
THE DAVENPORT CONSTANT OF A BOX

ALAIN PLAGNE AND SALVATORE TRINGALI

Abstract. Given an additively written abelian group G and a set X ⊆ G, we let

B(X) denote the monoid of zero-sum sequences over X and D(X) the Davenport

constant of B(X), namely the supremum of the positive integers n for which there

exists a sequence x1 · · ·xn of B(X) such that
∑

i∈I xi 6= 0 for each non-empty proper

subset I of {1, . . . , n}. In this paper, we mainly investigate the case when G is a power

of Z and X is a box that is, a product of intervals of G. Some mixed sets (product of

a group by a box) are also studied. Finally, some inverse results are obtained.

1. Introduction

Let G be an additively written abelian group. Given X ⊆ G, we denote by F (X)

the free abelian monoid of G over X and write it multiplicatively. Therefore, the reader

should be warned that xa is meant in this article as the sequence where x is repeated

a times; there will be no risk of confusion. We use B(X) for the abelian submonoid of

F (X), usually referred to as the block monoid of G over X, of zero-sum sequences over

X, that is, containing all the non-empty words x1 · · ·xn such that xi ∈ X for each index

i and
∑n
i=1 xi = 0 (cf. Definition 3.4.1 in [14]). Note that the sequences we consider here

are unordered.

Let s = x1 · · ·xn be a non-empty sequence of B(X). By abuse of notation, we shall

say that the xi’s are elements of s or, simply, are in s (that is, we identify sequences

and multisets). We say that s is minimal if
∑
i∈I xi 6= 0 for every non-empty proper

subset I of {1, . . . , n}. We call n the length of s, which we denote by ‖s‖. We denote

by A(X) the set of minimal zero-sum sequences of B(X), also called atoms. Notice that

A(X) = A(G) ∩ B(X). For further notation and terminology, we refer the reader to

Section 2 of [11].

For G an abelian group, the study of B(G) and of its combinatorial properties is

a part of what is called zero-sum theory, a theory with applications to group theory,

graph theory, Ramsey theory, geometry and factorization theory; see the survey [11] and

the references therein. One of the earliest questions, and maybe one among the most
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important in combinatorial group theory, is concerned with the Davenport constant, after

the name of the mathematician who popularized it during the 60s (as reported in [19]),

starting from a problem of factorization in algebraic number theory, see for instance [12]

or [14]. Notice however that this group invariant was already discussed in [21]. It has

become the prototype of algebraic invariants of combinatorial flavour. Since the 60s, the

theory of these invariants has highly developed in several directions; see for instance the

survey article [11] or Chapters 5, 6, and 7 in [14].

Being given a finite abelian group G, it turns out that any long enough sequence of

elements in it contains a zero-sum subsequence. More generally, the Davenport constant

of an abelian group G, denoted by D(G), is defined as the smallest integer n such that each

sequence over G of length at least n has a non-empty zero-sum subsequence. Equivalently,

D(G) is the maximal length of a minimal zero-sum sequence over G, i.e. the maximal

length of a sequence of elements of G summing to 0 and with no proper subsequence

summing to 0. If G is decomposed, as is always possible if G 6= {0}, as a direct sum of

cyclic groups G ∼= Cn1
⊕ · · · ⊕ Cnr

with integers 1 < n1 | · · · | nr (here Ck denotes the

cyclic group with k elements, r denotes the rank of G and nr the exponent, traditionally

denoted expG), an immediate lower bound for the Davenport constant is

D(G) ≥ 1 +

r∑
i=1

(ni − 1); (1)

to see this, notice that the sequence containing, for each cyclic component Cni
(1 ≤

i ≤ r), one generating element of it repeated ni − 1 times, has no non-empty zero-sum

subsequence. It is known that for groups of rank at most two and for p-groups (p, a

prime), inequality (1) is in fact an equality, as was obtained independently in [8] and

[19, 20]. In particular, if G is cyclic then

D(G) = |G|, (2)

and this is characteristic of cyclic groups, as for instance follows immediately from (3).

For groups of rank at least four, equality is definitely not the rule (see [1, 8, 15]). In the

case of groups of rank three, some authors sometimes conjecture that equality also holds

but this conjecture is wide open (see [11]) and seemingly difficult. Concerning upper

bounds, the best general result is the following:

D(G) ≤
(

1 + log
|G|

expG

)
expG (3)

proved in [9, 18] and we do not know really more in general. Despite various works

related to the Davenport constant over the years, its actual value was only determined

for a few additional – beyond the ones known since the end of the 60s – families of groups.

The general impression is that, although it has a very simple definition, computing the

Davenport constant of an abelian group (of rank at least three) is generically difficult.
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Although computing the Davenport constant of an abelian group is not a simple task,

it turns out that generalizing the question to a broader setting makes sense and could be

useful. For any subset X of an abelian group G, we may define its Davenport constant,

which we denote by D(X), as the largest integer n for which there exists a minimal zero-

sum sequence in B(X) (that is, belonging to A(X)) of length n. A trivial remark worth

doing is that in general, and contrarily to the case where X itself is an abelian group,

it can happen that D(X) is finite while we can build arbitrarily large sequences with no

non-empty proper zero-sum subsequence. It is immediate that D(X) ≤ D(G), but this

inequality is in general strict and it is well possible that D(X) is finite while D(G) is not.

The study of such a generalisation of the Davenport constant, to subsets of abelian

groups, is of interest notably for its applications to factorization theory, an area which is

currently extending its results to the module-theoretic framework. Indeed, if H is a Krull

monoid with class group G and if X ⊆ G is the set of classes containing prime divisors,

then the Davenport constant D(X) is a crucial invariant describing the arithmetic of H

(see Chapter 3.4 in [14] and [13]). It turns out that the study of direct-sum decompositions

in module theory gives rise to Krull monoids with class groups which are precisely a power

of the additive group Z of the integers. For this reason, the authors of [2], in the final

section of that paper, ask specifically, as part of a programme, to study the Davenport

constant of what we call a box that is, a product of intervals of integers.

The main goal of the present paper is precisely to derive bounds and exact formulas

for D(X) in the case when X is a subset of a power of the additive group Z of the

integers. The case of boxes will be mainly considered. Some inverse results, describing

the structure of the sequences of maximal or almost maximal length, are also presented,

as well as some hybrid results where a product of a group and a box is investigated.

2. New results

The first part of our study is concerned with the case of the integers. As usual, we

define the diameter of a set X ⊆ Z by

diam(X) = sup
x,y∈X

|x− y|

and we denote, in all what follows, by χ the function defined for all subsets S of Z
containing both positive and negative elements, by the formula

χ(S) = sup
x,y∈S with xy<0

|x|+ |y|
gcd(x, y)

.

