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gradually.
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2 Compactly supported perturbations of —Agr»,
definition of resonances and their multi-
plicity.

2.1 The free resolvent.

We start by recalling some facts about the “free Laplacian” Py = —A =
>7 —aa—; and its resolvent. First of all, —A is an unbounded selfadjoint

operato]r L*(R") — L*(R") with domain H?(R"™) (the standard Sobolev
space). By Fourier transform it is unitarily equivalent to the (unbounded)
multiplication operator L?(R?) 3 4(€) — £24(€) € L*(R™). The spectrum of
—A is equal to [0, +oo[ (and it is purely absolutely continuous).

For Im A > 0, we know that A\* & [0, +oo[, so Py — A? : H*(R?) — L*(R")
is bijective with inverse Ry(\), which is a convolution operator with locally
integrable kernel

1 1 n=2, n—

Ro(Xiz —y) = 4 )T (0T Hi, () (2.1)

2|z —y| Aoy

where H & is a Hankel function. We can deduce (see Vainberg [91]) that

2

| E\) +AX"2E (M), nodd

Ro(A) = {F(/\) + Fi(A)A"2log A\, n even, (2:2)
where E()), E1(A), F(X), F1(A) are entire functions with values in the space
of convolution operators and in the space of classical pseudodifferential op-
erators of order —2: Heopp(R™) — HE . (R™).

If x1, x2 € C§°(R") with supp x1N x2 = 0, then x;(any of E, Ey, F, F1)x»
is an entire function in A with values in £(H *, H®), for every s > 0.

Further for n even:
m

) ()T IT() (2.3)

Ry(e™"z) = Ro(2) — (
for 0 < arg < 7 (2 # 0,) m € Z, and €™ is viewed as a point on the
logarithmic covering space of C\ {0}. Here T'(z) is the convolution operator

with kernel
z

T(z,x—y) = (%)”_2 /5n_1 @Y L (dw), (2.4)
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where L(dw) denotes the standard Lebesgue measure on S™™'.
For n odd we have

Ro(z) — Ro(—2) =T(2), (2.5)
where s
T(z,x —y) = %(;rﬁ /an @V L(dw). (2.6)

The basic facts to remember are that Ry()), initially defined for Im A >
0 and viewed as a convolution operator Hp,, (R") — Hj (R"), can be
extended holomorphically to:
— X € C, when n is odd > 3,
— A€ C\ {0}, when n =1, and the extension has a simple pole at A =0,
— to the logarithmic (universal) covering space of C\ {0}, when n is even.

These properties have an interesting relation to the strong Huygens prin-
ciple for the wave equation. It is well known that the Cauchy problem in
R xR™

(07 — A)Uo(t) = 0, Up(0) = 0, Us(0) = 6, (2.7)

has a unique solution Uy € C*(Ry; D'(R?)) and that
supp U C {(t, 2); || < [¢[}.

This is the Huygens principle which is valid more generally for wave equations
with variable coefficients and more general hyperbolic equations, and which
says that the support of a solution cannot travel faster than the natural wave
propagation speed (which is one in our special case). When n is odd and > 3,
we have the strong Huygens principle:

supp Uy = {(t, z); |z| = |t[}

This principle has the important practical consequence that we can commu-
nicate and send intelligible signals using sound waves and electromagnetic
waves, since we are lucky enough to live in a three dimensional world.

By Duhamel’s principle, we have the forward fundamental solution of the
wave operator Ey € S'(R x R™) with

(02 — AYEy = 0gnt1, Eo C {(t,); t> |z|}, (2.8)

given by
Eo = H(t)Uo(t), (2.9)
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where H(t) = 1jo+0[(t) is the Heaviside function. Viewing U, as a convolu-
tion operator, solving (9> — A)Uy(t) = 0, Up(0) = 0, U(0) = 1 (1 indicating
the identity operator) we can write

_ sin tv—A
— 7\/1 ]

Without any general spectral theory, (2.10) simply says that for the Fourier
transform with respect to x, we have

Us(t) (2.10)

— sint|€
Uity () = e
€
a fact that can be easily verified by taking the Fourier transform with respect

to x of (2.8).
On the other hand, for Im A > 0, it is easy to see that

Ro(\) = / MUy (1) dt. (2.11)
0
This will be verified in a more general situation in Chapter 3. The same
formula holds on the level of convolution kernels. If n is odd > 3, we see
that Up(t,xz) = 0 for ¢ > |z| by the strong Huygens principle, so in a region
|z| < R we have

R+1 |
Ro(\,z) = /0 MUy (¢, 2)dt, (2.12)

which can be extended holomorphically in A to all of C.

Using (2.11), we can also derive explicit formulas for Ry, from correspond-
ing explicit formulas for the fundamental solution. In odd dimensions the
computations are easier. It is known (see volume 1 of [42]) that we have for

t>0: ) -
(Uo(t), x) = F(fta)%stn# /|w|=1 X (tw)L(dw), (2.13)

where L(dw) denotes the Lebesgue measure, and n is odd and > 3. Take
n = 3 for simplicity, so that

(W) x) = 4t [ x(t)n(de). (2.14)
Then 1 -
(Ro(X),X) = 1= /|w|:1 /0 ¢ (tw)tdt L(dw). (2.15)
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With z = tw, t = |z|, |w| = 1, we have t*dtdw = dz, so

1 1 .
(Ro(A): x) = pp /Rn me' Mx(z)dz, (2.16)
or in other terms,
62’\:1:\)\

For higher odd values of n one gets a similar formula with the same exponen-
tial factor and a more complicated polynomial expression in front. For even
n the expression is even more complicated and contains special functions.
For n = 1 the computation is of course easy and is left as an exercise. In all
cases, Ry(\, z) is smooth and even analytic for z # 0, locally integrable in
z, and exponentially decaying (for A in the upper halfplane) when z — oo.
These properties can also be deduced by means of Fourier inversion.

\4

Here is a more general way to understand the link between the dimension
and the extendability properties. Starting from the physical halfplane Im A >
0, we use Fourier inversion to write

Ro(\, z) = (271r)n/e”'fﬁd§. (2.18)

To avoid uninteresting convergence problems, we take QAS € C§°(R™), so that
¢ = F~1¢ is of class S on R™ and extend to an entire function on C". In
the sense of distributions, we get
~ 1
Ro()), B) = / . h(e)de. 2.19

Now pass to polar coordinates, but let r vary in R rather than in [0, col, so
that we get the double covering

R x S" !> (rw)—rweR™ (2.20)
Then the pull back of d¢ becomes

r"dr L(dw) for n odd.

n—1 =
lr|" drdL(w) = { (sgnr)r™ drL(dw) for n even.



We can then write

(Ro(N), ) :% Snler(iw£2T”1er(dw), (2.21)

where v is the positively oriented real axis when n is odd and the union of
[0, —oo[ and [0, +o0], both oriented from 0 to co, when n is even. Let A start
in the upper half plane and turn once around 0 in the clockwise direction.
[[[[ Figur!]]]] From this simple argument we see that Ry(\) extends to a
holomorphic function on C \ {0} when n is odd, while we get a log type
singularity when n is even. From this one can verify or at least understand
qualitatively the earlier statements involving T'(\).

2.2 Definition of resonances in the case of P = —A+V,
when V is bounded and compactly supported.

Let V € Lg,,(R"R). Then P := Py + V is an unbounded selfadjoint
operator in L?(R") with domain H?. [0, +oo[ is the essential spectrum, so in
| — 00, 0[ there can only be isolated eigenvalues of finite multiplicity. We then
know that the resolvent (P — \?)~! exists as a bounded operator H® — H?,
when Im A > 0, A # i, where —,u? are the negative eigenvalues. We want
to find a meromorphic extension of the resolvent as a continuous operator
LZomp(R™) — HZ (R") across R\ {0}. Write
P—XN=(P - )+V =1+VRN)(Py— ). (2.22)

For [A| > 1, argA = I, it is clear that (1 + VRo()\))™" exists. Moreover
VRy(\) : L? — L? is compact and depends holomorphically on A for Im A >
0. We conclude by analytic Fredholm theory (see Chapter 5) that (1 +
VRy(X))™! exists except for A in some discrete set, where the inverse has
poles of finite multiplicity, with finite rank coefficients in the singular terms of
the Laurent expansions. (Actually these poles are precisely the ip;, because
(2.22) shows that P — \? is bijective H?> — H precisely when 1+ V Ry(\) is
bijective.)

After crossing R\ {0}, V Ry is in general no more a bounded operator in
L?, but we can still try to solve

1+ VRy(A)u=wv (2.23)



with u, v of compact support. Notice that the support of such a solution u will
be contained in the union of the supports of v and V. Let 1gp,v < x € CF°
where we write y; < xo for two functions xi, xs if the support of x; is
contained in the interior of the support of 1 — x3. Then 1 + VRy(M)x is a
holomorphic family of Fredholm operators (see Chapter 5) and we shall see
that in order to solve (2.23) it suffices to invert 1 + V Ry(A)x.

Indeed, we have

1+ VRy(A) = (14 VRy(A)(1 = x))(1+ VERo(A)x), (2.24)
1=(1+VR(AN)(1 = x))(1=VR(1-x)), (2.25)
S0
L4+ VR0 =1 VRW(—x)on Ly (220
Hence (1+V Ry(X)) : L2, = L2, is invertible precisely when 1+V Ro(A)x
is, and

(1 + VR0<)‘))71 = (1 + VRO()‘)X)il(l - VRO()‘)(l - X)) : L?omp - L?omp'

(2.27)
Inverting (2.22), we get

(P—X) 1t =RyN1+VRy(N) 1, (2.28)

and by analytic Fredholm theory (see chapter 5), we know that (1+V Ry(A)(1—
x))~! has a meromorphic extension in A to the complex plane when n > 3
is odd and to other sets already described in the other cases, as a function
with values in the space £(L?*(R™), L*>(R")) of bounded operators from L?
to L?. By a meromorphic operator valued function of z € €, with values in
L(H1, Hs), where H; are complex Hilbert spaces and €2 is an open set in the
complex plane or in a covering surface over some open set of C, we mean
a function A(z) which is holomorphic in z on Q \ S, where S is a discrete
subset of €2 and such that if zy € S, then for z in a neighborhood of zy, we
have the Laurent series representation

A(z) = 21: ﬁ + B(z), (2.29)

where N is finite (so that we have poles of finite order), B(z) a holomorphic
operator valued function in a neighborhood of 2, and A; are bounded oper-
ators, independent of z and of finite rank. We leave as an exercise to verify
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that compositions and sums of meromorphic operator valaued functions are
still meromorphic. Meromorphic operator valued functiosn are also conserved
under changes of variables z = k(\) if K : A — Q is a biholomorphic map
beteween two open sets.

Proposition 2.1 (P — A\*)"': HQ - — HL. has a meromorphic extension
from the open upper half plane to:

C\ {0}, when n =1,

C, when n > 3 s odd,

the logarithmic covering space (C\ {0})* of C\ {0}, when n is even.

By definition, the resonances or scattering poles of P are the poles of this
extension, with the exception of the iy . Since HY,, , Hp,. are not Hilbert
or even Banach spaces, we have to extend the definition of meromorphic and
holomorphic functions with values in operators between such spaces. Let
Q be as above. A holomorphic function with values in L(HQ,,,, HY.) is a
function A(z) with values in the space of linear operators Hy, . — Hp,,
such that x1A(z)x2 is holomorphic for all x; € C§°(R"). Correspondingly a
meromorphic function is one which is holomorphic on Q \ S, where S C Q
is discrete, and such that if z; € S, then near z;, we have (2.29), now with
Aj: HCOOHlp — HZ . (continuous in the sense that x14;x> is bounded for all x;
as above) of finite rank, and B(z) holomorphic with values in L(H,,,, HZ.)

for z in a neighborhood of z.

2.3 Black box frame work and definition of resonances

for general compactly supported perturbations of
—A.

The black box frame work (introduced by Sj6strand and Zworski in [80])
permits to give a uniform treatment of all sorts of compactly supported (and
later also long range) perturbations of —A, like exterior obstacle problems,
metric pertubations, Schrédinger operators, or a combination of such prob-
lems.

Let H be a complex Hilbert space with the orthogonal decomposition

H=Hgr, & L*(R"\ B(0, Ry)), (2.30)

where Ry > 0 and we use the standard notation B(z,r) = {y € R"; |[y—z| <
r}. We denote by

U U o gy OF 1B(0,RoU
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U > Ul p(o,Ro) OF 1R\B(0,Ro) U

the corresponding orthogonal projections. If x is a bounded continuous func-
tion on B(0, Ry); x € Cy(R"), and x = Cy = Const. on B(0, Ry), then for
u € H, we can define yu € H by

XU = C()u + 1R”\B(0,R0)(X — Co)’u, (231)
Let

Heomp = {u € H; Ulrn\B(0,Ro
Hioe = HRO ® leoc(Rn \ B(Oa RO))

) has bounded support},

Notice that if x € C(R"™) is constant near B(0, Ry), then u — xu is well
defined: %comp/loc — Hcomp/loc-

We now consider a selfadjoint unbounded operator P : H — H with
domain D C H. We assume

U € D = Uga pory € H (R"\ B(0, Ro)), (2.32)
and that the restriction operator is continuous,
u € H*(R™\ B(0, Ry)), u = 0 near B(0, Ry) = u € D, (2.33)

where as often we identify H°(R" \ B(0, Ry)) with a subspace of H in the
natural way,

(Pu) = —A( ,Vu € D. (2.34)

IR\ B(0,Ro) u|R”\B(0,Ro))

Notice that if « is as in (2.33) (with vanishing g, component) then Pu =
—Au (i.e. the Hg, component of Pu vanishes) since for every v € D:

(Pulv) = (ulPv) = (u] = AW g pio.ny) = (~ D) s -
We also assume that
15(0,re) (i — P) ™" is compact: H — H. (2.35)

Define Dcomp = 2)m/}{compa Dloc = {U € Hloc; Xu € D, VX € 030 (R‘n) with X =

Const. near B(0, Ry)}.
We should keep i mind the following two examples:
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1) Let P = —A+V (x), where V € L2 (R"). Then we can take H = L*(R")

comp

and the domain of our self-adjoint operator P is D = H?(R").

2) Let O C R" be a bounded open set with smooth boundary. Let P be
the unbounded self-adjoint realization of —A on L?*(R" \ O) with domain
D = {u € H*R"\ O); u,, = 0}. P is often called the exterior Dirichlet
Laplacian. Similarly we can define the exterior Neumann Laplacian by taking
D = {u € H*(R"\O); d,uj,, = 0}, where J,u denotes the exterior derivative
in the unit normal direction.

Theorem 2.2 a) P has only discrete spectrum in | — 00, 0|,

b) (P — X)) ¢ Heomp — Dioc has a meromorphic extension from {\ €
C; Im\ > 0, \2 € o(P)N] — o0, 0[} to:

C\ {0} when n =1,

C when n > 3 is odd,

(C\ {0})* when n is even.

Here meromorphic functions with values in the space of continuous op-
erators Heomp — Dioc are defined in the same way as in the special case of
such functions with values in the continuous operators: HY,  — Hp..

Proof. We first “enlarge” the compactness property (2.35). If z,w € p(P),
the resolvent set of P, then we have the resolvent identity

(z=P)'=w—-P) ' —(w—-P)(z=—w)(z—-P)", (2.36)
implying that
1B(O,Ro)(Z_P)71 = 1B(O’R0)(Zl—P)il—1B(O,R0)(Zl—P)il(Z.—w)(Z—P)il (237)

is compact. Passing to the adjoints, we see that (z — P)’llg(o,RO) is compact
too.

Let B(z,7,71) denote the shell {y € R";ry < |y — z| < r1}. Then
1p(0,ro,r) : H*(R"\ B(0, Ry)) — L*(R™\ B(0, Ry)) is compact for Ry < R <
oo. It follows that

1p,r) (2 — P)™", (2 — P) 'por : H—H (2.38)
are compact for z € p(P), Ry < R < o0.

Let xo, x1, X2 € C§° with 1po,r) < Xo < X1 < X2. We first let A € C
with Im A > 0 and take p with the same properties and such that p? & o(P).
We will fix p later. Put

QA 1) = (1=x0)Ro(A) (1 —x1) + x2R(p)x1 = Qo(A, ) + Q1 (A, p) : H — D,
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where Ry(A) = (Py — A?)™, R(p) = (P — p?)™*, and the last equality above
gives the obvious definition of )y, (J;. Then:

(P =A)Qo = (1= x1) + [A x0]Ro(\)(1 = x1) = (1 = x1) + Ko(A), (2.39)

(P - )‘2)Q1 = x2(P — )\Q)R(M)Xl — [A, xo0] Ro (1) X1 (2.40)
=x1 + x2(1” — X)R(p)x1 — [A, x2]R(p)x1 = x1 + K1 (A, p),

where the last equations define the operators Ky, K;. Hence,
(P—=X)Q =14 Ko(A) + Ka(\, pp) = 1+ K(\, ), (2.41)

where the last equality defines K.

Using (2.38) and the fact that [A, x;] is a first order operator with smooth
compactly supported coefficients and therefore compact: H?(R"\B(0, Ry)) —
L3(R™\ B(0, Ry)), we see that

K (A, p) is compact. (2.42)

Now choose p with arg = I, so that Im (%) = |u[>. Then

O(25):H—H
R = ]2 ’
() { O(1): H— D,
and,
O(L;): H— L2
1— R(u) = |2
so by interpolation, (1 — xo)R(p) = (9(‘17‘) : H — H'. It follows that
1

and consequently 1+ K (u,p) : H — H is invertible with a bounded inverse
(1 4+ K(u,u))™" of norm < 2 when |u| is large enough (and argp = 7 /4).
We fix such a value of p and apply analytic Fredholm theory with respect
to A. It follows that (1 + K(\, p)) ! exists except for A in a discrete set in
the open upper half plane, and that the poles are of finite order and with
coefficients of finite rank for the singular terms in the Laurent expansion at
each such pole. (See chapter 5.)
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Writing
(P=2)"=Q\ w1+ KA u)™, (2.44)

we see that (P — A?)~! : X — D is meromorphic in the upper half plane
with only finite rank singular terms in the Laurent expansion. Of course, we
already know that the only possible singularities are situated on the negative
imaginary axis and correspond to the negative spectrum of P, so we see that
that this spectrum is purely discrete and we have obtained part (a) of the
theorem. (The spectral projection onto any finite part of the spectrum is
given by 5L [ (A2 — P)'d(\?), where v is simple closed contour in the upper
half plane which avoids the poles and encircles a certain number of square
roots of negative eigenvalues.)

We next consider the meromophic extension and let n > 3 be odd in
order to fix the ideas. We keep p fixed as before. Then C 3 A — Q(\, p) :
Heomp — Dioc is holomorphic. Let xo < x € C§°(R"), so that xK = K. To
invert 1 + K : Heomp — Heomp it suffices to invert 1 + Ky : H — H. Indeed,
we observe that (1 — x)K = 0 and hence

I+K(1-x) "'=1-K(1-x), 1+K)=01+K(1-x)(1+Kx),

implying

1+K)'=01+Ky) '(1-K(1-Yx)). (2.45)
Using (2.45) in (2.44) and applying analytic Fredholm theory to (1+ Ky)™!,
we get the desired meromorphic extension

RO = QAm(1+K)" = QU+ Kx)(1-K(1-x).  (246)

#

In the following we shall sometimes use the notation R(\) = (P — \)~!
for the meromorphic extension of the resolvent, even though it is no more
an inverse, strictly speaking. The poles of the meromorphic extension not
already in the physical halfplane C; := {A € C; Im A > 0} that was the
starting point of the extension, will be called resonances (and sometimes
scattering poles). If Aq is a non-vanishing resonance, we define its multiplicity
m(Ao) by

m() = rank - [ (¥ = P) (). (2.47)

21
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where « is a small positively oriented circle centered at A\g. With zy = A2,
z = A2, we have for z close to z:

(z—P) ' =(2—2) MM_yx+..+ (2 —2) 1 +Hol(2) : Heomp — Dioc,

(2.48)
where the last term is holomorphic in a neighborhood of z = 2. From this
expression we see that m()\g) is the rank of II_; in view of the standard
formula:

1 .
Mm,=-— /~ (2 — 2V Yz — P) ldz, j > 1. (2.49)
2me ¥
Here 4 denotes the contour in the z plane which corresponds to v in the A
plane.
Use that

(P—2)(z—P)'=(z—2)(z-P)*'-1
by holomorphic extension from the physical sheet, to get for 7 > 1:

(P—2)TL; = A (2= 20) "1 (P = 20) (2 — P)"'dz  (2.50)

1 , _ 1 .
=5 A(z —20)(z — P) 'z — = g(z — 20) Mz = T_(j 41
Consequently (P — z) maps II_;(Hcomp) into IT_j11)(Heomp) (also included
in Dioc). Since II_; are of finite rank and Do, is dense in Heomp [[détailler

cet argument]], we have IT_;(Hcomp) = I1_;(Deomp). Moreover, on Degpy, we
have II_; P = PII_;, so (2.50) becomes:

H—(j+1) = H_](P - Zo) on Dcomp- (251)
Consequently,

H—(j+1)(%comp) = H—(j+1)(Dcomp) - H—j (Hcomp)v
and (P — zo)j_, (Heomp) 15 & nilpotent operator. The elements of the kernel
of this operator will be called resonant states. The elements of IT_; (Hcomp)
will be called generalized resonant states.

If [T_jv is a resonant state, then 0 = II_sv = [I_3v = .. and (z — P) v
has a simple pole at z.
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Proposition 2.3 Let 1500,r,) < x € C°(R"). Then with y as in (2.47),
m(Ne) = rank / (A% — P)"yd()?) (2.52)
v
Proof. Clearly m(Ag) is at least as large as the RHS of (2.52). Let x €
Cg°(R"), with 1Ry < X < x. From (2.44), we get
(P=XN)"1=Q—(P-XN) K0\ p)=Q— (P—X\) XK, p),

provided we let the cutoffs x1, x2, x3 have their supports sufficiently close to
B(0, Ry). Hence
1 1
oo [B=P) R =~ [ = P IRK (L md(¥). (253)

21 Jy 211 Jy

Recall that u is fixed and write the Taylor expansion of K at A2 in the
variable \%:

KO0) = 3 K08 = 3+ (43l ()

where Hol ()) is function which is holomorphic for A close to Ag. Use this in
(2.53) together with (2.49):

2%, / (A2 = P)"ld()2) = (2.54)
NZ_IQLM — X2\ = P)td(\)XK NZ —a+) XK.

Here we use (2.50):
I (j+)X =II_;(P — 2)x = II_;X(P — 20)X,
if x <X, so
R(Lj41)X) = R(I1;X)-

Iterating, we get
R(II_j+1)X) € R(_1x),

and using this in (2.54), we get
R(II-1) € R(I-1x),
which implies (2.52). #
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2.4 Absence of real resonances.

We end this chapter by discussing the relation with outgoing solutions to the
free Helmholtz equation, and then applying it to show that real non-vanishing
resonances will not appear in standard situations. (Rellich’s theorem.) We
shall first see that resonant states associeted to such resonances are outgoing
states in a sense that we define below.

Let 1p(0,ry) < X € C3°(R™). For z = A%, Im A > 0, we have for v € Heomp
with Igupps < X:

(z—P) 'v=x(z—P) v+ (z—P) '[P, x](z — P) v, (2.55)

where we notice that the second term of the RHS vanishes outside supp (1 —
x)- In fact, let w = (2 — P)"'v and compute

(z = Po)((1 = x)u) = (z = P)((1 = x)u) = [P, x]u
which implies that
1—x)(z—=P)'w=(z—P) '[P x|(z — P)"'v.

The relation (2.55) extends by analytic continuation to the non-physical
sheet(s). Let zp = A2 where )y is a resonance. Integrating (2.55) along a
small contour 7y around zo, we get for z € R™\ B(0, Ry):

10 — \IL 11)_2 m/ 2 — P P, xl(2 — 20) VT_judz  (2.56)
j=1

6‘7 1(2 — P()) )z:zo[P’ X]H,j’v.

