.
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We can define an alternate non-degenerate 2-form o, on the tangent space g - f =
g/8(f) to the orbit @ at the point f by the formula 6 (X - f, Y - f) = f([X, Y]).
This way, we obtain a 2-form ¢ on ¢. This form o gives to @ the structure of a
symplectic manifold. If dim @ = 24, the term ¢%/(d! (2n)%) of maximal degree of
e°/2* defines the canonical Liouville measure dm, on @.

Consider the map X — f(X) on g(f). Clearly f(fX, ¥]) = 0 for X, Y eqg(f).
We introduce:

K(f) = {x, characters of G(f) such that
zexp X) = X for X e g( )}

We say that an orbit is integral if K(f) # &. (If G(f) is simply connected,
K(f) consists of one element.) In particular, f must satisfy the integrality condi-
tions: (1/2n)(f, X) € Z for all X = g(f) such that exp X = e.

For each character ye K(f), we can construct a line bundle %, — @ with
&, =G x C/G(f), where u e G(f) acts on G % C by (g, z)-u = (gu, ,(u)"'2).
It is not difficult to see that the first Chern class of this line bundle %, is o/2x.

Let us say here that the universal formula has some formal analogy with the
index formula for the twisted Dirac operator. For example, if G is compact and ¢
admits a spin structere, the universal formula for X = Ogives usan integral formula
for the dimension of the representation T,

o’
nydl’

which coincides with the index formula {[2]) for the twisted (by .#,} Dirac operator
D, on @. (Recall here that @ was supposed to be of maximal dimension, It follows
then from [21] that the tangent bundle to @ is a trivial element of X-theory, thus
the term & contributing to the index formula for D, is here equal to 1.) Further-
more, Nicole Berline and I [8], have shown that it is indeed possible to give an
integral formula for the equivariant index of a connected compact group of
transformations of an elliptic complex over a compact manifold, generalizing
Kirillov's universal character formula.
In another direction, when @ is not compact but still admits a G-invariant spin
structure, the formula of Connes and Moscovici [12] for the L*-index of D, is a
precise analogue of Kirillov's formula for X = 0. Thus, at least for orbits of maximal
dimension with compact stabilizers and spin structures, all these indications would
lead us to discover (as Christopher Columbus “discovered™ America) the impor-
-tance of the twisted Dirac operator on orbits to construct the “quantized ” repre-
“sentation T,. However, if @ is a general orbit of a group G in g*, there is no canon-
ical construction of a representation Ty, (even, for some s, no construction what-
soever [63]), nor are there sufficiently powerful theorems on unicity of various
methods of quantizations. (When G is solvable, the “unigueness of the quantized
orbit” is elucidated in numerous cases. Let us quote the uniqueness theorem of
Auslander and Kostant on “independence of positive polarizations” [3] and the
uniqueness theorems of Penney [48] and Rosenberg [50] on the realization of T
in L3-cohomology spaces.)

dimm;,=f
&
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3.11. The preceding discussion stressed the importance for the representation
theory of G of a subset of orbits satisfying integrality conditions.
Let G be a real algebraic group. By a profound generalization of the result of

) Kj,i'illov on nilpotent groups, Michel Duflo [17] was able to construct a set X of

parameters for G,. (When G is semi-simple, this construction is based on Harish-
Chandra’s work. In case G solvable, a set analogous to X was introduced by
li‘ukanszky [49].) Duflo defines the notion of G-admissible orbits, which is an
dppropriate modification (see Appendix 1) of the notion of G-integral orbits. In
all the examples of the text, the set g¥ of admissible orbits coincide with the set
Jof integral orbits. The set X is given together with a map d: X — gi/G having

* finite fibers; M. 8. Khalgui [34] proved under some very general hypothesis that

the universal formula for characters is valid and the map d is indeed the map
T — (7. We will describe briefly X in Appendix 1. In the examples of this text,
we can describe X as follows: Consider the set

P = {(f, x); G- f of maximal dimension, y € K(f)}.

The group G acts on P, The set P/G is fibered naturally over the set of integral
orbits of maximal dimension by the map d(G - (f, x)) = G- f. We may take for X
the set P/G (or a subset with complement of measure 0, as X is defined up to a set
of measure 0 for the Plancherel measure du(T)).

3.12. Let us describe now for all our examples this fibering and indicate how to
prove its compatibility with the universal character formula, i.e. let us relate the
character tr T with the Fourier transform of the corresponding orbits &,

3.13. ExaMmpLE 4: The Heisenberg Group. The set X is the set of orbits @; of
maximal dimension where @, = G-AE* % # 0. Let us consider the character
tr T, of the representation T, (2.12). We will verify that according to the universal
character formula {j in this example is identically 1)

. g
— e x> DA
tr Ti(exp X) = L%e o

where ¢, is the canonical 2-form on the orbit @,.
Indeed, for ¢ a Schwartz function on g, we have: (2.12(b}))

2 ,
tr( j T,(exp X)p(X) dX) = 71’5 J eo(zE) dz,
while the second member is

j J‘ BT Pr+aQN P304 2E) oy 7Y dx dy dz —1- dp dq
r? \Jr3 pi 7

- 2TE f e=g(0, 0, ) dz,

by the usual Fourier inversion formula.
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3.14. For a simply connected nilpotent group N, the function j is identically 1, and
the set X coincides with the set of orbits of maximal dimension. Recall that Kirillov

theorem (3.2) gives a description of G as g*/G. The corresponding character
formuta

o
(2ry'd!