Our first result can be then stated as follows.

Theorem 1. Let X be a non-empty set of integers. Then,

(i) if X ⊆ N \ {0} then D(X) = 0,

(ii) if 0 ∈ X ⊆ N then D(X) = 1,
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(iii) if X contains both positive and negative integers, then χ(X) ≤ D(X) ≤ diam(X).

Since there are sets X for which χ(X) = diam(X) (consider the interval of integers

J−m,MK where m and M are two coprime positive integers, or apply Corollary 1), point

(iii) is in general sharp. We recall that, if a and b are real numbers, a ≤ b, by [a, b] we

denote the interval {x ∈ R such that a ≤ x ≤ b}, while we write Ja, bK for the set [a, b]∩Z.

Yet, as will follow from our forthcoming results, there are sets X such that D(X) <

diam(X) (see for instance Corollary 2). In contrast with this remark, we do not know of a

single example for which χ(X) < D(X). Yet, we have the following corollary (immediate

from Theorem 1) in the case X is an interval around zero.

Corollary 1. Let m and M be positive integers, we have

m+M

gcd(m,M)
≤ D(J−m,MK) ≤ m+M.

In particular, if m and M are coprime, then

D(J−m,MK) = m+M.

From this first corollary, one can immediately deduce the value of the Davenport

constant of a symmetrical interval around zero.

Corollary 2. We have D(J−1, 1K) = 2 and, for any integer m ≥ 2, D(J−m,mK) = 2m−1.

Moreover, the following asymptotic estimate holds.

Corollary 3. For positive integers m and M , one has:

D(J−m,MK) = M +m+ o
(

min(m,M)
)

as min(m,M)→ +∞.

It will be transparent from the proof that, in Corollary 3, we can replace the error

term o
(

min(m,M)
)

with an explicit power (slightly larger than 1/2) of min(m,M).

In fact, Corollary 2 appears (in an alternate but equivalent form) as part of the main

theorem in a recent paper [22], where the focus is mainly on pairs (A,B) of non-empty

subsets of positive integers, therein referred to as irreducible pairs, such that
∑
a∈A a =∑

b∈B b and
∑
a∈A′ a 6=

∑
b∈B′ b for any other pair (A′, B′) of non-empty sets A′ ( A and

B′ ( B.

In the present paper, we shall adopt a strategy which looks quite different, both in

spirit and in practice. In particular, the proof of Corollary 2 comes very quickly as

a consequence of a technical lemma (essentially, Lemma 5 (i) of Section 3) of general

interest and which we reuse to go a step further.

Having a direct theorem at hand, we are naturally led to its inverse counterpart. The

first result we obtain in this direction is concerned with the structure of minimal zero-sum

sequences of maximal length in an interval.
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Theorem 2. Let m and M be positive integers and let s = x1 · · ·xm+M be a sequence

of length m+M in B(J−m,MK). Then, s is minimal if and only if gcd(m,M) = 1 and

s = Mm · (−m)M .

This in turn leads to the following corollary.

Corollary 4. Let m ≥ 2 be an integer and let s = x1 · · ·x2m−1 be a sequence of length

2m − 1 in B(J−m,mK). Then, s is minimal if and only if s = mm−1 · (−(m − 1))m or

s = (−m)m−1 · (m− 1)m.

Our next theorem is a more elaborate inverse result which reads as follows.

Theorem 3. Let m be an integer, m ≥ 3, and let s = x1 · · ·x2m−2 be a sequence of length

2m− 2 in B(J−m,mK). Then, s is minimal if and only if one of the following holds:

(i) m is odd and either s = mm−2 · (−m+ 2)m or s = (−m)m−2 · (m− 2)m;

(ii) s = mm−2 · (−(m− 1))m−1 · 1 or s = (−m)m−2 · (m− 1)m−1 · (−1).

The next theorem is a partial generalisation of the upper bound in Corollary 2 to higher

dimensions. It will follow from the connection, already noticed in [7], of the Davenport

constant with the Steinitz constant [23] and a generalisation of it obtained in [6].

Theorem 4. Let m1, . . . ,md be positive integers, we have

D(J−m1,m1K× · · · × J−md,mdK) ≤
d∏
i=1

(
2

(
d+

1

d
− 1

)
mi + 1

)
.

Our next result is concerned with the special case of hypercubes. We shall need a

Kronecker-type notation (defined on positive integers m), namely

δm =

{
1 if m = 1,

0 otherwise.

We obtain the following bounds.

Theorem 5. One has

(i) D(J−1, 1K2) = 4,

(ii) for any integer m ≥ 2,

(2m− 1)2 ≤ D(J−m,mK2) ≤ (2m+ 1)(4m+ 1),

(iii) if d is an integer, d ≥ 3, and m is positive integer,

(2m− 1 + δm)d ≤ D(J−m,mKd) ≤
(

2

(
d+

1

d
− 1

)
m+ 1

)d
.
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The lower bounds in this theorem are obtained thanks to direct constructions, while

the upper bounds follow immediately from Theorem 4. Theorem 5 being proved, the

general impression, supported by the special cases of the dimension d = 1 and the square

J−1, 1K2, is that the true size of D(J−m,mKd) is closer to the lower bound than from the

upper bound.

We notice that in [3], the authors consider the case

X = J0, 1Kd ∪ J−1, 0Kd \ {0d}

where 0d is the origin in Rd. They prove a result reminiscent to our Theorem 5 (iii) (see

Theorem 3.13 in [3]). Loosely speaking, they obtain the bounds(
1 +
√

5

2

)d
≤ D(X) ≤ (d+ 2)(d+2)/2. (4)

Although this set X is not an hypercube, as we consider here, we may still force the

(somewhat unnatural) direct application of the upper bound of Theorem 5 (our lower

bound gives nothing in this case) which implies for this case that D(X) ≤ D(J−1, 1Kd) ≤
(2d+ 2/d− 1)

d
which is definitely worse than (4) but still of the same “type”. It would

be interesting to check if our method could be adapted efficiently to this special case.

We notice that Theorem 5 is enough to ensure that, for fixed d, the quantity D(J−m,mKd)
grows like md. But it is not even clear that a constant ad should exist so that

D(J−m,mKd) ∼ admd as m→ +∞.

However, if such a constant exist it must satisfy 2d ≤ ad ≤ (2 (d+ 1/d− 1))d.

Based on the above, we are led to ask whether, m and d being given as in the statement

of Theorem 5, the Davenport constant of the hypercube J−m,mKd is equal to the d-th

power of the Davenport constant of J−m,mK. Should this be true, it would suggest that

some suitable assumptions could imply a sort of multiplicativity of Davenport constants

for certain classes of sets. Our two last theorems and their corollary go more generally in

this direction. The first of these theorems is a submultiplicativity result.

