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Representations of Lie Groups and the Orbit Method

MICHELE VERGNE*t

It was a great honor and pleasure to be invited by the Association for Women
Mathematiciens, to give an address for Emmy Noether's lOOth birthday.

1 have chosen here to talk about my own present mathematical interests, the
theory of Lie group representations, and 1 would like on this occasion to point
out that many women are DOW contributing to the development of this field. This
fact would have pleased Emmy Noether. Although she was extraordinary, she
would not have thought of herself in thèse terms, she would have been against
holding up her name as a yardstick by which to measure aIl past, present, and
future accomplishments ofmathematicians, women and men. We want to celebrate
her as an ordinarywoman, who could find at this time, only in herself, the necessary
courage and inner peace to be what she has been: Emmy Noether.

Let G be a Lie group, Le.G is an analytic manifold with a group structure such
that the group operations are analytic. Let us denote by e the identity element of G.

Consider 9 the tangent space to G at e. For every X E 9. there exists a homo­
morphism R -+ G: t -+ exp tX such that (X· q»(e) ~ (d/dt)q>(exp tX)I,~o for
every differentiable function cp on G. The map exp: 9 --+ G given by X --+ exp X is
called the exponential map.

Ifgo E G, the right translation R(go) . g = ggo defines a right action of G on G.
If X Eg = T,(G), we denote by X* the vector field on G such that (X*)" =
R(go)* . X. The bracket of two elements of 9 is then defined by the relation
[X, YJ* ~ [X*, Y*J, where on the right-hand side the bracket is the bracket of
vector fields, i.e. [X', Y'J· '1' = X'Y' . '1' - Y'X*· 'l'. This defines a Lie algebra
structure on g.

* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139,
U.S.A.

t 1would like to thank the Association for Women Mathematicians and theAmerican Mathematîcal
Society for organizing this event. 1 also would like to thank Peter Dourmashkin, Devra Garfinkle,
Linda Keen, Sophie Koulouras, Lisa Mantini, and Kenneth Manning for comments, help, and positive
reinforcements.
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60 M. Vergne Representations of Lie Groups and the Orbit Method 61

Consider the adjoint action of G on itselfby inner automorphisms (Ad go) . 9 =
B09go 1. The differential of the map Ad go: G --+ G at the identity gives rise to a
map (still denoted by Ad g) on 1'.,(G) ~ g. We have then e:(exp tX)g-l ~
exp(t Ad 9 . X). (We may write 9 . X for Ad g. X.) This action of G on gis called
the adjoint action. We define also (ad X)· Y = [X, Y], for X, Y E g.

I. Examples of Lie Groups

Let us start by giving sorne examples of Lie groups G. Of course, the most evident
example is

1.1. EXAMPLE 1: G = Vector Space. G = V is a finite dimensional real vector
space (with the addition law).

Clearly 9 = V, and the exponential map is the identity map.
As G is commutative, the adjoint action of G on 9 is trivial, i.e. 9 . v = v for

every 9 E G, v E g.

A closely related example is the example of a torus.

1.2. EXAMPLE 2: G = Torus. Let us consider G = {z; Z E C, Izl = I} (with the
multiplicative law).

9

G

~algebra of G is naturally identified with V.

9 ~ V.

The exponential map exp: V --+ VIr is the natural quotient map.
The adjoint action is trivial.

1.4. Let us now consider the "basic" example of a Lie group:

EXAMPLE 3: The Full Linear Group GL(n, R). Let

G ~ GL(n,R)

= {n x n invertible real matrices}.

As·G is an open subset of aIl n x n real matrices, we have:

9 ~ gI(n, R)

= {n x .»real matrices}.

The exponential map is the usuaI matrix exponential

X 2 X"
expX~l+X+-+"'+-+""

2! " n!

The Lie algebra structure on gI(n, R) is [A, B] = A 0 B - BoA. The adjoint
action is given by conjugation:

(Adg).A ~ gAg- 1

1.5. For the purpose of this discussion, it will be sufficient to consider here linear
groups G. A !inear group G is a closed subgroup of GL(n, R). Thus its Lie algebra
9 is a subaIgebra of 91(n, R). The corresponding notions of exponential bracket,
and adjoint action are therefore the restrictions to 9 and G of the preceding
operations, i.e., for:

9 c gI(n, R),

Ge GL(n,R),
we still have:

X 2 X"
exp X = 1 + X + -2' + ... + ---, + ''',. n.

XE g,

Figure 1

The tangent space 9 at the identity is

g= iR.

The exponential map is the map i(J --+ e", The adjoint action is trivial.

1.3. More generally, let r be a lattice in a vector space V and consider

G = T ~ Vif.

[A, B] = A 0 B - BoA, A, BEg,

g·X = gXg-" gEG, XE g.

Let us consider sorne examples of such linear groups:

1.6. EXAMPLE 4: The Heisenberg Group. We consider the group

G={C ~ ~}X'Y'ZER}
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9 ~ .u(2)

It is easy to see that:

[P, Q] = po Q - Q 0 P ~ E,

[P, E] ~ 0,

[Q, E] = O.

9 = {(~ ~ i); p,q, e E+
Wewrite a basis of 9 as follows:

T(g,gZ) = T(g,)" T(gz),

T(e) ~ idy •

L'(G) ~ {f; flf(g)I Zdg < oo}-

2.2. Let us give now an important example of a unitary representation: the regular
representation. Consider oh G the left invariant Haar measure dg (unique up to a
positive scalar multiple), Consider the Hilbert space L Z(G) of dg-square integrable
funetions on G. Le.

The representation T of G in Vis called a unitary representation of G, if V is a
Hilbert space, the operators T(g) unitary operators and the map (g, v) f-> T(g) , v
continuous.

We have an obvious notion of equivalence of unitary representations. Two
unitary representations Tl, Tz of G in Hilbert spaces Ht • Hz are equivalent ifthere
exists a unitary isomorphism 1: Ht '-+ Hz such that the following diagram:

Hl~H2

rT,'g) rT,'g)

Hl~H2

is commutative; for every g E G.
If (Tt, Ht) and (Tz • H2)are two unitary representations of G, we cau form the

representation T = T, œT, acting on the direct sum H = H, œH, by T(g) =
T,(g) œT,(g), A representation T is irreducible if T is not obtained as a direct
sum of two representations. Equivalently, (T, H) is irreducible if there exists no
proper Hilbert subspace of H invariant under T. As every unitary representation
T of G in a Hilbert space H is a "sum" (eventually a "continuous sum") of unitary
irreducible representations of G, the essential objects of unitary representation
theory are the irreducible representations of G.

By definition, the dual Gof G is the set of equivalence classes of unitary ir-
reducible representations of G. .

Il, TheDual of G and the Plancherel Formula

Let us also remark here that the function X t-+ det X = x~ - (xi + x~) is
invariant under the adjoint action g' X = gXg- 1 of G on g.

2.1. One of the main objects of representation theory of Lie groups is the study
of the dual Gof the Lie group Gor, ..equivalently," ofthe characters of the group G
We will now define these notions, allowing sorne imprecisions from time to time.
Let us refer to the useful book [37] for more details.

A representation of G on a vector space .v is a homomorphism g t-+ T(g) of G
into the group of linear transformations of V, i.e. we have

r

1

1

(
00 1)

E~ 0 0 0,
000

(
0 0 0)

Q= 0 0 1,
000

(
010)

p= 0 0 0,
000

We have the followingrelations:

1.7. EXAMPLE 5: G = SUeZ). Let us consider the vector space C2 with its usual
Hermitian inner product Izd' + Iz,I', We consider the group U(2) of ail complex
linear transformations 9 of C2 leaving this inner product stable.Tc he able later
on to illustrate our notions by pietures in R3, we will consider the subgroup
SUeZ) of U(2) of elements g in U(Z) such that det g = 1.Il is easy to see that:

SU(2) = {(-i ~); a, PE C, lai' + 1PI' = I}

Hence SUeZ) is a compact manifold of dimension 3, The Lie algebra .u(2) of the
group SU(2) consists of 2 x 2 complex matrices X which are anti-hermitian and
have tracezero. Thus:

G= {(: ~);a,b'C,dER;ad- be ~ I}-
Thus G is a closed subgroup of GL(Z, R). It is easy to see that:

9 = .1(2, R) = {matrices oftrace zero}

{ ( X, x, + X') }=X= ,xjER.
X z - X3 ",-Xl

_ {( ix, -X, + iX') , , R}- . .. ,XIE .
Xl + ZX2 -IX3

We remark here for later use that the function X f-). det X = xi + x~ + xâ is
invariant undef'the adjoint action g. X = gXg- 1 of G on g.

1.8. EXAMPLE 6: SL(Z, R), We consider the group of 2 x Z real matrices with
determinant 1, Le.
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groups, which are "tame" Lie groups), as we have the "abstract Plancherel
theorem":

cp(O) = Iv. fp(f) df,

where df is the dual Lebesgue measure on V· = 17.