- tr T(exp X) = J- e o
Or
holds in fact for every representation T in G.
More generally, if the representation T, can be constructed via Mackey induc-
tion, the universal character formula holds under certain conditions and can be
proven easily ([42]). ‘
Unfortunately, for a general Lie group G, as stressed in 2.10, there is no para-
metrization of the entire set G, nor systematic construction of a representation T,
corresponding to an admissible orbit @, if @ is not of maximal dimension. Further-
more, even if T is “given” to us, the universal character formula for tr T, would
have to be modified ([33], [8]).

3.15. We now consider the:

ExXaMPLE 5: G = SU(2). We have
9= su(2)

ix —Xx ix
= {( 3. i :i— 2), xiER}.
Xy + IXy —ix3

We identify g with g* via the G-invariant bilinear form (X, ¥) - —$Tr(XY).
Recall that the function X -» det X is invariant by the adjoint action of G on g.

Thus the orbits of G in g* are the spheres x} + x2 + x2 = r%
H

" :
f=(10 _OM)EQ* (10,

00
=47 Sg)eer}

i0 0 .
G(f) = {(eo e_m);BeR}.

0
The form f is integral if x; 80 e?i") = e'" is well defined on G(f), ie. if

we have

~AeZ — {0}. As G(f)is connected, K(f) is either empty or, if fis integral, it is the
set with the one element y .
' Thus the set of of integral orbits of maxnnal dimension coincides with all
spheres S, with positive integral radius. We may picture the set g and X by:
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1 2 3
N
Figure §

As we compare (2.13), Figure 5 with Figure 8, we recovered our description of
= {T;u neN }
Lct us describe the relation of the character of 7, with the Founer transform of
the measure on the sphere S,. It is easy to see that the function j(X) has an analytlc
square root on all of g and that

jue ‘0 0 _ g8 _ it
0 -0 28

The universal character formula asserts that

& 0 g 0 . O
tr T 2 = f ixa6 _—,
! "( 0 e—:o)f (0 _9) xf+x_?[+x3=n2e 2n

ie.
einﬂ —e — in@ EIB —e —if _ J- eixgei
ele - e“'ﬂ 2ig x}+xi+xi=n2 2n
Thus we have to prove:
ind —in§
e_ _ e — f elxgﬂ -
’ ey - ?
2!6 218 xi+x3+xd=nt 2n

for o/2n the canonical Liouville measure on the orbit S, of SU(2).

It is immediate to verify this formula using spherical coordinates (see
Appendix 2).

3.16. For a compact Lie group G, the universal character formula is equivalent to
a well-known formula of Harish-Chandra, established long before. Developing an
earlier idea of R, Bott [10], Nicole Berline and I [7] have given a simpler proof of
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amore general formula of Duistermaat-Heckmann for torus actions on symplectic
manifolds [22].

We may explain the idea of the method on the preceding Example S as follows:
Consider the action of the one-parameter group ¥ on the orbit §,. It has two fixed
points, the point p* = (0, 0, ) and the point p~ = (0,0, —n).

Figure 9

It is easy to see that the form to be integrated is exact, except at these two points
and that the two terms ¢*?/2i9 and e~ *%/2if comes from a calculus of residues at
these two points.

3.17. Let us finally consider our

EXAMPLE 6: G = SL(2, R). We have
g =sl2, R)

X Xy +x
e e
Xz — X3 —Xq

We identify g with g* via the G-invariant bilinear form (X, ¥) %%tr(X Y).
Recall that the function det X = x3 — (x? + x2) is invariant by the action of G
on g*. From this, it follows that the orbits of G in g* are: ‘

{1) (a) The upper sheet x5 > 0 of the two-sheeted hyperboloid
-+ xH=2 A=zl

A typiéal element of this orbit is

0 A
f=(_£' O), A>0.

(b) The lower sheet x5 < 0 of the two-sheeted hyperboloid
x2—(xi+xDH=1% A1#0

K
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A typical element of this orbit is

0 A
f=(—ﬂ. 0), A<0,

We shall denote by ¢ the orbit of the element f= 04

-1 0f
(2) The one-sheeted hyperboloid x2 — (x} + x3) = —s%(s # O).

A typical element of this orbit is f = (S

0
clement N 0
0 —s/

(3) The point {0} and the two connected components of the light cone

2) We denote by @F the orbit of the

(3 — x2 — xZ = 0, x # 0).

A x3
I

Figure 10

We determine now the set of integral orbits:

(1) For

0 4 .
f=(_,1 0)eg @0,

o 6
g(f) = {(_9 0);9611},

cosf sin 8
@)= {(—sin 8 cos 9)’ fe R}'

we have:
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The form f is integral if
cosf sinfy _ i
M\ _sin¢ cosd)

is well defined on G(f), i.c. if L € Z — {0}. In this case (A integer), as G(f) is con-
nected, K(f) consists of one element, the character x .,

(2) For )
e 0
/= (3 ms) € g

r 0
g(f) = {(0 _t);teR},

G(f) = {(g aﬂ);a R - {0}}.

Every f of this form is integral, and for any s, the set K(f) consists of two
elements, the characters x;' and ¥, with

e’ 0 N
x:(o se“)”[’ ¢=h

- Ee‘ 0 — ppist
As (0 ae") = e

We denote by g§ the set of integral orbits of maximal dimension of the sets.

(1) and (2) {i.e. we omit the light cone). Thus g} consists of the orbits:
mﬁ:G.( 0 n), n>0,.

—-n 0
@:zc-(_g g) n <0,
@g:G-(S 0), s #0.