Theorem 6. Let G and H be two abelian groups. If G is finite and X is a finite subset

of H, then

D(G×X) ≤ D(G) D(X).

The final theorem shows a supermultiplicativity property, not with respect to the

Davenport constants themselves but rather with respect to the lower bounds offered by

Theorem 5. Indeed, we shall build long minimal zero-sum sequences on the basis of those

already built for each component.

Theorem 7. Let m and d be positive integers and let G be a cyclic group, then

D(G× J−m,mKd) ≥ D(G)(2m− 1 + δm)d.
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In general, both theorems are sharp, as shown by our final corollary which follows in

an immediate way from Theorems 6, 7 and Corollary 2

Corollary 5. Let m be a positive integer and let G be a cyclic group, then

D(G× J−m,mK) = D(G) D(J−m,mK).

This article is organized as follows. In Section 3, we establish a few lemmas of general

interest and which will be useful in the other parts of the article. In Section 4, we prove

Theorem 1 and Corollaries 2 and 3. Section 5 contains the proofs of the inverse results,

namely Theorem 2 and its Corollary 4 and of Theorem 3. Finally the proofs of Theorems 4

and 5 are presented in Section 6, while Section 7 contains the proofs of our final Theorems

6 and 7.

3. Preliminary lemmas

In this section, we collect a few lemmas that will be used later to prove our main

results. We start with the following elementary lemma, the proof of which is immediate

(and hence omitted).

Lemma 1. Let s = x1 · · ·xn be a non-empty minimal zero-sum sequence of an abelian

group G. Then, we have:

(i) the sequence −s = (−x1) · · · (−xn) is itself a non-empty minimal zero-sum se-

quence of G,

(ii) 0 ∈ s if and only if n = 1,

(iii) the elements x and −x are both in s for some x ∈ G \ {0} if and only if n = 2.

The next lemma gives some elementary properties of the function D. It turns out that

it is an even and non-decreasing function. As is usual, we shall denote

−X = {−x for x ∈ X}.

Lemma 2. Let G be an abelian group. If X ⊆ Y ⊆ G, then D(X) ≤ D(Y ) and D(−X) =

D(X). Moreover, D(J−m,mK) = D(J−(m− 1),mK) for every integer m ≥ 2.

Proof. The first inequality is immediate. The second one follows from Lemma 1 (i). As

for the third one, the first inequality implies D(J−m,mK) ≥ D(J−(m − 1),mK). Now,

we notice that for m ≥ 2, D(J−m,mK) > 2 since the sequence −m · 1m ∈ A(J−m,mK)
has length m + 1 ≥ 3. It follows by Lemma 1 (iii) that a minimal zero-sum sequence of

J−m,mK cannot contain both m and −m and, therefore, up to symmetry, is included in

J−m+ 1,mK. This proves the third assertion of the lemma. �

Our methods heavily rely on considering partial sums of terms of the sequences we

study. The following lemma is the first result of a series in this direction.
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Lemma 3. Let s = x1 · · ·xn be a non-empty minimal zero-sum sequence of an abelian

group G. Then, for any permutation σ of J1, nK and all i, j ∈ J1, nK, the following holds:∑i
l=1 xσ(l) 6=

∑j
l=1 xσ(l) if and only if i 6= j.

Proof. Suppose the result is false: there exist a permutation σ of J1, nK and distinct

indices i, j ∈ J1, nK such that
∑i
l=1 xσ(l) =

∑j
l=1 xσ(l). By symmetry, we can assume

i < j. This yields that the non-empty sum
∑j
l=i+1 xσ(l) = 0 that is, xσ(i+1) · · ·xσ(j) is

a proper non-empty zero-sum subsequence of s, which is impossible by the minimality of

s. �

Here is a useful companion result to the preceding lemma.

Lemma 4. Let s = x1 · · ·xn be a non-empty minimal zero-sum sequence of length n ≥ 3

of an abelian group G. Then, for any permutation σ of J1, nK and any index i ∈ J1, nK\{2},
the value of

∑i
l=1 xσ(l) is different from xσ(1) + xσ(3).

Proof. If xσ(1) = xσ(1) + xσ(3), then xσ(3) = 0, a contradiction by Lemma 1 (ii) since

n > 1: this solves the case i = 1; while, if for some i ≥ 3,

i∑
l=1

xσ(l) = xσ(1) + xσ(3)

then

xσ(2) +

i∑
l=4

xσ(l) = 0

(if i = 3, the sum on l on the left-hand side is empty) which contradicts the minimality

of s. �

The two preceding lemmas will be used under the form of the following counting lemma

which will be key in several proofs.

Lemma 5. Let s = x1 · · ·xn be a non-empty minimal zero-sum sequence of an abelian

group G. We assume that there exist a set X and a permutation σ of J1, nK such that for

any i ∈ J1, nK, the partial sum
∑i
l=1 xσ(l) belongs to X. Then

(i) the inequality n ≤ |X| holds true,

(ii) if we assume additionally that n ≥ 3, xσ(2) 6= xσ(3) and xσ(2) + xσ(3) ∈ X, then

n ≤ |X| − 1.

Proof. By Lemma 3, all the partial sums
∑i
l=1 xσ(l) (1 ≤ i ≤ n) must be pairwise distinct.

Since, by assumption, all these elements belong to X, this implies n ≤ |X|.
If n ≥ 3, we may additionally apply Lemma 4. Since, by assumption, xσ(2) 6= xσ(3), we

obtain that for i ∈ J1, nK, the partial sums
∑i
l=1 xσ(l) are pairwise distinct and different



THE DAVENPORT CONSTANT OF A BOX 9

from xσ(1) + xσ(3). We obtain∣∣∣∣∣
{

i∑
l=1

xσ(l), for 1 ≤ i ≤ n

}
∪ {xσ(1) + xσ(3)}

∣∣∣∣∣ = n+ 1.

Since all the n+ 1 elements appearing in the left-hand side of this equality are in X, the

result follows. �

A classical consequence of Lemma 5 is the well-known fact that if G is a finite abelian

group, then D(G) ≤ |G| (this bound is sharp, as is seen in (2)).

Now we introduce a technical definition. We shall say that a triple (s, k, σ) is nyctalopic

if s = x1 · · ·xn is a minimal zero-sum sequence of B(Z) of length n ≥ 2, k is an integer in

the range 1 ≤ k ≤ n and σ is an injective function defined on J1, kK and taking its values

in J1, nK such that the following property holds: for any i ∈ J2, kK, one has

xσ(i)

i−1∑
l=1

xσ(l) < 0.