Choose v € Hcomp s0 that II_;v is a resonant state. Then (2.56) simplifies to
v = xI_1v + (20 — Py) [P, x]1I_1, (2.57)

where we recall that (zy — Py) ™! denotes the holomorphic extension from the
physical sheet to the point z.

For simplicity, we now restrict the attention to a real positive zy = z
or equivalently to a real non-vanishing X\. Let Ry(\) = (Py — A?)"! be the
branch of the resolvent obtained by extension from the upper half plane:
Ro(\) = (Py— (A +1i0))71: & = 8.
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Definition. We say that v € §'(R") is outgoing if there exists w € £'(R")
such that
u(z) = Ry(M)w for |z| > 1. (2.58)

We have just seen that a resonant state (or rather it’s component in
L (R™\ B(0, Ry))) is outgoing.
Exercise: Let u € S(R™) be outgoing, so that u(z) = Ry(MN)w(x), |z| > 1,
for some w € £'. Then (Py — A?)u = v € £’. Show that u = Ry(\)wv.

Solution: As in (2.55) we have for x € C§° with xy = 1 on a sufficiently large
ball:
Ro(Mw = xRo(AN)w — Ro(A)[Fo, x] Ro(Mw,
and hence u = —Ry(A) [Py, x]u near oo.
On the other hand, let 14,,,, < X. Then

(Po— M)xu =2+ [Py, x]u €, (2.59)

and on &', we have Ry(A\)(Py—A?) = 1 by analytic extension from the physical
half plane. So applying Ry(A) to (2.59), we get

xu = Ro(A)v + Ro(A)[FPo, x]u.
Hence
Ro(A)v = —Ro(A)[FPo, x]u = u near oo.

u — Ro(A\)v is therefore in £ and since it satisfies (Py — A?)(u — Ro(A\)v) = 0,
it has to be 0. (Notice or recall that every non-vanishing partial differential
operator with constant coefficients is injective £&'(R") — £'(R").) #

Theorem 2.4 If A € R\ {0} is a resonance and u € Dyoc a corresponding
resonant state, then u has compact support.

We notice that in most standard situations, there cannot be any non-
trivial solution of the equation (P — A?)u which has compact support and
hence the theorem implies that that there are no real non-vanishing reso-
nances. For the proof of the theorem we need
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Proposition 2.5 Let v € C§°(R"), lapps < X € CP(R™;R), 0 # X € R.
Then

1 0\ (2 _
i (A X RNl Ro(We) = O [ [o(€) PL(dE) = Tm (Ro(AJolv),
(2.60)

where C'(X) # 0 can be computed, and L(d§) denotes the standard Lebesgue
measure on the sphere of radius |A|.

Proof. This is a simple computation, where we assume that A > 0 for
simplicity:

2= (A XIRo A Ro(AJo) = (1= — X2, X]Ro(\)ol Ro(A)0)
= - (R (M)el(=2 = X)Ro(A)o) = (x(=A = X)Ro(AJo| Ro(A)0))
= - ((RoWolxw) — (el Bo(A)w)

-~

Im (Ry(A)v|xv) = Im (Ry(A)v|v) =

1 0(§)0(§) _ 1 SN2 1

- N
 (2m)"2> Josy [0(€)PL(d€).
#

Notice that by density the first equality in (2.60) holds also for v € £'.

Proof of Theorem 2.4. Let u be an outgoing solution of (P — A*)u = 0

with A € Ry. Let lg575 < x € C§° be real-valued and consider

2%_([]3’ X]u|u) = %((Xu\Pu) — (xPulu))
= L 0@(cula) = Xculi) = 0.

On the other hand, if we write v = Ry(A)v, v € C§°, for |z| > 1, (we can
take v = — [P, X|u for a suitable X), then if we let x € C§° be a real-valued
cut-off which is equal to 1 on a sufficiently large ball, we have

0= ([P ule) = (=8, o (Aol Ros (V)

21
=00 [0, IPEOP L),
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so 9(§) = 0 on B(0,\) and hence also on the complexification of this ball.
By the Paley-Wiener theorem plus easy division estimates (see Lemma 2.6
below), we see that Ry (A)v € £'. Hence u has compact support. #

Remark. In many situations, we know that there are no non-trivial solutions
of (P — \?)u = 0 with compact support, and it then follows from Theorem
2.4 that there are no real non-vanishing resonances.

Lemma 2.6 Let v € &'(R™) with 5(§) = 0 on the real sphere £ = A2, for
some A > 0. Then Ry(A\)v € E'(R"™) (which implies that supp Ro(A)v is
contained in the union of the support of v and the bounded components of the
complement of the support of v).

Proof. We recall a weak form of the Paley-Wiener Theorem: If u € S8'(R"),
then v belongs to £’ if and only if

3Cy, Cy, Ny > 0, such that @() is entire and (2.61)

[a(€)] < Cr(g) e, g € O,
If v satisfies the assumptions of the lemma, then @ := (525(775/)\2) is an entire
function and it is easy to see that @ is the Fourier transform of Ry(A)v. It
suffices, then to show that @(&) satisfies (2.61) for some suitable constants.
Let § > 0 be small (to be fixed later) and let & € C™ with €2 — \?| < 4.
Write

€ = N =26(§ — &) + (& — N) + (£ = &)™

Take _
§—§0:zé—0‘, with z € C, |z| =€ > 0,
0
where € > 0 will be fixed independently of &;.
Then

\52 — )\2\ > 2|&ole — 6 — €.

A being fixed, we first choose < 6;(A) small enough, so that |&] > %[ and
get
12 =N > |ANe—0d— €.

Choose € < |A|/2 so that |€2 — X?| > |A|e/2 — 6 and finally § < 2(\, €) so
that [€2 — A?| > |\|e/4. Consider

I3 V(& + z-£o

6o+ 520y = — 2 -7
Q" (G + 22 - N
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which is holomorphic for |z| < 2e. We have

(& + Z@\)'
[Ale

&o
[€ol

for |z] = ¢, so by the maximum principle we get for |z| < e:

(8o + 27)| < 4

a6 + 20 >|_|A4‘ sp\v<so+z5 ).

[€ol [€ol

Especially we get the last estimate for @(&), and we conclude that if ¥ satisfies
(2.61), then @ also satisfies (2.61) in the region |£2 — \?| < 4, and hence
everywhere, since |G(€)| < 0 |9(€)| in the region where €2 — \2| > 4.  #

Remark. 1t is a little easier to show that if
eo €D, (P—X)ey=0, AR\ {0},

so that A\? is a positive eigenvalue, then ey has compact support. Take x as
usual, equal to one near B(0, Ry). Then

(Py— X®)(1 = x)eg = [A, x]eo € HY

comp?

so if F denotes the Fourier transformation, then

(€% = A)F((1 = x)eo) (&) = (FA, Xleo) (&)-

Here the right hand side is entire and in order to have F(1 — x)ey € L?, we
must have F[A, x]eg)(€) = 0 when £2 = A2, As before, we conclude by means
of Paley-Wiener, that

F (A, xleo) (€))
£2 — )2

is an entire function and satisfies (2.61). Hence (1—x)ey has compact support
and so does eg.

[[[Missing piece in this presentation: Show that if (P — A\*)u = 0 and u is
outgoing, then w is a resonant state and A is a resonance.]]]

(F((1 = x)eo) (&) =
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3 Expansion of solutions to the wave equa-
tion in exponentially decaying resonant modes,
when ¢t — +o0.

In this chapter we show (in the case of odd dimension n > 3) that if a certain
non-trapping assumption for the associated wave equation is fulfilled, then
for every N > 0 there are at most finitely many resonances above the curve

Imz = —Nlog, |Rez|

(This fact is true also in even dimensions, but a little more difficult to prove
in that case.) Moreover if the space dimension is odd and > 3 we shall show
that the solution of the associated wave equation with compactly supported
initial data has an asymptotic expansion in exponentially decaying modes:
e Nity;(x,t) as t — —+oo, where )\; is a resonance or a square root of a
negative eigen-value and u; is a polynomial of degree < w(A;) —1 in ¢, where
w(A;) is the order of \; as a pole of the meromorohic extension of (P — A?)~1.
This result is due to Lax-Phillips (see [50]) in a more restricted setting, and
the idea of the proof we give is due to Vainberg [91]. Vainberg’s proof was
recently adapted to the black box setting by Tang and Zworski [90], but our
proof (and result) differs slightly. At one point we shall use a basic result on
the propagation of singularities for the wave operator. See [42].
Let P be a bb operator as in the preceding chapter, satisfying the addi-
tional assumption:
P> —-C, (3.1)

for some constant C. Let D’ denote the domain of (P)? when j > 0 and let
D7 = (D77)* be the dual space of D77, when 5 < 0.

Recall that by the spectral theorem, P is unitarily equivalent to the multi-
plication operator P : u(m) — p(m)u(m) in H = L*(M, 1) where M is some
set, i a measure on M and p(m) a real-valued measurable function on M.
Then D? becomes {(p(m)) u(m); u € L*(M; u)}. From this representation
and the Holder inequality, we deduce the interpolation inequality

||| poi+a-er < ||u||%]||u||%;0, LEkeER, 0<0<1,ue prax(ik) (3.2)
For g € D7, we can solve the abstract Cauchy problem

(P +82)u =0, u(0) =0, du(0) =g, (3.3)
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by the functional formula:

sint\/P
VP

(If we apply the unitary equivalence above, then U(t) can be identified with

u(t) = g=:U(t)g. (3.4)

the multiplication operator u(m) sint p(m))u(m).) Note that f(¢, E) :=

\/p(m)
sintVE
E

E is a well-defined smooth function on R x R, independent of the choice
of branch of v/E, which satisfies the following estimates for E > —Const.:

O f(t, B) = Op(1)elle(B)¢172, (3.5)

It follows that g
U(t) € C™(Ry; L(DI, DIH5)), (3.6)

where the mth derivative is merely strongly continuous in ¢ with values in

. - m-—1 . . . s 3
L(D?, D777 ), while the derivatives of lower order are continuous in the
norm of £(D?, Di+*7*). Moreover,

i pit 2

||6§U||L(D l—k) S Ck,jecm. (37)

We take a break in the general discussion in order to recall some basic
existence and uniqueness results for the abstract equation (3.3).

Proposition 3.1 Ifv € C'(R; DI 2), f € Di, g € Di~3, then
t
u(t) :=U'(t)f +Ul(t)g +/O U(t — s)v(s)ds

belongs to CO(R; DY) N CH(R;DI~2) N C2(R; DI 1) and solves the Cauchy
problem,
(0 + P)u=v, u(0) = f, «(0) = g. (3.8)

Proof. Notice that U(0) =0, U'(0) =1, so uy := U'(t) f +U(t)g solves (3.8)
with v = 0. Let

w(t) = [ Ut = s)u(s).
Then u5(0) =0,

uq(t) = U(0)v(t) + /Ot U'(t — s)v(s)ds = /Ot U'(t — s)v(s)ds,
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so ub(0) = 0. Since U'(0) = 1, we get
Ouy(t) = v(t) + /Ot U"(t — s)v(s)ds,
and hence
Ofus(t) + Pus(t) = v(t) + /Ot(af + P)(U(t — s)v(s))ds = v(t),

since (07 + P)(U(t — s)v(s)) = 0. Further it is easy to see that us(¢) belongs
to the required space. #

Next look at the uniqueness of solutions of (3.8):

Proposition 3.2 Let I be an interval containing 0, and let u € C*(I; D¥)
be a solution of (07 + P)u = 0. Then

u(t) = U'(t)u(0) + U(t)u' (0). (3.9)

Proof. Let t € I, and put v(s) = U(s — t)¢, ¢ € DV for some sufficiently
large N. Then for s between 0 and t:

%[(u’(S)Iv(«S)) — (u(s)|v'(s))] = (u"(s)lv(s)) — (u(s)[v"(s))

= —(Pu(s)[v(s)) + (u(s)| Pu(s)) = 0.

Hence
(W (®)o(t)) — ()|’ ()) = ('(0)[0(0)) — (u(0)|v/(0)).
B —(u(®)|¢) = (W' (0)|U(~1)) — (u(0)|U"(—t)g).
U(t) is odd in t, so U(—t) = =U(t), U'(—t) = U'(t). Hence
(w(®)|$) = (' (1)U (1)) + (u(0)| U (£)).

Use also that U(t) and U’(t) are symmetric:
(u(t)|g) = (U(1)w'(0) + U'(t)u(0)|¢).

Since DY is dense in D%, the space dual to D*, we get (3.9). #

We now return to the main discussion. Outside B(0, Ryp), (3.3) is just the
standard wave equation, for which Huygens’ principle applies and says that

22



supports of solutions cannot propagate with speed > 1: If u € C?(R,; D'(R"))
and
(=A + 03)u =0, u(0) = ug, Ou(0) = uy, (3.10)

then
supp u C {(t,x); distrn(z, supp up U suppuy) < [t|}. (3.11)
In the bb setting, we define the support of u € Hj,. to be supp U|Rn\ B(0,Ro if

u vanishes near B(0, Ry) and B(0, Ry) U supp Ul g\ B(0,Ro) Otherwise. Notice
that supp u is closed.

Let dist (2, y) = min(|z—y|, dist (x, B(0, Ry))+dist (y, B(0, Rp))). Then
for (3.3) we have

supp u C {(t, x); distes(z, supp g) < [¢]}. (3.12)

We now introduce an abstract non-trapping condition, which says that
singularities in compactly supported initial data are washed away from any
bounded region after a suitable time:

For all a > Ry, 3T, > 0, such that t — xU(t)x (3.13)
belongs to C*(|T,, T, + 1[; £L(D°; D))
for every N > 0 and every x € Cg°(B(0,a)) with 1p0,ry) < X-

In practice, the verification of this non-trapping condition is important
and depends on some result on the propagation of singularities for solutions
of the wave equation. The condition (3.13) is known to hold in the following
two cases: 1) P =—-A+V,V € C§°(R") and 2) —P is the exterior Dirichlet
or Neumann Laplacian on R™ \ O where O CC R™ is open with smooth
boundary and non-trapping in the geometric sense that no maximal optical
ray can be contained in a bounded set. For the second example we refer to
[56], while the first example follows from the general result of Hérmander
on progation of singularities for solutions of equations of principal type. See
[42].

Let a > Ro + 1 and let 1gg7 < Xo-1 € C5°(B(0,a — 1)). We will work
for ¢t > 0 in the following. Let 9,(t) € C§°(] — 00, T, + 1[; [0, 1]) be equal to
1 near | — 00, T,]. Then

(P +0) (%a(t)U (t)Xa—1) = (3.14)
(0F (%a(1) + 200(%a(£)) 00U () X1 =t Va(2)-
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In view of (3.13), we see that if 1557~ < x € C5°(B(0,a)), then
XVa(t) € C(IT,, T, + 1[; L(H, D)), VN € N. (3.15)

We will choose x < x4_1-

The "exterior part” (1 — x)V,(¢)g will not be smooth in general, and we
will add a correction for it, by solving the free wave equation. Let Up(t) be
the free wave " group” defined as in (2.7) (with P replaced by —A and with H
replaced by L?(R"™)). As explained in chapter 2, we have the corresponding
forward fundamental solution Fy given by

Eo = H(t)Us (1), (3.16)
so that (0? — A)Ey = 0gn+1, and

{(t,z) € R x R™; |z| =t}, for n odd > 3,

supp Eo = {{(t, z) € R x R |z| < t}, otherwise.

(3.17)

Notice that V,g vanishes outside some bounded set, by Huygens’ principle.

Let x € C§°(B(0,a—1)) be equal to 1 near B(0, Ry). (We will take x < x4-1.)
When n > 3 is odd, the corrected truncated solution of the wave equation
(associated to P) is then by definition:

Ua(t) = $a(OU ()Xa-1 = (1 = X) (Box) (1 = x)Va(?), (3.18)

where Ey* is the operator of convolution with Ejy, and x¥ € C§° with lm <
X < x- We get

(P + ) Ua(t)g = xVa(t)g + [=A, X1(Eox) (1 = x)Va(t)g. (3.19)

The second term has uniformly compact support by the strong Huygens
principle. Let us consider also

Ua(t)g := 1ha()U (t)Xam19 — (Eox)(1 — x)Va(t)g (3.20)
as a distribution in (R x (R"\ B(0, Ry))) U (|7, + 1, 00[xR"), so that
(82 — A)U,(t)g € C°(R x (R™\ B(0, Ry))) U (]T, + 1,00[xR™)) (3.21)

Now we shall use a fact about propagation of singularities for solutions of
the wave equation. Let @ C RxR™ be open, u € D'(Q), (07 —A)u € C=(Q):
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If (to,z0) € singsupp (u) then there exists a maximally extended light ray
I >t~ (ty+t,xo+ tw) in Q, where I is an open interval containing 0,
w € §"~!, which passes through (o, 2o) and is contained in sing supp w.

Let (to,xo) € singsupp (U,(t)g), with Ry < |zg| < a — 1, ty > T,. For
t > T,, ro < |z| < a, the term 9, (t)U(t)xs_19 is in C*°, so (g, xo) must
belong to sing supp Eo*x(1—x)V.(t)g C {(t,z); (a—|z|)+ < t—T,}. We deduce
that ty > T, + 1. Also from the fact above, we see that there is a maximally
extended ray in (R x (R"\ B(0, Rp))) U (]7% + 1, 0o[xR") passing through
(to, x), contained in singsupp (U,(t)g), which is well defined at ¢ = T, + 1
and with a corresponding point (7, + 1, (7, + 1)) with |z(T, +1)| > a — 1.
But then it is clear that the ray can be further extended backwards for all
times ¢t < T, + 1 and the corresponding z(t) stays outside B(0,a — 1). This
ray must be in singsupp Ua(t) g and we reach a contradiction for |¢| close to
0, since we are then outside the support of Ua(t)g.

In conclusion: U,(t)g and (Eox)(1 — x)Va(t)g are C*® for t > T,, Ry <
|z| < a — 1. This implies that the last term in (3.19) is C* for |z| < a — 1.
Moreover, by the strong Huygens principle, it has compact support. So

(P +3})Ua(t)g = Wa(t)g. (3.22)

where W,(t)g € C§°(]0, o0o[; DE,,,,) has its support in some fixed compact set
contained in |7, Ta[xsupp X. (When n is even, we loose the compact support
property in t.)
By the closed graph theorem,
W, € C$°(]0,00[; L(H, DY .0))- (3.23)

comp

We also have the Cauchy data,

U,(t)g =0, (8:U,)(0)g = Xa_19. (3.24)

Finally ﬁa(t) has the same general regularity properties as U,:
Ua(t) € C™(Ry; L(DI, DIT2")), m >0, j > 0. (3.25)

(From (3.22), (3.24), we deduce that U, — Ux,_1 € C®(R; L(H, D)), for all
j=>0.)
When ImA > C > 0, we express R(A\) = (P — A\?)"! by the integral
formula (cf. (3.7)):
R(\) = / ¢ (¢)dt. (3.26)

0

25



In fact,
“XR(N) = /0 T2 (MU (t)dt (3.27)
—_ /0 T aE™aU)dt = aU(0)+ /0 T MU (1) dt
=1 +/0°° e"MO2U (t)dt,

and it follows that

(P — )2 /Ooo U (H)dt = 1.

Put o
R,()) = / T, (£)dt - H — Dioe, (3.28)
0

and notice that this operator is well defined and holomorphic for A € C,
since by the strong Huygens principle,

(Ua(t)g)(x) =0, for t > T, + |z|. (3.29)

The same calculation gives
(P =M)R,(A\) = Xg—1 + / "W, (t)dt. (3.30)
0

Since ¥ < X < Xa_1, the z-space projection of supp W, (t) is contained in the
region where x,_1 = 1. Writing

Sa(A) = /0 W, () gdt, (3.31)
we get
(P—MR,(\) = xa_1(1 4+ S,(N))- (3.32)

Lemma 3.3 For every N > 0, 1 + S,(A) : H — H, Heomp — Heomp 1S
invertible with inverse O(1) in L(H,H), for

Im A > —Nlogl|A|, |A| > C(N).
Proof. We use the compact support property and (3.23) for W,, and inte-
grate by parts in (3.31):

1

Sa()\) = (i)\)M

/O e (<0 MW, (t)dt.
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The H — H norm of this operator is < C’M\)\|_Mef“(1m A~ with the standard
notation b = b, —b_, by = max(=£b,0). If In A > —Nlog |\|, we get

1Sa(M | 2aemy < Cul AN,

which is < 7 if we first take M > T,N, and then |\| large enough. Notice
that (14 S,(A\))™'=1—S,(A\) (1 + Sa(N)™" maps Heomp — Heomp- #

When Im A > C > 0, we get from (3.32) the relation
R()‘)Xafl = Ra()‘)(l + Sa()\))ila (333)

for R(A\) = (P — A?)7!, and we can use this relation to get a meromorphic
extension of R(A)x,—1 to C, (since S,(A) is compact and holomorphic in
A). If (as before), we let R(\) denote also the meromorphic extension of
R(A) : Heomp — Hioe, then (3.33) extends to A € C, and we conclude that
R(A)Xq—1 has at most finitely many poles in Im A > —Nlog, |A|, for every
N > 0. Applying Proposition 2.3, we then get the following result (which
remains true for n even).

Proposition 3.4 In addition to the general bb assumptions of chapter 2, we
assume that P > —C and that the non-trapping assumption (3.13) holds.
We also assume that n > 3 is odd. Let R(\) be the meromorphic extension
of (P =) : Heomp — Dioe. Then for every N > 0, R(A\) has at most
finitely many poles in Im A > — N log, |Al.

We next estimate the truncated extension of R(A) and start with R,.
If x € C§°(R") is equal to 1 near B(0, Ry), then (by the strong Huygens
principle) Xﬁa(t) vanishes for ¢ > T, for some sufficiently large 7, > 0.
Hence

Ty ~
XRa.(\) = / * et T, (1) dt, (3.34)
0
and using (3.25), we get after an integration by parts:
G r (ImM_
IXBa (M)l e(pi,piy < We * , J20. (3.35)

Combining this with (3.33) and Lemma 3.3, we get
c Ty (ImX) -
IXR(A)Xa—1llcom) < We x , (3.36)
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for |\| > C(N), ImA > —Nlog, |A|. Here we will need to improve the
exponent —1 in [A|~" by replacing || - |z¢,2 by || - l| (e )

As a preparation for the promised asymptotic expansion of the wave group
for t — +o00, we recall that

MM:A U (8)dt, Tm A > 0,
and we shall establish a corresponding ”Fourier inversion” formula, which
could be obtained by selfadjoint functional calculus, but which we prefer to
derive by direct arguments. For this, we work in a region Im A > C' > 0 and
start by getting some further estimates on R(\).

First, by (3.7), (3.26), we get

1ROV, sty < O, (337)
and after integration by parts in (3.26),
O(1
| Rl £(pi piy < —E\ )- (3.38)
oy
From the first of the two equivalent identities
1 1
PR(A) =1+ MR()\), R(\) = v + FPR(/\)’ (3.39)
and (3.38), we get
IR 2(pi pi1y < O(1){A). (3.40)
Use (3.39), (3.37) to get
O(1
IR < A(>3. (3.41)

The last two estimates are the most extreme ones, and (3.37), (3.38) can be
obtained from these two by interpolation (cf (3.2)) and we get more generally

0(1) 1
HRMmumquszsﬁﬁa—lgagi. (3.42)
We claim that U(t) = U(t), where
PN 1 .
Ut:——/ SIAR(A)A, t > 0. 3.43
)= o [ e ROV, > (3.43)
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The integral converges in £(D?, DI=¢) for every e > 0 and becomes a contin-
uous function of ¢ with values in that space. Using (3.39), we get

o A2 )2

1 1 1 .
- / e\ g+ — / e by
Y Im \=C

_ 1 1 R(A
O(t)g = /Imzce n-l B py iy

2 A2 2 A2
1 i R(A)
— tg4— / in M) poga
g+ 271 Jimar=c € a Y
where v is a small positively oriented circle around 0.
In the last integral, we gained a sufficiently large negative power of A, to
be able to apply 9% and get

~ 1 , ~
20(t)g = —— / ¢ R(A\)PgdA = —PU (t)g,
2w Jima=c
1.e. ~
(P+03)U(t)g = 0. (3.44)
Further,

. 1 R(X)
U(0)g = oy /Im)\:C 32 Pgd\ =0,

by contour deformation upwards, and

~ i R())
9,0(0)g = ——/ P pgar = g,
WW0)g=g-o- | —Pedr=yg
by the same contour deformatiog.
We have then verified that U(t) solves the same Cauchy problem as U,
so we have U = U:

1

Ut) = 5-

/ T R(A)A, ¢ > 0, (3.45)
Im A\=C
where the integral converges in £(D?, DI=¢) for every ¢ > 0.