0 —s

Thus we obtain Figure 11 for g} and g}/G.

The set X = G, is given by X"/G with X' = {(/, ¥), f e q¥, x € K(/)}. Thus
X is fibered over gf/G with fibers consisting of the one point T, over the orbit
@2 (d for discrete) and of the two points T over the orbit @ (p for principal).

The reader may then compare Figure 10 with Figure 5 (2.14) to visualize the

fibering,
The universal character formula for the representation T, associated to the
orbit @, is equivalent to the equality of generalized functions (n > 0):

« L ind »

e _ f gzt 2

1 - »

20 R
x3>0

when o/2x is the canonical 2-form on @,.

Representations of Lie Groups and the Orbit Method 85

H
1
«2
|
1
t1
1
s=10
94/G = :P——--**
i—1
1
1
$ -2
1
I
Figure 11

3.18. The validity of this formula or more generally the validity of the universal
character formuia for a semi-simple Lie group was established by W. Rossmann

[51]: This fundamental result gave legitimacy to the claims of universality for the
orbit method.

It is possible to generalize the argument sketched in 3.16 to prove Rossmann’s
formula [7]:

Let us remark, in the case of SL(2, R), that the action of the one-parameter

cosG sind . .
group ( —sinf cos B) on @, has only one fixed point, the point p, = (0, 0, n).

1Po
!
i
i
1o
|

Figure 12
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As in the case of SU(2), the form to be integrated is exact except at this point.
Thus there is only one residue to be calculated which leads to the term — £™%/2i6.

Similarly, the character formula ®,{g) for the representation T} of the discrete
serics has a simple geometric interpretation as a fixed point formula, for the
elements g belonging to the elliptic set. However, the general formulae of Rebecca
Herb for arbitrary regular elements g of G are not yet reducible to a simple geo-
metric interpretation.

3.19. We have related in Examples 1-6 the set G, with the geometric set X, and the
distribution tr T with Fourier transforms of canonical measures on orbits. Thus,
due to the work of Michel Duflo, we see that the set G, is described adequately. Tt
is still, however, an open question to determing explicitly for a general Lie group
G the corresponding Plancherel measure on X.! When G is a simply connected
nilpotent Lie group, the set G is merely the set of orbits g*/G. Each orbit @ has a
canonical measure dm,. Let dg be a Haar measure on G, dX the corresponding
measure on g, df the dual Haar measure on g* The usual Fourier inversion
formula on the vector space

¢®=Iﬂﬁ%

yield immediately to the Plancherel formula: ‘
- ( [ (,’Bdmg) @ = | (T, 6 an0)
o*G \@ /G

with ¢ the C™=-fufittion on G such that ¢ = § - exp, and dp = df /dm, the quotient
measure of df by the canonical measures dmg. A similar foxrmula holds for a
solvable simplysconnected type I unimodular Lie group G. (Pukanszky [49],
Charbonnel {117),

In general, as we have seen, orbits & corresponding to representations must
satisfy some non-empty integrality conditions and the corresponding set gf =
{{) @1, TeG,} is not dense in g*.

The case of a torus T = ¥/I is instructive. In this case, g = V and g* = V'*,
while the set of orbits corresponding to representations of T is the discrete subset
™ = V*. Let dx be the Buclidean measure on V giving measure 1 to the funda-
mental parallelepiped on . The Poisson summation formula is:

Yo=Y o*)

@) =;

. vel yHel*
that we may rewrite as: '
2 00 =Y o
yEq yreGegr
EXpPTe
- T s
Texp Id
14 ¥*
Figure 13

! The Plancherel measure is now determined (M. Duflo, special year in Lie groups representations,
Maryland, 1983).
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3.20. Consider for a general Lie group G the maps exp: g — G and 4: G, — g%/G,
{we write d(T) = &;) and the subsets

g ={XegiexpX =¢} ofg,
gt=)0;, Tes, of g*.

Recall that g is determined in purely geometric terms by some integrality
conditions (see Appendix 1). In the examples given in this text, g% may be taken
as the set of integral orbits of maximum dimension. I conjectured [61] that a
similar “Poisson formula™ relates the sets g; and g3. Let us formulate this con-
Jecture in these terms (see Appendix 1 for a more precise formulation): “There
exists a G-invariant positive generalized function v, on g* of support g% whose
Fourier transform is a distribution ng, such that the support of g is contained in
8¢ and ng coincides with 8(0) near the origin.”

In the case of the torus T, vg is the -function of the lattice I'* and ng is the
S-distribution of the lattice T,

Of course if G is a simply connected nilpotent Lie group, we can take ng = 5(0)
and vg = 1. I proved that this conjecture holds for G semi-simple linear [62], and
Dufio proved that this conjecture holds for G any complex Lie group [19].

3.21. Let us now examine briefly in Examples 5 and 6 the content of this conjecture.
As it will be clear on the examples, the form of the generalized function v is
prescribed by the Plancherel formula of G.

3,22, EXAMPLE 5: G = SU(2). Recall that the orbits of G ing( = g*) are the spheres
S,={x+ 2 +x2 =2 0z0

As
o i0 0y (¢ 0
Plo —ie) "o e
the set g4 consists of all orbits S, of radius r = (0, 2=, 47, 6%,.. ).
Recall that g} consists of all orbits §, of non-zero integral radius (1, 2, 3,...).