When k = n, if there is no risk of confusion (that is, if which s is involved is clear from

the context), we will simply say that σ is a nyctalopic permutation.

Nyctalopic triples (s, k, σ) have nice properties which justify their introduction. The

following lemma of an algorithmic nature will be very useful in what follows.

Lemma 6. Let X be a finite subset of Z. Let s = x1 · · ·xn be a minimal zero-sum

sequence of B(X) of length n ≥ 2. Let k be an integer, 1 ≤ k ≤ n, and σ be an injective

function defined on J1, kK and taking its values in J1, nK such that the triple (s, k, σ) is

nyctalopic. Then, one can extend σ to a nyctalopic permutation of J1, nK.

Proof. We proceed by induction. By assumption, (s, k, σ) is nyctalopic.

Assume now that for some integer i ∈ Jk, n − 1K, σ has been extended so that the

values of σ(k + 1), . . . , σ(i) are determined in such a way that (s, i, σ) is nyctalopic. It is

immediate to check that
i∑
l=1

xσ(l) 6= 0

since otherwise s would not be a minimal zero-sum sequence in view of i < n. Since s

sums to zero there should be at least one integer j 6∈ {σ(l) for 1 ≤ l ≤ i} such that xj

has a sign opposite to the one of
∑i
l=1 xσ(l). We fix one of these integers j arbitrarily.

Then we extend σ by defining

σ(i+ 1) = j

so that, by construction, (s, i+ 1, σ) is nyctalopic. �

Here is the central property of nyctalopic triples we use in what follows.
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Lemma 7. Let s be a minimal zero-sum sequence of B(X) of length n ≥ 2. Let σ be a

nyctalopic permutation of J1, nK. Then, for any i ∈ J1, nK,

minX ≤
i∑
l=1

xσ(l) ≤ maxX.

Moreover, if xσ(1) 6= maxX, the inequality on the right is strict while, if xσ(1) 6= minX,

the inequality on the left is strict.

Proof. Notice first that n ≥ 2 implies minX < 0 < maxX, as follows from Theorem 1

(i) and (ii).

The assertion of Lemma 7 is proved by induction, the lemma being trivial for i = 1.

Suppose it is true for some i ∈ J1, n− 1K, we thus have

minX ≤
i∑
l=1

xσ(l) ≤ maxX.

By minimality, this sum is also non-zero since i < n. Suppose that
∑i
l=1 xσ(l) > 0 then

by nyctalopia, one has xσ(i+1) < 0 that is, minX ≤ xσ(i+1) ≤ −1 and thus

minX < 1 + minX ≤
i∑
l=1

xσ(l) + xσ(i+1) ≤ maxX − 1 < maxX.

The case
∑i
l=1 xσ(l) < 0 is treated in a symmetric way. �

4. Proof of Theorem 1 and its corollaries

We start with a lemma.

Lemma 8. Let x and y be integers such that xy < 0 and let X = {x, y}. Then

(i) the set A(X) has a unique element, x = xa · yb with a = |y|/ gcd(x, y) and

b = |x|/ gcd(x, y),

(ii) the set B(X) is equal to {xj for j ∈ N}.

Proof. By definition, the sequence xa · yb is in B(X) if and only if ax + by = 0, that is

a|x| = b|y|. The preceding equality can be rewritten as

a
|x|

gcd(x, y)
= b

|y|
gcd(x, y)

.

But |x|/ gcd(x, y) and |y|/ gcd(x, y) are coprime, therefore Gauss lemma gives the exis-

tence of a non-negative integer h such that b = h|x|/ gcd(x, y) and a = h|y|/ gcd(x, y).

This proves (ii).

Among these sequences, only the one corresponding to h = 1 is minimal (and divides

those for h ≥ 1) and (i) follows. �

Here is the very proof of the Theorem.
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Proof of Theorem 1. The points (i) and (ii) are immediate. We thus turn directly to (iii).

In order to prove χ(X) ≤ D(X), we consider, for all x, y ∈ X with xy < 0, the sequence

s = xa · yb where

a =
|x|

gcd(x, y)
and b =

|y|
gcd(x, y)

.

By Lemma 8 (i), this is a minimal zero-sum sequence. Consequently, we obtain

|x|+ |y|
gcd(x, y)

= ||s|| ≤ D(G),

hence the result, on taking the supremum on the left-hand side.

On another hand, the upper bound D(X) ≤ diam(X) is trivial if |X| = +∞. So assume

that X is finite, and let m = −minX and M = maxX. If s = x1 · · ·xn ∈ A(X), then

‖s‖ ≥ χ(X) ≥ 2 by the inequality we just proved. Define σ(1) = 1. Lemma 6 implies

that we can extend σ into a nyctalopic permutation of J1, nK. Lemma 7 then implies that

all the partial sums xσ(1) + · · · + xσ(i) (for 1 ≤ i ≤ n) belong to either J−m,M − 1K or

J−(m− 1),MK, with the result that n ≤M +m = χ(X), in view of Lemma 5 (i). �

We conclude the section with the proof of the two corollaries to Theorem 1.

Proof of Corollary 2. By Corollary 1, the claim is trivial if m = 1, while Lemma 2 and

Corollary 1 give

D(J−m,mK) = D(J−(m− 1),mK) = 2m− 1

for m ≥ 2 since in this case gcd(m− 1,m) = 1. �

For the proof of Corollary 3, we shall need the symbol [x] for the integral part (by

default) of a real number x.

Proof of Corollary 3. Since Hoheisel [16], we know that for some ϑ < 1, when x is large

enough, there is always a prime px in the real open interval (x − xϑ, x). One can even

take ϑ = 0.525 [4].

Assume min(m,M) = m (the other case is analogous). Applying Hoheisel’s result, we

may find a prime p in Jm − [mϑ],mK. Since p cannot divide M and M − 1 at the same

time, there must exist η = 0 or 1 such that gcd(M − η, p) = 1. We infer

p+M − 1 ≤ p+M − η =
p+M − η

gcd(p,M − η)
≤ D(J−p,M − ηK) ≤ D(J−m,MK) ≤ m+M,

where we have used the coprimality of p andM−η, Corollary 1 and the non-decreasingness

of D given by Lemma 2. The result follows since

p+M − 1 = m+M +O(mϑ + 1) = m+M + o(m).

�
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5. Proofs of the inverse theorems and their corollaries

We start with the proof of Theorem 2.

Proof of Theorem 2. That the condition of the Theorem is sufficient follows from Lemma

8 (i). We now investigate its necessity.