We want to multiply this to the left by x and to the right by x,_1, and
then make contour deformation, and use an estimate like (3.36), but with a
little faster decay than |[A|~!, so we start by obtaining such improved decay.
For g € D we write

1 R

XBA)Xa-19 = x(=75 + =5 Xe-1FP)Xa19;
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where x4—1 < Xa-1 € C§°(B(0,a—1)). Using (3.36) (with x,_1 there replaced
by Xa_1) we get for the same A as there,

C m
IXB(A) Xa-1lle(p,2) < WGTX(I M-, (3.46)

(A more optimal estimate would probably be to have £(D'/?,#) instead of
L(D,H).) Interpolating between (3.36) and (3.46), we get

C m
IXR(A)Xa—1llcipony < ‘)\|1+96TX(I -, (3.47)

for A as in (3.36) and 0 < 0 < 1.
With this in mind, we write

1 |
XU (t)Xa-19 = 5= / e Y R(A) xa_1dA (3.48)
21 JIma=C
1 |
= on /Im}A e "XR(A\)xa 1A+ Y residues,

ImA>—A

where we choose A > 0 such that no resonances has the imaginary part —A.
The £(D? H)-norm of the integral in the last expression in (3.48) can be
estimated by

OA(l)e—tA—I—TXA — OA(l)e_At.

Let Ay € C, be a pole of the meromorphic extension of (P — A\?)7!, so
that in the case \g # 0 (cf (2.48)) we have near A¢:

w(Xo) ,
-RO) = X (/\211_7—;%)] + Hol()) (3.49)

In the case Im Ay < 0 we discussed some of the structure of the ”spectral
projections” II_;. When Im Ay > 0 we know that A is purely imaginary
and that )2 is a negative eigenvalue of P. In this case II_; is the ordinary
orthogonal spectral projection, while II_; = 0 for j > 2. In the case Ay = 0
things are a little more complicated and we make no further comments in
that case. For Ay # 0 the corresponding contribution to the sum of residues
in (3.48) is

D oL 3.50
Zg/%e FEES VTR ACEE (3.50)

1
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where 7, is a small positively oriented circle around Ag. The integral is of
the form e~ times a polynomial of degree at most 5 — 1 in ¢. For j = 1,

we get
1 e—it)\o ie—it)\o

— 23 I v, 1 = oy, 1. 5l
9 2T I X1 xa—1 I X _1Xa—1 (3.51)

We have proved the following result essentially due to Lax and Phillips with
a more straight forward proof due to Vainberg [91], extended to the black box
framework by Tang-Zworski [90], that we have modified a little to decrease
the number of cut-offs:

Theorem 3.5 Letn > 3 be odd. Let P be a black box operator as in chapter
2 and assume (3.1), (3.13). Then for every A > 0 such that —A is not
the imaginary part of any resonance, and for every x € C§°(R"™) equal to a
constant near B(0, Ry), we have

xU(t)x = > e " xpap ()X + Ty,a(t),
A€Res (P)U{ip;u>0, —p2€o(P))}

where py p(t) is a polynomial in t with values in the operators Heomp — Dioc-
When Ao is a simple pole of the resolvent and Ay # 0, we have py p(t) =
%H—l,/\’ where I1_4 ) is the corresponding spectral projection. The remainder
term satisfies |1y, a(t)|| cope 5y < Cy,a,0e ™, for every 6 > 0.

According to Tang-Zworski, Burq, there is a trick of C. Morawetz, which
allows us to replace DY by H in the above theorem.

4 Absence of resonances exponentially close
to R.

In this chapter we shall descibe a recent result of N. Burq [15] which says that
under quite general assumptions there are no resonances exponentially close
to the real axis. We start by formulating the precise theorem. Let O CC R"
be an open set with a smooth (C*°) boundary 9O and assume that R™ \ O
is connected. Let

P=>" ay(z)D" (4.1)

laf<2

be an elliptic formally selfadjoint operator with smooth coefficients on R\ O.

We assume that
P =—-Afor |z| > Ry — 1, (4.2)
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for some sufficiently large Ry > 0, that we choose large enough so that
O C B(0,Ry —1).

We explain the main ideas of the proof of the following result of N. Burq
[15].

Theorem 4.1 Let P also denote the Dirichlet realization of P in L*(R™\O).
Then there exists a constant C > 0, such that P has no resonances in the set
of A € C such that

A >C, Tm X > —e CRe, (4.3)

Actually, Burq also establishes this result for the Neumann realization
of P and even in the more general case when P is realized with Dirichlet
conditions on one connected part of the boundary and with Neumann condi-
tions on the other part. As a corollary, Burq shows that the local energy of
solutions to the wave equation with compactly supported initial data decays
at least as fast as (log(1 + t))™*, ¢ — +o0, where k¥ > 0 depends on the
smoothness of the Cauchy data at ¢ = 0. Here smoothness of the data is
measured in terms of being in the domain of a certain power of the generator
of the wave group, when the latter is considered as a matrix solution to a first
order system. FEarlier results in this direction were obtained by E. Harrell
[36] and C. Fernandez and R. Lavine [24]. After the work [15] there have
been extensions by G. Vodev [97, 98], and by Burq [16]. Vodev observed
some simplifications in Burq’s original proof, and we shall use one of them
in our presentation, as well as a new estimate (that will not be explained
in detail here) that is planned to appear in a joint work with Burq. This
estimate permits to give a treatment near infinity which is more natural and
closer to the intuition.

The first step in the proof is to notice that it suffices to show that for real
A with |A| > 1, we have

| RNV (B0, R 0) < Coe®™||v]| 2, (4.4)

for v € L2,,,(B(0,Ro) \ O) for some Cy > 0. In fact, assuming (4.4),
we shall extend R(u) holomorphically to p in an exponentially small disc

centered at A as an operator L2 (R™\ O) — (H?> N Hy)e(R™\ O). Let

comp
1B(0,Ro—1) < Xo =< X1 < X2 < 1B(0,Ry), With x; € C§°. As an approximation
for R(u)x1, we take

A(p) :== xaR(A)x1 — Ro(p)[Po, x2] R(A)xa-
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Then

(P — p*)A(n) = (4.5)
x1 + [Po, x2) R(A\)x1 + Xz()\2 - Mz)R()‘)Xl — [Po, x2] R(A)x1
= x1 + x2(A* = ) R(M) x1-

For the exterior part of the approximate resolvent, we first compute

(P — Nz)(l = x0)Ro(p)(1 — x1) =1 —x1 — [Po, xo] Ro(p) (1 — x1)-

Correcting for the last term, we are led to the approximation of R(u)(1—x1) :

B(p) :== (1 = x0)Ro(1)(1 = x1) + A1) [Po, o] Ro () (1 — x1)-

(P — HZ)B(N) = 1-x1— [Po, xo]Ro(p)(1 = x1)
+0x + x2(A = ) R(A)x1)[Po, xol Ro (1) (1 = xa)
= (1= x1) + x2(A* = p®)R(N)[Po, xo] Ro (1) (1 = x1)-

Put R(p) = A(u) + B(y). Then
(P—p*)R(p) =1+ K, (4.6)

K = x2(A? = t*) R(A) (x1 + [Po, xo] Ro (1) (1 = xa))- (4.7)

Using the Fourier transform and complex deformation of integration contours
as in section 2.1, we see that

[Po, Xo] Ro(p) : L(2:0mp(B(07 Ro) \ O) = L2, (B(0, Ro) \ O)

comp

is of norm < Ce€#l . Tt follows that

K:L2_ (B(0,Ry)\O)— L% __(B(0,Ry)\ O)

comp comp

and has operator norm O(1)|A|e€N | A—pl, so if [A\—p| < e 20N and |A] > 1,
1+ K has a bounded inverse and we get the holomorphic extension

R(p) = R(u)(1+ K) ™" Lo (B(0, Ro) \ O) = (H? N Hy )ioe (B(0, Ro) \(f))-
8
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Proposition 2.3 then shows that R(u) extends holomorphically also as an
operator on L2, (R"\ O).
One of the main steps of the proof is to establish weighted L? estimates

in a bounded domain for (P — A?) = A?(h?P — 1), with A = 1/|)A|. These
estimates are so called Carleman estimes, developed with enormous success
by Hormander and others in different branches of partial differential equa-
tions, including uniqueness problems and Cauchy-Riemann type equations.
In the context of spectral problems, they have been used by G. Lebeau and
L. Robbiano [52, 53]. Much works in a more general frame work, so to start
with, we take a more general semi-classical operator.

4.1 Local Carleman estimates away from the bound-
ary.

Let 2 C R”™ be some open set. Let P be a semiclassical differential operator
of order 2, formally self-adjoint and of the form:

P =" ay(z;h)(hD,)*, as(z;h) € C®(). (4.9)
al<2
Assume that
ao(z;h) = ad(z) + O(h) in C=(R), (4.10)
and that a, is independent of h for || = 2. The semiclassical principal
symbol of P is then by definition:
p(w,€) = Y ag(2)€" = a(x,€) + D ag(w)¢™. (4.11)
laf<2 o<1

Here a(z,§) = 3 q/=2(--) is equal to the ordinary principal symbol of the
operator h 2P. We assume that P is elliptic in the classical sense:

1
a(z,§) > Fl¢ (4.12)
Let ¢ € C*(Q;R) and consider
P, = ?@/hpe-e@/h, (4.13)

This operator is also of the form (4.9) with the same ordinary principal
symbol h%a(z,£) and with the new semiclassical principal symbol

ps(z,€) = p(x, & + 1 (z)). (4.14)
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Assume that we have

ps(z,§) =0= %{pqs,p_(p} <0, (4.15)
where 8 5 )
U:9) = X (g 0 D0 (5:8) — 5. O (1)

denotes the Poisson bracket of two differentiable functions f, g. Notice that
Hf [} =—2{Re f.Im f} is a real-valued function.
The basic Carleman estimate is then given by:

Lemma 4.2 Let W CC € be open. Then there exist constants Cy, hg > 0
such that for all 0 < h < hy , u € C§*(W):

hY2 ||| g2 < Col|Pyull. (4.16)

Here we let H® denote the semi-classical Sobolev space equipped with the h-
dependent norm ||u||gs = ||(hD)*u]|.

We will only give an outline of the proof, mainly for readers who are
familiar with pseudodifferential operator machinery especially in the semi-
classical setting. However, we point out that some basic ideas are older than
the theory of pseudodifferential operators. Start by looking at the trivial
identity:

1 1,
—IIP¢UII2 E||P¢U||2—E||P¢U||2 (4.17)

—_

(PSP, = PyPE)ulu) = (1P, Polulu)

3‘

Here the commutator has the form

1

E[P;’PA = Z ba(x; h)(th)a,

al<3

with
ba(z;h) =82 (z) + O(h) in C*(),

and the associated semi-classical principal symbol is

1
2{p¢,p¢}
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which is > 0 on p,'(0). Since |py(z,&)| ~ (£)* for large &, we can find
constants b, C > 0, such that

1 1 ~
;{P_abam} + blpy(z, &)> > 5(5)“ on W x R",

where we choose W CC Q open with W CC w.
Using h-pseudodifferential calculus and/or a suitable version of Garding’s
inequility (see for instance [21]), we deduce that

1., 1 ©
(7175, Polulu) + bl| Pyul|* > ﬁHUIIE% ue G (W),
We get
~ 1
lellz < 2C((5 [P, Polulu) + bl Poul)- (4.18)

Combining this with (4.17), we get (4.16). #

Actually, we shall not use the full strength of (4.16) but only the weaker
estimate

W2 |ullm < Ow ()| Poull, u € C5°(W). (4.19)
Taking squares and recalling the definition of P, we get

h / (€2/%[uf? + |V o (e*/u)[2)dz < O (1) / 29/ Pyl?de.  (4.20)

This can also be written:

B[ (juf? + bV aul)ds < Ow (1) [ /" Pulda. (4.21)

4.2 Local Carleman estimates at the boundary

Now let Q2 C R" be closed, bounded and have a smooth boundary 052, Let
zo € 0N and assume that P, ¢ are as above in a neighborhood W (in R")
of ro. We want to have (4.21) for v € Cg°(Q2 NW) with u,, = 0. Using
the ellipticity, it is quite classical that we can find local coordinates z1, .., z,
centered at o, such that Q is defined in W by z,, > 0, and the (new) principal
symbol becomes

a(x7£) = é-??z + 7"(.7), 51)7 é-, = (é-la "7§n—1)' (422)
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So
P = (hD,,)?* + R(z,hDy;h) + b(z; h)hD,, . (4.23)
The Lebesgue measure becomes A(z)dz for some smooth and strictly posi-

tive function A(z). Define P, as above. It is now practical to organize the
computations a little differently, so we write

| 1 . 1 .
Py = Q2 + i, Q2=§(P¢+P¢), Q1=2—i(P¢—P¢)-

Here the * indicates that the we take the formal adjoint in L*(W; A\(z)dx;..dz,,)
and norms and scalar products will be in this space for a while. The subscript
J in Q; indicates that we have a differential operator of order j.

Then for all u € C§°(Q N W) with u,, =0, we get

1Pgull” = [|Qaull” + [|Quull” + i [ (Qru|Qzu) — (QoulQru)]- (4.24)

If we could move the @); from the right to the left in each of the two scalar
products, the bracket in (4.24) would become

(1@, QiJulu) = 5(175, Polulw),

and we can hope to estimate this from below as before. (The presence of the
factor 1/2 is explained by the fact that ||Qoul|? + ||Qiu]|? is not in general
equal to ||Pjul/?, but rather to 1||Pyull® + 3||P;ul|*>.) However, we have to
take into account the boundary terms, when carrying out the integrations by
parts that pull over the (); to the left. Because of the Dirichlet condition,
we get no boundary integral, when moving over )y, while ()5 will give rise
to a boundary term from its (hD,, )* term. Notice that Qs = (hD,, )* plus
terms which contain hD,  at most to the power 1. Hence,

i(Qru|Qou) = i(QeQrulu) + h / (@uED, A, 0)dr'. (4.25)

Only the hD,, term in (); can give a non-vanishing contribution to the
boundary integral (because of the Dirichlet condition) so we compute this
term, using (4.23):
Py = (hDa, +i0:,0)> + Ry(z, hDys h) + b(w; h) (h Dy, + 10y, ¢)
Ry(z,hDy; h) + bhD,, + 1b0,, ¢
= P=(0n9)"+ (By— B) +
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Now use that (hD,,)* = hD,, + hu(z) for some smooth function p (which
depends on A) and

Py = P—(0:,9)"+ (B} — R") —i((hDy,)" © (0s,®) + (0, 6) (hDx,)")
to conclude that the hD,, term in Py — P; is 4i(0,,¢)hD,,,, so

1
Q1= ?(P(ﬁ — P}) = 2(0,,¢) hDs, + a tangential operator, (4.26)
i

where by a tangential operator we mean one which contains differentiations
with respect to x4, .., z,_1 but not with respect to xz,,.
Now (4.25) becomes

(QuulQaw) = i(QuQuulw) + 2 [ (01, d)hDs,ulA(@ 0)de’. (4.27)
Using this in (4.24), we get
1Psull? = 11Qaul® + |Quul + (4.28)
oh [ (04, $)ADs, ulPA(,0)da’ + (i[Qs, Qululu),

Tn=

so we can hope to have (4.21) also in the boundary case, provided that

Oan®y, _, >0 (4.29)
A coordinate free formulation of the last condition is that
0
0 > 0, (4.30)
oV |50

where v denotes the interior unit normal of 0€2, for the metric given by the
quadratic form on the tangent space which is dual to a(z, §).

The treatment of the last term in (4.28) becomes more technical because
of the boundary (and requires also the use of tangential pseudodifferential
operators and a division trick going back to a work of V. Ivrii). This was
carried out by Lebeau—Robbiano [52, 53] also in the case of Neumann bound-
ary conditions. We will not go into the technical details and simply state the
result, as it was formulated by Burq [15]: Let P be as above, but of a more
restricted form:

P=Y a,(@)(hDy)* +h S ba(w: h)(hD,)* —1, (4.31)

/=2 la<1

with b, (z;h) = O(1) in C*°(£2). Then we have
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Proposition 4.3 Let P, ¢,Q be as above (including (4.30), (4.81)) and let
W be a sufficiently small neighborhood of o € 0S2. Then for h > 0 small
enough, and all u € C(QN W) with uy,, = 0, we have (4.20), (4.21), with
QN W as the integration domain.

4.3 Gluing local Carleman estimates for a given ¢.

Let O C R™ be closed with smooth boundary, and let W CC R"™ be open.
Let P be of the form (4.9) near W and let ¢ be smooth and real near W.
Assume that W is covered by finitely many open sets Wi, .., Wx such that
(4.20) (or equivalently (4.21)) holds for u € Cg°(2NW;) with u, 5, = 0. Then
we shall see that it also holds for all u € C§° (2N W) with w,, = 0.

Indeed, let 0 < x; € C§°(W;) with X1 x? = 1 near W and apply (4.21)
to xju:

B [ e (xgul? + GhVauf?)da < (4.32)
0Q) / e2/%|x; Pul*dz +O(1) / €2/, x;|ul*da
+0(1) [ [V, xslul*de.
Summing and using that [P, x;] = h X4 <1 ba,j(7; h)hD,, we get
h / 2/ (|uf? + [RVu?)2de < O(1) / 29/h| Puf2dz + (4.33)
0(1)h2/e2¢/h(|u|2+ Y, ul?)de.

For h small enough, the last term can be absorbed by the first member of
the inequality. #

4.4 Construction of ¢ satisfying the Poisson bracket
condition.

Our function ¢ will satisfy

|d¢| > Const. > 0. (4.34)
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Write

p(z,€) = a(z,§) + pi(z,€) + po(z), alz,§) = (A(z)€, €). (4.35)
We will replace ¢ by 7¢ for 7 > 0 large enough. Then
pro(2,€) = p(z,&§ +it¢),) = (4.36)
a(z, &) — a(z, ¢') + 27 (A(2)€, ¢'(x)) + p1(, &) + itpi (2, ¢'(2)) + po(z)
= 7'2((72(.’13, 5) + 2151(.’1), 6))7
with ¢ . ¢ 1
@ (z,§) = a(, ;) —a(z, ¢,) + ;Pl(xa ;) + ;Po(x)a

- 13 1
05, ) = (A@)S, 9 () + (a6 (2).
Let us look for the commons zeros of the real and imaginary parts: First
notice that at such a common zero, we must have || ~ 7|¢'(x)|, uniformly
with respect to ¢, for 7 sufficiently large. Then we get

a(z, ) —a(z, ¢ (z) = Oy(1/7)
{ (A@)E, (1)) = Oy(1/7). (437)
At such common zeros, we compute
05 1 ¢ 1
e ;214(33); + (’)¢(§),
8@2 N Oa § da / " / 1
@ = %(% ;) - %(l’a ¢'(z)) — 2¢" () A(x)¢'(x) + (9¢(;),
W= A )
W pwawE+ (L gy 0,0,
leading to
{q~2,§1} = (4-38)
= (22408, 0" @)A@) ) + (240 (PADE ya)

(02w 5) - 2,8 @) - 20 (AR @),
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Now look for ¢ of the form

$(x) = M, (4.39)
where di(z) # 0. Then
¢ () = "By (x), (4.40)
¢ (x) = "D %Y (2) @ ' (2) + €7V By (x), (4.41)
and (4.38) gives with & = 7|¢/(z)|n, || ~ 1:
{2 @i} = %eww 8419 (@) (A(z)n, (¢'(z) @ 9/ () A(z)n) (4.42)

HAHA@ (2), (0 (2) @ 9/ (2) A (@) + O(B)] + Opp( ).

Here ¢/ (r) ® *4'(z) > 0 and

(A(2)y/ (), (' (z) @ "Y' (2)) A(2)¥'(2)) = (Az)¥' (), ¥ ()" > 0,

so with # > 0 large enough, and for 7 large enough depending on 3, we get
(4.15) with ¢ replaced by 7¢.

4.5 Estimates in a ball.

Recall the situation in Burq’s theorem: O CC R" is open with smooth
boundary, 2 = R" \ O is connected, and P = 3, <5 aqa(z; h)D* is a sec-
ond order, elliptic, formally self-adjoint operator with smooth coefficients in
C*(R2). Moreover P is equal to —A outside some ball B(0, Ry), with Ry > 0.
We may assume that O C B(0, Ry). We also recall that we take the Dirich-
let realization of P, i.e. we realize P as a self-adjoint operator L? — L2
with domain H? N H})(Q). We are interested in estimates for P — A\?, when
A — +oo. Put h =1/, and write

(P — %) = A?(h*P —1). (4.43)

h2P — 1 is then then of the type that we considered above.

Lemma 4.4 Let Ry > Ry. Then there exists 1 € C*°(B(0, Ry)\O) such that

¥ = Const and 22 > 0 on 00, and di(z) is # 0 for all z € B(0, Ry) \ O).
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Proof. First, we can find a smooth real function 1 on B(0, Ry) \ O) such
that ¢y = 0 and % > 0 on 00. Recall that if M is a smooth manifold and f :
M — R is a smooth function, then zy € M is called a critical point, if df (xo)
vanishes. Such a critical point is non-degenerate if the Hessian f”(z,) which
can be defined in local coordinates or more generally as a linear map from the
tangent space Ty, M into itself, is invertible. A Morse function is a smooth
function f as above for which all critical points are non-degenerate. It is a
well-known fact in differential topology that the Morse functions on M form
a set which is dense in C°(M;R). Let 9; be a smooth real-valued extension

of 1o to a neighborhood of B(0, Ry)\ O, and let 15 be a Morse function on the

same neighborhood which is very close to 1 in the norm of C*(B(0, Ry)\ O).
Let 13 be the restriction of 15 to B(0, Ry) \ O. Then the critical points of 15
are of finite number and away from 00. We can modify 13 into a new smooth
function 4 on B(0, Ry) \ O), which has the same critical points as 3 and
such that 4(x) =0, %}Em) > 0 on 00. Let z1,..,zx € B(0,Rs) \ O) be the
critical points of 14. Let [0,1] 3 ¢ — z;(t) € B(0, Ro+1)\ O be smooth curves
with z;(0) = z;, z;(1) € 0B(0, Rs + 1). Then we can construct a smooth
family of diffeomorphisms x; : B(0, Ry) \ O — Q; \ O, where Q; D B(0, R»),
such that k;(z) = = for  near 0O and such that k,(z;) = z;(t). Then the

lemma follows, if we let 9 be the restriction to B(0, Ry) \ O) of ¢y o k7' #

From 1), we form ¢ = 7e¢’¥ as in section 4.4, and get the estimate:
h / 2/ (|uf? + |hVul?)dz < O(1) / 2O (R2P — Vul?dz,  (4.44)
for all u € C§°(B(0, Rz) \ O) with u,, = 0. Recalling that h = 1/, we get
¥ [ (P + \%Vu|2)dx <OW) [ (P~ NpPdr.  (449)
Here we want to remove the assumption that u has compact support.