4n

Sa . gG
Figure 14
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Let, for ¢ € R, ®, be the G-invariant function on g* such that
il 0 -
G)ﬂ(o —il) = Ye* + M9,
Let pg be the G-invariant generalized function on g* given by v = 3 ,. 2.z ©,,1.6.

i}' 0 — 2innd
”G(o —m)‘;e :

It is not difficuit to prove (see Appendix 2) that for df = (1/4n) d&é, d&, d&, on

g =g*
f ZOLOLED) (f ;ﬂ)

where 6,/2% is the canonical Liouville measure on S,,. Thus ve(/)df is a positive

measure supported on g& (this measure is clearly derived from the Plancherel
formula on G). The proof of this equality follows from the usual Poisson summation
formula:

Y et g = " 8(r).

In Appendix 2, we will compute the Fourier transform ng of v and show that
ng satisfies the required properties of the conjecture, in particular that ng is a
distribution of support gg.

' 0 1
3.23. ExaMPLE 6: G = SL(2, R). Denote by @1 the orbit of the element (_ 1 0)

. 0
and by @7 the orbit of the element (8 -s)' As

ex 0 6y { cosf sind
Pl_g o/ "\ -sin0 cosof
the set g consists of all orbits &4, for a e 2=Z. Recall that the set g¥ consists of

the orbits @2, for n non-zero integer and of all the orbits &7 (s # 0), see Figure 15,
Define, for a € R, ©, as being the G-invariant function on g* such that

LU S 5 0__|m|-
9«(_,1 0)_e , @a(o _s)_e .

(@, is definied by tlﬁs relation except on the light cone, but, as ®, is bounded, @,

defines unambiguously a generalized function on g*.)
Define vg = ¥ 4024z ©,. It is not difficult to prove (see Appendix 3) that for
df = (1/4r) dx, dx, dx; on g ~ g*
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ge g&
Figure 15

324 va(f)¢(f)df "ezzm:(f n);Lmscothns(ngozfin)ds.

Then vy(f) df is a positive measure supported on g¥. (This measure is clearly
derived from the image of the Plancherel measure on G, by the map G, — g¥/G.
Recall that the fiber of this map above @, consists of two points T} and T with
respectwe weights in the Plancherel measure 45 than (ns/2) and §s coth(zs/2) and
that 1 than (zs/2) + 4 coth(zns/2) = coth ns.)

The proof of the fermula 3.24 relies on the two identities:

Z ezifma dA = Z 5(,1)’

ned

Y e7 12l = coth s for s 5 0.

nel

Let us remark that the left-hand side of these two identities involves the formulas

-1 0

. 0 i
for the characters of the discrete series T, respectively, on the element ( )
and on the element (s 0). The proof of the conjecture. for general linear

0 —s
semi-simple Lie groups is based on similar equalities between the discrete series
constants and the Plancherel functions ([62]).

The proof of this conjecture for non-linear semi-simple Lie groups would lead
to some better understanding of the relation between character formulae, integral
orbits, and the Plancherel measure on G.

I hope many mathematicians, women and men, will continue to work on the
topics touched upon here.
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APPENDIX 1
Duflo’s Parametrization of G,

Let @ be an orbit of the co-adjoint representation. f f s O, we have § = G . f =
G/G(f). The stabilizer G(f) of f has Lie algebra g( /). The 2-form 5 ; on the tangent
space g f = g/g(/) to the orbit @ at the point f is invariant by G(f). Thus we
obtain a morphism i, from G(S') to Sp(a/a(f)). Consider the 2-fold cover G(f) -
G(f) image by the map i; of the canonical 2-fold cover Mp(g/g(/)) — Sp(a/a(f))
of the symplectic group by the metaplectic group. Let (g, ) be the reciprocal image
of e € G(f) in G(f). We denote by

X(f) = {x, irreducible representations of G{f) in V, such that
(1) tlexp X) = &0 1d,_for X e g(f);
(2) «e) = —Idy }.

An element f e g* is called admissible if X(f) is not empty. An element [ g*
is called regular if @ = G- f is of maximal dimension.

Let G be a real algebraic group. The set X(f) consists of a finite number of
finite dimensional representations of G(f). Let f be regular, then the connected
component G(f)° of G(f) is commutative and is the direct product of its semi-
simple part S(f) with its unipotent part U(f). Call f strongly regular, if S/ is of
maximal dimension (among the subgroups S(f), for f regular). The conjugacy
classes of the subgroups S(f), f strongly regular, are in finite number. (IFG is a

complex group, the subgroups $(f), f strongly regular, are in the same conjugacy .

class. This is not the case of the subgroups U(f) [39]). If G is a semi-simple group,
the subgroup S(f), for f strongly regular, is a Cartan subgroup of G.
Denote by

g% = {feg* f admissible, f strongly regular},
gc = {Xeg;expX =e}.
Define: . .
X = {(fi o fegh Te X(N}

The group G acts on X, Define X = X**/G. Duflo constructed an application
(f, 0y T}, of X* in @, which induces an injective application d of X into G.
Finally, under some hypothesis which are probably automatically satisfied, Duflo
proved that the Plancherel measure du(T') is concentrated on d(X). Thus we may
consider that the problem of determining G. is entirely solved by these resuits.

Let us relate this parametrization X of G, with the Kirillov character formula.
Let o be the canonical 2-form on the orbit @ of dimension 2d. Consider ¢ and
its term (1/dD)(e%/(2x)") of maximal degree. Let G be unimodular, fea¥ such
that @ = G- f is closed, 1 € X(f), then M. 8. Khalgui proved that indeed:

. - i 1 o
t Ty, foxp JOJOO = [ (@im 9e P 4 7

as an equality of generalized functions in a neighborhood of 0. [34].