Suppose that s contains an element xi different from both −m and M . Define σ(1) = i

and apply Lemma 6 in order to extend σ into a nyctalopic permutation. By Lemma 7,

we obtain that the partial sums xσ(1) + · · ·+ xσ(j) all belong to J−(m− 1),M − 1K. This

in turn implies ‖s‖ ≤M +m− 1 by Lemma 5 (i), which is a contradiction.

It follows that s is of the form (−m)a ·M b for some positive integers a and b, that is,

s ∈ B({−m,M}). By Lemma 8 (i), the minimality of s implies

a =
M

gcd(M,m)
and b =

m

gcd(M,m)
.

From the assumption and this, we deduce that

M +m = ||s|| = a+ b =
M +m

gcd(M,m)

and gcd(M,m) = 1 follows. �

The proof of its corollary is now easy.

Proof of Corollary 4. By Lemma 1 (iii), since 2m− 1 > 2, s cannot contain both m and

−m. Assume that s does not contain −m, then it belongs to B(J−(m − 1),mK) and

we apply Theorem 2, which gives the result. The case where s does not contain m is

analogous. �

We now come to the second inverse result. It turns out that its proof is by far more

intricate than the preceding one.

Proof of Theorem 3. In this proof, we will distinguish two cases (cases (i) and (ii)), the

first one being very simple. The second case will use two internal lemmas (Lemmas 9 and

10 below).

Since D(J−(m− 1),m− 1K) = 2m− 3 by Corollary 2, we can assume by symmetry and

point (iii) of Lemma 1 that m ∈ s and −m /∈ s. In other words s ∈ B(J−(m− 1),mK).
We distinguish two cases, the first one being almost immediate.

(i) If −(m − 1) /∈ s, then s ∈ B(J−(m − 2),mK). It follows from Theorem 2 that s is

the sequence mm−2 · (−(m− 2))m and gcd(m− 2,m) = 1, i.e. m is odd.

(ii) If −(m − 1) ∈ s, then point (iii) of Lemma 1 implies that m − 1 /∈ s. Up to

reordering the elements of s, we may therefore assume from now on that

x1 = m and x2 = −(m− 1).

Lemma 9. If, for some i ∈ J3, nK, xi is negative then xi = −(m− 1).
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Proof. Suppose the lemma is false and let us consider an index i ≥ 3 such that −(m−1) <

xi ≤ −1. We consider σ the function defined on J1, 3K by

σ(1) = 1, σ(2) = 2, σ(3) = i.

The triple (s, 3, σ) is nyctalopic. We apply Lemma 6 to (s, 3, σ) to extend σ into a

nyctalopic permutation of J1, nK. We then apply Lemma 7. We infer that all the partial

sums
∑j
l=1 xσ(l) (1 ≤ j ≤ n) belong to J−(m− 2),mK.

But in fact even the following more precise statement is true, namely

j∑
l=1

xσ(l) ∈ J−(m− 3),mK. (5)

This is the case when j = 1 or 2 and, indeed, if for some j ≥ 3, one has
∑j
l=1 xσ(l) =

−(m − 2), then by definition of nyctalopia the sum
∑j−1
l=1 xσ(l) is either < −(m − 2)

or positive. Since the first possibility is not possible (all the partial sums are at least

−(m− 2)) then
∑j−1
l=1 xσ(l) ≥ 1. It follows that

xσ(j) =

j∑
l=1

xσ(l) −
j−1∑
l=1

xσ(l) ≤ −(m− 2)− 1 = −(m− 1).

The only possibility is that xσ(j) = −(m− 1) and

j−1∑
l=1

xσ(l) = 1 = xσ(1) + xσ(2).

By Lemma 3, this implies that we must have j − 1 = 2 and thus xσ(j) = xσ(3) = xi, a

contradiction since by assumption xi 6= −(m− 1). Assertion (5) is proved.

Since all partial sums in (5) are distinct, included in J−(m− 3),mK and distinct from

xσ(1)+xσ(3) = m+xi ∈ J1,m−1K, by Lemma 5 (ii), we obtain n ≤ 2m−3, a contradiction.

�

Now that we know how negative elements look like, we study the positive ones.

We notice that there must exist in s a positive element different from m, otherwise s

would be of the form mu · (−(m− 1))v for some positive integers u and v and, by Lemma

8 (i), we would get u = m− 1 and v = m and finally

2m− 2 = ||s|| = u+ v = (m− 1) +m = 2m− 1,

a contradiction.

Up to a reordering of the elements in the sequence, we may consequently assume that

x3 ∈ J1,m− 2K.

Lemma 10. The following holds :

(i) x3 = 1,
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(ii) if for some i ∈ J1, nK \ {3}, xi is positive, then it is equal to m.

Proof. We consider σ such that

σ(1) = 3, σ(2) = 2, σ(3) = 1.

The triple (s, 3, σ) is easily seen to be nyctalopic. We apply Lemma 6 to (s, 3, σ) to extend

σ in a nyctalopic permutation of J1, nK. We then apply Lemma 7. We infer that all the

partial sums
∑j
l=1 xσ(l) belong to J−(m−2),m−1K. Since this set has cardinality 2m−2,

one must have precisely{
j∑
l=1

xσ(l) for j = 1, . . . , 2m− 3

}
= J−(m− 2),m− 1K \ {0}. (6)

We consider the function f defined on J1, nK by f(j) =
∑j
l=1 xσ(l). One has f(1) =

xi > 0, f(2) = xi + 1 − m < 0, f(3) = xi + 1 > 0. More generally, if f(k) > 0, by

nyctalopia, one must have xσ(k+1) < 0 and thus, by Lemma 9, xσ(k+1) = −(m− 1) which

implies f(k + 1) = f(k) − (m − 1) ≤ 0, where equality can only happen for k + 1 = n.

Suppose now that the signs of the f(k)’s do not alternate when k ∈ J1, n − 1K, then we

must have

|{1 ≤ k ≤ 2m− 3 : f(k) < 0}| > |{1 ≤ k ≤ 2m− 3 : f(k) > 0}|

which is impossible in view of (6). Thus the signs alternate and we have

f(1), f(3), . . . , f(2m− 3) > 0

and

f(2), f(4), . . . , f(2m− 4) < 0.

We now prove, by induction, that for any integer j ∈ J1,m−2K, we have xσ(2m−2j−1) =

m.

Indeed, f(2m − 2) = 0 and f(2m − 3) > 0 thus xσ(2m−2) < 0 and thus, by Lemma

9, xσ(2m−2) = −(m − 1). It follows f(2m − 3) = m − 1. But by the alternance of signs,

f(2m − 4) < 0 which implies xσ(2m−3) = f(2m − 3) − f(2m − 4) ≥ m and therefore

xσ(2m−3) = m. This proves the statement for j = 1.