Take R; with Ry < Ry < Ry, and take x with 1B(0,R1) <X € CSO(B(O, RQ)),
and apply (4.45) to xu:

1
A3/ e2(|uf? + |~ Vu|?)de < (4.46)
B(0,R1)\O A
1
o() / e2|(P — A2)ul?dz + O(1)N? / (|uf? + |~ Vu?)dz,
B(0,R2)\O B( A

where B(0, Ry, Ry) = {x € R"; Ry < |z| < Ry} denotes the open shell of
center 0 and radii Ry, Ry. To the left we estimate the exponential factor from

0,R1,R2)
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below by e and to the left we estime the exponenential factors from above
by e*“, where C > 0 is a sufficiently large constant. It follows that there is
a constant C' > 0 such that

1
/ (Jul? + |~ Vu|?)dz < (4.47)
B(0,R1)\O A
1
o 2,\0/ P — \uldz + O(1 2Ac/ 2 L Zvuldd
(Le B(O’Rz)\o|( Ju[*dz + O(1)e B(O,Rth)(\u\ +15Vul)dz

4.6 Estimate in a shell.

We work in the region |z| > Ry, where h?>P — 1 = —h?A — 1 has the semi-
classical symbol p = £2 — 1. In polar coordinates, z = rw, w € S™ 1, r > Ry,

we get
w* 2
pop e WP

I

where (w*)? > 0 denotes the principal symbol of —Ag.-1. We want to make
Carleman estimates with radial weight ¢ = ¢(r). We get

. L
ps=(p+i¢)" + 5 () — 1,

SO

Repy = p? — (¢/)2+ 55 —1 (4.48)
Imp, = 2p¢,

]' 2 1 U ((’d*)2 /

1 1Repy Imps} = p°¢" + (¢"¢' + —3—)¢'.

We need the last Poisson bracket to be > 0 on the joint characteristics where
both expressions in (4.48) are equal to 0. We shall have ¢’ > 0, so py = 0 is
equivalent to

*\2
p=0, (“;2) =1+ (¢) (4.49)
On this set, we need
¢’ >0, ¢"¢’ Gl (d)l) (4.50)

With 1 = (¢')? we get the linear system of inequalities,

—w +#>0 P > 0.
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This will follow from 5
wl Z _;7 dj > 0

Start by taking ¢ = 2(A —logr), A> 0, for 1 < r < B < e#. Choosing B
very close to e?, we may have v(B) > 0 as small as we like. We can extend
the definition of % to all r in such a way that ¢ > 0 and

_ggdj'go’
T

with equality to the right for » > e*. Then 9 = €2 for r > e* with € > 0 as
small as we like.

In conclusion, we can find a smooth real function ¢ on [1, +00[ satisfying
(4.50), and such that

¢'(r) = \/2(A—logr), 1<r<et—1, (4.51)

¢' is decreasing on [e? — 1, +o00[ and equal to € for r > e (4.52)

Let Ry > Ry. Then for u € C§°(B(0, Ry, R3)) (the open shell), we have
the Carleman estimate,

1
A3 / e ([uf? + 3 VU)o < Oy rol1) / O|(P — N)ul2de.  (4.53)

4.7 Estimate in a ball U shell.

We shall combine (4.47), valid for functions on B(0, R2) \ O, with (4.53).
We choose R;, Ry so that Ry < Ry — 2 and Ry = R; + 1. Choose ¢ as
in section 4.6 and such that ¢(R;) — ¢(R; — 1) is larger than the constant
C' in the exponents in (4.47). Modifying ¢ by a constant, we get ¢ < —eo,
lz] < Ry — 1, ¢ > C + €, || > Ry, for some € > 0.

Let u € C*(B(0, R3) \ O), u)5, = 0, with
(P = X)u=ve€ CP(B(0,Ry) \ O). (4.54)
Then from (4.47), (4.53), we get:
1

2+ “Vu)dr < 4.55
Joo 17+ 3 Vel < (455)

O [ ofrdz +OMe [ (juf + |{ VuP)ds.

B(0,R1,R2) A
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1
/ A (|uf’ + |+ Vul?)dz < O(1) x (4.56)
B(0,R1,R3—1) A

1 1
229 (1ul? + 1= Vul?)d / 22 (1ul? + 1= Vul2)de).
(L(O,R1—2,R1—1) € (‘u‘ + ‘A u‘ ) Tt B(0,R3—1,R3) ¢ (|,U/‘ + |A 'U/‘ ) -’L')

There is a 6 > 0 such that the last term of the right hand side of (4.55)
can be estimated by e times the left hand side of (4.56) and the first term
of the right hand side of (4.56) can be estimated by e~ times the left hand
side of (4.55), when A > 0 is large enough. So, if we sum (4.55), (4.56), we
get rid of these two contributions to the the right hand sides and with

— 07 ‘£C| < R bl
6@ ={ gy ol 5 R

we get

1
229 (|ul® + |~ Vul?)dz < 4.57
Lo €l + [Vl < (457)

o<1)em/ v[2dz + O(1) /

1
e ([ul? + [ Vul*) de,
B(0,R3—1,R3) A

for u,v as in (4.54).

4.8 Estimates for outgoing solutions.

In the previous estimate, we may assume that Rj is as large as we like, and

that ¢(z) = Const. + €|z|, in B(0, £2, 00) with € as small as we like. (The

choice of €, R3, will only affect the ”(O(1)” factors and the required largeness
of A, but not the constant C' in the exponent.) Let u be as before, but assume

in addition that u is outgoing: u = R(A)v, where v € L2 (B(0, Ry) \ O).

comp

For 1, .05 = x € Cg°(R™ [0, 1]), we have
1 1
CIPAule) = +((xulPu)) — (Pulxu) (4.58)
)\2

= () — (ulxu)) + - (o) ~ (vlxu)

= (ulo) = Tufo)) = 20m (ul).

By the Cauchy—Schwartz inequality, we have
1
(1P xJulu) < 2[|ull 5o,ro) 0] 50,70)- (4.59)
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(Recall that u is outgoing, so that u = Ry(A)w for |z| > Ry, for some
w € C5°(B(0, Ry) \ O).
Then by Proposition 2.5

GIP ) =CO) [ |€) PLopo (d6),

8B(0,\)

where C'(A) > 0 and we assume that A > 0 in order to fix the ideas. So the
scalar product in (4.59) is > 0.)

The semi-classical principal symbol of 2[hP, x] is —H,(x) = —2¢-9,x(z),
which is > 0 on the outgoing trajectories (or "rays”). Here by an outgo-
ing ray, we mean a maximal(ly extended) integral curve (necessarily a line
segment) of H, = 2{ - 0, in

{(z,6) e R*™; &2 =1, % < |z| < 2R3}, (4.60)

such that the backward extension (for negative times, as an integral curve of
H,), passes over B(0, %). By an incoming ray, we mean a maximal ray in
the set (4.60) which is not an outgoing one.

If we work in the shell %’* < |z| < 2R3, and consider relative sizes com-
pared to ||u||H1(B(O’%3’%&)), then by using phase space analysis, one can show

that "u is O(e*%3/C)” near the incoming trajectories (this is a consequence
of the fact that u is outgoing, see [38]) and ” O5(e?*%2)” for every § > 0, near
the outgoing trajectories. Also u is exponentially localized to the energy sur-
face £2 = 1, when we restrict = to a shell as above. In view of these facts, one
expects (and can indeed show) that ([P, x]u|u) behaves like the square of a
norm of u. More precisely we have ([17]) for every 6 > 0 and for A > A(4):

1
/ (Juf? + |~ Vul?)dz < (4.61)
B(0,Rs—1,Rs3) A

1 1
—2AR3/Co 2 (1 9 oRon, L
e /B(o,%a,%n('“' + |)\Vu| ydz + e (l-[PaX]UIU),
where Cy > 0. Combining this with (4.57), (4.59) leads to

1
/ e (Jul* + |~ Vu|?)dx < (4.62)
B(0,R3—1)\O A

0(1)62)\0/|U‘2d$+0(1)€2>\(¢+(R3)*%§)/

B(0

1
2 2
(0 + Ve

+0(1)e*X @+ EF0 | u| | 5o, re) |Vl B0, Ro)-
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Since |V¢| < e for & < |z|, the second term to the right can be absorbed
by the left hand side. So can the u-contribution to the last term, if we use
the standard inequality "ab < £a® + 3-b*":

1
O (1) O+ ||| < Sllell® + O(1)eM O+l g2,
With a new constant C' depending on Rj3, we obtain:

1
/B(O R371)\o(‘u|2 + \XVU|2)dx < ¢ / |v2dz. (4.63)

This implies (4.4) and concludes our outline of the proof of Burq’s theorem.

5 Review of non-selfadjoint spectral theory

[Missing piece: Fredholm theory via Grushin problems as in an appendix of
[38].]

In this chapter we review some of the standard theory for non-selfadjoint
operators, and we will essentially follow the book [31]. Let H be a separable
complex Hilbert space. If A € L(H,?H) is compact, we let s1(A) > so(A) >
... \\ 0 be the eigenvalues of (A*A)'/2. They are called the singular values of
A. We notice that s;(A*) = s;(A). In fact, this follows from the intertwining
relations:

A(A*A) = (AA")A, (A*A)A* = A*(AAY).

The singular values appear naturally in the polar decomposition: If A €

L(H,H), then
| Aul)* = (Au|Au) = (A" Aulu) = ((A"A)Pu|(A"A)'Pu) = ||(A"A)'2ulf®.
The operator
U :R((A*A)Y?) 5 (A*A)V?u — Au € R(A)

is isometric and bijective. It extends to a unitary operator that we also
denote by U from R((A*A)/2 to R(A) and to a partial isometry if we put
U = 0 on the orthogonal space (R(A*A)Y/2)+ = N((A*A)Y?) = N(A), we
get the polar decomposition :

A=U(A*A)Y2. (5.1)
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This leads to the Schmidt decomposition of A: Let e, es, .. be an orthonomral
family of eigenvectors of (A*A)'/? associated to the eigenvalues s1(A), so(A), ..

that are > 0. Then
Au =3 s;(A)(ule;) s, (5.2)

where f; = Ue; is also an orthonormal family.
Recall the mini-max characterization of the the s;:

A*A 1/2
sj(A) = inf sup (A"4) Pulu) (5.3)
! persBisdoed epyo  ull?

of codimension <j—1

From that we get the following characterization of the singular values which
is due to Allaverdiev:

Theorem 5.1 Let A € L(H,H) be compact. Then

Spi1(A) = Kergglﬂ) |A— K|, n=0,1,...
Kofrank,Sn

The minimum is realized by an operator K for which s1(K) = s1(A),..,s,(K) =
$n(A), $p11(K) =0, $1(A— K) = $541(4), s2(A — K) = sp42(A),.. .

Proof. If K is of rank < n, then N'(K) is of codimension < n and

A A-K
sni1(A) < sup | Au]l _ II(A = K)ul|

T = <[[A- K.
0AueN (K) || 0Auek ]

To get the minimizing operator write the polar decomposition A = U(A*A)*/?

and take K = U(A*A)l/an, where P, is the orthogonal projection onto the
space spanned by ey, ..,e,. Then

A—-K=U(A"A)Y?(1 - P,),

(A= K) (A= K) = (1= P)(A"A)2U U(A" )1 - P,) = (AA)(1 - P),

and we get the statement about the singular values of A — K. Especially
snt11(A) = ||A — K||. The statement about the singular values of K can be
obtained similarly. #

The following corollary is due to Ky Fan:
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Corollary 5.2 Let A, B € L(H) be compact. Then for n,m > 0:
Sman—1(A+ B) < sm(A4) + sn(B) (5.4)
Sman—1(AB) < s, (A)s,(B). (5.5)

Proof. Let K4, Kg be operators of rank < m — 1 and < n — 1 respectively,
such that
sm(A) = [|[A — Kall, s.(B) = ||B - Kgl|-

Then
Sman-1(A+B) < [|[A+B—(Ka+Kp)|| < [[A—Ka||+||B—Kp|| = sm(A)+s.(B).
The proof for AB is essentially the same. #
Corollary 5.3 We have |s,(A) — s,(B)| < ||A — B]|.
Proof. Let K be an operator of rank n — 1. Then

su(A) < A= K| = [B-K+A-B| < |B-K||+|A- B].
Varying K, we get s,(A) < s,(B)+||A—B||, and we have the same inequality

with A and B exchanged. #

We now discuss Weyl inequalities, and start with the following result to
H. Weyl:

Theorem 5.4 Let A € L(H,H) be compact and let \(A), A2(A), .. be the
non-vanishing eigenvalues of A arranged in such a way that |A1| > [Aa| > ...
and repeated according to their multiplicity (which by definition is the rank
of the spectral projection). The for every n > 1 for which \,(A) is defined,
we have

AL(A) - - A(A)] < 51(A) - .- s0(A). (5.6)

(For notational reasons, we assume that there are infinitely many non-vanishing
eigenvalues of A.)

Proof. For n =1, (5.6) just says that |[A\;(A)| < ||A|l. Approaching A by
a sequence of finite rank operators, we can assume that A is of finite rank
and replace H by the finite dimensional space R(A) + (N (A))*, that we
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denote by H from now on. [[[Haer maaste vi saega naagot om kontinueten
av egenvaerden som funktioner av A.]]] Introduce the space

NH=HAN..NH (5.7)

generated by n-fold exterior products of vectors in H. A™H is a Hilbert space
with a scalar product that satisfies

(ur Ao A uglog A Avy) = det((ujlog)), uj,v; € H. (5.8)

Further, there is a linear operator A"A : A"H — A™H which is uniquely
determined by the condition,

(A"A)(ur A .. Auy) = Aug A A Auy, uj € H. (5.9)

Using a basis of generalized eigenvectors, we see that the eigenvalues of
A" A are the values A;, - ..- A; , with j, # j,, for v # pu. The eigenvalue of
greatest modulus is then A; -..- A,. On the other hand the adjoint of A" A is
A" A*. We also have (A"A)(A"B) = A"(AB). Then (A"A)*(A"A) = A\"(A*A)
and this operator has the eigenvalues s;, (A)-..-s;, (4)? out of which the largest
one is

(51(A4) . sa(A)? = | A" AP = [Ma] -+ A

The proof is complete. #
In the same spirit we have the inequality of A. Horn:
I15;(AB) < ([1(s;(4)s;(B)) (5.10)
1 1

Proof. As before it suffices to treat the case when H is of finite dimension.
The largest eigenvalue of

(A"AB)*(A\"AB) = A\"((AB)*AB)
is equal to (s1(AB) - ..- 5,(AB))%. On the other hand,

(A"AB)*(A\"AB)ulu) = [[(A"AB)ul[* = [|(A"A) o (A" B)ul|?
< A" APIA" BIPlull® < (s1(A) - - - 52(A)" (s1(B) - .. - su(B))*[Jull*,

and taking the supremum over all normalized u, we obtain the required
inequality. #

We next need a convexity inequality, due to Weyl and Littlewood—Polya.
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Lemma 5.5 Let ®(z) be a convex function on R, which tends to 0, when
x — —o0, with ®(—o0) :=lim, , o P(z) =0. Letay > .. > ay, by > .. > by
be real numbers with

Then,

Proof. Approaching ® by a sequence of smooth functions, we can reduce
the proof to the case when ® € C*°. Then @' > 0,

®'(z) —» 0, £ — —oo0. (5.11)

Letting y — —oo in the identity
®(z) = B(y) + / o' (t)dt, (5.12)
y

we get

From the convergence of the last integral, we conclude that f; o' (t)dt < C,
implying that |y|®'(y), is a bounded function for y < 0, which tends to 0
when y — —oo0.

Integration by parts in (5.12) gives

¥(a) = B(y) +[(t ~ )P O, — [ (¢~ )" (0
= 0(y) + (2 =9)2(w) + [ (2 )@ (D)t
Letting y tend to —oo, we get
®(z) = /_ moo(”’ — 18" (t)dt = / (z — 1), 8" (1)dt.

Hence
k

> 0(ay) = [ (3 (@ =002 @)

J =1
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for every t. Let k(t) < k be the largest k < k with az > t. Then

k k(¢) k(t k
S@ -0 = 3 (@~ ) st EESORTR
j=1 j =1 j=1 j=1
Hence Y% ®(a;) < S8 ®(by). #

As a consequence we get the following result of Weyl :

Theorem 5.6 Let A : H — H be a compact operator, and f(z) > 0 a
function on (0,00 with f(0) = 0 such that f(e') is convex. Let \; and s;
be the eigenvalues and singular values of A, arranged with |A1| > |A2| > ...,
§1 > 89 > ... Then for everyk >1 :

k k
> AN < 30 £ (5.13)
1 1
Proof. We know that
k k
> log A < logs;,
1 1

and it suffices to apply the preceding convexity lemma. #

Corollary 5.7 For every p > 0, we have

iwm)v) < ism)ﬁ.

For every r > 0, we have

H(1+r|)\ <[t +7s;(A
1

1

Let A, B be compact operators. With ®(t) = €', a; = logs;(AB), b; =
log(s;(A)s;(B)), we get from Horn’s inequality (5.10) and Lemma 5.5 :

Corollary 5.8 > 7s;(AB) < Y7s;(A)s;(B).

Let Co, C L(H) be the subspace of compact operators. The following
Lemma is due to Ky Fan.
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Lemma 5.9 Let A € C. Then for every 1 < n € N, we have
Z Sj(A) = ma,XZ(UAgbjM)j),
1 j=1

where the maximum is taken over the set of all unitary operators U and all
orthonormal systems ¢, .., P,.

We leave the proof as an exercise, or else see [31].

Corollary 5.10 If A,B € S, then
Y si(A+B) <> si(A)+ > si(B).
1 1 1

We are no ready to discuss the Schatten—von Neumann classes.

Definition. For 1 < p < oo, we put
Cp={A€Cx; > sj(A)P < oo}
1

Theorem 5.11 C, is a closed two-sided ideal in L(H,H) equipped with the
norm

1Allc, = 11(s5(A))5° |-
If p1 < pa, then Cp, C Cp,. The space of finite rank operators is dense in C,
for every p.

We will only recall the proof of the fact that | - ||, satisfies the triangle
inequality. Let A,B € C,, and put §; = s;(A + B), n; = s;(A) + s;(B).
According to Corollary 5.10, we have >27 &; < 3°7 n;, Vn and hence,

[A+ Blley < [l Alley + [[Bllcy

by letting n tend to co.
It remains to treat the case p > 1. ¢; and 7n; are both decreasing sequen-
cies. It suffices to show that

1€ller < [Iml]er- (5.14)

We have
||§||[p = Sup <£>C>>
ceta

1€l gg =1
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by Holder, where g € [1, +o0o is the conjugate index, given by p™' + ¢! =1
and (-, -) denotes the real scalar product on ¢2({1,2,..}). We also know that
the supremum is attained by a ¢ = ¢? of the form ¢} = (Const. > 0)§§’/q and
in particular C]Q is a decreasing sequence. We use partial summation with

E] - E{Sku E0 = 0:

(€, Z@C" > (B —Ej)¢
j=1

n—1

= ZEJCJO B Z =2 j+1 — HnCO + Z HJ CO ]+1)
j=1

j=1

e+ S Y ) (=)

The last expression is < the same expression with & replaced by 7 and running
the same calculation backwards the latter expression is equal to (n, (%)™
Hence (£,¢%™ < (n,¢% < ||n|lew. Letting n tend to infinity, we get (5.14),
and this completes the proof of the triangle-inequality for the C},-norms. #

We notice that [|A| = s1(4) < ||All¢,- The space C} is the space of
nuclear or trace-class operators, and C5 is the space of Hilbert-Schmidt op-
erators. We have the following Hélder type result :

Theorem 5.12 Let p,q € [1,00] be conjugate indices; p~* + ¢+ = 1. If
Ae€C,, BeCC,, then AB € C; and ||[AB||c, < ||Allc,||Bllc, -

Proof. We know that
Y 5(AB) <> s;(A)s;(B)
1 1

and letting n tend to oo, we get from the usual Holder inequuality:
2. 5i(AB) < s ) < lls-(A)lleolls.(B)llee = [l Allc, | Bl
1 1

#

We next discuss the trace of a nuclear operator. If A € L£(H,H) is of finite
rank, we choose a finite dimensional subspace H' C H such that R(A) C H/,
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(H')" € N(A) We then define the trace of A, tr A as the trace tr A, of the
restriction of A to H'. We check that this does not depend on the choice of
‘H' and that tr A is the sum of the finitely many non-vanishing eigenvalues
of A (each counted with its algebraic multiplicity). We see that

A trA (5.15)
is a linear functional on the space of finite rank operators. Moreover,
tr Al < D[N (A)] < ([ Ale,- (5.16)

We can then extend (5.15) to a continuous linear functional on C; and we
still have
tr A[ < [[Allc,.- (5.17)

In the case of finite rank operators, we also have
tr AB = tr BA. (5.18)

Let now A € C,, B € C,, where p, q € [1, 0o] are conjugate indices and choose
Ay, By, v =1,2,.. of finite rank, so that |A - A,||c, = 0, ||B — B,||¢, = 0.
Then

”AB - AVBV“CI = ||(A - A,,)B + A,,(B - BV)||01
<[[A=AlclBllc, + |14 llc,|[B = Bullc, = 0, v — oo.

Using this also for BA and the cyclictiy of the trace (5.18) for finite rank
operators, we obtain it also in the case A € C,, B € C,, where p, q € [1, 0]
are conjugate indices.

Remark. There is a simple way of extending most of the theory to the case
of operators A : H; — Hs, where Hy, Ho are two different Hilbert spaces.
Consider namely the corresponding operator

(21 8) My © Hy — Hy B Ha, (5.19)
and say that A belongs to C, if the operator in (5.19) does. We leave these
extensions as an exercise for the reader, and notice simply that the cyclicity of
the trace still holds in this setting, namely if A : H; — Ho, and B : Hy — H;
belong to C, and C, respectively, where p and ¢ are conjugate indices.
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We next discuss determinants of trace-class perturbations of the iden-
tity operator. Let first A € L(H,H) be of finite rank and chose a finite
dimensional Hilbert space as above. Then we define

det(1 — A) = det((1 - A),,) = H(1 —X(4)), (5.20)

J

where \;(A) denote the non-vanishing eigenvalues, repeated according to
their multiplicity. We remark that

[det(1 — 4)] < T[(1+ X (A)) < [T+ 55(A4)) < X5,

where the the second inequlity follows from Corollary 5.7 . We want to extend
the definition to the case when A € ;. Let first I be a compact interval and
let I 5t — A; be a C! family of finite rank rank operators, with R(4;) C H/,
N (4;) € (H')* for some finite dimensional subspace H' which is independent
of t. We first assume that 1 — A; is invertible for all £ € I, or in other words
that 1 — A\;(A;) # 0 for all ¢t and j. Then det(1 — A;) # 0 and by a classical
formula,

%logdet(l —Ay) = —tr ((1 - At)_lg(At)) = —tr ((%At)(l — A)7h.
Hence,

% det(l — At)

0 9
= |— — < _ -1 —A ‘
)| = g losdet(1 = 4)] <11~ A) Ak

In particular, if 7 = [0,1], A; = tA; + (1 — t) Ay, we get

|log det(1—A4;)—logdet(1—Ag)| < sup ||(1—(tA1+(1—t)A40)) || A1—Aollc, -

0<t<1
(5.21)
Now let A € Cy. If 1— A; is not invertible, we put det(1—A) = 0. Assume
then that 1 — A is invertible. Let A, be a sequence of finite rank operators
which converges to A in C;. For v large enough, we have ||(1 — A,)7|| < Cy
for some fixed constant Cy and more generally ||(1 — (tA, + (1 —1)4g)) || <
C(). Then

|logdet(1 — A,) —logdet(1 — A,)| < Co|lAy — Aulley
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and consequently lim,_,(logdet(1 — A,) —logdet(1 — A4,)) exists. We then
put

det(1 — A) = det(1—A,) exp lim (logdet(1—A,) —logdet(1—A,)). (5.22)
Notice that
| det(1 — A)] < TI(1 + s;(A)) < el (5.23)
Using approximation by finite rank operators, we also see that
det((1 — A)(1 — B)) = det(1 — A) det(1 — B). (5.24)

By the same argument, we can extend (5.21) to general trace clacc operators
for which 1 — (tA; + (1 — t)Ap) is invertible.