Let us first remark here that the support of the measure d/l may be smaUer
than ô. This already happens for the group 8L(2, R). We will denote by o. the
support of dl' and cali (;, the reduced dual of G.

2.6. Let us come back ta our examples and describe accordingly the dual (; of
these groups and the Plancherel formula. .

2.5. 'Ibeorem (see [14J).Let G be a tame unimodular group. There exists a measure
dl' (caUed the Plancherel measure)on (; such that:

<pee) = Jo tr T(cp) dl'(T)

for every Cal function cp on G with compact support.

(n ... X,,).

2.8. EXAMPLE 2: G = T.

(a) The set (;
LetG= T= (z;zEC,lzl = l},

IfnEZ, deline xiz) = z", We have

(;",Z

2.7. EXAMPLE 1: G = V.

(a) The set a
Let V be a real finite dimensional vector space and V* be the dual vector space.
If f EV', we consider xix) = e"l.x,. The map x --+ XI(x) delines a character of
the additive group V. (We also use the wordcharacter for a I-dimensional repre­
sentationof a group G.) Thus we have:

17 '" V'.

(b) Characters
Let dx be a Lebesgue measure on V. If fi> is a Cal function with compact support,
we have

tr X/CP) = 1v cp(x)xrCx) dx = 1v cp(x)e'(I.x, dx = fp(f).

Thusf f--> tr xlcp) is the function on V· given by the Fourier transform of cp.

(c) The Plancherel formula
The Plancherel formula is the usualPlancherel inversion formula:

= tr t T(go)-'T(g)T(go)cp(g) dg

= tr T(gO)-lT(cp)T(go)

= tr T(cp).

Consider the t:S-distribution cp 1-+ cp(e). It is an invariant distribution on G. The
purpose of the Plancherel formula is to express the value of a function cp at e in
function of the values of the characters tr T( cp). It is indeed possible ta do so, for
any "tame" unimodular Lie group (we will consider here only real algebraic

(tr T, (Ad go)-' . cp) = tr t T(g)cp(goggo') dg

= tr t T(go'ggo)cp(g) dg

as dg is leftand rightinvariant,

2.3. Let us now define the notion of the character of a representation. If T is a"
representation of G in a finite dimensional vector space V, the character of T is
the function XT(g) = tr T(g). It is clear that this function is invariant under
conjugation, i.e. XT(gOggO') = XT(g). It is well known that if G is a compact group,
the description of ('; is equivalent to the description of a11 the functions XT'

Let us DOW consider the case of an infinite dimensional representation. Define,
for a function q>in L'(G), the operator T(cp) = IG cp(g)T(g) dg, i.e.

(T(cp)x, y) = t cp(g)(T(g)x, y) dg.

If (T, H) is irreducible and if cp is a C" function witb compact support on G,
it isoften the case (in particularfor aU our examples) that the operator T(cp)bas a
trace. If e, is any orthonormal basis of H, we have tr T(cp) = L' (T(cp)e" ei)'
Furthermore, the map cp --+ Ir T( cp) happens to he a distribution on G. This
distribution (if delined) is called the character of the representation T. The distri­
butioncharacter tr T depends of the choiceof dg. It is clearthat, if T is a represen­
tation of Gin afinite dimensional vector space V, we have

tr T(cp) = t (tr T(g))cp(g) dg.

2.4.'A groupG is ca11ed unimodular if theleft Haarmeasure isalso right invariant.
Equivalently, G is unimodular, if'] det Ad gl = !for every 9 E G.IfGis unimodular,
the distribution tr T (if delined) is an invariant (by the adjoint action) distribution
on G,as:

The left action (L(go)f)(g) = f(go'g) defines a unitary representation of Gan
L'(G). This representation is highly reducible, and an important problem is to
describe explicitly the decomposition of tbis representation into irreducible
representations.
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l rp(y) = l «r.
)'er fer·

for every Ca) function ({J on Vtt: ~

Let us point out at this occasion that, by an immediate averaging process,th~
formula is equivalent to:

(d) The Poisson formula:

Let us norrnalize the Lebesgue rneasure on V such that the volume of the
fundamental para1lelepiped spannedby r is 1. Thus we have, for cp a Ca) function
on V(r:

(b) tr xArp) = f. rp(x)e"f.,} dx, for JE P.
vlr

The Plancherel formula is:

(b) Charaeters
Let us choose on T the Haarmeasure giving total mass 1 to T.

If ({J is a Ca:J function on T, then

f ., .,dB
tr xirp) = rp(e' Je'" 2n

is the (-n)th Fouriercoefficient of the periodicfunction () ~ tp(eiO) = ralleillll.

(c) The Plancherel formula
The Plancherel formula is dedueed immediately from the expansion of a function
in its Fouriercoefficients:

'1'(1) = l tr X,(rp)·

2.9. More generally, let T = V(r be a n-dimensional torus. Il is clear that every
representation of T gives, by composition with the natural projection
V~VIr = T, a representation of JI: Thus f is included in V*.

(c) '1'(0) = l tr xArp)
for"

T t

1exp Id
v v-

Figure 2

This map is represented for V = R, r = 2nZ, by:

for every C~ function rp ou V with compact support (or in the Schwartz space of V).

2.10. EXAMPLE 3: G = GL(n, R). Let us now considerour basic exampleof a Lie
Group G = GL(n, R). Now is the time to reveal the truth. The dual Gof GL(n, R)
is not known.The case n = 2, the first work in the representation theory of semi­
simple groups, was completed by Valentine Bargmann in 1946 [6]. But since this
time the general case seems still out of reach.

2.11. Letusmentionsorne ofthe recentresultson thisquestionofthe determination
of the unitary dual ofreal semi-simple Lie groups:

If n ,; 4, the dual Gof G = GL(n, R) has been determined by Birgit Speh [60].
The dual G of any complex semi-simple Lie group of rank two (i.e.

SL(3, C), Sp(2, C), G2 ) has been determined by Michel Duflo [16].
The dual Gof any semi-simple Lie group of real rank one (i.e. G = SO(n, 1),

SU(n, 1), Sp(n, 1) or a real form of F4) has been determined by Welleda Baldoni­
Silva and Dan Barbasch [4], [5].

The dual G of G = SU(2, 2) has been determined by Anthony Knapp and
Birgit Speh [38].2o

t

id

-2 -1

R/2.Z

2n: 4no

o
/1\'

/ 1 t\~",/ ./ \"

1f'" Il; "
//" / . -, """

" 1 e'" \ -,
v V , ~ ~

-4n -2n

It is obvions that a character XI of V gives rise to a character of T, if and only if
X/x) = ei(f.x) = 1,for everyx in V such that exp x = 1,Le. for everyx in r. Thus
we have identified d(f) with the duallattice P cf T in V*. Therefore,

(a)

Figure 3

t = r- = {f E V*; (J, y) E2nZ,for everyy Er}.

Thus we still know verylittle about unitaryrepresentation theory of real semi­
simpleLiegroups.However, as remarked before, the Plancherelinversionformula
for a Lie group does not involve the complete description of G, but only of the
reduced dual G,.1f Gis a real semi-simple Lie group (with finite center), the reduced
dual Gr of Gas weil as the "concrète" Plancherelmeasure dJl(T) on Gr has been
determined by Harish-Chandra [26]. We will discuss further sorne of the corre­
sponding results,
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CI;, exp(tP)' cp)(y) = e""cp(y),

(T,exp(tQ)' cp)(y) = cp(y - t),

(T, exp(tE)· cp)(y) = e"'cp(y) for cp E L\R).

(2) LetH = C
For each (a, fi) a pair ofreal numbers, consider the character

T..p(exp xP exp yQ exp zE) = e~"e'P'.

2.12. EXAMPLE 4: G = The Heisenberg Group.

(a) The set (j
The description of the dual (j of the Heisenberg gronp was the object ofthe famous
theorem of Stone-Von Neumann [1931] on the "Uniqueness for the Schrôdinger
operators" [47].

Hereis the complete list of all equivalence classesof unitary irreducible repre­
sentations of G.

(1) Let H = L 2(R).
For each Â. a non-zero real number, consider the representation Tl. of G in

L 2(R) given by:

2 3, ,
1()=

Proof, From the formula given in (b) for the characters, the Plancherel formula is
immediately deducedfromthe usual Fourierinversionformula.

2.13. EXAMPLE 5: G = SU(2).

(a) The set (j
Let nbe a positive integer and consider:

~ = {Polynomialson C2 of homogeneous degree n - 1}
(the dimensionof the vector space ~ is n).

The group SU(2)acts on C2 ,and thus acts on polynomials on C2 via(g· P)(z) =
P(g- l , z). Il is clear that this action preserves the space v". We have

(j""N

by [n .... (T.(g)P)(z) = p(g-IZ), P E v,,].

2n f. "tr Ticp) = T •cp(exp zEle' , dz,

with the Haar measure on G given by dx dy dz.