Assume now that for some integer k ∈ J1,m − 1K, the statement is proved for any

j ∈ J1, kK. It follows immediately that

f(2m− 3) = m− 1, f(2m− 5) = m− 2, . . . , f(2m− 2k − 1) = m− k

and

f(2m− 4) = −1, f(2m− 6) = −2, . . . , f(2m− 2k − 2) = −k.
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Since f(2m−2k−2) = −k < 0, we must have by the alternance of signs, f(2m−2k−3) > 0

which implies first that xσ(2m−2k−2) < 0 and thus xσ(2m−2k−2) = −(m − 1). Finally we

find that

f(2m− 2k − 3) = f(2m− 2k − 2)− xσ(2m−2k−2) = −k + (m− 1) = m− (k + 1).

Since, again by the alternance of signs, f(2m − 2k − 4) < 0, we have xσ(2m−2k−3) > 0

and one must have

f(2m− 2k − 4) = f(2m− 2k − 3)− xσ(2m−2k−3) ≥ (m− (k + 1))−m = −(k + 1).

Since, by Lemma 3, f never takes twice the same value, f(2m − 2k − 4) 6= f(2m −
4), f(2m− 6), . . . , f(2m− 2k− 2) that is, f(2m− 2k− 4) 6= −1,−2, . . . ,−k. This implies

finally that f(2m − 2k − 4) = −(k + 1) and thus that xσ(2m−2k−3) = m, as required to

conclude the induction.

Using the statement just proved and the explicit description of the first values of σ we

obtain the conclusion of the statement (ii) of the lemma.

By summing all the elements in the zero-sum sequence s, we obtain thanks to the

descriptive lemma 9 and what we just proved

0 = x3 + (m− 2)m+ (m− 1)(−m+ 1) = x3 − 1

thus x3 = 1 and (i) is proved. �

We are now ready to conclude the proof of Theorem 3. One checks the minimality

of the sequence s = mm−2 · (−(m − 1))m−1 · 1, by noticing that, would this be false,

A({−(m − 1),m}) would contain a subsequence of s, which cannot be by Lemma 8

(i). �

6. Proofs of Theorems 4 and 5

In this section, we present the proofs of Theorems 4 and 5. To ease the reading, these

proofs are decomposed into elementary bricks. Subsection 6.1 contains the proof of all

the upper bounds, in particular the full proof of Theorem 4, its application to Theorem

5 (iii) and the special improvement given in Theorem 5 (ii). Subsection 6.2 contains the

proof of Theorem 5 (i). Finally, Subsection 6.3 contains the proof of the general lower

bounds of Theorem 5 (ii) and (iii) (case m ≥ 2) and Subsection 6.4 contains the special

case m = 1 in (iii) of Theorem 5.

6.1. Proof of Theorem 4 and of the upper bounds in Theorem 5. We start from

an old question of Riemann and Lévy. This was investigated by Lévy [17] himself more

than a century ago but it was Steinitz [23] who gave the first complete proof of the

following result.



16 ALAIN PLAGNE AND SALVATORE TRINGALI

Theorem 8. Let d be a positive integer and U ⊆ Rd such that 0 ∈ U . There exists a

constant c such that whenever u1, . . . , un ∈ U and u1+· · ·+un = 0, there is a permutation

π of J1, nK such that uπ(1) + · · ·+ uπ(i) ∈ c · U for each i ∈ J1, nK.

In this statement, we used the notation α · U for the α-dilate of U , namely

α · U = {αu : u ∈ U}.

We shall call the Steinitz constant of U the infimum of all constants c ∈ R+ that can

be taken in the Theorem. Steinitz’ original results on this constant were later improved

by various authors, especially in the case when U is the closed unit ball relative to a norm

‖ · ‖ on Rd. In particular, if we consider the superior norm ‖ · ‖∞,

‖(x1, . . . , xd)‖∞ = max
1≤i≤d

|xi|,

then we denote the corresponding constant by Cd: it corresponds to the Steinitz constant

of the hypercube. It is known [5] (see Remark 3 there) that one has

Cd ≤ d+
1

d
− 1. (7)

Upper estimates of Cd are immediately made into upper bounds on the Davenport

constant. This is the content of Theorem 4, that we prove now.

Proof of Theorem 4. Consider a sequence s ∈ B(X) and write s = u1 · · ·un, let ui =

(ui,1, . . . , ui,d) and put

vi =

(
ui,1
m1

, . . . ,
ui,d
md

)
for each 1 ≤ i ≤ n, so that ‖vi‖∞ ≤ 1 and v1 + · · ·+ vn = 0. It follows that there exists

a permutation π of J1, nK such that vπ(1) + · · ·+ vπ(i) belongs to the box Cd ·B where B

is the unit ball for ‖ · ‖∞, that is, the hypercube [−1, 1]d. This implies that all the sums

uπ(1) + · · · + uπ(i) are lattice points of Cd ·X. But the total number of lattice points in

Cd ·X = [−Cdm1, Cdm1]× · · · × [−Cdmd, Cdmd] is equal to

d∏
i=1

(2[Cdmi] + 1) ≤
d∏
i=1

(2Cdmi + 1)

which finally yields, together with Lemma 5 (i), that

D(X) ≤
d∏
i=1

(2Cdmi + 1).

�

The general upper bound of Theorem 5 (the one valid for any integral d ≥ 3) follows

immediately from this lemma applied to m1 = · · · = md and (7).

To prove the particular case d = 2 (the upper bound in Theorem 5 (ii)), we slightly

refine this reasoning using a result from [6] valid in 2-dimensional spaces, which is a
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variation on Steinitz’ theme. The main theorem of Banaszczyk’s paper [6] asserts that if

a and b are two real numbers satisfying a, b ≥ 1 and a+ b ≥ 3, then the following holds: if

u1, . . . , un ∈ B (B is again the unit ball relative to the superior norm) and u1+· · ·+un = 0,

there is a permutation π of J1, nK such that uπ(1) + · · ·+uπ(i) ∈ [−a, a]× [−b, b]. Following

the same lines as in the preceding proof, this implies, choosing a = 1, b = 2 in this result

that starting from a sequence in J−m1,m1K × J−m2,m2K, we may reorder the elements

so that the partial sums stay in the rectangle J−m1,m1K × J−2m2, 2m2K. As above, it

follows

D(J−m1,m1K× J−m2,m2K) ≤ (2m1 + 1)(4m2 + 1),

which concludes the proof of the result.

6.2. Proof of Theorem 5 (i): the case d = 2, m = 1. This subsection is devoted to

the proof that D(J−1, 1K2) = 4.