We now add a complex variable z € C and consider the function det(1 —
zA). If A is of finite rank, then this is an entire function of z. If A € C,
let A, — A be a sequence of finite rank operators. Then |det(1 — zA4,)| <
el#l4vller Tf 2);(A) # 1, V3, then det(1 — zA4,) — det(1 — zA) with locally
uniform convergence in C \ U;{1/);}, and it follows that det(1 — zA) is a
holomorphic function on this set, which verifies

|det(1 — zA)| < elllenl?l, (5.25)

It follows that det(1 — zA,) converges to an entire function f(z) locally
uniformly on C. If z = 1/X;(A) where )\;(A) is of multiplicity m, then exacly
m eigenvlues of A, will converge to \;(A) while the others will stay away
from a neighborhood of this point (when v is large enough). Considering the
argument variation (Rouché), we conclude that f(z) vanishes to the order m
at 1/X;(A) and in particular we have f(z) = det(1 — zA) also at that point.
In conclusion, we have

Proposition 5.13 Let A € Cy. Then Da(z) := det(l — zA) is an en-
tire function whose zeros counted with multiplicity coincide with the values
1/A1(A),1/A3(A), .. counted with the multiplicities of A1(1), A2(A), ...

Observe that
D4(0)=1 (5.26)

Also observe that D4(z) is of subexponental growth in the sense that for
every € > 0 there exists a constant C, > 0 such that

|D4(2)] < Cee?. (5.27)
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In fact, by a limiting argument, we have
o
[Da(2)] < JJ(1+ |2]s;(A H (1+ |z|s;(A Z:N+1 ANl
1 1

Here the prefactor is of polynomial growth for every fixed N and for a given
e > 0, we can always choose N > 0 so large that the exponent is < €|z|.

The next observation is that W (z) = [I3°(1 — 2A;(A)) is also an entire
function of subexponential growth. This follows by the same argument, if we
recall that Y27° |A;(A)| is convergent. We now use a special case of a theorem
of Hadamerd (see [2]): Since D4(z) and W (z) have the same zeros (counted
with multiplicity), we have

Da(z) = W(2)e?®),

where g(z) is an entire function. It is also clear that we can choose g with
g(0) = 0. The function

Re g(z) :=log|Da(z)| — ) _log |1 — Az| (5.28)
1
is harmonic. Let R > 2. For |z| < R/2, we have

Reg(z) = / Pr(z,w)Re g(w)l(dw), (5.29)

lw|=R

where Pg is the Poisson kernel for the disc of radius R and £ denotes the
length element on the boundary of this disc. By a scaling argument, it is

easy to see that
1 C’ R

where C' > 0 is independent of R. Using the subexponential growth of D 4(z),
we get

/| o Pl w) log | Da(w) (dw) < %eRR < CeR, (5.31)
w|=R

for R > R, large enough. On the other hand,

\ " r(2, W Zlog\l—)\w\é (dw) |<Z /I |log |1 — \jw||¢(dw)
R w|=R
(5.32)
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If |\j|R < 3, we write |log|l — Ajw|| < C|\;|R and the sum over the

corresponding js in (5.32) can be bounded by
C
> §27r|)\j|RR =2rCR Y |\|=0(R), R— oo. (5.33)
Ail<3k I\ 1<z%
If 3 < |\|R < T, where T > 1 is independent of R, then with a =
AR €[5, T):
= [ Jlog 1~ Ajulf(dw) = [ log|1 — ac||é(dC)
= og |1l — Ajwl|[l(dw) = ogll—a :
RJw=r'® ’ =!8
With ¢ = €? we get
11— a¢]* = (1 —acosh)? + a*(sin H)?

1
=1+a®—2acosf = a(— +a—2cosf) > 2a(l — cosb).
a

Consequently,
1

E |lw|=R
Let us estimate the number of A; in this case:

Y 1<2R Y \l=or(R)

1 1 T
5 <IN IRST s <IN IR

|log |1 — A\jw||¢(dw) < Cr.

Hence

1
> 7 uix |log|1 — A\jw||/l(dw) = or(R), R — oo. (5.34)

3<INIRET

It remains to consider the case |\;|R > T'. Here log|1—A\;R| ~ log(|A;|R).
Hence, with constants C and Cj that are independent of 7"

1
> 7 [log [1 — Mjwl[f(dw) < C Y~ log(|\|R)
\[R>T AU IwI=R I\ | R>T
<C5; Y INPRI =GR YD N
INI>% INiI>%
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Put 6 = 1/p, 1 < p < oo, and let ¢ be the conjugate index. Then, if N
denotes the number of A\; with |A;| > T/R, we get from Holder’s inequlity:

S <N ) (5.35)

T T
[A1>% [\ >%

Here NT/R < Y |\j| < C, s0o N < CR/T and the expression (5.35) is
bounded by CRY4/T/4, Hence

1
Y L[ gl = Auljedw) < crR T =SB (5.36)
nirer Bt /jwi=R T4
Combining the three cases, we find
> CR
| " RPR(z,w)(ZlogH — A\jw|)e(dw)| < or(R) + e o(R), R — o
w|= 1 q

(5.37)
Combining this with (5.28), (5.29) and (5.31), we get

R
Reg(z) < o(R), on |z| < 3

Now we can apply Harnack’s inequality to the function Re g — o(R), which
is < 0 on the disc |z| < R/2 and > —o(R) at 0 and conclude that

R
Reg > —o(R) on the disc |z| < T

Since ¢ is harmonic, it follows from the last two estimates that Reg = 0.
Hence g is constant and since we have chosen g with ¢(0) = 0, we get g(z) =0
Vz € C. We have then showed

Theorem 5.14 Let A : H — H be a trace class operator with the non-
vanishing eigenvalues A1 (A), A(A),.., 0 < N < oo repeated according to
multiplicity. Then D4(z) = det(1 — zA) satisfies

Da(z) =[] (1 - \;2), z€C. (5.38)

—

j=1

From this we get the important Lidskii’s theorem as a corollary :
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Corollary 5.15 If A € C; we have
N
trAd=>" \(A), (5.39)
1

where A\j(A) are the non-vanishing eigenvalues as in Theorem 5.14.

Proof. We know the result when A is of finite rank. In this case, we also
know that

D _ 0 \ogdet(1 - 24) = —tr (1 — 24)71A)
D 9: ogde = ’

away from the zeros of z — det(1 — zA). In particular,

= —trA, (5.40)

when A is of finite rank.

When A € (4, let A, be a sequence of finite rank operators converging
to A in the C; norm. Then Dy, (2) — Da(z), D) () — D!;(z), when
v — 0o, uniformly for z in a neighborhood of 0. Since D4(z) # 0 in such a
neighborhood, we have also

D, (0)  D4(0)
Dy, (0)  D4(0)

By (5.40) we know that the right hand side of the last relation is equal to
—tr A, and we also know that this quantity converges to —tr A. Consequently

(5.40) remains valid for general trace class operators. In view of Theorem
5.14, we know on the other hand that

D/4(0) -
=—=> Xi(4),
Da0) =~ 5N
and the Corollary follows. #
The last proof also shows that
Diy(z) _ 0 = o A(4)
= —logD =—tr(l—zA) "A=— —_— 5.41
DA(Z) Oz 0og A(Z) I'( z ) ;1_2)\.7(14)’ ( )

for all z with 1 — 2X;(A) # 0, Vj.
We now turn to some other questions, that will be of use.
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Proposition 5.16 Let Hy, H1, Ho be complex separable Hilbert spaces. Let
Q2 C C" be an open set and let Q2 > z — K(z) € C1(H1) be a holomorphic
function. Then det(1 — K(z)) is a holomorphic function on Q2 and if zy € Q
is a zero of order m > 1 of this function, and A(z) € L(H1,Hs), B(z) €
L(Ho, H1) depend holomorphically on z € 2, then

rank ( /7 A(2)(1 - K(2))*B(2)dz) < m, (5.42)

if v is the positively oriented boundary of a sufficiently small circle centered
at zp.

Proof. We know that 1 is an eigenvalue of K(z) of a certain multiplicity
Ny, defined to be the rank of the spectral projection

1
1 :—/ A — K(z)) " tdA,
() = 5 [ (A= K (z0))
where « is the positively oriented boundary of a small disc centered at A = 1.
For z close to zy, we put

1 -1
(z) = 5= [ (A= K(z) ",
and we notice that this is the sum of the spectral projections corresponding
to the Ny eigenvalues \jy(2), Ajo+1(2), --s Ajo+ny—1(2) (repeated according to
multiplicity) that are close to Aj,(z). m is then also the order of vanishing
of (1=X;(2)) .. (1 = Ajo+no—1(2)) (if we note that det(1 — K(z)) = det(1 —
K(z)II(z))det(1 — K(2)(1 — II(2))) ). The range of II(z) is of constant
dimension Ny and we can find a basis e;1(2),..,en,(z) of this space which
depends holomorphically on z (possibly after restricting z to a new even
smaller neighborhood of zj.
Define R, : H; — CY by R, (2)u(j) = a;j(u, z), where I1(2)u = ¥1° a;(u, 2)e;.

Define R (2): CN — H; by R_(2)u_ = X1°u_(j)e;(z). Then

(11;5(2()2) R_O(z)) My % CN s 3, x Mo

is bijective with inverse
< E(z)  Ei(2) )
E_(z) E~T(z)
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where E_, is the matrix of the restriction of K (z)—1 to R(II(z)) with respect
to the basis e1(2), .., en,(2). Hence det E_,(2) = [17% (1 — Xy (2))...(1 —
Ajo+No—1(%)) has the same order of vanishing at z = 2z as det(1 — K(z)). It
then suffices to apply Lemma [[... som skall ingaa i en foersta del av detta
kapitel daer vi behandlar Fredholm teori med hjaelp av Grushin problem]]|.

We end this chapter by recalling Jensen’s formula and the standard ap-
plication to getting bounds on the number of zeros of holomorphic functions.
Let f(z) be a holomorphic function on the open disc D(0, R) with a contin-
uous extension to the corresponding closed disc. Assume that f(0) # 0 and
f(z) #0 for |z] =

Assume first that f(z) has no zeros at all. Then log |f(z)| = Re log f(z) is
a harmonic function in the open disc which is continuous up to the boundary,
and the mean value property of harmonic functions tells us that

log £(0)| = 5 || log|f(Re")lab.

We now allow f to vanish and let 2, .., zy be the zeros repeated according
to their multiplicity. Since f is not allowed to vanish at 0 or at the boundary
of the disc of radius R, we have 0 < |z;| < R. Then

P = 1) [ s

j=1

is holomorphic in the open disc, continuous up to the boundary and has no
zeros in the closed disc of radius R. Moreover |F(z)| = |f(z)| when |z| = R,
so according to the preceding paragraph, we have

]_ 21 i
log |F(0)] = 5- [ log | (Re!") ao.

Expanding the left hand side, we get Jensen’s formula :

2 X
log [£(0 |+Zlog‘ | 27r/o log | f(Re™)|db. (5.43)

Zj

A standard application of this formula is to notice that if N(R/2) is the
number of zeros z; of f with |z;| < R/2, then we get

R 27 )
N(y)log2 < o [ log| (") a8 ~ og | £(0)] (5.44)
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6 Global upper bounds on the number of res-
onances

In this chapter we shall show that in standard situations and for odd dimen-
sions > 3, the number of resonances in a disc D(0,r) (of center 0 and radius
r)is O(r™), r — oo. It will be convenient to formulate the result in the black
box setting of section 2.3 of chapter 2, and after that we will mention some
of the history of this result. The methods come to a large extent from the
theory of non-selfadjoint operators, and can therfore be viewed as classical.

Let P : H — H be as in chapter 2, section 2.3, so that H is given by the
orthogonal decomposition (2.30). Introduce the torus M = (R/2RZ)" with
R > Ry and identify B(0, Ry) with its image under the natural projection
R" — M. Put H* — H*. The domain D* = D(P*) is by definition

D = {xu1 + (1 — X)uz; us € D, up € H*(M)}. (6.1)

Here x € C§° has its support in a small neighborhood of B(0, Ry) and is
equal to one near that set. We view x both as an element of C§°(R"™) and
as an element of C§°(M). It is easy to see that the definition (6.1) does not
depend on the choice of . For D(P*) > u = yu; + (1 — x)ua, we put

Phu = P(xur) + (=A)((1 = x)us), (6.2)
and again, this does not depend on the representation of w.
Lemma 6.1 P! is self-adjoint and has purely discrete spectrum.

Proof. It is easy to see that P* is symmetric and we leave the details to the
reader. Let u € D((P")*), (P")*u = v, v € H*. We claim that u € D(P¥):
First we use that

(u] — Ag) = (v|g), V¢ € C5°(M \ B(0, Ry)),

SO that —A’U, =vin M \ B(O, RO) a,nd hence
U A\ BORo) © HZ (M \ B(0, Ry)).

After subtracting an exterior part from u, we may assume that yu = u, with
x as above. Now we can view u,v as elements of H, and from the relation
(P*)*u = v, it follows that

(u[Pg) = (vl9),
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first for all ¢ € D with support in a neighborhodd of supp x, then for all
¢ € D. Since P is self-adjoint, we get u € D and the claim follows.

Let v; € H*, j = 1,2, ... be a bounded sequence and consider u; = (P* +
i)~lv; € DF. With x as before, we first see that (1—x)(P*+i) lv; = (1—x)u;
is bounded in H2(M) and hence has a convergent subsequence in H*. As for
xu;, we compute (P + i)xu; = [—A, x]u; + xv; =: wj, so w; is bounded in
H. Now write xyu; = (P +14)"w; = (P +4)"'xw;, where x < ¥ € C°(R™).
Since (P +14)~t¥ is compact, yu; has a convergent subsequence in H and in
H*. Tt follows that (P*+ i) : H* — H* is compact. Hence P* has purely
discrete spectrum. #

Let N(P* I) be the number of eigenvalues of P¥ in the interval I. We
assume

N(P*,[-)A]) = O(1)@(N), A>1, (6.3)

where @ : [1,00[— [1,00[ is continuous strictly increasing, with ®(1) = 1.

We also assume:
B(t) > t3, (6.4)

vC > 1, 3C(C) > 1, such that (6.5)
®(Ct) < C(C)D(1), $(CA) < C(C)$(N), At >1,

where ¢(\) = @71()).

Let A1, A2, As, ... be the eigenvalues of P* repeated according to multiplic-
ity and arranged so that |A;| < |2 < .... The eigenvalues of the compact
normal operator (i—P*)~! are then (i—\;)~!, and the corresponding singular
values are given by

1 1

s;((i—PH ) = = = . (6.6)
’ i=X1 (A
It is easy to see that the property (6.3) is equivalent to
1
sili= P < 20 67)

For the same operator P, let M be a second torus and P the corre-
sponding operator analogous to P!. We identify M and M by means of a

diffecomorphism which acts like the identity near B(0, Ry). In this way, we
can view both P and P* as operators on M (i.e. as operators H* — H*.
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(Notice however, that P will not be self-adjoint with respect to the scalar
product of #* but for another one which gives an equivalent norm.) We have
the resolvent identity:

(i—P)t=(—-PY 4+ (i—P)"Y(P - P¥(i— P} (6.8)

Now recall some facts from Chapter 5 about singular values. If K : H —
‘H is a compact operator, then the jth singular value (i.e. the jth eigenvalue
of VK*K counted with multiplicities in decreasing order) obeys Ky Fan’s
identity
si(K)=_inf |[K~R|| (6.9)
rank (R)<j—1

From this we deduce the wellknown inequalities:
Sjtk—1 (K + L) < s (K) + Sk(L), (610)

sin-1(KL) < 5;(K)sp(L), (6.11)

for j,k > 1. Applying this to (6.8), we see that P also satisfies (6.7). This
shows that the assumption (6.3) does not depend on the choice of M.

Later on we will also need the following information which follows from
(6.9): If K is a compact operator, then for every j > 1, there exists a bounded
operator R of rank < 57 — 1, such that

$u(K) =s,(R), 1<v<j—1, (6.12)
si(K) = [|[K — R[| = s1(K — R),
$,(K) = s,_jt1(K —R), v > j.
The same argument shows that
- _ C
si(P —2)7'x), s;(x(P —2)7") < 5G)’ (6.13)

for x € C°(R™), 1p(0,ry) < X and for z in any fixed comapct subset of the
resolvent set. This estimate is the starting point of the proof of the following
result:

Theorem 6.2 Let n > 3 be odd. Under the assumptions above, the number
N(r) of resonances in the open disc D(0,r) satisfies

N(r) < Ce(r?), r > 1. (6.14)
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Before starting the proof we give some examples and make some historical
remarks. Let g be a smooth Riemannian metric on R™ which coincides with
the standard Euclidean metric on R"™ outside a bounded set, let O CcC R"
be open with smooth boundary, let V' € Lg5, (R™ \ O), and let P be the
Dirichlet or Neumann realization in L?(R" \ O) of the Schrodinger operator
—A,+V(x), where A, denotes the Laplace-Beltrami operator for the metric
g- Then we can take ®(r) = r"/2 and we get N(r) < Cr". In the case,
V =0 and A, = A everywhere, this was proved by Melrose [54]. Zworski
[101] obtained it for —A + V without any obstacle, and Vodev [92] obtained
it for —A, on L*(R"). Theorem 6.2 as stated above is essentially due to
Sjostrand-Zworski [80], but in the proof below we shall mainly follow Vodev
[93], who extended the result to certain non-selfadjoint operators and who
also obtained sharp results in the even-dimensional case [95, 96]. In the
context of hyperbolic manifolds, analogous results have been obtained by
Guillopé—Zworski [34], Froese-Hislop [25].

Proof. Let

LBo,ro) < Xo < X1 < X2, Xj € C5°(R")
as in Chapter 2. Let u € C, argpu = %, || = 7 > 1. Then we know that the
resonances A are contained in the set of A, such that (1+ K (X, p)x) : H — H

is not invertible, where 2 < x € C§°(R™). Here K is the same as in Chapter
2, (2.39), (2.40), (2.41):

K\ 1) = [A, X0l Ro(\) (1 =x1) = [A, xo] R(1)x1 + (1® = X*) xa () x1- (6.15)

We will restrict the attention to {\ € C; |A — pu| < 3r}. Since K (A, p)x is
not necessarily of trace class, we shall first decompose it into one term with
small norm, and one term which is of trace class. This decomposition only
concerns the last term in (6.15).

Write
R(p)x1 = (P —ilp) (P =) (P —1)"x,

and conclude that

o
s (vaR(u)xs) < min(, S, = 1.2, (6.10)

For j(r) = O(1)®(r?), we can decompose :
x2R(w)x1 = A, + By, (6.17)
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where

Al < ﬁ, (6.18)
sj(B) = {3(3(25?83(2,11 <j <), (6.19)

We have already seen in Chapter 2, that if |u| = r is large enough, then

1A, xalRGoal < 7 (6.20)

Write
1+ K\ p) = (6.21)
1+ D+ (1* = M) B + [A, xo] Ro(A) (1 = x1)x,
where D = (u? — A?)A — [A, x2o]R(u)x1 and || D] < 1/2,
1+ K\ p)x=(1+D)(1+K), (6.22)
K== X)1+D) B+ (1+D) YA, xo]Ro(N) (1 = x1)x.

We shall take the determinant of 1 + K , and in order to estimate this
determinant, we shall first estimate the singular values of the last term in
the expression for K.

For Im A > 0, a > 0, we have

$;([A, Xo] Ro(A) (1 = x1)X) < Ca(A)*5 /™, (6.23)
and for Im\ < 0 :

€C<)‘>, Vj

R LN, > oyt (62

531, o Re(W) (1 — X)) < {

We postpone the proof of these two estimates and finish the proof of the
theorem. Let .
h(\, 1) = det(1 + K)

For A = i, we get

h(, ) = det(1 + (14 D) A, xo]Ro(1) (1 — x1)X)-
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In this case we can use the off diagonal exponential decay of the distribution
kernel of Ry(p), to see that the distribution kernel k(z, y) of [A, xo] Ro()(1—
X1)X satsifies:

Z ||ag,yk($’y)||L1(R2“) < O(l)e_r/co, (625)

|a|<2n+1

for some Cy > 0. On the other hand it is well known that the trace class
norm of [A, xo]Ro(1t)(1 — x1)x is bounded by a constant times the left hand
side of (6.25), so

1(1 4+ D)7HA, xol Ro (1) (1 = x1)xllew < O(1)e™"/0. (6.26)
Use also the Weyl inequality
| det(1 <[+ s5(K)) < ellKler (6.27)
1
to conclude that .
& S I p)l <G, (6.28)

for r = |u| sufficiently large.

We shall next find upper bounds for |h(A, u)|. It follows from (6.23),
(6.24), that (6.24) holds also in the upper half plane. We may assume that
|(1+ D)7 <2 and get

H (1+255((1% = A)B + [A, xol Bo(N) (1 = x2)x)).
Use that for j = 2k — 1: s;(A; + A2) < si(Ay) + sk(A2) by Corollary 5.2:

h(A p)| < H + 2595 1((11> — A?)B) + [A, xo] Ro(A) (1 — x1)x))?

< kl:[ (1+ 2sx((u* — X*)B))? ]f[ (1 + 258 ([A, xo] Ro(M) (1 = x1)x))”

:F1F27

where the last equation defines the two factors Fj in the natural way. Clearly,
Fy < exp(O(1)r235° s,(B)). Hence by (6.16), (6.19):

0 i(r) O(1)8(r?) 2



Hence
Fy < exp(C1®(r?)). (6.29)

Using (6.24):

F2 S ( H 620()\)) %
1<k<C{N)n—1

exp(d Y T4 G 3 A7 4 Chy S0 (N2,

k>C(x)n—t 1<) >

where we are free to choose a1, as > 0. Take a; < n < as. Then evaluating
the three sums in the last exponent, we get

F, <expC(\)". (6.30)

Consequently, for |\ — u| < 3r, argu =7, |u| =r:

[h(A, p)| < eCUTH202)) < €207, (6.31)

by Jensen’s formula for the disc D(u, 3r), we see that the number of zeros
of A = h(\, p) in D(u,2r) is < O(1)®(r?). Now write (cf (2.46))

R(\) = QM m) L+ KX p)x) (1= K\, p)(1 - X))
= QA )1+ K\ p)" (1+D)" (1= KX m)(1-x)
= A\, p) (L + K (A 1)) "B\, ),

where A, B are holomorphic in A. After multiplying to the left and to the
right by functions in C§°, we can apply the propositions 5.16, 2.3, and con-
clude that the number of resonances in D(u, 2r) is bounded by the number
of zeros of h(-,u) in that set and hence by O(1)®(r?). The theorem follows.

#

It remains to prove (6.23), (6.24). We start with the first of these esti-
mates. For |A| < 1, we use that [A, xo|Ro(A)(1 — x1)x has a distribution
kernel in Cg°. If €2 is a large ball, we can consider our operator on {2 and
write

[A, X0l Ro(A) (1 — x1)x = (1 — AQ)_N(l - AQ)N[AaXO]RO<)‘)(1 — X)X
where Aq denotes the Dirichlet Laplacian in 2. Here

(1 - AQ)N[A7 XO]RO(/\)(1 - Xl)X
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is uniformly bounded and the jth singular value of (1 — Ag)™" is ~ jaN

by the known (Weyl) asymptotics for the eigenvalues of —Agq.
For |A| > 1, we follow the same idea, but we have to be more precise. Let
us first show that if x1, x2 € C§°, then

1
X1 Ro(A)x2 (W) H, — H, scR,ImA>0. (6.32)
Indeed, on the Fourier transform side, the kernel of x1 Ry(A)x2 becomes
d¢ "
/Xl 6 C )\QXZ(C 77) (2 ) ) é- n € R".