(c) The Plancherelformula
We have the Plancherel formula

f. À dÀ
cp(e) = .tr T,(cp) (2n)"

(b) Characters
Let us determine the characters of the corresponding representations. It is not
difficult to compute that,for <p a COO function on Gwith compact support:

(.. Pl

R'

1-..-.,'\

(J=

Figure 4 Figure 5

Remark. Differentiating formally the representation T.l.' we obtain

d .
dT,.(P) = di T, exp(tP)I,.o = lÀy,

d 0
dT,.(Q) = di T, exp(tQ)I,.o = - oy'

d ,
dT,(E) = diT, exp(tE) 1'.0 = lÀ.

The operators iÀ.y, - Blay determine a representation of the "Schrodinger oper­
ators"byskew-adjoint operators, inparticular theseoperators satisfy thecanonical
commutationrelation:P 0 Q - Q 0 P = iÀ. Id.

(b) Charaeters

(
elO 0) "Let 0 e- IO be an element of SU(2). The polynomials ziz~ (i + j = n - 1)

are eigenvectors for the transformation T.(e; e~IO).Thus we can easily compute:

(" 0) ,-1te T. e . = L ei (n- l - Zk)9

n 0 e-1o k=O

eÎn9 _ e- inO

ei9_e iO '

(This formula is a special case of the Weyl formula for characters [64].)
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(c) The Plancherel formula
We have the Plancherel formula

'P<e) = L: n tr T,(rp).
,>0

Then, for

9 = (: ~) E SL(2, R),

A proof of this will be given in Appendix 2. eonsider

3 ~ - Holomorphie discrete series

- (az+b)(1;,(g-l)rp)(Z) = (ez + d)-{l-"'P ez + d .

The map g J--+ Tn(g) definesa unitary irredueible representation of G in Rn-
The series of representations (1;" H,) (n ,; -1) is ealled the antiholomorphic

discrete series.

ifg = (: ~).

2

(2) The principal series
LetH = L2(R), let s he a non-negative realnumber. Define the representations

Tf of G in L 2(R) by:

(T;(g-l)fXx) ~ lex + dl-l+iof(: :~),

(T;(g-l)f)(x) = sign(ex + d)lex + dr1+~f(::: ~),

Il is easy ta verify that T; and T; are unitary representations of G in L 2(R).
Furthermore, r: and T; are irreducible, except for the representation Towhich
breaks up into two irreducible pieces.The series of representations (r:, r;) for
s ;;, 0 forms the two principal series of SL(2, R).

A schematic diagram of G, for G = SL(2, R) is thus:

9 = (: ~) E SL(2, R),

2.14. EXAMPLE 6: G = SL(2, R).

(a) The reduceddual G;
The set Ghas been determined in the classical article of V. Bargmann [6], still the
best reference on this subject. The completelist of the unitary irreducible represen­
tations of SL(2,R) consists of "discrete series," "principal series," and "comple­
mentaryseries." Only the first two series contribute to the Plancherel measure.
Furthermore, the description of the complementary series is more subtle, 80 we
willlist here only the set G,. Il consists of:

(1) The discrete series
(1.1) Let n be a positive integer. Let ns consider the upper half-plane P+ =

{z =, x + iy; x, y E R, Y > O}. The group SL(2, R) acts as a group of holomorphie
transformations on p+ by Z f-+ g. Z = (az + b)/(cz + dl.

Let n he a positive integer. Consider

H; = {cp, holomorphiefunctions on p+ such that

f.. 1rp I2y'- 1 dx dy < oo}.
(This Hilbert space would be {O}, if n were negative.)

For

deline

(1;,(g-l)rp)(Z) = (cz + d)-"+l)rp(az + b).
ez + d

(),~
2 Principalseries,s±

\

The map g~ T'n(g) definesa unitaryirreducible representation of G in Rn"
The seriesofrepresentations(~. Rn) (n ;;:: 1) is ealledthe holomorphie diserete

series.

-1

- 2 ~ ~ Antiholomorphic discreteseries

(1.2) Let n be a negative integer. Consider

H, = {rp, aotiholomorphic functions on p+ sueh that

f..lrpI2yl,I-1 dx dy < oo}.

Figure 6

(b) Charaeters
We give here the résults on the characters of the representations of SL(2,R) as
proven by Harish-Chandra [24]. First of ail, as the case for any real semi-simple
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Lie group G, the character distribution '1' -+ tr T(<p) is weil defined for every Tin
Gand is given by integration against a locally L '-function 0 T , i.e.

tr(1 T(g)<p(g) dg) = 10 T(g)<p(g) dg

for qJa CŒJ function on G withcompact support.
Clearly 0 T(goggô ' ) ~ 0 T (g). Thus 0 T is determined by its restriction to the

subsets

B = {( cos 0 sin 0); OER},
- 810 () COS ()

and

(c) The Plancherelformulafor G
We have the fonnula;

2,,<p(e) ~ l Inltr T,(<p)
"Z,'0

f. "s+! R+ stanhztr T:Ctp)ds

I ns+t .!coth2tr T;(<p)ds,

which can be deduced from the preceding formula for the characters (see [41]).

(1.2) Antiholomorphic discrete series n ,;; -1

A = {(a 0). aE R*}o a- 1 ' ,

as almost ail (for dg) elements of SL(2, R) are conjugated to an elemeut of one of
these two sets [SL(2, R) has two conjugacy classes of Cartan subgroups].

We have the followingformulae:

(1) Discrete series
(1.1) Holomorphie discrete series n ;;, 1

-Iml0) ,+, e if8~ +1.
= 8 l' '1 -ee- t e - e

2.15.Let Gbe a generalreal semi-simple Lie group. We givenow a cursory summary
of resultson unitary representation theoryof G.Aswe pointed out before,only the
part o.of d is known, while a complete description of ais still an unsolved problem.
Letus, for example, mention that a most remarkable representation of the sym­
plectic group, the Shale-.Weil representation, is a singular unitaryrepresentation
(singular in the sense that its two components arenot in Or)and that its existence
has"not been recaptured by ariy systematicprocedure.

Let us center our attentîon on Gr and the Plancherel formula. The central
reference for this topic is the work of Harish-Chandra. As in the case of 8L(2, R),
wemaylist representatîons in Or by series. LetCar Gbe theset ofconjugacyclasses
of Cartan subgroups of G.Thereis as many seriesas elementsin Car G:to a con­
jugacy class of a Cartan subgroup H of G corresponds a seriesof representations
{T" i E IR}. The elements of this series may be indexed by a subset IR of fJ.. [IR
parametrizes the set of regular characters of H modulo the action of a finitegroup.
For example, in the case of SL(2, R), there are two conjugacy classes of Cartan
subgroups, namelythe conjugacy class of B andthe one of A.The discreteseriesis
indexed by the set of characters of B, except the trivial character, i.e. by Z - {O}.
The principal series is iudexed by Â ~ Z/2Z x R modulo the action (e, s)-+
(e, -5).]

In general, if G has a compact Cartan subgroup B, the corresponding series
{T)., Â E 13, Â regular}, is indexedby a dîscreteset. The corresponding representa­
tion T... whose existencewas proven "abstractly" by Harish-Chandra occurs as a
discrete summand in the regular representation of G in L 2(G). Thus this series is
called the discrete series of G. Let T). be a representation of the dîscrete series.
Harish-Chandra gave an explicit formula [25] for the character 0,(g) dg of T" in
the case g is a regular elliptic elementof G. This formula is a finite sum over the
fixed points for the action of 9 on G/B and is formally similar to the Atiyah-Bott
fixed point formula [1] for the twisted Dirac operator. Il was a remarkable result
of W. Schmid [52] that, indeed the representation T, can be realized in the space
of L2-solutions of the twisted Dirac operator D, on G/B.

The other series {Ji; i E 1H} of representations of Gare constructed in a simple
way fromrepresentations of discrete seriesof reductive subgroups of G.

ein8

eie _ e-=-i8'

eln9

e:" _ eitP

0) e/st + e- fsf

ee- t = let - e li'

0) eist + e- ist

= 8 .
se" le' - e-'I

o ) e-I"I
- el-II~'--~

ee-' - le' - e '1·

-sin 0)
cosB =0,

(
se'

0 T,_ 0

(
se'

e Tr 0

(
ee'

eT.. 0

e (cos 0TI .sm 0

o (cos 0 -sin 0)
T.. sin () cos (J

(
se'

0 T" 0

e (case -sine)
T.. sine cos 0

(2) Principal series
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The Plancherel measure is thus themeasure dJ1..(T) on thesetGr = UHeCarGIH'
such that

2.16 <pee) ~ Ltr T(<p) dJl(T).
G"

The explicit formula for dP{T) has been determined by Harish-Chandra, and the
Plancherel formula proven [26]. May1confess that 1never nnderstood the original
pIOOr of Harish-Chandra and that 1 am very grateful to Rebecca Herb to have
given recently a more accessible proof?