We look at the sequence t = (1,−1) ·(1, 1) ·(−1, 0)2. It is easily seen that t is a minimal

zero-sum sequence.

Suppose we want to construct a minimal zero-sum sequence of size n > 2 as long as

possible, then such a sequence s can contain at most four distinct elements (by Lemma

1 (ii) and (iii), (0, 0) is not in the sequence and there is at most one point on each line

containing (0, 0)), and in particular two among (1, 0), (0, 1), (−1, 0), (0,−1), without loss

of generality, (1, 0) and (0, 1). The point (−1,−1) must be in s, otherwise the two other

points are (1, 1) and up to a symmetry (1,−1), say, but then all the four points have

a non negative first coordinate, leading to a contradiction. Thus (−1,−1) is in s. We

finally choose as the fourth point, again without loss of generality by symmetry, (1,−1).

Write s = (1, 0)a · (0, 1)b · (−1,−1)c · (1,−1)d where a, b, c and d are non-negative integers.

This sequence has sum zero if and only if a− c+ d = 0 and b− c− d = 0, thus s is of the

form (1, 0)c−d · (0, 1)c+d · (−1,−1)c · (1,−1)d and c ≥ d.

If c > d then, in particular, c > 0, which implies that (1, 0) · (0, 1) · (−1,−1) is a zero-

sum subsequence of s, which implies, by minimality of s, that s = (1, 0) · (0, 1) · (−1,−1)

and n = 3. If c = d, then s = (0, 1)2c · (−1,−1)c · (1,−1)c = ((0, 1)2 · (−1,−1) · (1,−1))c

and the minimality of s implies c = 1 and n = 4. The result is proved.

6.3. Proof of Theorem 5 (ii) and (iii): the lower bound in the case m ≥ 2. In

all this subsection m is a fixed integer satisfying m ≥ 2.

We consider the following sequence of zero-sum sequences defined inductively. We let

s1 = mm−1 · (−(m− 1))m.

By Corollary 4, s1 belongs to A(J−m,mK) and it has length ||s1|| = 2m− 1. Suppose we

already defined a minimal zero-sum sequence sd of B(J−m,mKd) of size ||sd|| = (2m−1)d.
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Write sd = x1 · x2 · · ·xn where n = (2m− 1)d. We define the sequence sd+1 as follows

sd+1 = (x1,m)m−1 · (x2,m)m−1 · · · (xn,m)m−1 · (0,−(m− 1))mn. (8)

It is immediate that sd+1 ∈ B(J−m,mKd+1) and

||sd+1|| = n(m− 1) +mn = (2m− 1)||sd|| = (2m− 1)d+1.

This inductive argument implies that, for any positive integer d, one has

||sd|| = (2m− 1)d. (9)

We start with a basic property of this sequence which will be used in Section 7.

Lemma 11. For any positive integer d, the sequence sd can be written

sd = uα1
1 · u

α2
2 · · ·u

αd+1

d+1

where the uj (1 ≤ j ≤ d + 1) are distinct elements of J−m,mKd, the αj (1 ≤ j ≤ d + 1)

are positive integers and

gcd(α1, α2, . . . , αd+1) = 1.

Proof. The proof is again by induction. For d = 1, we have s1 = mm−1 · (−(m − 1))m

and we observe that s1 contains two distinct elements repeated α1 = m and α2 = m− 1

times respectively. It is immediate that gcd(m,m− 1) = 1 and the result is proved.

Suppose the result is proved for some integer d ≥ 1 that is, that sd = uβ1

1 ·u
β2

2 · · ·u
βd+1

d+1

for some distinct elements uj of J−m,mKd and some positive integers βj (for 1 ≤ j ≤ d+1).

A look at (8), taking into account (9), shows immediately that

sd+1 = (u1,m)(m−1)β1 · (u2,m)(m−1)β2 · · · (ud+1,m)(m−1)βd+1 · (0,−(m− 1))m(2m−1)d

and we observe that, writing (uj ,m) = vj for 1 ≤ j ≤ d + 1 and vd+2 = (0,−(m − 1)),

the vj ’s are distinct. Moreover, writing αj = (m − 1)βj for 1 ≤ j ≤ d + 1 and αd+2 =

m(2m− 1)d, one obtains

sd+1 = vα1
1 · v

α2
2 · · · v

αd+2

d+2 .

But,

gcd(α1, α2, . . . , αd+2) = gcd((m− 1)β1, (m− 1)β2, . . . , (m− 1)βd+1,m(2m− 1)d)

= gcd(β1, β2, . . . , βd+1,m(2m− 1)d)

since gcd(m− 1,m(2m− 1)d) = 1. But using the induction hypothesis, we have

gcd(β1, β2, . . . , βd+1,m(2m− 1)d) | gcd(β1, β2, . . . , βd+1) = 1

and finally gcd(α1, α2, . . . , αd+2) = 1. The result is proved. �

The following lemma is central for our purpose.
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Lemma 12. For any two integers d, u ≥ 1, the non-empty zero-sum subsequences of sud
are exactly the sequences sjd for 1 ≤ j ≤ u.

Proof. Again, this result is proved by induction. For d = 1, we consider

su1 = m(m−1)u · (−(m− 1))mu ∈ B({−(m− 1),m}).

Thus any subsequence t of s1 must belong to B({−(m− 1),m}) and, in view of Lemma

8 (ii), has to be of the form t = sj1 for some non-negative integer j.

Assume the result is true for some integer d ≥ 1 and let t be a zero-sum subsequence

of

sud+1 = (x1,m)(m−1)u · (x2,m)(m−1)u · · · (xn,m)(m−1)u · (0,−(m− 1))mnu

if we denote sd = x1 · x2 · · ·xn. By considering the sequence obtained from t by pro-

jection on the first d coordinates, which is nothing but the sequence s
(m−1)u
d (up to the

zeroes obtained from the projection of the elements (0,−(m− 1))mnu), and applying the

induction hypothesis, we get that t must contain each element (xi,m) the same number

of times, say j. It follows that t is of the form

t = (x1,m)k · (x2,m)k · · · (xn,m)k · (0,−(m− 1))l

for some positive integers k and l. Summing on the last coordinate yields knm = l(m−1).

But, by (9), n = ||sk|| = (2m− 1)d, which gives

k(2m− 1)dm = l(m− 1)

from which it follows thatm−1 divides k in view of gcd(m−1,m) = gcd(m−1, 2m−1) = 1.

It follows

k = j(m− 1) and l = j(2m− 1)dm = jnm

for some integer j ≥ 1. In other words, t = sjd+1, which was to be proved to complete the

induction step.

The lemma is proved. �

Applying the preceding lemma in the special case u = 1, we obtain the following result.