If [¢2— 2| > & ¢ e R", then |K(£,n)] < ON@—'")‘” and x,R(\)yx2 =

c Al
Os (|/\|) H® — H* Vs.
If [¢2— % is smaller than 2l then [¢| ~ ||, and hence [V(¢2=)?)| ~ |A].
We then replace R} by the deformed contour:

. S e o N S
for a suitable x, and along I', we have
~ C2
¢? =+ 2iex() 7 — EXP(-),

q

and we get |2 — A2| > |\|/C. Using Paley-Wiener, we obtain (6.32).
Next we show that if x1, x2 € C;°(R"), supp x1 N supp x2 = 0, then

x1Ro(A)x2 = O ((NY™ 1) : H® — H**™_ for m > 0. (6.33)
In fact, if m = 2k, we notice that
(=A+1)Ro(A) = (1 + A)Ro(N) + 1
and hence outside supp xo:
(=A+1)Ry(A)x2 = (1 + A)Ro(M)x2
By iteration, we get toutside supp xo:
(—A + 1)FRo(M)x2 = (14 A%)* Ro(N)x2,

71



S0
X1(=A + 1) Ro(AN)x2 = (1 + X*)*xa Ro(A) xa-

This gives (6.33) for m = 2k, and by interpolation, we get it for general

m > 0.

Proof of (6.23). Let €2 be as before, so that the jth eigenvalue of (—Agq +
1)}/2 is ~ j1/". Then as before,

[A xolRo(M) (1 = x1)x = (1L = Ag) ™% (1 — Ag)3[A, Xol o (M) (1 — x1)x -

~

=0((\)*) in operator norm

It suffices to use s;((1 — Aq)™2) ~jn 4
Proof of (6.24). Thanks to (2.5), (6.23) it suffices to show that

VR X IOV
where ¢1, qo are differential operators with C§° coefficients of order < 1 and
0 respectively and where T'()) is given by (2.6). Clearly, ||T())|| < e so

the first estimate in (6.34) is obvious.
We observe that T'(A\) = A" "2E(A)*E()), where

s (@TVa) < { (6.31)

B u(w) = [ ™ Ix(y)u(y)dy. (6.35)
Write
TA) = A"2EQ) (1 — Agn1) (1 — Agn1)*E(N). (6.36)
Here L
5i(1= M) ™) < (2) 77 (6.37)
(1 = Agn1)*EN)go|| < 2N (Ck)?*, (6.38)

where the last estimate follows from the Cauchy inequalities. We deduce
that

s @TNao) < ceﬂl(%)f_fl(c*k)% (6.30)

Ck
))219.

S C€3M| (W
A
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Choose k so that _
Ck 1

]-1/(7%1) T e’

i.e. so that
41/(=1)

Ce
Actually we have to modify this choice a little bit since £ should be an
integer.) Then (6.39) gives

k=

1
T
s;(T(\) < C3Ne ™25 (6.40)
For j=1 > |Al, we get
_1
in—1
s;(T(\) < Ce &
which is even better than (6.34). This completes the proof of (6.24). #

7 Resonances for long range perturbations of
—h?A, analytic distorsions

7.1 Operators of black box type

Our operators will depend on a Planck’s constant h €]0, hg], hg > 0. Let H
be a complex separable Hilbert space with an orthogonal decomposition

H =Hgr, ® L*(R"\ B(0, Ry)), B(0, Ro) = {z € R"; |&| < Ro}, Ro > 0.
(7.1)
The orthogonal projections will be denoted by u +— U\ g0, R0)> U 7 URm\ B(0, Ro)"
Sometimes we let the characteristic functions 1p(o,z,), 1r»\B(0,r,) indicate the
same projections.
Consider an unbounded self-adjoint operator depending on h:

P:H—H (7.2)

with domain D = D(P). Recall that D is a Hilbert space with norm ||u||p =
(P + i)ul|y. Let H*(R"™) be the standard Sobolev space, but equipped
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with the h-dependent norm ||u||gs = |[{(hD)*u||z2. Assume that for every
Lp(o,re) < X € Cg°(R") independent of h,
the multiplication operators 1 — x : L*(R") — H, H — L*(R") (7.3)
restrict to bounded operators H*(R") — D, D — H*(R"),
with norms bounded uniformly in h.
Assume
x(P +14)~" is compact, (7.4)

for every x as in (7.3). This assumption will be strengthened later. Further
assume that

(Pu)|Rn\B(O,R0) = Q(U|Rn\B(O,R0))’ U € D, (75)
where
Qu= 3} aa(z;h)(hDs)", (7.6)
lo| <2

ao(x; h) = aq(x) is independent of h for |a| = 2,

and a, is bounded in C;°(R") when h varies .

We further assume that () is formally self-adjoint on R" with

> Lptal0)E" > P (7.7)

Zwszaa(x; h)E* — €2, |x| — oo, uniformly w.r.t. A. (7.8)

Example 1. Let O CC R™ be an open set with smooth boundary and let
P be the Dirichlet or Neumann realization of —A in L?(R"\ O). Then (cf.
Chapter 2), h®>P satisfies the assumptions above, with H = L?*(R" \ O).
(Take Ry large enough so that the ball of radius Ry contains O.)
Ezample 2. P = —h*A+V (x), where V € C{°(R") with V(z) — 0, z — oo.
H = L*(R").

Let R > Ry, T = (R/RZ)", R > 2R. We can view B(0, R) as a subset
of T'. Put

H .= Hp, ® L*(T \ B(0, Ry)), (7.9)

with orthogonal decomposition. We define a self-adjoint operator

Pl —

74



as follows: The domain D* = D(P*) is by definition
{ueHxueD, (1-x)ucHT)}

where 1gor,) < X € C§(B(0,R);[0,1]). (This does not depend on the
choice of x.) Let
Qu=Y db(a;h)(hD)"
lal<2

be a formally selfadjoint differential operator on T satisfying (7.6), (7.7) and
with @f,(z;h) = an(z;h) for |z| < R. With x as in the definition of D, we
put

Ply = Pxu+ Q*(1 — x)u, u € D" (7.10)

We have
Proposition 7.1 P! is self-adjoint with discrete spectrum.

Proof. It is easy to see that P is symmetric. Let u € D((P*)*), and write
(P)*u = v, with v € H*. Then

(ulQ*9) = (v]9),

for all u € C°(T \ B(0, Ry)), so Q*u = v in T \ B(0, Ry), in the sense of
distributions. From the ellipticity of the operator in this region, it follows
that

€ Hio(T \ B(0, Ro)).

U\ B(0,Ro)

After subtracting an exterior part from u, of class H? and hence belonging
to D(P*), we may assume that yu = u, with x as in the definition of D(P*).
We now have

(u| P§) = (v]@), (7.11)

for all ¢ € D with support in B(0,2R). (Here we may view u,v as elements
of H since their supports are contained in B(0, R).) Because of the support
properties of u,v, we see that (7.11) extends to general ¢ € D and the
selfadjointness of P implies that u € D, and hence u € D! by the support
property of w. This finishes the proof of the self-adjointness of P*.

To prove that P* has discrete spectrum, we shall use the assumption (7.4).
Let v; € H*, j = 1,2,.. be a bounded sequence and put u; = (P* +14) lv; €
Df. With y as above, we notice that (1 — x)(P*+14)"'v; = (1 — x)u; is a
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bounded sequence in H?(T) and hence has a convergent subsequence in H?.
As for xu;, we compute
(P+i)xu; = [Q,xlu; + xv; =:wy,

—— N~

boundedin’d{  bounded in H
so xu; = (P+1)'w; = (P+1i) txw;, if x < X € C§°. Now we notice
that by the resolvent identity, (7.4) implies the compactness of x(P — z)™*
for every z € C\ o(P). Here we can replace x by X and the compactness
of X(P — i)~! implies that of (P + ¢)~'¥ by passing to adjoints. Hence yu;
also has a convergent subsequence. It follows that (P* +4)~! is compact or
equivalently, that P! has a purely discrete spectrum. #

Later on we shall need assumptions on the density of eigenvalues of P*.
Let N(P* I) denote the number of eigenvalues of P* in the interval I. We
assume )

N(P*, [-X\A]) = 0(1)c1>(ﬁ), A> 1 (7.12)

Here @ : [1,00[— [1,00[ is a continuous strictly increasing function with
®(t) > t"/? such that:

For every C > 1, there exists C(C) > 0, such that ®(Ct) < C(C)®(t).
(7.13)

Let us next verify the invariance of the last assumption. Consider two self-
adjoint reference operators P!, P° for the same operator P, on two different
torii which both contain B(0, Ry). Then P* and P’ coincide near B(0, Ry).
We make all the general assumptions above for both operators, except (7.12),
and we shall see in the end that if P* satisfies (7.12), then so does P°. After
applying a diffeomorphism which is equal to the identity near B(0, Ry), we
may assume that 7% = T° =: T so that P* and P’ live in the same Hilbert
space H! = H’ and have the same domain D! = D”. Since we cannot take
the diffeomorphism with Jacobian 1 in general, the two Hilbert spaces will
carry different though equivalent norms uniformly with respect to h.

Let z vary in a bounded subset Q of C\ R. Let Q, @ be elliptic
differential operators on T, self-adjoint for the respctive inner products, which
coincide with P* and P’ respectively in T\ B(0, Ry). Let 1y < 91 < o
belong to C*°(T’; [0, 1]) with 1y equal to 1 near the closure of B(0, Ry) and
with P! = P’ near supp,. As an approximation for (z — P*)~!, we try

E" = thy(z— PH My + (1 = aho) (2 — Q") 1(1 — o). (7.14)
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Then

(z—P)E’(2) = 1—[Q", 4](z — P*) Mp1 +[Q", o] (2 — Q") (1 —1p1). (7.15)

For the last two terms we use telescopic formulas: Let 0y < 6; < .. < 05 be
in C*(T) with supp Oy N B(0, Ry) = (. Iterating the identity

(z— P70, = 0;01(2 — Q) '0; + (z — PH QY 0;41] (z — Q) 105,

and similarly with P* replaced by @Q*, and where #; may be replaced by
[QF, 051, we get

(Z — Pu)_leo =
il 05(z — QN HQ, 0, 1](2 — Q) M@, 0;_2]..[Q%, 01] (= — QF) 10y

+(z - Pﬂ)fl[Qﬂ, 9N](Z - Qﬂ)fl[Qﬂ, 9N—1]--[Qﬂ7 91](2 - Qu)19(0- )
7.16
The adjoint formula is:

90(2 — Pﬁ)_l =
Eé’vzl Oo(z — Q) 7'[01, Q%]..[0; 2, Q%](2 — @) '[0; 1, Q*](2 — Q") '6;

+00(2 — Q") 7M[01, Q..[On 1, QF](z — Q) 0w, Q) (2 — PH).

(7.17)

For the second term to the right in (7.15), take 6y, ..,0x as above with

6y = 1 near supp[QF,1»] and with supp 6y Nsupp /1 = 0. Then (7.17) gives

[QF, o] (2 — P*) Moy =
+[Q, 12)00 (2 — QF) QP 61]..[Q%, On_1](z — Q") LR, On](z — P*)Lepy.
(7.18)

Here ||[Q*, On](2— P*) 91|l c(3,22) < C/|Imz|, where we used the assumption
(7.3) which implies the corresponding fact for P*. On the other hand,

[QF, )60 (2 — Q%) HQF, 61]...[QF, On—1](z — Q) !

= Oy() 25 : L7 — HY,

[Im z|

7



where we equip HY with the h-dependent norm |[(hD)"u]|z2. Choosing
N > n it follows that the last operator is of trace class as an operator in
L? with trace class norm bounded by On(1)A"~"/|Imz|¥. We have then
showed that [Q*, 15](z — P*) 14y is trace negligible (cf.[80]) in the sense that
for every N € N there exists M (NN) > 0, such that

hN
f _ ph-1 - _
11QF, 2] (2 — P*) "1 |lsr = On(1) |ImZ|M(N)'
Here || - ||te = || - ||c, denotes the trace class norm. Similarly we get the same

fact for
[QF, 4o] (2 — @) (1 — ).
From (7.14), (7.15), we get
(2= P) ™ = 4a(z = PH 7 + (1= o) (2 — Q)11 — ) + R'(2), (7.19)

where R’ is trace negligible. Actually we can replace (z—P*)~! by (z—P")7},
changing only the trace negligible part. Similarly,

(2= P = (2 — P M + (1= 4ho) (2 — Q1) (1 — o) + R¥(2), (7.20)

where R(z) is trace negligible. If f € C§°(R), we have the simple Cauchy
formula ([22]), much exploited since the work of [39]:

f(PH = —% %(z — P L(d2), (7.21)

valid more generally for P* replaced by any self-adjoint operator. Here f €
C§°(C) is an almost analytic extension of f, i.e. with 0f/0Z vanishing to

infinite order on R, and L(dz) is the Lebesgue measure on C. It follows from
this and (7.19), (7.20), that

F(PH — F(P) = (1 — o) (f(QF) — F(Q)(1 — o) + K,

where ||K|,x = O(h®). On the other hand, we know that ||f(Q%)||s,
£ (Q)|s: are O(h™™), so we conclude that

1F(PF) = F(P")]lex = O(R™). (7.22)

Let I; CC I, CC I3 CC R be fixed open intervals. Choosing f € C§°(R)
first with 1;, < f < 1, and then with 1;, < f < 1z, we get

N(I;,P) = O(h ™) < N(I,, P") < N(Is, P") + O(h' ™). (7.23)
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It is now clear that if P* satisfies (7.12) with A\ = 2, then P’ does so with
A=1

More generally, assume that P* satisfies (7.12) for all A > 1. Then we can
view A1 P! as a reference operator associated to A™1 P, and all assumptions
above, including (7.12) are satisfied uniformly with h replaced by h = h/v/\.
The previous argument gives (7.12) for A\"'P” with h replaced by A and with
A replaced by 1/2. Making the inverse substitutions, we recover (7.12) for

P #

7.2 Analytic distorsions.

This classical approach to resonances was initiated by Aguilar-Combes [1],
Balslev-Combes [5], and then followed by many others, [70, 43]. Here we
recall the approach of [80] with some minor modifications of [76], and we
refer to these papers for more details and references.

A smooth (C°°) manifold I' C C" is called totally real if
7,0 Ni(T,I) = 0, Vz € T. (7.24)

If T is totally real, then dimI" < n, and a natural example of a maximally
totally real (m.t.r.) manifold (i.e. of maximal dimension n) is ' = R™.
(The opposite extreme of totally real manifolds is given by complex mani-
folds, for which T,I" = 4T,I".) Totally real manifolds are mapped to totally
real manifolds under holomorphic diffeomorphisms, so the notion extends to
submanifolds of complex manifolds.

Let I' C C" be smooth of real dimension n. Locally we have I' = f(R"),
where f : R" — C" is smooth with injective differential. Let f: C" — C"
be an almost analytic extension of f so that Of vanishes to infinite order on
R". Let y € R". Then since df is complex linear, iT¢, [ = (df(y))(«T,R").
Hence T' is totally real near f(y) iff

af(y)(T,R") N df(y)(iT,R") =0,
i.e. iff df is injective, or more explicitly iff

det (%}ky)) 40 (7.25)

IfT"is m.t.r. and u € C°°(T'), then locally we can find an almost analytic
extension % € C*°(C") with %, = u, 0t = 0 to infinite order on T'. If ¥ is a
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second a.a. extension of the same function u, then u — % vanishes to oo order
on I'. In fact, let f be as above and let f be an a.a. extension, so that f is
a local diffeomorphism according to (7.25). Then the inverse of f is a.a. on
' and we can relate a.a. extensions from R" and from I' (locally) by means
of f and its inverse.

Let 2 C C™ be open, I' C 2 a m.t.r. manifold. Let

P(z,D;) = > as(z)DS (7.26)

laj<m

be an differential operator with holomorphic coefficient on €). We can define
Pr:C®(T) — C*®(T') by

Pru = (P(z, D,)a) o, (7.27)

where @ is a local a.a. extension of u. If f is as above then
(Pru) o f = Q(y, Dy)(uo f), (7.28)
Qy, Dy) = Y (aa o £)®)((0,F) Dy)". (7.29)

laj<m

In particular Pr is a differential operator of order m with smooth coefficients.
The principal symbol g of () is related to the principal symbol p of P by the
usual relation

a(y.n) = p(f(y), ("0f () *n).

More invariantly, if we identify 7*T" with a submanifold of C™ x C™ via the
map

T*T 5 (z,d¢(z)) — (x,0,6(x)) € T™ x C",
for ¢ € C*(C;R), then the principal symbol pr of Pr is given by
Pr = p|T*1-\- (730)
The quickest way to see this is to consider

pr(z, dé(z)) = lim e @/h pp(?@)/h)

1
h—0
This remark also carries over to principal symbols in the sense of h-differential
operators: Let
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P(z,hDy) = Y ao(z;h)(hD,)*

lal<m

with a, holomorphic in Q, a, = a2(z) + O(h), and define the corresponding

principal symbol by
p(@.8) = D ag(z)€™.

laj<m

Correspondingly we can consider h-differential operators on manifolds and
define their principal symbols in the sense of h-differential operators. (7.30)
still holds.

We need a deformation result.

Lemma 7.2 Letw C R" be open and let f : [0,1]xw > (t,y) — f(t,y) € C"
be a smooth proper map such that det(%ﬁ) # 0, V (t,y) and such that f(t,-)
is injective. Assume that f(t,y) = f(0,y) for ally € w\ K, where K is some
compact subset of w. Let P(x, D,) be a differential operator with holomorphic
coefficients defined in a neighborhood of f([0, 1] X w) such that Pr, is elliptic
for0 <t <1, where 'y = f({t} X w). If ug € D'(T'y) and Pr,uq extends to a
holomorphic function in a neighborhood of f([0,1] X w), then wuy extends to
a possibly multivalued holomorphic function in a neighborhood of the same
set. More precisely, for every t € [0,1], there is a holomorphic function u;
defined in a neighborhood of T'y such that uy = us near I's when |t—s| is small
enough, and ugy is an extension of u.

This result is standard and was proved in [80]. We follow that work:

Proof. We shall use an FBI type argument. Let I' be a m.t.r. manifold. We
use Lebeau’s resolution of the identity [51]: When I' = R", we can represent
the Dirac measure ¢ as

(5(.’1)) — /ei(:c-§+i)\|f|:c2/2)b>\(x,f)dg, (731)

where A > 0 and by(z,§) = ﬁ(l + ’;\‘:’éf) This integral as well as the

similar ones below should be interpreted as oscillatory integrals, i.e. as the
limit in D', when € — 0 of

5e(z) = / FEEENER /D (1 Yo e/2ge
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and where the precise expression of the convergence factor exp(—ef?/2) is
not of great importance, since it suffices to have a family x.(§) of functions
in § which is bounded in C}° and converges to 1 uniformly on every compact
set when € — 0. This means that if v € C§°(R"):

u(z) = / / @) E+NE@=* D, (1 gy €)u(y)dyde. (7.32)

Put ¢o(z,y,0) = (z = y) - ag + iMag|((z — a2)” + (y — @2)?), ax(z,y,0) =
c(A\)|ag|2b(x—y, ag) for a suitable ¢(A) > 0, & = (a, a¢). Then by evaluating
a Gaussian integral in o, we get from (7.32) :

u(z) = //yenn @) g, (z,y, a)u(y)dyda. (7.33)
a€gR2n
We now pass to the case of general I', replacing |ag| by its holomorphic
extension ,/ag, and work near some fixed point o € I We may assume
o =0, T, I' =R" With A > 0 sufficiently large, ¢ = ¢,, a = a,, we put

Au(e) = [[ e a(a,y, @) (@) x(y)uly)dyda, T €T, (7.34)
X *
where x € C§°(T) is equal to 1 near 0 and x < x1 € C§°(I"). Notice that
Im ¢ ~ Jog|(|z — aol* + [y — ).

By Stokes’ formula, we can change the integration contour to y € ', a,, €
[, ag € T;(T'). (This is a change in g only, and we can use the intermediate
contours given by y,a, € I', ag € Tjj, 4, I, where [z] denotes the point
in I which is closest to z, for z in a small complex neighborhood of z.) Then
we can integrate out o, and get

Au(e)= [ [ N @0 2y, (5, )y (y)uly)dydé = Au(z),
yel JEeTyT

(7.35)
modulo a term Ku(z), which extends holomorphically to a u-independent
neighborhood of z5. By analytic continuation from (7.32) we see that the
distribution kernel of A vanishes outside the diagonal and since A is a pseu-
dodifferential operator of order 0, we have

Au = a(z)u(x). (7.36)
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Testing A on oscillatory functions and using Stokes’ formula, we see that
a = x(z), so we end up with

xu(z) = Au(z). (7.37)

Using the ellipticity of P, we can construct an analytic symbol ¢(z, y, @),
with ¢ as the large parameter (see for instance [73]) of order § —m, defined
in a conic neighborhood of {zq, 2o} X T T, holomorphic in y, a, and with
Dagc exponentially small (O(e~1*¢//C) for some C' > 0), such that

'P(y, Dy)(ei¢(“”y’a)c(a:, y,a)) = ei9(@y:2) (a(z,y,a) —r(z,y,a)), (7.38)

where 7 is holomorphic in z,y and of exponential decrease:
r(z,y, )| < Celoel/C, (7.39)

Using this, we get for z in a neighborhood of zy and assuming supp x small:

// 0 (z,y, a)x1 (o) (xu) (y)dyda (7.40)
+// Ye(z,y, a)x(y)xi(aw) Puly)dyda
+// “We(z,y, o) x1(as) [P, x]u(y)dydo.

Notice that (*P)r = {(Pr).

The first and the last integrals extend holomorphically to a u-independent,
neighborhood of zy. For the middle integral, we get the same conclusion, if
we assume that Pu extends to some fixed neighborhood €2 of zy. To see this
we notice that the exponential factor e’#(*¥®) become exponentially small, if
we make a small a-dependent deformation of the integration in y near y = x,
and restrict z to sa small complex neighborhood of that point.

Summing up, we have proved: Let P be holomorphic near I" with Pr el-
liptic. If I'is m.t.r., zg € I, u € D'(T") and Pu extends to some neighborhood
Q of zy, then u extends to another neighborhood Q of z,, which does not
depend on u. Also Q will not collapse, if we vary I’ reasonably. From this
the lemma follows #

We now return to the operators in section 7.1 and add an assumption:
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There exist 6y €]0,7[, e > 0, Ry > Ry, such that the (7.41)
coefficients a,(z; h) of Q extend holomorphically in z to

{rw; we C", dist (w, S" 1) < ¢, r € e"NR; 400},

and the relevant parts of (7.6), (7.8) remain valid

in the sense that a, and all its z-derivatives are bounded for z in this larger
set, uniformly in A, and the convergence in (7.8) remains valid when z tends
to infinity in the larger set above, again uniformly in A.

For given ¢y > 0, Ry > Ry, we can construct a smooth function
[0, 7] X [0,00[> (0,t) — fy(t) € C, injective for every 6, with the properties
(1) fo(t) =t for 0 <t < Ry,
(ii) 0 < arg fo(t) <0, 9pfy # 0,
(iii) arg fs(t) < argd;fy(t) < arg fo(t) + e,
(iv) fa(t) = €¥t, for t > Ty, where Ty only depends on € and R;.
Consider the map
ke :R"3 2 =tw— f(t)w e C", t = |z|.

The image T’y is a m.t.r. manifold which coincides with R" along B(0, R;).
We choose R; at least as large as R; in the assumption (7.41).

Let Ho = Hp, ® L*(Ts \ B(0, Ry)). By means of rs we can identify Hy
with 7 and similarly we can define Dy = D. Let x € C§°(B(0, Ry)) be equal

to 1 near B(0, Ry) and define the unbounded operator Py : ‘H — H with
domain D by

Pyu = P(xu) + Qr, (1 - ).
Here we assume that 0 < 8 < 6,.