2.17. For this proof and on its own right, the integrand tr T(<p) is worth detailing.
Il is a difficult question and there have been several attempts to find explicit
formulae for il. In an article on this subject [53], W. Schmid went so far as to
declare:" Forageneral groupG, it willbe verydifficult to express thediscrete series
characters bya completely explicit global formula in closed form-ifit cau be done
at all." But, one should never give up hope and recently Rebecca Herb [27], [31]
gave formulae for the locally Ll-function eT defining the distribution character
0 T(g) dg of a representation T of Gr. Sorne of the ingredients forher formulae are
related to the work of Diana Shelstad on "Orbital integrals and base change"
[54], [57].

When having explicit formulae for the integrand tr T(<p) and the Harish­
Chandra formula for dJl(T), it was then (theoreticaUy) simple to reprove 2.17. This
was also accomplished by Rebecca Herb for linear semi-simple Lie groups [31],
[32].

set g*/G of orbits of G in g*. Let us quote herethe first strikingresultof Kirillov
[35].

3.2. Theorem. Let G he a simply connected nilpotent Lie group, then Gis isomorphic
to gO/Go

1 would like to comment here on this theorem. Once the principle of the corre­
spondence is stated (the irreducible representations associated to orbits are
constructed by induction) the proof follows in,a straightforward manner from
G. W. Mackeytheory [43]. However, it is the statement itselïwhich is remarkable.
This idea generated many new insightson many aspects of representation theory
of Lie groups and Lie algebras.

Letusfust takea look at thespaceof orbits forourexamplesofnilpotentgroups,
i.e. Examples 1, 2, and 4. (If G is a....connected nilpotentLie group,with universal
covering G, the set 0 is a subset of G. Thus 0 is identified with a subset of G-orbits
in g*, depending on G.)

3.3. EXAMPLE 1: G ~ Vector Space. Let G = V.
Then

9 = V,

g* ~ V* œ g*/G ex O.

Thus the theorem of KiriUov is true in this case. (Fortunately!)

2.18. We would like DOW to discuss representation theory of general Lie groups.
We will try to give a glimpse on sorne beautiful and deep results on general Lie
groups and show how a large part ofthe specifie results we have described here fit
in the general theory of the" orbit method,' However, as shown exemplarily by
the case of G = GL(n, R), it would be too much to hope that a single mode of
explauation willlead to a total understanding of O.

3.4. EXAMPLE 2: G = T. Let G = T = VII.
Then

9 = V,

g* ~ V* = g*/G,

0", i* c: g*.

m. The Orbit Method

3.1. Let G be a general Lie group, 9 the Lie algebra of G and g* the dual vector
space of g. As G operates on 9 by the adjointaction, G operates on g* in such a
way that

This action of Gin g* is called the coadjoint action. Let us consider the orbitsof
G in g* under the coadjoint action of G. KiriIlov's idea is that the dual {} of.G
should herelated to the dual vectorspace g* of g, or moreexaotly, related to the

Let us consider a general Lie group G. What kind of parameters should we look
for to describe O? Il was A. A. Kirillov [35]. who discovered universal parameters
for G, whatever the Lie groupGis. This idea is verysimpleandis referred to as the
"orbit method."

p e + qx - py)
o q .
o 0

with basis P, Q,E.
Il is easy to compute the adjoint action of G on g:

(
1x Z) (0 P e) (1 x Z)-' (0
01y OOq Oly = 0
001000001 0

3.5. EXAMPLE 3: The Heisenberg Group. RecaU that

G={G ~ ~}X'Y'ZE+

g={G ~ i);p,q,eE+

JEg*, XEg.<g .J.9 . X) = <J. X),
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Figure7

Note that the element f = aP* + PQ* of g* is a l-dimensional character of the
Lie algebra 9 (i.e. f[X, YJ = 0, for every X, Y E g). As expected, the Kirillov
correspondence assigns to thispointf ofg*thecharacter ofGgivenby T

f
<exp X) =

ei{!, X) whichis the, representation Trx:. p of SectionII, Example 4. TheKirillovcorre­
spondenceassignsto the orbitof the point..tE* the representation TA. Thuswe see
clearly by comparison of 2.12, Figure 3 and 3.5, Figure 6, bow g*/G becomes a
natural set of parameters for {J.

3.6. This striking resnlt for nilpotent groups leads to the following question. ls
there also for any general Lie group G a relation between Gand g*/G? The answer
is "yes." An explanation of the relation calls to my raind many diverse thoughts
includinganalogies, conjectures, and expectations, and it is not possible to give
such a simple answer in the general case as in the nilpotent case. 1 will select here
the analytic aspect of these relations given by the Kirillov universal character
formula, leaving out many other equally rich aspects, such as the algebraic or

3.7. Let fi be a Lie algebra. Consider the analytic function

. _ (~dX/2 _e-adXf2)
}(X) - det ad X

on the Lie algebra g, and definepJ2 the analytic square root ofj (defined at least
in a neighborhood of 0).

Kirillov [36J conjectured the following universal formula for characters: Let
G be a tame unimodular Lie group. For almost every representation T in (in
thereexists an orbit (!)T (of maximal dimension) of G in g* such that we have the
equality of.generalized fnnctions (atleast in a neighborhood of 0),

tr T(exp X)j'/'(X) = r e'«'x> dp.(ç),
JOT

where dp.(ç) is aG-invariant measure on (1). (The normalization of dp.(ç) will be
made precise later on.)

For this equality to hold, we should have:

tr J, T(exp X)j'''(X)<p(X) dX = f.
T

(f. e'(<.X><p(X) dX) dp.(ç)

at least, for every CO:) function tp on 9 supported in a small neighborhood of O.

3.9. Let us now discuss these integrability conditions on f!J. which arise aIready
naturallyin a preliminary step, the Kostant-Souriau prequantizationof the orbit
(1) [40J, [58].

Let (1) be an orbit of the coadjoint representation. lff E (1), we have (1) = G· f =
G/G(J). The stabilizer GU) of f has Lie algebra g(f)

gU) = (X E g, f([X, YJ) = 0, for every Y E g}.

geometrie ones. For example, the power of Kirillov's orbit method for the study
of enveloping algebraswas foreshadowed by the work of J. Dixmier [13]. See the
book [15] by Dixmier and, among other recent articles,those of Colette Moeglin
[44J, [45J and Moeglin and Rentschler [46].

3.8. The Kirillov character formnla defines conjecturally a map T .... (1)T from G, .
to g*/G. Of course, in Example 1: G = V, the map f e V* .... x/x) = e'(lA is
also the one compatible with this universal characterformula.

Whatis the imageof (ir underthis map? Asit is obviousfrom the case ofcompact
groups «(i being a discreteset), not every orbit corresponds to a representation of
G.Thecorrespondingorbitshould satisfysorneintegralityconditions, whichappear
naturallywhen considering the inverseproblem: How to construct from an orbit
f!J of the coadjoint representation a "natural" representation 4J associated to f!J
having the prescribed character formula. This inverseproblem is referred to as the
"quantization" of an orbit and, from my point of view, has no completely satis­
factory answer. The reader shonld consult the book [23J by Guillerain and Stern­
berg for insights on possible" quantization methods."

The coadjoint action of G in g* is:

(

1 x Z)-'
o 1 y . (rxP* + PQ* + ÀE*) = (a - Ày)P* + (P + Àx)Q* + ÀE*.
o 0 1

Thus we see that the orbit of the poiut ÀE* for À # 0 is the 2-dimeusioual plane
defined by (J, El = À, while the poiuts aP* + PQ* are O-dimensional orbits. We
obtain the following pictures of g* and g*/G:

g*=

1



78 M~ Vergne Representations of LieGroups and theOrbit Method 79

We can definean alternatenon-degenerate 2-form (Jf on the tangentspace 9 .f =
g/g(f) to the orbit (P at the poiot f by the formula aiX . f, y. f) ~ f([X, Y]).
This way, we obtain a 2-form a on t!J, This form a gives to (!) the structure of a
symplectic manifold. If dim (P ~ 2d, the term "'/(d! (Z,,)') of maximal degree of
et/1

2ft defines the canonical Liouville measure dm, on (!).

Consider the map X .... f(X) on flJ). Clearly f([X, Y]) = 0 for X, Y E g(f).
We introduce:

K(f) ~ (X, characters of G(f) such that
X(exp X) = e"i. Xl for X E g(f)}.

We say that an orbit is integral if K(f) 9' 0. (If G(f) is simply connected,
K(f) consists of one element.) In particular,fmust satisfy the integrality condi­
tions: (1/Z,,)(f, X) E Z for al! X E g(f) such that exp X = e.

For each character XE K(f), we can construct a line bundle fi'x .... (P with
fi'x = G x C/G(f), where U E G(f) acts on G x C by (g, z)· u = (gu, xiu)-!z).
1t is not difficult to see that the fust Chern class of this line bundle fi', is aIZ".