(For g semi-simple, a corner-stone case, this was due to Rossman [51]. For g .
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solvable, it was proven by Duflo [9].) Thus the map (f, 7) — f of X* inio gk
induces the Kirillov map T — &y from G, to g%/G.

Let us now formulate my conjecture on the Poisson-Plancherel formula. Let
dg be a Haar measure on G. Let dX be the corresponding Buclidean measure on
g: i.e. for @ supported in a small neighborhood of 0 (where the exponential map
is a diffeomorphism) [ g) dg = [, @(X)i(X) dX, with ¢ the function on G such
that ¢ = @ - exp. Let df be the duai measure to dX on g*, ie. df is such that

00 - | ( Jer P00 dX) v=[ony.
g*\vy a*
Let du(f, 7) be the Plancherel measure on X. Denote by ji the measure on g%/G

image of the measure (dim 1) du( f, ).
Let £ be the positive measure on gf such that:

[ atnaacn = j m(L"(” dma(f)) di(O).
ag 9z

Let @ be a function on G supported in a small neighborhooed of e and ¢ the function
on g such that ¢ = & - exp. We have

& T = 7 | 17 )00 dg
~tr j Ty, Lexp X)p(exp X)jX)\%(X)V2 dX

=@mo [ @00,

Thus, from the Plancherel formula on G, we obtain
(0) = 3(e) = f (T}, §) du(f, )
X
- [ @im [ @y ®dn) aus,
X =G-f
- f (f (@2 (D dmw(l)) 47(0)
g&[G [v]

- f‘(rpj”z)"(f) dii(f).

Let vg be the positive generalized function on g* concentrated on g such that
d(f) = ve(f) df. We then see from this formula that, if ng is the Fourier transform
of tg, then ng is a distribution on g which coincides with the Dirac measure at 0.

I formulated the following conjecture (in somewhat more timid terms; I am
indebted to Michel Dufio [20 for the present reformulation):

Let G be a Lie group with Lie algebra g. There exists a tempered distribution ng on
4 having the following properties:

(1) ng is G-invariant;
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(2) ng coincides with the Dirac measure in a neighborhood of 0; the support of ng; is
contained in gg;

(3) ng is of positive type and its Fourier transform is a generalized positive function
vg concentrated on g¥;

(4) the function j(X)"'? admits an analytic square root in a neighborheod of the
support of ng and j(X)?ng is a measure.

(It is clear that it is also expected, from the preceding discussion, when Gisa type I
unimodular group and X the Duflo set of parameters for G, that vg df = di(f).)

APPENDIX 2
Complements on SU(2)

1. Normalization of Measnres
Let

G={(a _‘E);lﬂlz + 18] = 1}: SU2),
B & '

o= {( ix3- =+ ixz);xieR}
X1 + 1X3 —iX3

the Lie algebra of G with corresponding basis J,, J2, J3.
The map g (z, §) identifies G with
Ss={(n+ Wy ys T ivasyi+yi +yi+yi=1h

Let dg be the Haar measure on G giving total mass 1 to G. If xt is the surface measure
on §,, then dg = u/2%>. The Haar measure is left and right invariant.

We consider the corresponding Buclidean measure dX on g (i.e. dg = j{X) dX).
We have: .
_ dx;dx; dxy

.4 7l

2. Weyl Integration Formula

Proposition. Let f be a continwous function on G, then:

1 e i if 0 B
[ r@dg =g | 1 e L_f(g("o Dol oo

Proof. Recall that an element g of G can be conjugated to an element

e 0
[ %) ososn
- i

A 0N, ) e”® 0 -f 01
( 0 e""’) 1s', itself conjugated to( 0 ei") byw= (_ 1 0)]
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e 0
Let T = {( 0 e“"’); fe R} and consider P = G/T. We denote by g the image
of g on G/T. There exists a unique G-invariant measure d¢ on G/T such that
Jerr 7 (&) dg = §6 f(4) dg. 1dentify the tangent space at ¢ with RJ, @ RJ,. The
corresponding volume form w at é is such that w(J,AJ;) = 1/x. The map c(g, 6) =

e:s 0 X . . .
9o e_l.a)g“l is a diffeomorphism of P x J0, #[ with the subset G, = {ge G;

g # (1, —1)} of G. Thus there exists a measure u(x, #) on P x 0, z[, such that
Jrede= [ eeix, oputs 0
PRID, [
Using the Ad G-invariance of dg; we see that u(x, @) = J(0) d0 dg. To compute

J(0), we need then to compute the Jacobian of ¢ at the point (¢, §). In coordinates
(V1: Y2, V3, ¥4) for 83 '~ G, it is immediate to see that

d 1 —g\fe® 0 1 ¢
c*(J1)=?d—s(s 1)(0 e““’)(—s 1)

8
=2sinf —,
3y

=0

CelJ2) = —2sin Ga—i—.
3

Therefore
: 7] —igp2 1
cx(dg) = |&° — e ¥ —wA 48,
2n
and we obtain the formula. [

3. Plancherel Formula for G

Theorem. Let dg be the Haar measure on G giving fotal mass 1 to G, then:

ole) = ¥ ntr T{p) for every @, C function on G.
n=0

Proof. We have

tr Te) = fa“ Ta)o(o) dg

lzni'_i e 0\ e 0\ _
L (A R N R O

2

1 —i0 _ it ind —ing e 0N
=E O(e — &™) — e )J;(P_g 0 e—iag dg d6.
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. ; ® 0
(e X0) = €™ ~ &) ch(g(eo e)g) dg do.