Parametrizing I'y by means of kg we get:

DY~ -2l D (s 1) 2D, £ = fo

A =™ s
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where —D? denotes the Laplacian on S"~!. If w*? denotes the principal
symbol of D? and 7 is the dual variable of ¢, then the principal symbol of

_AFG is
7_2 w*2

Doy = W + Wa (7.42)

so pointwise —Ar, is elliptic (if ¢, > 0 is small enough) and the principal
symbol py g takes its values in a sector of angle < 2¢, and globally it takes
its values in the sector

—2(0 + €o) < argpop < 0. (7.43)
Since 6 < 6y, this sector is of angle < 27 (when ¢, is small enough).
Choosing R; large enough, we get
In R"\ B(0, Ry), h™2P, is an elliptic differential operator  (7.44)
whose principal symbol in the classical sense over each fixed

point in ['y takes its values in a sector of angle < 3¢,
and globally in a sector — 20 — 3¢y < argz < ¢

The coefficients of Py — e 2*(—h>Agn) (7.45)
(as a semiclassical differential operator) tend to 0 uniformly w.r.t.

h, when I'y 3 £ — 0o, and we identify I'y and R" by means of kg.

Lemma 7.3 Ifz € C\{0}, argz # —20, then Py—z : D — H is a Fredholm
operator of indez 0.

The proof [75] is a minor modification of the corresponding one in [80]:

Proof. This has nothing to do with the smallness of h, so we assume h =1
for simplicity. We first show that Py — z is a Fredholm operator, and for
that it suffices to invert Py — z modulo compact operators. On I'y ~ R", we
introduce a smooth partition of unity :

1= 91 + 92 + 93, (746)

where 1p(,r,) < 601 € C5°(B(0, Ry)), 02 € C§°, supp b3 C {x € R™; |z| > R},
R > 1. Further, 0 < §; < 1. Let x1, X2, xs have the same properties as 0;
with the exception of (7.46) and with 8; < x;. Let zp € C\ R, and put

E(z) =x1(P - 30)7191 + QQ@z + X3(_672z’9A _ Z)7193,
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where @ is a properly supported parametrix of Py — z (i.e. a pseudodifferen-
tial operator which inverts the latter operator modulo smoothing operators
outside a small neighborhood of the closure of B(0, Ry) with the property
that the distribution kernel is supported in a thin neighborhood of the diag-
onal). Here 63, x3 have their support in the region where I'y = ¢?R". Then
we get

(P — 2)B(z) =1+ K(2),

with

K(2) = (20— 2)x; (P — 20) 701 + [Po, xa] (P — 20) ™01 + (Py — 2)Q — 1)6,
+[Py, x3)(—e A — 2) 7103 + x3(Pp — (—e PP A)) (—e A — 2) 70,
= K'(2) + K"(2),
where K"(z) is the last term in the middle member. With R large enough,

we can arrange so that ||K"(2)||zz2,02) < 1/2. On the other hand, K'(z) is
compact. Now write

(Po— 2B+ K"(2)) ' =14+ K'(1+K")

to get a right inverse modulo a compact operator.
As an approximate left inverse, we put

F(2) = 01(P — ) 'xa + 02Q + 05(—e 2 A — 2) Iy
Then
F(Py—z) =1+ L(z), L(z) = L'(z) + L"(2), (7.47)

where

L'(z) =1+ +1I +1V,
L' =05(—e 2 A — 2) (P — (—e 2P A))xs,
I = (20— 2)01(P— ) *x1,
I = —6:(P — 2)7'[P, x1],
I = 6,(Q(Py — 2) — 1),
IV = —f3(—e A — 2)7 [Py, xs).

We can arrange so that || L"||z(p, p,) is a small as we like, and we turn to
the proof that L' is compact: Dy — Dy.
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Clearly, III, IV have this compactness property. For I and II, we first see
that they are bounded: Dy — Dy, so it is enough to show that (P — z)I,
(P — zp)II are compact: Dy — Hy. We have

(P — 20)I = (2 — 20)01 + (20 — 2)[P,01](P — 20) *xu,

where 6, is compact: D — H, and [P, 61](P — 29) 'x1 is even compact as an
operator : H — H. Similarly,

(P — 20)I1 = 64 [P, x1] — [P, 01](P — 20) '[P, x1]
%,—/ S ~- 7
=0 compact:D—H

is compact. Hence L' is compact Dy — Dy and we invert (Py — z) to the left
modulo a compact operator Dy — Dy, by means of (1 + L") 1F :

A+ L 'F(Pp—2)=1+01+L")'L.

We have then showed that Py — z : Dy — H, is Fredholm. This operator
depends contiuously on (6, z), so the index is constant under deformation in
(0, z) with z € e2%9]0, 0o[. Deforming to § = 0, z = 4, we see that the index

is 0. i
Corollary 7.4 A point z in C\e %[0, co[ belongs to o(Py) iff N'(Py—=z) # 0.

Proposition 7.5 Assume that0 < 6; < 0y < 6, and let zy € C\e 211:%2][0, o0].
Then
dim N (P, — z9) = dim N (P, — ).

Proof. We follow [80] ([75]). Again the statement does not depend on the
smallness of h, so we take h = 1 for simplicity. We shall prove that the two
kernels are "equal” via holomorphic extension. We shall apply Lemma 7.2
to suitable deformations of the contours. Let x € C§°(]3, 3[;[0,1]) be equal
to 1 near 1 and put for 7" > 1:

Fononir(t) = for () + X () o (0) — Fon (1),

Let I'g, p,,v be the corresponding submanifold of C". If 0, — 6, is small
enough, Lemma 7.2 is applicable to the family of m.t.r. manifolds,

[0,1] 5t = Loy 6, 44(62—61),7
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We conclude that if (Py, — z9)ug, = 0, u € Dy,, then uy, extends to a
holomorphic function in a neighborhood of U, <¢<4,(I's \ B(0, Ry)), and by
restriction, we get an element uy € D¢ with (Py — 2)ug = 0.

We also need to control ug near infinity, and for that we shall use the
assumption on zg which assures ellipticity near co.

Let0<a1<a2<b2<b1,Qj:{z€R”;aj<|z\<bj},j:1,2. The
change of variables y = Tz transforms —A,, into —%AZ. We take T" > 1
and view the latter operator as semi-classical one with h = 1/T", and use the
standard a priori estimate

> T D) ullz2n,) < CUN=T 2PN, = zo)ull z2n + llullz2@n\an):

al<2

with C independent of T'. In the y-variables this becomes

Y- IDyullarasy < C(I(=e™ Ay = z0)ull 2ray) + [ullL2ri@inns))- (7-48)

al<2

For 05 — 6; small enough and T large enough, and for ¢/T" near supp x, we
may view PF61,62,T as a small perturbation of —e 2% A,. We conclude that

lug, || 210y < Cllug,||L2(v)-

Now cover a neighborhood of co in I'y, by a sequence 7€), where T} =
28Ty, If ug, € Dy,, it follows that ug, € Dy,.

To sum up, if ; — 6; is small enough, we have constructed an injec-
tive linear map (by holomorphic extension and restriction): N(Pp, — z) —
N (Py, — z5) The inverse map is constructed the same way, so dim N (P, —
z9) = dim N (Py, — 2p).

When 65 — 6, is larger, we introduce intermediate #-values and apply the
above. #

Two extensions of the lemma are possible:

1) We may consider inhomogeneous equations for (Py — z) assuming suit-
able holomorphic extension properties of the right hand side.

2) We may consider N ((Py — 2)*) for k € N.

The preceding result shows that for 0 < 6, < 0 < 0y < 6y, the spectrum
of Py in C\ e %910, +00] is independent of #. In particular Py will have
no spectrum in a small sector eﬂo’f[]O, +oo[. Analytic Fredholm theory shows
that the spectrum of Py in C \ e%%[0, +o0| is discrete. In particular for
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s

§ = 0, we see that the spectrum in | — 0o, 0[ is discrete. If 0 < 6 < T,
the spectrum of Py outside e~2*[0, +oo] consists of the negative eigenvalues
of Py and the eigenvalues in e~%?%)0, 4-00[. When 6 > Z, we only get the
latter eigenvalues. By definition, the resonances of P are the eigenvalues of
Py in the sector e~[%¢l]0, +-00[, and as we have seen, they are independent,
of # in the sense that replacing 6 by a larger value will not change the set of
resonances in the sector e =100, +oo.

By analytic Fredholm theory, if zp € e 1%2%1)0, +00[, 0 < 6§ < 6, is a
resonance, then the spectral projection

1
= — — P)) 7.49
Moco = 5oz [ (2= o) Mz (7.49)

is of finite rank, where y(zy) denotes the positively oriented boundary of a
small disc centered at zy, which contains no other resonances than z,. This
rank is independent of the choice of 6 for which z; belongs to the sector
where the resonances are defined, and by definition it is the multiplicity
of the resonance zy. The image Fj,, is contained in the domain of any

power of P and is invariant under Py. (Py — z), Fo is nilpotent and Fy ., =
i)

N ((Py—2zp)*0) for some ko € N. The proof of Proposition 2.4 gives a bijection
Fy, ., — Fy, ., under the assumptions there.

To end this chapter we mention that resonances defined by means of
complex distorsions, coincide with other definitions. (See [37] for general
results in this direction.) In particular, one can show that the resolvent
(z = P)™' : Heomp — Dioc, defined first for Im z > 0, can be extended mero-
morphically across |0, 4+o0[ to the sector e~*(%2%[]0, +-00[ and the poles are
just the resonances. [[[Add the proof of this statement||]. The multiplicity of
a resonance is the rank of the formal spectral projection, obtained by replac-
ing the resolvent of Py in the integral (7.49) by the meromorphic extension
of the resolvent of P. See [80].

The set of resonances will be denoted by Res P and the elements of this
set will be counted (repeated) according to their multiplicity.
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8 The local trace formula and local upper
bounds

8.1 Some trace estimates

Let P.: H — H, - =0,1, be two selfadjoint operators satisfying the assump-
tions in the preceding section. Here

H.=H. g & L*(R"\ B(0, Ry)) (8.1)
is an orthogonal sum. In particular for the reference operators P*, we have

corresponding estimates #(c(P) N [—A, A]) < O(1)®.(%). In view of (7.13),
we notice that ®. are of at most polynomial growth:

®.(t) = O(t™/?) (8.2)

for some exponents n. € [n, +o00].

To the earlier assumptions, we add:
[a.o(z; R)]5| < O1)(z) ™™, for some 7 > n (8.3)

not only in the real domain but also in the complex domain appearing in
(7.41). Here 6 > 0 is assumed to be the same for both operators P;, Py, and
we write [a.]§ = a1 — aq.

Proposition 8.1 Let f € C§°(R) be independent of h or vary in a bounded

subset of C§°(R). Let x € C5°(R") be equal to 1 near B(0, Ry). Then
XF(P), F(P)x, (1= x)F(P)(1 = )]} are of trace class and

" [P = (8.4)
[tr (xf(P)x + xf(P)(1 = x)+ (1= x)F(P)x)]s + tr [(1 — x) F(P) (1 = x)]5

is independent of the choice of x and is O(1)®pax (h™2). Here ®pyy =
max((bo,@l).

Let ¢y > 0 be fixed and small enough, so that 26y +¢y < 27. Let W CC
be open relatively compact subsets of e?l=2%0%l]0, +-00[. We assume that these
sets are independent of A and that (2 is simply connected. Also assume that
the intersections J,, I, between 2, W and |0, +oo[ are intervals. Let _,
W_ denote the intersections of e?1=2%0:01]0, +o0o[ with Q and W respectively.
The local trace formula ([75, 76]) is given in the following result:
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Theorem 8.2 Fiz Q2, W as above. Then for h > 0 sufficiently small the
following holds: Let f = f(z;h) be holomorphic for z € Q and satisfy
If(zh)| <1, for z € Q\ W. Let x € C°(Jy) be independent of h, with
x =1 near I.. Then uniformly with respect to f:

i () (P =

FO =1 x F)]§ + O(1) Prnax (52)-

AERes P.NW_ pEa(P.)N]—oc0,0[NW_

(8.5)

The proof also shows that the number of resonances of P.in Q_ is O(1)®.(h72).

Later in these notes we will also discuss the more classical trace formula
of Bardos-Guillot-Ralston [6] with an important improvement of R. Melrose
[65] and further generalized in [85]. That formula relates all the resoances to
the trace of the wave-group for operators as in Chapter 2, when the dimension
is odd. In the cited works, it is proved by using the Lax—Phillips theory and
in particular translation represenations, but following the work [35], Zworski
also gave a proof in [102] which uses more general scattering theory and which
is closer to the proof that we shall give for the local trace formula (following
[76]).

It should also be pointed out that the left hand side in the local trace
formula is the same as in the Birman—Krein formula for the scattering phase.
See [...].

In this section we shall prove Proposition 8.1, by adapting arguments from
[80] and the local trace formula will be proved in the next section. When
working with the P. separately, we generally drop the subscript “-”. If x is as
in the Proposition, choose a torus 7" for the definition of a reference operator
P* as in Chapter 7, and choose ¥ € C$°(R") with x < ¥. We may arrange
so that supp ¥ is naturally included in 7" and P* = P near suppy. Recall
that trace negligible operators were introduced in Chapter 7.

Lemma 8.3 The following operators are trace negligible for z in any fizved
bounded set in C\ R:

x(z — P)_IX —x(z — Pﬂ)_l)ﬁ

(1-X0)E=-P)H1-0-(1-0E-Q7 -0 gq
X(Z—P)_l(l_i)a |
X(Z—Q)_l(l - X)-
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Proof. We start with x(z — P)™*(1 — x). Let x < Oy < ... < 0; < ¥,
8 € C5°. Then we have the telescopic formula:

(2=P)'(1-Xx) =
Li(1=0))(z—Q) Q1 =0;11]..(z = Q) Q1 = 1] (2 — Q) (1 = X)
+(z = P)7HQ, 1 = 0x](2 — Q)7HQ,1 = Oy 1]...[Q, 1 = 0:](2 — Q)7 (1 — X),

x(z=P)7M(1-%) =

X(z = P)7HQ 1= 0n](z = Q)7MQ, 1 — On1]-[Q, 1 = 01](2 — Q)7 (1 = X).

We conclude as in the proof of the invariance of (7.12), and see that x(z —
P)7'(1-Y) is trace negligible. The operator x(z—Q)~*(1—X) can be treated
in the same way.

Let xo € C§°(R™) be equal to one near B(0, Ry) and satisfy xo < x.
Write

(z=P)'(1=x) = (1=x0) (2= Q)" (1=x) = (2= P) (@, x0](z— Q) " (1 —x),
so that
I-=-x)E-P) ' (1-x)-1-x(-Q) (1-x) =

—((1=x)(z = P)""xa)([@; xo] (z = Q)7 (1 = X)),

where we inserted a cutoff x; € Cf° with xo < x1 < X, and indicated a
factorization of the last term into 2 factors. The first of the two factors is
trace negligible, while the second one is bounded of norm O(|Im z|™!), so the
operator above is trace negligible.

The argument for x(z — P)"'x — x(z — P*)~!x is the same except that
we use x instead of 1 — xo and x instead of 1 — y. #

Let x1 € C§°(R") with x < xi1, and choose the reference torus large
enough, to include supp x1. Consider the short telescopic formula:

(z—P) 'x=x1(z = P")'x+ (z— P) '[P, xal(z — P") 'x.
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The proof of Lemma 8.3 shows that [P, x1](z — P*)~!y is trace negligible, so
the same holds for (z — P)7Y[P, x1](z — P*)"x.

Let f € C2°(R). Then,

F(P)x = x1f(PH)x + O(h™)

in trace norm. The trace norm of x; f (P*)y is O(1)®(h~2), so the same holds
for f(P)x and by duality for x f(P).

From the lemma it follows that the trace class norm of (1—x)f(P)(1—x)—
(1—x)f(Q)(1—x)is O(h*), so in order to prove that the trace class norm
of [(1=x)f(P)(1—x)]s is O(h™™), as we shall, it suffices to prove the same
fact about [f(Q.)]s-

Let 1 = Y ;czn x;j(2) be a partition of unity with x;(z) = xo(z—j) € C§°.
For N € N, consider

i+ Q)™ (z = Q)™ = (i + Qo)™ (2 — Qo) (8.7)
which is a linear combination of terms
(i+ Q1) (@1 — Qo)(i + Qo) (2 — Qo) ! (8.8)
for 1 <k < N, and of the term
i+ Q)™ (2= Q1) Q1 — Qo)(z = Qo). (8.9)
For (8.8), we consider
Xo(i+ Q)7 (Q1 = Qo)X (i + Qo)™ (2 — Qo) xu (8.10)

Using a Combes-Thomas argument, (see [66], [39], [75], section 7) [explain..]
we see that this operator is bounded: L? — H?>®™+1) of norm

o)

<p>—56—&((Ivfplfc)++llm2\(lpfu\*C)+)’

[Tm 2|

(8.11)
with ¢, = max(¢,0), t € R.

If N > N(n) is large enough, this is also a bound for A" times the trace norm
for operators L? — L?, and summing over v, u, we get

12 + Q1) ™(Q1 — Qo)X (i + Qo)™ ™7 (2 — Qo) ™ lux
(8.12)



For (8.9) we get similarly
1+ Q1) (2 — @)~ H@1 — Qo)Xp(2 — Qo) [l

- (8.13)
= O(h*”)@)*”umz\z(l + |1mz\) "
Summing over p, we get
1+ Q1) (2 = Q1) = (i + Qo) ¥ (2 — Qo) *lex
(8.14)

=0Mh") 251+ ‘Ih )2,
For f € C(R), we write f(t) = (t +14) Vg(t) with g € C°(R). Then

F(Q)]s=1(+Q) Yg9(Q)
(8.15)
= 1%+ Q)N (2 — Q)L (dz),

where g € C§°(C) is an almost analytic extension of g. Using (8.14), we get

ILA(@Q)olle = O(RT™), (8.16)
and we conclude (as already mentioned) that
1L =) f(P)A = 0ol = O(RT"). (8.17)

We have then proved everything in Proposition 8.1, except that the right
hand side of (8.4) is independent of the choice of x, which we leave to the
reader. #

Remark. Let f € C§°(]—o0,0]). Possibly after increasing Ry, we may assume
that (2 — Q)™ exists and is equal to O(1) for z in some fixed complex neigh-
borhood of supp f so that f(Q) = 0. Lemma 8.3 together with the operator
Cauchy formula then shows that (1 — x)f(P)(1 — x) is trace negligible, now
in the sense that the trace class norm is O(h*). Choose xo € C§°(R") with
1B(0,re) < Xo < X- Then (1 — xo)f(P)(1 — xo) is also trace negligible and

tr f(P) = trxf(P)x + tr (1 = x)f(P)x + trxf(P)(1 = x) + O(h%) .

Here tr x f(P)(1—x) = trxf(P)(1—x)(1—x0)* = tr x(1—x0) f (P )( xo)(1—=
X) = O(h*). Similarly tr (1 — x)f(P)x = O(h*®) so tr f(P) = ( )X +

94



O(h*°) Similarly tr f(P*) = tr xf(P*)x + O(h*®) and from Lemma ltracel.3
and the Cauchy formula we have trxf(P)x = trxf(P")x + O(h*®). We

conclude that
tr f(P) = tr f(P*) + O(h™) .

Remark. 1f Py, P satisfy the assumptions of Proposition ltracel.l, then
uniformly with respect to A > 1, the same holds for the operators A~1P,
A~L Py, provided that we replace h by the new semi-classical parameter h/ Vv
The same holds for Theorem 8.2. In particular, if P, P, are independent of
h and satisfy all assumptions of Proposition ltracel.l (or Theorem ltracel.2)
which make sense for A = 1, then APy, A ' P; do the same with the semi-
classical parameter h = 1/v/).

8.2 Proof of the local trace formula.

We choose m € N large enough to get nice trace class properties for some
operators below. We take 6 = 6,. Let €2, be the intersection of 2 with
the sector 0 < argz < ¢ (for some gy > 0), define W, similarly and
recall that W_,Q_ were defined prior to Theorem 8.2. Fix a point 2z, €
ei3eomin(m2r=26-3¢0)l]() 400 away from o(P.) and o(P.g) (where we use the
observation that we can always replace ¢ by some smaller number without
changing anything in the conclusion of Theorem 8.2) and write

f(z) = (2 = 20)""9(2). (8.18)

Then

(X)(P) = (P.— z) "(xg)(P) = (8.19)
1 82 —-m -1
— [ 9D ZE P = ) (2 = P)L(d),
where ¥ € C§°(€2) is an almost analytic extension of x with support in a

small neighborhood of J; and equal to 1 near I,. We first look at

o=t I8 g(z)%(z)(f’. )™z — P)L(dZ).  (8.20)

™

Let ¥ € C$°(Q) be equal to 1 near W _, equal to ¥ near J, and be almost
analytic near R_, in case ) intersects that set. If QNR_ = (), we can replace
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X by X in the last formula. More generally, we have

=@ NP+ [ o)X (e e - Py ). (820

The support of 0x(z)/0z in Q_ does not intersect W_, so |f| < 1 there
and consequently g = O(1) uniformly w.r.t. h on that set. Choosing m
large enough, it follows from the first remark after (8.17) and the proof of
Proposition 8.1, that

=LY 00 Bly) (822)

pEa(P)NR_NW

Next look at

It .= —% /Q+ g(z) 8)2(;) (P.— 2)"™(z — P)"'L(dz).

Green’s formula gives for every 6 > 0:

1 ox(z
It=_=
' T JQin{Im2<d} g(z) 0z

! 9(2)R(2) (P = )™ (2 — P)~de,

~—

(P.— z) ™(z— P) 'L(dz) (8.23)

5 [
2mi Jo,n{Im z=6}

where the integration contour in the last integral is oriented in the direction
of decreasing Re z. If § > 0 is small enough (independent of k), the integrand
in the first integral in (8.23) has its support in the region where g = O(1)
and as in the proof of Proposition 8.1, we get

1

" [IT]8 = "tr T8 + (’)(1)<1>mx(ﬁ),

(8.24)

where J. denotes the last integral in (8.23).

Committing another error O(1)Pyax(77) in the evaluation of "tr [J]§", we

may replace J. by

Jo= [/ 9(2)(P.— )™ (2 — P)Ydz, (8.25)

9mi

where v is the segment from b to a, where Imb =Ima = 0, Rea,Reb € J,,
Rea <infl,, Reb > supl,.
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Proposition 8.4 We have

"tr [ L]y = "tr [J]5", (8.26)

where
J= /7 9(2)(Py — 7)™ (2 — P.g)"L(d2), (8.27)

21

and where P.g = P.p, is defined as in section 3, with the parameter €, there
chosen small enough depending on 6.

Proof. Take x € C*(R;[0,1]) with x(¢) =0 for ¢t <0, x(¢t) =1 for t > 1.
As in the proof of Proposition 7.5 (but now with a different x), we put

Fousnir(®) = fo (6)+ X(2) U (8) = fon 1),

and let T'y, 9, 7 be the corresponding contour. As in Chapter 7 we assume
that
0 <0 <0, <0 with 0, — 6; small enough, and we let P.g, 9, 7 denote the
restriction of P. to Iy, 4,,7. The proof of Proposition 8.1 can be applied to
show that

"tr [(P,91,92,T - Zo)im(z - P',91,02,T)71](1)” (828)

is O(1)®@max(57), depends continuously on 7' > 0, is equal to

"tr[(Pg, — 20) (2 = Pog,) ']y
for small 7', and tends to
"tr [(P',ol - zO)_m(z - P',al)_l](l)”’

when T — +o0.

To get the proposition, it suffices to show that the expression (8.28) is
independent of T'. Let I'y = {f(¢,y);y € w}, 0 < t < 1, be a smooth family
of m.t.r. manifolds in C", where w is open and f in C*°, with det(g—f) #0

y
everywhere.