Let us say here that the universal formula has sorne formai analogy with the
indexformula forthe twisted Diracoperator. For example, if Gis compact and (f)

admits aspinstructure, theuniversal formula forX = 0givesusanintegral formula
forthe dimension of the representation TI!!

dim T. = f. (Z~d!'
which coincides with the index formula ([Z]) for the twisted (by fi' x) Dirac operator
Dx on (P. (Recal! here that (P was supposed to be of maximal dimension.lt follows
then from [ZI] that the tangent bundle to (P is a trivial element of K-theory, thus
the term si contributing to the index formula for D, is here equal to 1.) Further­
more, Nicole Berline and 1 [8], have shawn that it is indeed possible to give an
integral formula for the equivariant index of a connected compact group of
transformations of an elliptic complex over a compact manifold, generalizing
Kirillov's universalcharacter formula.

In anotherdirection,when (9 is not compact but still admits aG-invariant spin
structure, the formulaof Connes and Moscovici [12] for the L2-index of Dx is a
preciseanalogueofKirillov's formulaforX = O. Thus,at leastfororbitsof maximal
dimensionwithcompact stabilizers and spinstructures, aIlthese indicationswould
lead us to discover (as Christopher Columbus "discovered" America) the impor­
tance of the twisted Dirac operator00 orbits to construct the "quantized" repre­

.sentation ~. However, if (9 is a generalorbit ofa group Gin g*, thereis no canon­
ical construction of a representation Tél (even, for sorne (9's, no constructionwhat­
soever [63]), nor are there suffïciently powerful theorems on unicity of various
methods of quantizations. (When Gis solvable, the "uniquenessof the quantized
orbit" is elucidated in numerous cases. Let us quote the uniqueness theorem of
Auslander and Kostant on "independence of positive polarizations" [3] and the
uniqueness theorems of Penney [48] and Rosenberg [50] on the realization of T.
in Lê-cohomology spaces.)

3.11. The preceding discussion stressed the importance for the representation
theory of G of a subsetof orbits satisfyingintegralityconditions.

Let G be a real algebraic group. By a profound generalization of the result of
Kirillov on nilpotent groups, Michel Duflo [17] was able to construct a set X of
p~ameters for ô; (When Gis semi-simple, this construction is based on Harish­
Chandra's work. In 'case G solvable, a set analogous to X was introduced by
J1ukanszky [49].) Duflo defines the notion of G-admissihle orbits, which is an
appropriate modification (see Appendix 1) of the notion of G-integral orbits. In
aIl the examples of the text, the set 9: of admissible orbits coincide with the set
rof integral orbits. The set X is given together with a map d: X - 9:/G having
: finite fibers; M. S. Khalgui [34] proved under sorne very general hypothesis that
the universal formula for characters is valid and the rnap d is indeed the map
T .... (PT' We will describe briefly X in Appendix 1. In the examples of this text,
we can describe X as fol1ows: Consider the set

P = {(f, X); G· f of maximal dimension, X E K(f)}.

The group G acts on P. The set PIG is fibered naturally over the set of integral
orbits of maximal dimension by the map d(G· (f, X» = G· f. We may take for X
the set PIG (or a subset with complement ofmeasure 0, as X is defined up to a set
of measure 0 for the Plancherel measure dJl(T».

3.12. Let us describe new for aIl our examples this fibering and indicate how to
prove its cornpatibility withthe universalcharacter formula, Le. let us relate the
character tr T with the Fourier transform of the corresponding orbits ({)T'

3.13. EXAMPLE 4: The Heisenberg Group. The set X is the set of orbits (!),t of
maximal dimension where (()), = G· ÀE*, À if:. O. Let us consider the character
tr T, of the representation T, (Z.lZ). We will verify that according to the universal
character formula U in this example is identical!y 1)

tr T),(exp X) = f ei<';.X) G)"
J/JJ;. 2n

where (J J.is the canonical 2-formon the orbit (9,t.
1ndeed, for <p a Schwartz function on g, we have: (2.1Z(b»

tr(f T,(exp X)<p(X) dX) = Z; f e"'<p(zE) dz,

while the second member is

f (5. e!(J.E*+pP"+qQ*,xP+J'Q+ZE)cp(x, y, z) dx dy dZ) _1_ dpdq
JR:.l R3 2nÀ

- Z" fe'''<p(O, 0, z) dz,- À

by the usual Fourier inversion formula.
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3.14. For a simply connected nilpotent group N, the functionj is identicaUy I, and
the set X coïncides with the set oforbits of maximal dimension. Recall that Kinllov
theorem (3.2) gives a description of a as g*/G. The corresponding charaeter
formula

tr T(exp X) = f e'G,x> --4-
OT (2n) d!

holds in fact for every representation Tin G.
More generally, if the representation Te can be constructed via Mackey induc­

tion, the universal character formula holds under certain' conditions and can be
proven easily ([42]).

Unfortunately, for a general Lie group G, as stressed in 2.10, there is no para­
metrization of the entire set 0, nor systematic construction of a representation 1éJ
corresponding to an admissible orbit (!), if (!) is not of maximal dimension. Further­
more, even if Te is "given" to us, the universal character formula for tr 4J would
have to be modilied ([33], [8]).

g~ =

2 3
9~/G =

N

Figure 8

3.15. We now consider tbe:

We identify 9 with g* via the G-invariant bilinear form (X, Y) ..., -tTr(XY).
RecaIl that the function X -4 det X is invariant by the adjoint action of G on 9.
Thus the orbits of G in g* are the spheres xî + x~ + x~ = r2

•

If

g(f) = {cg _OjO); 0 ER},

{(
e" 0) . }

G(f) = ° e-"; 0 ER.

(
jÀ 0)

f= ° -jÀ e g'"

0) r e'x,' z.
-() = Jxi+x~+x~:=112 2n'

tr T.(e" 0 )}"/2(0
Il 0 e- 16 0

As we compare (2.13), Figure 5 with Figure 8, we recovered our description of
(; = {T,,; n EN}.

Let us describe the relation of the character of T" with the Fourier transform of
the measure on the sphere S,. Il is easy to see that tbe functionj(X) has an analytic
square root on ail of 9 and that

(
0 0) e" - e-"·1/2} ° -0 2iO

The universal character formula asserts that

eill/l - e- ill6 ei/J - e-i/l f iX36 (J

'/1"0 = e -.
el - e- l 2i() X1+X~+X~=1I2 2n

Thus we have ta prove:

i.e.

e
i ll6

e-ill/l f . o
IX30

2iB - 2iO = xi+x~+X~=1I2 e 2n'

for (f/2n the canonical Liouville measure on the orbit S, of SU(2).

(À '" 0),

-Xl :+ iX2), x, E R}
-~X3

{(
ix,

= Xl + iX2

we have

EXAMPLE 5: G = SU(2). We have

9 = su(2)

The form f is integral if XI(": e~") ~ e'" is weil delined on G(f), i.e. if

À E Z - {O}. As G(f) is connected, K(f) is eitber empty or, iffis integral, it is the
set with the one element Xi'

Thus the set 9~ of integral orbits .of maximal dimension coincides with all
spheres Sil with positive integral radius. We may picture the set 9~ and X by:

It is immediate to verify this formula using spherical coordinates (see
Appendix 2).

3.16. For a compact Lie group G, the universal character formula is equivalent to
a well-known formula of.Harish-Chandra, established long before. Developing an
earlier idea ofR. Bolt [10], Nicole Berline and 1 [7] have given a simpler proof of
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a moregeneral formula of Duistermaat- Heckmann fortorusactionson symplectic
manifolds [22].

We may explain the idea ofthe method on the preceding Example 5 as foUows:
Consider theactionof the one-parameter groupei9 on theorbitSn' It hastwo fïxed
points, the point p+ = (0, 0, n) and the point p- = (0, 0, - n).

p.

....... -"--
4''' : - .........

1
1

A typical element ofthis orbit is

f = (_~ ~), À < O.

We shall denote by l!!i the orbit of the elementf = ( 0 À).
-À 0

(2) The one-sheeted hyperboloid Xl - (xi + x~) = - ,2(, '" 0).

A typical element ofthis orbit isf = (~ _~). We denote by &: the orbit of the

element (~ _~).

(3) The point{O} and the two connected components of the light cone

(xl - xi - x~ = 0, x '" 0).
p-

.x,,
Figure 9

(b) The lower sheet X3 ,; 0 of the two-sheeted hyperboloid

3.17. Let us finaUy consider our

(À '" 0),f= ( 0 À)E9*
-À 0

g(f) = {(_~ ~);8ER},

f) = {( cos 8 sin 8); 8 ER}.
G( ~sm8 cos8

we have:

We determine DOW the set ofintegral orbits:

Figure 10

(1) For

À '" o.

À '" O.

À> O.

X2 + X3);XiER}
-Xl

x; - (xr + xi) = ).2,

x~ - (xi + x~) = ),2,

A typicai element of this orbit is

f= (_~ ~).