Corollary 6. For any integer d ≥ 1, the sequence sd is a minimal zero-sum sequence of

J−m,mKd.

The lower bounds in Theorem 5 (ii) and (iii) (case m ≥ 2) now follow from this

Corollary and (9).
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6.4. Proof of Theorem 5 (iii): the lower bound in the case m = 1. If m = 1, the

construction will be slightly different but of the same type. We could have adapted the

argument of the preceding subsection. However, we can be more direct since an explicit

description of sd is possible.

We define the d+ 1 elements of J−1, 1Kd

e1 = (1, 1, . . . , 1), e2 = (−1, 1, . . . , 1), e3 = (0,−1, 1, . . . , 1),

. . . , ed = (0, . . . , 0,−1, 1), ed+1 = (0, . . . , 0,−1).

In other words, for 1 ≤ k ≤ d+1, the vector ek has its min(k−2, 0) first coordinates equal

to 0, its min(k − 1, 0)-th equal to −1 and its coordinates from the k-th to the d + 1-th

equal to 1. We consider the sequence

sd = e1 · e2 · e23 · e44 · · · e2
d−2

d · e2
d−1

d+1

so that sd ∈ B(J−1, 1Kd) and ||sd|| = 2d.

It remains to prove that this sequence is minimal. Consider t a non-empty subsequence

of sd. Let j be the minimal index (1 ≤ j ≤ d+ 1) such that there is at least one element

in the sequence having a non-zero j-th coordinate. If j > 1, then any element in t is one

of the ek’s for k ≥ j+ 1 but then all the elements of the sequence have a nonpositive j-th

coordinate, and at least one has a strictly negative one. Thus t cannot be a zero-sum

sequence. It follows j = 1 and t must contain either e1 and e2, and thus both, looking at

the first coordinate.

We now prove by induction that, for k ≥ 2, t must contain each ek with multiplicity

2k−2. We just proved it for k = 2. Suppose this is true for some value of k < d+ 1, then

considering the k + 1-th coordinate of the sum of t, we obtain that the multiplicity of

ek+1 must be equal to

1 + 1 + 2 + · · ·+ 2k−2 = 2k−1.

This completes the induction step and finally the proof that t = sd.

Thus sd is minimal and, since ||sd|| = 2d, the lower bound of Theorem 5 (iii) is proved

for m = 1.

7. Proofs of Theorem 6 and Theorem 7

We start with the proof of the Theorem 6.

Proof of Theorem 6. Take a sequence s ∈ B(G × X) of length larger than or equal to

D(G)D(X) + 1. Since this is larger than D(X) we may extract from this sequence a

subsequence s1 which sums minimally to zero on the second component. By definition of

an element of A(X), this has a length at most D(X). Removing this subsequence from s,
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we get a new sequence s · s−11 (we denote in this way the sequence obtained from s after

deleting from it the subsequence s1) and we have

||s · s−11 || ≥ D(G)D(X) + 1− D(X) = (D(G)− 1)D(X) + 1.

While s · s−11 does not a priori belong to B(G × X) (s1 may have a non-zero sum on

its first component), this sequence sums to zero on the second component. We can

therefore continue this process and build recursively the sequences s2, . . . , sl such that

their projection on the second component belongs to A(X). Since ||sj || ≤ D(X) for each

index j ≥ 1, the process can continue as long as l ≤ D(G). Thus, we can assume that

we have built l = D(G) distinct subsequences of s, namely s1, s2, . . . , sl, each summing to

zero on the second component. For each j ∈ J1, lK, we call gj ∈ G the sum of the sequence

sj on the first component. Notice that s · s−11 s−12 . . . s−1l is non-empty since

||s · s−11 s−12 . . . s−1l || = ||s|| − (||s1||+ ||s2||+ · · ·+ ||sl||) ≥ D(G)D(X) + 1− lD(X) = 1.

Applying the definition of the Davenport constant of G to the sequence t = g1 · g2 · · · gl
(notice that it is a priori not a zero-sum sequence in G), we can extract from t a subse-

quence gi1 · gi2 · · · giq , for some q ≤ l and indices 1 ≤ i1 < i2 < · · · < iq ≤ l, which sums

to 0 in G. Finally, we consider the subsequence of s defined as s′ = si1 · si2 · · · siq . It is a

proper subsequence of s and we check immediately that∑
x∈s′

x =

q∑
j=1

∑
x∈sij

x =

q∑
j=1

(gij , 0) = 0,

which proves that s cannot be minimal and, consequently, that D(G×X) ≤ D(G) D(X).

�

We finally prove Theorem 7.

Proof of Theorem 7. Let n = |G| and g be a generator of G.

If m ≥ 2, we use the sequence sd introduced in Section 6 (Subsection 6.3). In view of

Lemma 11, we can write it in the form

sd = uα1
1 · u

α2
2 · · ·u

αd+1

d+1

with distinct elements uj ∈ J−m,mKd and positive integers αj (for 1 ≤ j ≤ d + 1). We

also have

gcd(α1, α2, . . . , αd+1) = 1

which implies by Bézout’s theorem, that we can find integers w1, w2, . . . , wd+1 such that

α1w1 + α2w2 + · · ·+ αd+1wd+1 = 1. (10)

We finally define the sequence

t = (w1g, u1)nα1 · (w2g, u2)nα2 · · · (wd+1g, ud+1)nαd+1 .



22 ALAIN PLAGNE AND SALVATORE TRINGALI

By (10) and sd ∈ B(J−m,mKd), it is immediate to check that

∑
x∈t

x =

d+1∑
j=1

αjn(wjg, uj) =

ng, n d+1∑
j=1

αjuj

 = (0, 0).

Thus t ∈ B(G× J−m,mKd).
Let us show that t is minimal. Select a non-empty subsequence of it, say u. By Lemma

12 applied to the second component, which is nothing but snd , we observe that u must be

of the form

u = (w1g, u1)qα1 · (w2g, u2)qα2 · · · (wd+1g, ud+1)qαd+1

for some positive integer q ≤ n. By summing u, we get, again by (10) and sd ∈
B(J−m,mKd), ∑

x∈u
x =

q
d+1∑
j=1

αjwj

 g, q
d+1∑
j=1

αjuj

 = (qg, 0)

a sum which can be zero only for q a multiple of |G| = n, g being a generator. Thus

q = n. It follows that t ∈ A(G× J−m,mKd).
The theorem now follows from ||t|| = n||sd|| = (2m− 1)dD(G).

If m = 1, the same proof applies in an analogous way. This is even simpler since we

can take all but one (namely, w1) of the wj ’s equal to zero in view of α1 = 1. �
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