(Y (©) = —2ig(e).

Consider

Then

Let us calculate:

T ntr Tg) = 4—1; 5, | Goxome - ey ao

‘a>0

=5 Z (kqo)(ﬂ)n(em" e~ ") df

T nez
= % ,,;z . ” (ko) O™ do
as (kq))(e) is odd,
- z (kq;) (®)e d8
T neZ
- %(kco)’(ﬂ) =0 O qed.

4, Kirillov Character Formula
We want to prove the formula (3.15)

O

= J. fxat
2it I T £ 2n
Let u be the surface measure of S,. At the point (0,0,7) = rJ5,

é i,
o2

The tangent vector generated by the infinitesimal action of J, at the point rJ; is
given by [J,, rJ5] = 2rJ;, while the tangent vector generated by the infinitesimal
action of .J, is —2rJ,. By definition, :

eirt — e~ irt

=1

] d
0’(2?' T 2 —21‘ E) (TJg, ['Ils JZ:D

Thus 6/2n = (1/4nr)u. By considering sphcrlcal coordinates on S,, the second
member is:

J.f freoseN2 gin ¢ dep d0,
4nr

which leads immediately to the above formula.
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5. The Poisson-Plancherel Formula

Define, for ¢ a Schwartz function on g,

" 0
= — fort > 0,
(Ke)e) L‘rp -

s
- — foret < 0.
Lm(Pzn

In spherical coordinates,

t .
(Kol = i ffgo(t cos 0 sin @, t sin & sin @, ¢ cos @) sin @ de db.

It is immediate to see that (K@)t} can be extended as a C*-0dd function of ¢t and
that:

J‘(p(xl, Xz» X5) dx, dy dxs = 21 f HKo)e) d.

Define

(M, ) = ( Kcﬂ)(t)

It follows from the expression of K¢({t) in spherical coordinates that (M4, ¢) = ¢(0).
Recall that the set g consists of all the spheres §, with

te2sZ (2 0).
Define _
(nGs ‘P) = Z (Mas 59)-

ag2nZ

Recall (3.22) that @, is the G-invariant funiction on g* such that

i 0 .
® = iia —Ed
“(0 __M) e + e7H9
and that v, is the G-invariant generalized function Y ;. 5.z ©,. Let us verify that
the couple (ng, v) verifies the Poisson—-Plancherel formula. This will follow from
the

Proposntmn (a) ng is a distribution of support 96 and ng coincides with 0 in a
neighborhood of 0.

(b) M, =9,

(c) If dg is the Haar measure on G giving total mass 1 to G, dX the Euclidean
measure on g such that dg = j(X} dX, df the dual measure on g*, then, for ¢
a Schwartz function on g*,

[otrwdnar=3n| o2
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Proof. (a) is clear.
(b) We have to verify that (M, %>} = ®,(&). By G-invariance, it is sufficient

i i 0\ | ) , .
to verify this for £ = (10 ) A)’ i.e. that (M, ) = 3! — ¢~ But

—i .
1230 Y — tixy Ja
K(e)(a) Lae =
eiila _ g—ila

“ 2 T wya
20 y

thus
a . , .
Ma(eizxs) — aa K(exi.xg)(a) . l(ezj.u + e—:i.n).

(c) We have seen that dX = dx, dx, dx;/2n%, thus df = d¢, d&, d&;/4m.
By definition of vg:

[orrvanar= 5 [oinenas
a* Z

aelm

1 f*
aeg;gz E f_ w tK(G)n(D)(t) dt

1 1™ eia: + e—:'ar
-3 f (Koo de
ae2nlk -

1 © 2innt —2imme
- f e Ko di
nelk 2 — oo 2
=¥ % f P K o)(t) dt
nel ]

as t{Kp)(t) is an even function of ¢

Y in(Ko)n)

nel

from the usual Poisson summation formuia,

T
= ¥ nJ‘(p-z—n-. O q.ed.

H>0

_ APPENDIX 3
Complement on the Poisson-Plancherel Formula for SL(2, R)

Recall that SL(2, R) has two conjugacy classes of Cartan subalgebras b and a with

S
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t

' 0
We denote by @ the conjugacy class of the element (At 0), @7 = OF  the

conjugacy class of the element (; 0). Each orbit & has a canonical Licuville
—3

measure dmg. Define, for ¢ a C* function on g,

(Ky)t) = f odmy  fort >0,
o :

—j @ dm, fort <0,
of

K. 0)s) quo dm,.

We have the integration formula:

o0

{(K, @)D dt + 4n L " ISR 9)(s) ds.

f@(x1, Xa, x3) dxl dxz dxa- = 47 J.
Define:
;
M., 9) = 5 (Kuo)) fore 0.