= {(X2~ X3

EXAMPLE 6: G = SL(2, R). We have

9 = .1(2, R)

It is easy to see that the farmto be integratedis exact,exceptat these two points
and that the two terms eille/2i() and e- illej2ifJ cornesfrom a calculus of residuesat
these two points.

We identify 9 with g* via the G-invariant bilinear form (X, Y) - t tr(XY).
RecaU that the fonction det X = Xl - (xi + x~) is invariant by the action of G
on g*. From this, it follows that the orbits of Gin 9* are:

(1) (a) The upper sheet X3 ;,; 0 of the two-sheeted hyperboloid
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8'" O.

e = ±1,

3.18. The validity of this formula or more generally the validity of the universal
character formula for a semi-simple Lie group was established by W. Rossmann
[51]: This fundamental resnlt gave legitimacy to the daims ofuniversality for the
orbit method.

Il is possible to generalize the argument sketched in 3.16 to prove Rossmann's
formula [7]:

Let us remark, in the case of SL(2, R), that the action of the one-parameter

(
cos8 sin8) ..

group . 8 8 on (9, has only one fixed pomt, the pomt Po = (0,0, n)..- -sm' cos

,;;,0

,,
;2,,
Il,,

gUG~ ,,
; -1,,
+-2,,

Figure Il

•,

g~ =

~
,Po
1,,

1-0
1
1

Figure 12

1 ~ (8 0) EgO,o -8

g(/)~W _~);tER}

G(/) = {(~ )1);a ER - {O}}

Thus we obtain Figure 11 for g~ and g~/G.

The set X = Ci, is given by Xi"/G with Xi" = {(J, X), 1 E g~, XE K(f)}. Thus
X is fibered over g~/G with fibers consisting of the one point ~ over the orbit
(!)~ (d for discrete) and of the two points Tt over the orbit (9~ (p for principal).
The reader may then compare Figure 10 with Figure 5 (2.14) to visualize the
fibering.

The universal character formula for the representation ~ associated to the
orbit mn is equivalent to the equality of generalized functions (n > 0):

"eil16 f (J "__ = _ ei X3 (J -,

2i(} xi-(xt+x~)=1J2 2n:
X3?:'O

Every 1 of this form is integral, and for any 8, the set K(/) consists of two
elements, the characters X: and X; with

+(d 0) _,,,
XI'l 0 8e-t - e ,

(
8e' 0) .X- _ = eelli/ ,

li 0 se e

We denote by g~ the set of integral CIbits of maximal dimension of the sets.
(1) and (2) (i.e. we omit the light cone). Thus g~ consists of the orbits:

~=G'(_~ ~), n>O,

(9:=G'(_~~). n<O,

(9'= G.(8 0)
li 0 -s'

when rf/2n is the canonica12-form on (!Jn-

The form 1 is integral if

(
COS fJ sin0) = ei).8

XI -sin8 cos8

is weUdefined on G(J), i.e. if À E Z - {O}. In this case (À integer), as G(f) is con­
nected, K(f) consists of one e1ement, the character Xl'

(2) For
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L rp(y) ~ L rp(y*).
)'es )'OeG<::s*

exp)'=r

As in the case of SU(2), the form to he integrated is exact except at this point.
Thus there is only one residue to he calculated which leads to the term - eitl8/2if).

Similarly, the character formula e ;.(g) for the representation Tl. of the discrete
series has a simple geometrie interpretation as' a fixed point formula, for the
elements 9 belonging to the elliptie set. However, the general formulae of Rebecca
Herb for arbitrary regular elements 9 of G are not yet reducible to a simple geo­
metric interpretation.

3.19. We have related in Examples 1-6 the set tir with the geometrie set X, and the
distribution tr T with Fourier transforma of canonical measures on orbits, Thus,
due to the work of Michel Duflo, we see that the set {J, is descrihed adequately. Il
is still, however, an open question to determine explicitly for a general Lie group
G the corresponding Plancherel measure on X. 1 When G is a simply connected
nilpotent Lie group, the set (J is merely the set of orbits 9*jG. Each orbit (J) has 'a
canonical measure dml11 _ Let dg be a Haar measure on G. dX the corresponding
measure on g, dl the dual Haar measure on g*. The usual Fourier inversion
formula on the vector space

3

,

"

0) = (e fB 0)-e 0 e- fB(
'e

exp '0

4n

,

,,
1
'2n
F'-

---1- _

II""'~ _ - -l-----~- -- ....... ~,0).. ..:l _
,

,­
"

"

3.21. Let us now examine briefiy in Examples 5 and 6 the content ofthis conjecture.
As it will be c1ear on the examples, the form of the generalized function VG is
prescrihed hy the Plancherel formula of G.

3.22. EXAMPLE 5: G = SU(2). Recail that the orhits ofG ing(oe gO) are the spheres
S, = {xi + xi + xi = r'} (r ~ 0).

As

the set gG consists of ail orhits S, of radius r = (0, 2n, 4n, 6n, .. .).
Recall that 9~ consists of ail orbits Sr of non-zero integral radius (1, 2, 3, ...).

3.20. Consider for a general Lie group G the maps exp: g ~ Gand d: {J,~ g*(G,
(we write d(T) = (1)T) and the subsets

gG={XEg;expX=e} ofg,

g~ = U (1)T, TE {J, of gO.

Recall that g~ is determined in purely geornetric terrns by sorne integrality
conditions (see Appendix 1). In the examples given in this text, 9~ may be taken
as the set of integral orbits of maximum dimension. 1 conjectured [61J that a
similar "Poisson formula" relates the sets 9G and g~. Let us formulate this con­
jecture in these terrns (see Appendix 1 for a more precise formulation): "There
exists a G-invariant positive generalized function VG on g* of support g~ whose
Fourier transform is a distribution nG, such that the support of nG is contained in
9G and »o coincides with <5(0) near the origin."

ln the case of the toms T, ra is the <5-function of the lattice F" and nG is the
é-distribution of the lattice r.

Of course if G is a simply connected nilpotent Lie group, we can take na = <5(0)
and VG = 1.1proved that this conjecture holds for G semi-simple linear [62], and
Duflo proved that this conjecture holds for G any complex Lie group [19].

f

Jd
T

1exp

that we may rewrite as:

'1'(0) ~ f $(f) df,
g'

yield immediately to the Plancherel formula:

$(e) =; ..(f(0) ~ f (5. $ dm.) dp«(1) = f trCI;" iP) dp«(1),
"<. g*/G 111 s*/G

with iP the C~-îll\Îition on G such that '1' ~ iP' exp, and dp ~ df(dm. the quotient
measure of df liY the canonical measures dm(J). A similar formula holds for a
solvahle simplysconnected type 1 unimodular Lie group G. (Pukanszky [49],
Charhonnel [i1]).

In general, as we have seen, orbits {J)T corresponding ta representations must
satisfy sorne non-empty integrality conditions and the corresponding set g~ =
{U {J)T, TE Gr} is not dense in g*.

The case of a toms T = Vjr is instructive. In this case, 9 = V and 9* = V*,
while the set of orbits corresponding to representations of T is the discrete subset
F* c; V*. Let dx be the Euclidean measure on V giving measure 1 to the funda­
mental parallelepiped on r. The Poisson summation formula is:

L <p(y) =; L rp(y*),
l'Er )'*er*

v v*
Figure 13

1 The Plancherel measure is now detennined (M. Duflo, special year in Lie groups representations,
Maryland, 1983).

gG
Figure 14

g~
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Let, for a E R, ®abe the G-invariant function on g* such that

e (il 0) = lie'''' + e-'''''
a 0 -iÀ 2\ J.

Let VG be the G-invariant generalized function on g* given by v = La€27!Z 0"" i.e.:

(il 0)
VG 0 _ il = ~ e

2iltn
;'.

Il is not diflicnlt to prove (see Appendix 2) that for df = (1/4,,) dç, dç, dç, on
g œ g*

f "v(f)",(f) df = 2>(1, '" 2
G

, ,) ,
9* neN Sn 'Tt

-,,
-,

-,,
" ,

" 1 /

'~/O
/ l ,

/ l -,
// - 71:,

/ ,
/ -,

/ -,
/ -,

/ ,
/ -,

/ '
/ ' ,

2: e""" dx = 2: o(nJ-,

In Appendix 2, we willcompute the Fourier transform no of VG and show that
nG satisfies the required properties of the conjecture, in particular that nG is a
distribution of snpport gv'

the set 9G consists of all orbits m:, for a E 2nZ. Recall that the set g~ consists of
the orbits m~, for n non-zero integer and of aIl the orbits mf (s =1= 0), see Figure 15.

Define, for a E R, Sa as being the G~invariant function on g* such that

where (ln/2n is the canonical Liouville measure on Sn' Thus vG(f)df is a positive
measure -supported on g~ (this measure is clearly derived from the Plancherel
formula on G). The proof of this equality followsfrom the usuai Poisson summation
formula:

g~

Figure 15

gv

3;24 f "o(fMf) df = Linl (r ",!!-) + Joos coth "s(J ",!!-) ds.
e- »ez Jélg 2n 0 (ge 2n

L e.,-1 2xnsl = coth 'KS for s #- O.
eez

2: e"'" dl = 2: o(n),
'Oz

Let us remark that the left-hand side ofthese two identities involves the formulas

for the characters of the rliscrete series Tn. respectively, on the element (_~ ~)

and on the element (~ _~). The proof of the conjecture for general linear

senti-simple Lie groups is based on similar equalities between the discrete series
constants and the Plancherel functions ([62J),

The proof of this conjecture for non-linear semi-simple Lie groups would lead
ta sorne better understanding of the relation between character formulae, integral
orbits, and the Plancherel rneasure on G.

1 hope many mathematicians, women and men, will continue to work on the
topics touched upon here.

Then vG(f) df is a positive measure supported on g~. (This measure is c1early
derived from the image of the Plancherel measure on Gr by the map Gr --+ gUG.
Recall that the liber of this map above 19, consista of two points T; and T; with
respective weights in the Plancherel measure tS than ("s/2) and tS coth("s/2) and
that t than ("s/2) + t coth("s(2) = coth 1tS.)

The proof of the formula 3.24 relies on the two identities:

sin 0)
cos (J ,

e (s 0) = e-''''a 0 -5 .

( 0 0) (COSOexp =
-0 0 -sin 0

e( ° l)=e'"
a -À. 0 '

(Sa is defined by this relation except on the light cone, but, as Sa is bounded, Sa
defines unambiguously a generalized function on g*.)

Define Go = L.,.z e,. Il is not diflicult to prove (see Appendix 3) that for
df ~ (1/4,,) dx, dx, dX3 on g '" g*

3.23. EXAMPLE 6: G = SL(2, R), Denote by 191 the orbit of the element (_~ ~)

and by 19f the orbit of the element (~ _~), As
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APPENDIX 1

Duflo's Parametrization of (j,

Let (f) be an orbit of lbe co-adjoint representation. Iff E (f), we have (f) = G· f ~

GIG(f)· The stabilizer G(f) of'j'has Lie algebra g(f). The 2-form UJ on the tangent
space 9 . f = g/g(f) ta the orbit (f) at the point f is invariant by G(J). Thus we
obtain a morpbism iJ from G(J) ta Sp(g/g(J». Consider the 2-fold caver G(J) ~
G(J) image by the map iJ of the canonical 2-fold caver Mp(g/g(J» ~ Sp(g/g(J»
of the symplectic group bythe metaplectic group. Let (s, e) be the reciprocal image
of e E G(f) in G(f). We denote by

X(J) ~ {r, irreducible representations of G(f) in V, such that

(1) rrexp X) = ei'J.X) Idv, for X E g(f);
(2) rie) = -Idy).

An element f Eg* is called admissible if X(J) is not empty. An element f Eg*
is called regular if lO = G· f is of maximaldimension.

Let G be a real algebraic group. The set X(f) consists of a finite number of
finite dimensional representations of G(J). Let f be regular, then the connected
component G(f)0 of G(f) is cotnmutative and is the direct prodnct of ils semi­
simple part S(J) with ils unipotent part U(J). Cali f strongly regular, if S(J) is of
maximal dimension (among the subgroups S(J), for f regular). The conjugacy
classes of the subgroups S(f), f strongly regular, are in finite number. (If Gis a
complex group, the subgronps S(f), f strongly regular, are in the same conjugacy .
class. This is not the case of the subgroups U(J) [39]). If G is a semi-simple group,
the subgroup S(f), for f strougly regular, is a Cartau subgroup of G.

Denote by

g~ = {f E g*, f admissible, f strongly regularl,
gG~ {XEg;expX = e].

Define:

Xi" ~ {(J, r);f E g~, r E X(J)l·

The group G acts on x1u . Define X = XirtjG. Duflo constructed an application
(J, T) 1--+ Tf.'t of xirr in (i, which induces an injective application d of X mio a,
Finally, under sorne hypothesis which are probably automatically satisfied, Duflo
proved that the Plancherel measure d,,(T) is concentrated on diX). Thus we may
cousider that the problem of determining G, is entirely solved by these results.

Let us relate this parametrization X of Gr with the KiriUov character formula.
Let (J be the canonicat 2-form on the orbit (!) of dimension 2d. Consider etT

/
2

11: and
its term (lld!)(u'/(2,,)') of maximal degree. Let G be unimodular, f E g~ such
that (f) = G . f is closed, r E X(f), then M. S. Khalgui proved that indeed:

tr T (exp X)J'(X)l/' = f (dim r)ei«.X) ~~
J.' • d! (2,,)"

as an equality of generalized functions in a neighborhood of O. [34].
(For 9 semi-simple, a corner-stone case, this was due to Rossman [51J. For 9

solvable, it was proven by Duflo [9].) Thus the map (J, -r) f-> f of Xi" into g~

inducesthe Kirillovmap T 1-+ (J)T from ô, to gUG.
Let us now formulate my conjecture un the Poisson-Plancherel formula. Let

dg he a Haar measure on G. Let dX he the corresponding Euclidean measure on
g: i.e. for q; supported in a small neighborhood of 0 (where the exponential map
is a diffeomorphism) JG ip(g) dg = J, q;(X)j(X) dX, with ip the function on G such
that q; = ip . exp. Let df be the dnal measure to dX on g*, i.e. df is snch that

q;(0) ~ f,.(J,ei(J.X)q;(X) dX) df = J..qJ(J) df.

Let d,,(J, r) be the Plancherel measure on X. Denote by p. the measure on gUG
image of the measure (dim r) d,,(f, r).

Let Ilbe the positive measure on g~ such that:

l ·U) dP.(J) = f (r.(f) dm.(f)) dP.((f).
Bd ~/G J~

Let ipbe afunctionon G supported in a smallneighborhoodof e and cp the function
on 9 such that cp = fjJ 0 exp. We have

(tr TJ,,, ip) = tr f/J. ,(g)ip(g) dg

= tr 11f.,(exp X)cj'>(exp X)j(X)'/'j(X)l/' dX
s

= (dim r) L=G'!(q;jl/'t(f) dm,,(f).

Thus, from the Plancherel formula on G, we obtain

q;(0) ~ cj'>(e) = Ix tr(TJ, ,, cj'» dp(f, r)

= Ix (dhn T) L=G'J (q;j'/'Y(f) dm,,(l) dJ1{f, r)

~ r (r(q;j'/')'(f) dm.(f)) dP.«(f)JgMG J~

= r (q;j'/'Y(J) dP.(f).
Jg~

Let VG be the positive generalized function on g* concentrated on g~ auch that
d{J(J) ~ "G(f) df, We then see from this formula that, ifnG is lbe Fourier transform
of VG. then nG is a distribution on 9 whichcoincides with the Dirac measure at O.

1 formulated the following conjecture (in somewhat more timid terms; 1 am
indebted to Michel Duflo [20] for the present reformulation):

Let G be a Lie group with Lie algebra g. There exists a tempered distribution nG on
9 having thefollowing properties:

(1) nG ts G-invariant;
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(2) na eoineides with the Dirac measure in a neighborhoadof0; the support of na is
contained in 9G;

(3) no is a/positive type and its Fourier transform is a generalized posttioe function
vo concentrated on g~;

(4) the funetion j(X)'/' admits an analytie square root in a neighborhood of the
supportoinG andj(X)l/2nGis a measure.

(lt is clear that it is also expected, from the preceding discussion, when Gis a type 1
unimodular group and X the Duflo set of parameters for G, that Va df = d{J{f).)

APPENDIX 2

Complements on SU(2)

1. Normalization of Measures

{(
e" 0) }Let T = 0 e-"; eE Rand consider P ~ GIT. We denote by il the image

of g on GIT. There exists a unique G-invariant measure dg on GIT such that
SaiT f(g) dg = Saf(g) dg. Identify the tangeut space at è with RJ l E9 RJ,. The
correspondingvolume form w at è is such thatw(J,AJ,) = II". The map c(g, e) ~

(" )g eO e~i8 g-l is a diffeomorphism of P x ]0, ,,[ with the subset G; = {g E G;

g # {l , -il} ofG. Thusthere exists ameasure l'(x, e) on P x ]0, "E,such that

Jf (g) dg ~ f. f(c(x, e)lI'(x, el·
PXIO,n[

Using the Ad G-invarianee of dg, we see that l'(x, e) ~ J(e) de dg. To compute
J(e), we ueed then ta compute the Jacobian of c at the point (é, el. In coordinates
(Yh Y2l Y3, Y4) for S3-~ G, it is immediate to see that

Therefore

Ô
~2sine-ô '

Y.

c.(J,) = -2 sin e~.
ÔY3

c.(dg) ~ le" - e-"I' ~wA de,
2"

and we obtain the formula. 0

-,)(e" 0)( l ')1
1 0 e- i8

-8 1 FO

d(1c.(J,) = d, s
G = {(~ -~); lai' + IPI' = I} = 8U(2),

_ {( ix, -x, + iX'). R}g_ . . ,~E

Xl + lX2 -lX3

the Lie algebra of G with corresponding basis J 1> J" J,.