It is not difficult to see that (M., @) can be extended to a continuous function of
¢ and that {M,, @) = @(0).
Let us now define ng; and vg. Recall that

¢ = U {Dﬂs
aeinZ

= U atjoyer
n 5¥#0

sZ—{0}

Define
(nd., (0) = Z (Mm qo)

aelznZ

Recall that @, is the G-invariant function on g* such that

0 ’1 _ dad
@),,(_,1 0)—2

s 0
= o les
(H)"(O —s) ¢«

UG = Z ®ﬂ.

ae2rd

and that
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Define
(nG! (P) = z (Mm q))

aclizxZ

Lemma,

Lodf) = g Jm f o
(tg, 9 df) 4n"§z|n!(qu02R)+4n 0scoth‘.n:.s( agq)Zn ds.

n

Proof. By definition

Y| ®LNe(f) df

ae2rZ

f vo(F)olf) df

aelnZ - 0

Y 4n J‘w 1K(@, 0)(t) dt + 4m fmsKu(Gam)(s) ds

= Y 4n J@ K XD dt + 4m fme""’ls(K,¢)(s) ds.

ae2nd - v}

Now the lemma follows from the usual Poisson summation formula on R ({(K S NE)
Is a continuous function of t) and from the formula, for s > 0

Z e-?-n:lus! =2 Ze"-mms + 1

neZ n>Q
=2 Z e—z::ns -1
n>Q
2
“iTem ]
147%™
= 1— e—Z::s
= coth ns.

To prove the conjecture, it would remain to prove that
M, =9,

This follows from Rossmann’s formula [51] and the recurrence relation [25] for
discrete series constants, [

BIBLIOGRAPHY

{11 M. F. Atiyah and R. Boit, A Lefschetz fixed point formula for eliiptic complexes, II: Amn.
Marh., 88, 451-491 (1968).

{21 M. F. Atiyah and I. M. Singer. The index of elliptic operators IIL 4rn. Math., 87, 546-604
(1968).

[3] L. Auslander and B. Kostant. Polarizations and unitary representations of solvable groups,
Invent. Matk., 14, 255-354 (1971).

[4] M. W. Baldoni-Silva. The unitary dual of Sp(r, 1) 1 > 2. Duke Math. J., 48, 549583 (1981),

(5]
(&]
{7

(8]

[9]
(o]
0]
(13
[13]

[14]
(1]
[1e]

[17]

[183
[19]

[20]
[21]
[2z]
[23]
[24]
[25]
[26]
271
[28]
{293

[30]
313

321

Representations of Lie Groups and the Orbit Method 39

M. W. Baldoni-Silva and D. Barbasch. The unitary spectrum for real rank one groups, Preprint,
1981.

V. Bargmann. Irreducible unitary representations of the Lorentz group. Ann. Math., 48, 568-
640 (1947).

N. Berline and M. Vergne. Fourier transform of orbits of the co-adjoint representations. To
appear in Proceedings of the Utah Conference on ** Representations of Reductive Groups,” Park
City, April 1982, Birkhafiser: Boston.

N. Berline and M. Vergne. Classes caracteristiques equivariantes. Formule de localisation en
cohomologie equivariante. Compte-Rendus o I’ Académic des Sciences, Paris. t. 295, 15
Novembre 1982, pp. 539-541.

P. Bernat et al. Représentations des groupes de Lie résolubles. Dunod: Paris, 1972,
R. Bott, Vector fields and characteristic numbers. Mich. Math, J., 14, 231-244 (1967).

J. Y. Charbonnel. La formule de Plancherel pour un groupe résoluble connexe, I1. Math. Ann.,
250, 1-34 (1980).

A. Connes and H. Moscovici. The L*index theorem for homaogeneous spaces of Lie groups.
Ann. Math., 115, 261-330 (1982).

I. Dixmier. Represéntations irreductibles des algébres de Lie nilpotentes. Anais Da Academia
Brasileira de Ciencias, 35, 491-519 (1963).

J. Dixmier. Les C*-algébres et leurs Représentations, Gauthier-Villars: Paris, 1964.
1. Dixmier, 4lgébres Enveloppantes, Gauthier-Villars: Paris, 1974.

M. Duflo. Représentations unitaires irreductibles des groupes simples complexes de rang deux.
Buil. Sec. Math- France, 107, 55-96 (1979},

M. Duflo. Construction de Representations Unitaires d’un Groupe de Lie. C1.M.E.: Cortona,
1980, Liguori editore, Napoli, 1982,

M. Duflo, Théorie de Mackey pour les groupes algébriques. Preprint, 1981,

M. Duflo. On a conjecture of M. Vergne on the Poisson-Plancherel formula : the case of complex
groups. Preprint, 1981.

M. Duflo. Representations unitaires des groupes de Lie et methode des orbites. §%-Congrés du
Groupement des Mathematiciens & Expression Latine-Luxembourg, 7-12 Septembre 1981,

M. Duflo and M. Vergne. Une propriété de la représentation coadjointe d'une algébre de Lie.

C. R. Acad. Sci., Paris, 268, 583-585 (1969).

1. Dujstermaat and G. Heckman. On the variation in the cohomology form of the reduced
phase space, To appear in fnvent. Math.

V. Guillemin and 5. Sternberg. Geomerric Asymptotics. Mathematical Surveys, 14. Providence,
1977,

Harish-Chandra, Plancherel formula for the 2 % 2 real unimedular group. Proc. Nat. Acad.
Sci,, 38, 337-341 (1952).

Harish-Chandra. Discrete series for semi-simple Lie groups, I-I1. Acta Marh., 113, 241-318
(1965); 116, 1-111 (1966).

Harish-Chandra. Harmonic analysis on real reductive groups, III. dnr, Math., 104, 117-201
(1976).

R. Herb. Characters of averaged discrete series on semi-simple real Lie groups. Pacific 7. Math.,
80, 169-177 (1979).

R. Herb. Fourier inversion and the Plancherel theorem for real semi-simple Lie groups. Amer.
J. Math,, 104, 9-58 (1982).

R._ Herb. Discrete series characters and Fourier inversion on semi-simple real Lie groups.
Preprint, 1980,

R. Herb. Discrete series charactess and Fourier inversion. Preprint, 1920,

R. Herb. Fourier inversion and the Plancherel theorem. In Non-Commutative Harmonic Analysis
and Lie Groups, Luminy, 1980. Springer Lecture Notes in Maths, 880. Springer-Verlag:
Mew York.