The map g 1-+ (a, P) identifies G with

S, = {(Yl + iy" y, + iy.); YI + YI + yJ + Yi = I}.

Let dg be the Haar measure on G giving total mass 1 to G.IfJ.l is the surface measure
on 83 , then dg = /l/2n 2• The Haar measure is left and right invariant.

We eonsider the corresponding Euclidean measure dX on 9 (i.e. dg = j(X) dX).
We have:

Let

Proof. Recall that an element g of G can be conjugated ta an element

dX = dX, dx, dx,
2,,'

2. Weyl Integration Formula

Proposition. Let f be a continuousfunction on G, then:

f .r f ((e" 0) )af(g)dg = 4" 0 le" - e-"I' af g 0 e-" g-l dg de.

(e" 0) (e-"o e-i8 i: itself conjugated to 0

e~i8k,)+(e~' e~i8k')ag de1 1'·' . ((e"= 4n 0 le' 6
- e-'612

tr I;, g 0

Ir T,('l') = Ltr T,(g)<p(g) dg

3. Plancherel Formula for G

Theorem. Let dg he the Haar measure on G giving total mass 1 to G, then:

'1'(e) = L n tr T,('l') for every 'l', C" funetion on G.
n=O

Proof. We have

If'"' ... f ((e" 0) )= 4n ° (e-'
6

- e
I6)(eIll 6

- e- 1IJ6
) G rp g a e-iO g-1 dg de.e~') byw= (-~ m

os; es; ".[(e" 0).
o e- w '
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(kqJ)'(O) = -2iqJ(e).

5. The Poisson-Plancherel FormulaConsider

Then

. 'J((e"(kqJ)(e) = (e " - e") 0 qJ g 0 e~,,)g-') dg de. Define, for q> a Schwartz function on g,

(KqJ)(t) = l <P ;",
fort> 0,

The tangent vector generated by the infinitesimal action of JI at the point rJ 3 is
given by [J" rJ,] = 2rJ2, while the tangent vector generated by the infinitesimal
action of J 2 is - 2rJ l' By definition,

(J(2r a~2' -2r a~J = (rn, [J" J2])·

Thus (J12" = (1/4"r)l'. By considering spherical coordinates on S" the second
member is:

Define

r qJ(f)voU) df = In f .<p 2(J··Jg.. ..eN Sn 1C.

f<p(x" X2, x,) dx, dX2âx, = 2" f:~ t(KqJ)(t)dt.

fort<O.

(t '" 0).

i (J
= - <P

Sili 2n:

t e 2"Z

(no,qJ) = l (M.,qJ).
Qe2nZ

Define

RecaU (3.22) that 0 a is the G-invariant function on g* such that

0.(~ -i~) = !re'" + e-"")

and that Va is the G-invariant generalized function Lae2'1l:zea - Let us verify that
the couple (na. vG)verifies the Poisson-Plancherel formula. This willfol1ow from
the

Proposition. (a) na is a distribution of SUPport9G and na coïncides with a in a
neighborhood of O.

(b) J>1, = 0.,
Cc) If dg is the Haar measure on G giving total mass l to G, dX the Euclidean

measure on g such that dg = j(X) dX, df the dual measure on g*, then,for <p
a Schwartz function on g*,

(M" qJ) = (Jr KqJ)(t).

Il follows from the expression of KqJ(t) in spherical coordinates that (Mo, <p) = <prO).
Recall that the set 9G consists of all the spheres St with

In spherical coordinates,

(K<p)(t) = ;" ff <p(t cos esin <p, t sin esin <p, t cos qJ) sin <p dip dB.

Il is immediate to see that (KqJXt) cao be extended as a C~-odd function of t and
that:

q.e.d.
i

= '2 (kqJ)'(0) = <p(e). D

1
1'(3-.. A 3-..) 1 = 1.

iJXl éJX2

Let us calculate:

1 J2' .In tr T..(qJ) = -4 l (kqJ)(e)n(e'" - e-"") de
11>0 1t 11>0 0

1 J2'= - l (kqJ)(e)n(ei
" - e- i" ) de

2n neZ 0

=: l J2
' (kqJ)(e)nei" de

n nEZ 0

as (kqJ)(e) is odd,

= 4
1 IiJ2

·(kqJ)'(e)ei
. ' de

'Tt neZ 0

4. Kirillov Character Formula

We want to prove the formula (3.15)

_1_ Jfeilrco5<Ptlr2 sin cp d({J dO,
4"r

which leads immediately to the above formula.

eirt
- e- irt f . (J

~--c~- = e1x 3t --.!...
2it xt+x~+Xi:::,2 ln

Let J1 be the surface measure of Sr' At the point (0, 0, r) = rJ3'
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as t(K<p)(t) is an even function of t

= L !n(K<PXn)
•• z

Proof. (a) is clear.
(b) We have to verify that (Ma, ei<';,x» = e,lç). By G-invariance, it is sufficient

to verify this for ç = (i~ -i~). i.e. that (M., e"X,) = !(e"· - e-''''J. But

K(e"X')(a) = r e"X, u.
JSa 211:

M (é'·x 3 ) = ~ K(é',xS)(a) = -t<é~a + e-i..J.n)
Il Ba .

(c) We have seen that dX = dx, dx, dx,/2n', thus df = dç, dç, dç,/4n.
By definition of vo:

f..<p(f)vo(f) df = .lz f 0.(f)<p(f) dl

1foo.lz"2 _ootK(0.<p)(t) dt

1 foo e'" + e"!"L - ,t(K<pXt) dt
ae2nZ 2 -00

1 fco e2 1ltnl + e- 2 i1mt

L "2 ,t(K<PXt) dt
neZ -00

1fooL - e""'t(K<p)(t) dt
lIE' z 2 -00

thus

eiJ..a _ e-ii.a

2iÀ
by4.

We denote by !!!: the conjugacy class of the element (_~ ~),!!!: = !!!"., the

conjugacy class of the element (s 0). Bach orbit !!! has a canonical Liouvilleo -s
measure dm~. Define, for cp a C" function on g,

(K,<p)(t) ~ r <p dmT for t > 0,
JI!l~

= - f cpdmt fort < 0,
J/f)f

(K.<p)(s) ~ r <p dm,.
J.r

We have the integration formula:

f <p(x" x" x,) dx, dx, dx, = 4n f~oo t(K,<pXt) dt + 4n iooIS[(K.<P)(S) ds.

Define:

a
(M" <pl ~ Ft (K,<p)(t) for t .. O.

It is not difficult to see that (Mt> cp) cau be extended to a continuons function of
t and that (Mo, <pl = <p(0).

Let us now define nG and VG' Recall that

90 = U !!!;,
ae211"Z

g~ '" ( U &:) u U!!!:.
IIeZ- {O} :o*'o

from the usual Poisson summation formula,

= Lnf<pu" 0
«>o 2n:

q.e.d.

Define

(no, <pl ~ L (M., <pl·
ae2nZ

Recall that ea is the G-invariant function on g* such thai

Recall that SL(2, R) has two conjugacy classes of Cartan subalgebras b and a with

APPENDIX 3

Complement on the Poisson-Plancherel Formula for SL(2, R)

b = {(_~ ~);tER}, c > {(~ _~);SER}

0( 0 À)~e'.Â
a -À 0

o (s 0) = e-I~I
a 0 -s '

and that

Vo = l 0 •.
ae2nZ
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Define

(nG. 'l') = l (M., 'l').
lle2:n:Z

[5] M. W. Baldoni-Silva and D. Barbasch. The unitary spectrum forrea! rank one groups. Preprint,
1981.

[6] V. Bargmann. Irreducible unitary representations of the Lorentz group. Ann. Math., 48, 568­
640 (1947).

Lemma.

(VG' '1' df) = 4" l [n] (r 'l';) + 4" (00s cath "s( ( '1' ;) ds.
neZ J/I}~ 'Tt Jo ){)c 1t

Proof. By definition

fVG(f )<P(J) df = l f®.(f)<p(f) df
«e aez

l 4" 500
tK,(®.<p)(t) dt + 4" (oosK,(®,<p)(s) ds

ae2~ -00 Jo

l 4" 500
e'''t(K,tp)(t) dt + 4" (ooe-I"ls(K.<p)(s) ds.

«eaez -<:(l Jo

Now the lemma follows from the usual Poisson summation formula on R (t(K, '1')(t)
is a continuons function of r) and from the formula, for s > 0

L e-Zrt11l/il1 = 2 l e- 2nns + 1
neZ n>O

=2L:e- 2 11:ns _

n~O

2
1 -2m:- 1
-e

1 + e- 27ts

1 - e 21[s

= coth ns.

To prove the conjecture, it would remain to prove that

Â41l = ea •

This follows from Rossmann's formula [51] and the recurrence relation [25] for
discrete series constants. D
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