R. Herb. The Planchere! theorem for semi-simple groups without compact Cartan subgroups.

To appear in Non-Commutative Harmonle Analysis and Lie Groups, Luminy, 1982, Springer
Lecture Notes in Maths. Springer-Verlag: New York.

H
i
H
{




160 M. Vergne

[33] M. S. Khalgui. Sur les caractéres des groupes de Lie a radical co-compact. Bull. Soc. Math,

France, 109, 331-372 (1981).
347 M. S. Khalgui. Sur les caractéres des groupes de Lie. J. Funct, Anal., 47, 64-77 (1982).

[35] A. A. Kirillov. Unitary representations of nilpotent Lie groups. Usp. Mat. Nauk, 17, 57-110
(1962).

[36] A. A. Kirillov, Characters of unitary representations of Lie groups. Fumct., dnal. App.; 2-2,
40-55 (1967).

[371 A. A, Kirillov. Elements of the Theory of Representations, M.LR.: Moscow, 1974; Springer-
Verlag: Berlin, New York, 1976.

[38] A. Knapp and B. Speh. Irreducible unitary representations of SU(2,2), J. Funct. Anal., 45,
41-73 (1982).

[39] Y. Kosmann and 3. Sternberg. Conjugaison des sous-algbres d'isotropie, C. R. Acad. Scz
Paris, 279, 777-779 {1974),

[46] B. Kostant, Quantization and unitary tepresentation theory. I, Prequantization. Lecmre in
Modern Analysis and Applications, IfI. Lecture Notes in Math., Vol. 170, Springer-Verlag:
Berlin, 1970, pp. 87-208.

[41] 8. Lang. SL(2, R). Addison-Wesley: Reading, Mass.: 1975.

[42] R.Lipsman, Characters of Lie Groups, IT: Real polarizations and the orbital integral character
formula. J. &' Anal. Math., 74, 329-387 (1961).

[43] G.W.Mackey. Unitary representations of group extensions. Acta Math., 99, 265-311 (1958).

{441 C (Mog%hn Ideaux bilateres des algebres enveloppantes. Bufl, Soc. Math. ance 108, 143-186
198

[45] C. Moeglin. Ideaux primitifs des algebres enveloppantes, J. Math. Pures et Appl., 59, 265-336
(1980},

[46] C. Mosglin and R, Rentschler. Orbites d'un groupe algébrique dans I° espace des ideaux ration-
nels d’une algébre enveloppante. Bull. Soc. Math. France, 109, 403-426 (1981),

[471 J. Von Neumann, Die Eindeugtigkeit des Schrédingerschen operatoren, Math. Ann., 104, 570-
578 (1931},

[48] R. Penney. Lie cohomology of representations of nilpotent Lie groups and holomorphically
induced representations. Trans. Amer. Math. Soc., 261, 33-51 (1980).

[49] L. Pukanszky. Unitary representations of solvable Lie groups. dnm. I'E.N.S., Paris, 4, 457-608
(1971).

[50] J. Rosenberg. Realizations of square integrable representations of unimodular Lie groups in
_L’~cohomoiogy spaces. Trans, Amer. Math. Soc., 261, 1-32 (1980).

[51] W. Rossmann, Kiriflov’s character formula for reductive Lie groups. Invent. Math., 48, 207-
220 (1978),

[52] W.Schmid. On a conjecture of Langlands, Ann. Math., 93, 1-42 (1971),
[53] W.Schmid. On the characters of the discrete series. frvent. Math., 30, 47-144 (1975).

[54] D. Shelstad. Orbital integrals and a family of groups attached to a real reductive group. 4nn.
I'EN.S., Paris, 12, 1-31 (1979).

[53] D. Shelstad. Embeddings of L-groups. Preprint. )

[56] D. Shelstad. £-indistinguishability for real groups, Preprint.

[57] D. Shelstad. Base change and matching theorem for real groups. In Non-Commutative Harmonic
Analysis and Lie Groups, Luminy, 1980. Springer Lecture Notes in Maths., 880. Springer-
Verlag: New York.

[58] J. M. Souriau. Stmcture des systémes dynamiques. In Maitrise de Mathématigues, Dunod:
Paris, £970.

{551 B.Speh. Some results on principal series representations of GL{#, R}, M.LT. thesis, 1977.

[60] B.Speh The umtary dual of GL(3, R) and GL{4, R}, Math. Ann., 259, 113-133 (1981).

[61] M. Vergne. A Plancherel formula without group representations. Proceedings of the 0.4.G.R.
Conference: Bucharest, 1980, to appear in Operatar Algebras and Group Representations,
Pitman, London.

Representations of Lie Groups and the Orbit Method 101

[62] M. Vergne, A Poisson-Plancherel formula for semi-simple Lie groups. drn. Math., 115, 639-
666 (1982).

{631 D. Vogan. Singular unitary representations. In Non-Commutative Harmounic Analysis and Lie
Groups, Luminy, 1980, Springer Lecture Notes in Maths., 880. Springer-Verlag: New York.

(641 H. Weyl. Theorie der darsteliung kontinuerlichen halbenfachen groupen durch lineare trans-
formationen, I, IL, III. Mash. Z., 23, 271-309 (1925); 24, 328-376 (1926); 24, 377-395 (1926)..