If u is holomorphic near T'; for some ¢, let u;(y) = u(f(¢,y)), so that u; is
the restriction uj, , expressed in the parametrization f(t,-). Then

8uatiy) - (%(t’ y)- g—z)(f(t, Y))- (8.29)
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Since I'; is m.t.r., there exists a complex vector field 14 (y, a%) on I'; (tangent

to I';), such that
6ut

—— = Vly. 8.30
ot " (8:30)
Moreover v; depends smoothly on (t,y) and vanishes outside the support of
ﬂ(t )
at\br )

Let P be a differential operator with holomorphic coefficients, defined
near I';. Define P, = Pr, as in section 3, so that

Ptut = (P/U,)t, (831)
when u is holomorphic near I';. Then
l/t(Ptut) = at(PtUt) = (8tPt)(ut) + Ptatut = (8tPt) (Ut) + Ptl/t’ut,

and since the functions of the type u; are “sufficiently dense”, we conclude
that in the sense of differential operators,

8t])t = [l/t, -Pt] (832)
This applies to I'g, 4, 7 and passes to the resolvents and their compositions:

aT((P-,Gl,HQ,T - ZO)im(z - P-,01,02,T)71) =
(8.33)
[’/7 (P,91,(92,T - ZO)im(z - P-,91,92,T)71]’

where v = v, 9, 7 is a smooth complex vector field whose support is compact

and disjoint from B(0, Ry).

When considering (8.28), we may choose the cutoff y in (8.4) with support
disjoint from that of v, so with ¢ equal to x or to 1 — ¥,

tr X[V, (P 0.0 — 20) ™ (2 — P.gy0,0) | =
trxvo (..)7™(.) 7 —trx(...)7™(.) o

=0—tr(...)7™(..)'woypy =0,

where we used the cyclicity of the trace. The T-derivative of the expression
(8.28) then reduces to the following expression, where we drop 61,65, T for
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simplicity:
tr ([(1 = x)[v, (P = 20) ™™ (2 = P)7'](1 = x)])

= e[ [(1 = %)(P. — 20)~"(= = P)™"(1 = )]

(8.34)

Here [(1—x)(P.—20) ™(z—P.)"*(1—x)]} is of trace class also as an operator
L? — H', so the expression (8.34) vanishes by the cyclicity of the trace. It
follows that the T-derivative of (8.28) is zero and the proof is complete. #

It remains to study “tr [j](l)”. We shall use a finite rank perturbation of

P.y. Let F be a smooth mapping from a neighborhood of ef[=2(¢+€0)<l[(, oo
into itself such that

F(z) = z, for |z| large and for z near e %[0, oo, (8.35)

Q) is disjoint from the image of F. (8.36)

If < %, we further extend F' to be a smooth map from a neighborhood of
ell=m=c00l[0, oo to itself, by putting F(z) = z for z near el="==2][0, oo].
In the appendix (with a suitable choice of I'y) we shall construct an op-

erator P.g : D. — H. with the following properties:

K.:= P4 — P is of rank O(1)®pax(57) and

(8.37)
O(1) : D(PY) — D(P™) for all N,M € N.
Notice here that D(P°) = H..

K. is compactly supported in the sense that K. = xK.x (8.38)
if x € C5° is equal to 1 on B(0, R) for some sufficiently large R.

For every N € N, (Py—2)"t =O(1): D(PY) — D(PN*1), (8.39)
uniformly for z € Q.

Since we shall always work with operators on I'y in the remainder of the
proof, we drop the subscript  most of the time and write P. instead of P 4.

Write
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—~ ~

2—P =(1+K)(z—P), where K. = K.(z — P) !, (8.40)

so that
(z—P)'=(z-P)'(14+K)™ (8.41)
Using the resolvent identity,
(z—P)'—(z=P)'=—(2—P)'K.(2— P)7!,

we can decompose the right hand side of (8.26) as I+ II, where
1 ~
I ="tr[-— / 9(2)(P. = 2)"™(z — B) " ldz]}", (8.42)
211 vy

= —"r [% /7 9(2)(P. = 2) ™(z — P) 'K (s — B) 'zl (843)

Let 4 be a smooth contour from b to a (as was the case with ) and
contained in Q \ W. The integrand in I is holomorphic in 2, so we may
replace v by 7 in (8.42). Along ¥, we have ¢ = O(1) (uniformly w.r.t. h) and
if we choose a cutoff x in Lemma 8.3 equal to 1 on a sufficiently large bounded
(sub)set (of I'p), we can apply the proof of Proposition 8.1, to obtain:

“m S\ 1
"tr[(P.— 2) ™(z— P) " = O(l)@max(ﬁ). (8.44)
We therefore get
1

[= 0(1)<I>max(ﬁ). (8.45)

Since K. are of finite rank, we can write

1 ~
= —ftr5 / 9(2)(P = 2) ™(z — P) 'K (2 — P) 'zt (8.46)
g

Here we can replace (P. — z9) ™ by (z — 2z0) ™ because the difference has an
integrand which is holomorphic in €2, and the contour 7 can then be replaced
by 7. It follows that the difference gives a contribution O(1)®pax(7) to IL.
Recalling (8.18), we get:

=[5 [ F@ (e = PY (= B )delh + O(1)@uunly5). (547)
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Now use (8.41) and the cyclicity of the trace:
—tr((z—=P) 'K.(z—=P) ) =—tr((z— P) {1+ K) 'K.(z — P) 1)

= —tr((14+K)'K.(z — P)™2) =tr (1 + K.(2)) ' 2 K.(2)).
(8.48)
Remark. In the last equality in (8.48) we used that K. is independent of z. It
may be of interest to see what would happen if K. = K.(z) (and P. = P.(2))

depends holomorphically on z. Differentiating the first identity in (8.40), we
get

_ oK. — 0P
_ . -1 _ 98 v -1
K(z—P) o~ (LK) 5= (=P (8.49)
Using this in the third expression in (8.48), we get
—tr((z— P) 'K.(z— P)™!) = (8.50)
~ 0K — op N
-1 _ _ Py-1
tr((1+ K)) 5 )—tr(1+K) 1+ K) az( P)™)

—tr((1+ K.)~ aaf ) — tr (%(z — P)™).

Here the last term is holomorphic in © and we get (8.51) below also in this
more general case.

Substitution of (8.48) into (8.47) gives

1_[2m/f Jer (1+ K (2)) 85{)dz]0+0() (;2). (8.51)

With (8.40) in mind we consider an identity of the form
A(z) = B(2)C(z), (8.52)

where C(z) : H1 — Ha, B(z) : Hoa — Hs depend holomorphically on z
in some domain, and 0,B(z) is of trace class. Restricting the attention
to some subdomain, where B and C' have bounded inverses, we get after
differentiating the equation (8.52) and using the cyclicity of the trace:

tr (B10,B) = tr (A 19,4 — C10,0). (8.53)
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Let I' be a relatively compact subdomain with smooth boundary and assume
that C~! exists everywhere on the closure of I'. Also assume that B(z)™
exists everywhere on the boundary of I'. Then for f holomorphic in I" and
continuous up the boundary, we get

fr (- | 1:)B() 0B ()dz) = (8.54)

21

b /ar F2)A9.A — C10,0)dz = tr (—— /6 f(2)A7'0. Adz).

2ms 21

We apply this to (8.40) with I' CC Q and 9I' avoiding the resonances, and

get:
fr [ I00+E@) 0Kd= T f0). (8.55)

2mi A€Res (P.)NI'

Notice that we could have taken the trace inside the integral, that tr ((1 +
K.))7'0.K.) = 0,logdet(1+ K.(z)) and that the resonances are precisely the
zeros of det(1 + K.(z)) and that the multiplicities agree.

The remainder of the proof will have common features with a proof of
Lidskii’s theorem, close to the one in [31], of which we gave a variant in
Chapter 5. Put

D.(z;h) :=det(1 + K.) = O(1)e®M2 (™), (8.56)

Since we will work separately with the two operators P., we drop the subscript
- most of the time in the following. In Q5 := {2z € Q;;Imz > 0} with§ > 0
(suitably chosen and independent of h), not only (z—P) : D — H is uniformly
invertible, but also (z — P), and hence

(1+EK)'=(z=P)(z=P)'=0Q1):H—H.

It follows that (14 K)™' =1+ (P — P)(z — P)~! with
I(P = P)(z = P) Hlu = O(1)@(75),
giving an upper bound for the determinant of (1 + K) ! as in (8.56):

ID(z;h)| > e O ey (8.57)
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Let N = N(P,Q;h) be the number of resonances in ) counted with their
multiplicity. (8.56) remains valid in a slightly larger domain and combining
this with (8.57) and Jensen’s inequality, we get

1

N(P,Q%;h) < C(b(hZ)

At this point, we could apply an estimate of H. Cartan about lower bounds

of holomorphic functions outside small unions of circles around the zeros as

in [81], but we prefer to keep the argument of [75, 76], which is simple, more
or less standard and gives precisely what is needed.

(8.58)

Let z;, 7 =1,.., N be the resonances in {2 repeated according to their multi-
plicity and put

N
Dy(z;h) =[] (z — #). (8.59)
j=1
Thanks to (8.58), we have
1Dy (23 h)| < €27 in Q| Dy (2;h)| > e C**) in Q. (8.60)

In Q\ Q5 we can get the same lower bound, if we avoid to go too close
to the z;. For that, we first establish the simple

Lemma 8.5 Let x1,..,zx € R and let I C R be an interval of length |I| €
10, +00[. Then there exists x € I, such that

H |.’,'U _$]| > e 1+10g%).

N
Proof. Consider F(z) = Y log |$_1—mj‘ We have
j=1

1 1172
/log dz < 2/ log ; Lt = 11101 +10g =),
T — x| )"

since the first integral takes its largest possible value when z; is the midpoint
of I. Tt follows that

2
/F )iz < NIT|(1+ log 7).
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We can therefore find = € I, such that F(z) < N log(1 + log |27|), ie.

N 2
H |IL‘ . $j| _ efF(m) > e*N(1+10g m)‘
j=1

#

Let ¥ = 74,, a € J be a smooth family of smooth curves joining b to a,
where J is a bounded interval of length # 0. We let 4, move transversally
in © 52 when « varies in such a way that for every z € _ we have:

1) If z belongs to 4, for some «, then this « is unique, & = a(z) and
dist (2,%5) > |8 — a(h)| for all B € J.
2) If z belongs to no 4, then dist (z,73) > dist (5, 0J) for every § € J.

It follows from Lemma 8.5, that if I C J is an interval of length > 0, then

we can find o € I such that
|Dy(z;h)| > e C*"7) 2 e 3, (8.61)
where C' = (). We factorize D:
D(z;h) = G(z;h)Dy(z;h) z € Q, (8.62)

where G and 1/G are holomorphic in Q. Combining (8.60), (8.61), (8.62),
we get ,
IG(2;h)| < PP 2 € Q5 UA,. (8.63)

The maximum principle gives
IG(2:h)] < eC2*) 2 €Q, (8.64)

where Q@ CC Q is any simply connected relatively open h-independent set
with W in its (relative) interior. In fact, it suffices to choose the family 7,
with 5, N QN OQ_ = 0.

The relations (8.60, (8.57) imply that
G(z;h)] > e O 2 ey (8.65)

Choose C' > 0 large enough, so that
1

U(z;h) = C@(h2

) —log|G(z;h)| > 0. (8.66)
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Notice that £ is harmonic. Harnack’s inequality tells us that for every K CC
Q, there is a constant Cx > 1 such that for every non-negative harmonic
function £ on Q :
sup ? < Cr inf ¥, (8.67)
% K

This applies to £ and after an arbitrarily small decrease of Q, we have (8.67)
with K = Q,¢ = ¢ and if we use (8.65), we get £(z; h) < C®(75) on Q2 5 and
hence by (8.67) (with K = Q):

U(z:h) < 0@(%) on Q. (8.68)

We conclude that log |G| > —C®(75) on Q and with (8.64) we get

1
|log|G(z; h)|| < C(I)(ﬁ)’ z € Q. (8.69)

Since log |G(z; h)| = Re log G is harmonic, we get after an arbitrarily small

decrease of Q:

1 -
V(Re logG) = (’)(1)@(?), z € Q. (8.70)
The Cauchy Riemann equations for log G' imply
4 oG = (9(1)<I>(i) e (8.71)
7, 108G = ) # . )

Let 4 be a curve from b to a in © \ W and which avoids the resonances.
From (8.58), (8.59) we get

d 1
ih)—log Dy (z; =0(1)®(-=). 72
. £z h) - Yog Dz )z = (1)) (8.72)
Since p p p
ElogD = %logG + %]ong,
we get from (8.71), (8.72):
[ 1 WL iog Ddz = 0(1)0(L). (8.73)
50 dy h?
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We finally return to (8.51), where we recall (8.55) and the subsequent identity.
Together with (8.73), this gives:

11 = (8.74)
[ S @)+ g [ (0 D)) + O(1) ()

Res(P.)>z
between v and

1 1
= [ Z f(z h)}o + O(Uq)maX(ﬁ)-
Res(P;)Ez
between v and

Here we reintroduce the subscripts “.” and recall that ®,,, = max(®g, @1).

Since the total number of z;’s is O(1)®(5%) and |f| < 1for z € Q\ W, we
may replace the last sum in (8.74) by

> f(zh)

2EW_NRes(P.)

and the proof of Theorem 8.2 is complete. #

Remark. Applying Lemma 8.3 or rather the equivalent estimate on [; F'(z)dz
in its proof, we see that if we take a family of contours 7,, a € J, |J| > 0,
as earlier in the proof, then (for every h) we can find « € J, such that (8.73)

strengthens to
d 1
—log D||dz| = O(1)®(—). .
|1 Yo Dldz| = 0(1)®(;5) (8.75)

In fact, in view of (8.71) it suffices to establish this with D replaced by D,,.

Appendix: construction of ]39

We shall construct an operator Py, which satisfies (8.37)-(8.39) and for
that we shall use the function /' which was introduced prior to those equa-
tions. Since we shall work with the two operators P. separately we drop the
subscript -. Let py be the semi-classical principal symbol of Py, defined
as X<z ba(z; h)E* mod O(h(E)/(x)), where Py = 354 <2ba(@;h)(hDy)*.
Choosing I'y suitably (more precisely with R; sufficiently large and ¢ suffi-
ciently small in the construction of fj in section 3), we see that F o py is a
well-defined symbol with values away from €2, such that F' o ps = py, when
|z| > Ry, Ry > R;. Here we recall that 'y coincides with R™ for |z| < R;.
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Let P! be a reference operator as in section 2 and assume that the corre-
sponding torus T is large enough so that B(0, R;) is naturally contained in
T. It f = Flg, then

f(PY) =P+ g(Ph = P'+ K, (A.1)
where f(E) = E + g(F), g € C5°(R), and

1

K'=0(1): H — H, rank K* = O(1)d(75).

(A.2)

More generally K* is uniformly O(1) as a bounded operator from the domain
of any power of P! to the domain of any other power of P!. Moreover

(== f(PF)71 = 0(1), (A-3)

uniformly for z € Q and in h. Let Q* be a self-adjoint differential operator
as in the construction of P¥, so that Q* = P* in T'\ B(0, Ry). As in the proof

of Lemma 8.3, we see that if x € C§°(T" \ B(0, Ry)), then
hN

— Y. H Y5 HY VYN eN.
T 27709 , VN €

(A.4)

x(z — P 'x — x(z — Q) 'y is O(

Using the Cauchy formula (7.21) for g(P*), g(Q*), we see that
Xf(P)x = xf(@)x =0Y): H-Y — HY YN €N  (A5)
for x asin (A.4).

Using a result of Helffer-Robert, which can also be proved with the Cauchy
formula (7.21) (see [21] and further references there), we know that x f(Q*)x
is a h-pseudo-differential operator on 7" of the natural class, with leading
symbol x(z)%f (p*(z,&)), where p* is the semiclassical leading symbol of Q*.

Let 1 = xo + X1 + X2, where xo € C§°(B(0, R;);[0,1]) is equal to 1
near B(0, Ry), x1 € C5°(I's;[0,1]), xo + x1 = 1 near B(0, Ry). Then x, €
Cy°(T'p;10,1]) has its support disjoint from B(0, Rz). Let x; < X;, where

Xj € C®(I'y;[0,1]) has its support close to that of x;, and define

Py := Xof(P")x0 + X1Rrx1 + X2Poxo, (A.6)

where Rp is an h-pseudodifferential operator with leading symbol F'(py) such
that the total (Weyl) symbol (with T'y identified with R™) of Rrp — Py (for
near supp x1) has compact support in &.

107



Lemma 8.6 If h > 0 is small enough, then z — Py is invertible for every
z € ) and, for every N € N, the inverse satisfies

(z— P)™t = Ox(1) : DY — DVHL, (A7)

uniformly for z € Q, where DV is the domain of PV, so that D° = H.

Proof. The operator z — Py : D — H is Fredholm of index 0, for z € Q,
so to get invertibility and the estimate (A.7) in the case N = 0, it is enough
to show the a priori estimate:

lull* < Cli(z — Fo)ull?, (A-8)

for u € D. Let 1o, ¢1, 19 € C5°(Cy; [0, 1]) have the same support properties
as Xo, X1, X2 and with

1= 45 + 97 + 5. (A.9)
Assume that ¥y < xo. Then for some r; > 0 and for all z € Q2
1(z = Pa)apoull* = II(z — f(P*)dhoul® + O(h*)]|u]>,

and for j =1, 2: B
1(z = Po)vhsull* = ril[ul®
Then
1(z = Po)ull® = > _ [l (z = Po)ull® = D _(II(z = Po)tpyull = N[y, Polull)®
0 0
> rillull* — O(h)||ulp.

But B
[ullp, < OM)([|(z = Po)ull + [[ul]),

so we get (A.8) and the stronger a priori estimate
lullp < Cli(z — Fy)ull, (A.10)

which is precisely (A.7) for N = 0.
If (z — Py)u = v, with u,v € D, then

(20— Po)u=v+ ((20 — 2) + (Py — Py))u € D, (A.11)
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and applying (z — Py) and using (A.10), we see that ||(z0 — Py)ullp < C||v||p.
This gives the case N = 1 of (A.7) and we can continue this argument by
iteration. #

Write B
Py = Py + Xo9(P")x0 + X1(Rr — Pg)xa-

We can find Tp of finite rank O(h™") and = O(1) : H* — H* for all
$1, 82 € R such that

)21((RF — Pg) — TF)Xl = o(hoo) - H' — H*?
for all 51,55 € R. Put
ﬁe = Py + %Q(Pﬂ)XO + X1TrX:- (A.12)

Then it easy to see that (8.37)-(8.39) hold.

9 Clouds of resonances for —h?A + V (z)

The applications that we develop in this chapter exploit very much the semi-
classical nature of the operator. In chapter 10 we shall get other applications,
also for operators that are not semi-classical to start with, and which exploit
the existence of closed classical trajectories. The proof of the results in this
chapter will also use a semi-classical trace formula of D. Robert, and we start
by discussing certain distributions on the real axis that appear in connection
with that formula.

Let VG, Vi be continuous real-valued functions on R™ which tend to 0,
when |z| — oo, and satisfy

Vi(z) = Vo(z)| < Cfz) ™, (9-1)

where . > n.
For E > 0, let vy (E) = [y (,)>pdz. This is a decreasing function of
E, so p. .(E) := —£wv, (FE) is a positive measure on ]0, +oc[ with support
equal to ]0,sup VJ]. Similarly, for £ < 0, we put v_ (E) = [y, (;)<pdz (an
d

increasing function of E,) u_ (E) = v .(F) which is a positive measure

on | — 0o, 0[ with support in [inf V., 0].
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For ¢ € C§°(R), we put

(.8 = [[90Viide = [(6(Vi(2)) = $(Va(@)))da

Clearly p is a distribution of order < 1 with support contained in [mininf V.,
maxsup V], [u(E)dE = 0, and

Hir, = b+ ]o- (9.2)

For f € C§°(R), we put

. ) = [[1£(€ + V(o) adude,

so that w is a distribution on R of order < 1 with
suppw C [mininf V., +o0].

We have with F, := max(FE,0) and * denoting convolution:

o0

[ HE+Via)ds = [~ F(B+V(@))d(Vol { € RY; ¢ < VE)

= Vol (B (0, 1)) [ £(V.(2) + B)(E}?)

- gVol (BRn((),l))/f(V.(x) +E)E? NE
= Cu(f * (=)

where C,, > 0. Then

(@, f) = Calps, f 2 (=97 7) = Culu (7

S0 s
w=Chux()2 . (9.3)

In general, if & > —1 and if H,(z) = 2%, then ﬁa(g) = Oy (& —40) 1,
where C,, # 0. Let E, € §'(R) be the inverse Fourier transform of C;1(¢ —
i0)1*e. Then supp E, C [0, +oo[, H, * E, = 6. When 1+ a € N, then E,
is a constant times some derivative of the delta function, and in general, we
have

E, =Cyz 2

\]o,+oo[(x)
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We can now invert (9.3) and get

= CinE%_l * W. (9.4)
If near some point ¢, € R, we know that u extends to a holomorphic function,
then by contour deformation in (9.3), we see that w will have the same
property. (It is easy to see how to get such a bounded extension by contour
deformation, and an easy way to see that this extension is also holomorphic,
is to regularize w and E'z_; by convolving with Gaussians, and then let the
Gaussians converge to the delta-function.) The converse implication holds
by (9.4). It follows that u and w have the same analytic singular support.
Since p is a real distribution we know that its analytic wavefront set WF, ()
is of the form {(z,¢) € Rx (R\{0});z € singsupp,(¢)}. The same holds for
w and since these two distributions have the same analytic singular support,
we conclude that

WFo (1) = WFq(w). (9.5)

We refer to [73] for basic properties of the analytic wavefront set WF,,.

We now discuss resonances close to analytic singularities of x on ]0, +o0[.
Let P = —h?A + V.(z), where V. € C®°(R™*;R), - = 0,1, and assume that
the general assumptions in Chapter 8 are verified, with ®.(;5) = A™". Then
we can define y as above.

Theorem 9.1 Let 0 < Ey € singsupp ,(u). Then for every complex neigh-
borhood W of Ey, there exist hg = ho(W) > 0, and C’ C’(W) > 0, such
that for h < h < hg, we have >3 #(Res (P) N W) > W)

The following corollary is stronger than the theorem:

Corollary 9.2 Let P, = —h?A + Vi(z), Vi € C®°(R™R) satisfy all the
assumptions of the local trace formula (Th. 8.2) that make sense for one
single operator. Let 0 < E, € singsupp ,(v4+1). Then for every complex
neighborhood W of Ey, there exist hg = ho(W) > 0, and cC=CcWw)>0o,
such that for h < h < hgy, we have §(Res (Py) N W) > )h "

Proof of the Corollary. It suffices to construct Py = —h?A + Vy(z), with
Vo € C°(R™R) such that (P, Py) satisfies the assumptions of the local
trace formula and such that:

sup supp v4 o < Ey, (9.6)
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3 a complex neighborhood Wj of Ej such that (9.7)
Res Py N Wy = 0, when h > 0 is small enough.

We shall produce V; from V; by cut-off and regularization. Put K(z) =
Cne ®/? with C, > 0 chosen so that [g. K(z)dz = 1. Put K,(z) =
A"K (A7 tz), for A > 0. We make an z-dependent choice of \:

AMR,z) = R(R™'z)™ ™,

where Ny > 0 is sufficiently large, depending on the dimension and R > 1is a
large parameter. Put Kg(z,y) = Kyx(ra)(z —y). Let x € C§°(B(0,2);[0,1])
be equal to 1 on B(0,1). For R large enough, put

Vo(w) = [ Kn(e,y)(1 = X(R™9)Vi(y)dy.

Let & > 0 be small but independent of R. Then in the domain |[Imz| <
6(Rez):
Vo(z)| < €e(R), e(R) = 0, R — oo,

Vi(z) = Vo(@)| < C(R){z)™"".

Then we have (9.6) and using that the resonances near Fy can be viewed as

eigenvalues of Py j/o5., We see that (9.7) also holds. #

Proof of Theorem 9.1. We have seen that WF,(u) = WF,(w) and since
i, w are real, it is clear that (Ey,1), (Fo, —1) € WF,(w). Considering the
definition of WF,(w) by means of the FBI-transform ([73]), we see that there
exist sequences (o, 3;) — (Eo, 1) in R?, A; — +o00, ¢; \, 0, such that

|/eMi(ﬁj(aﬁ_E)+%(QJ_E)2)X(E)w(E)dE| > e~ 9N, (9.8)
where x € C§°(]0, 00[) is equal to 1 near Fy and has its support in a small

neighborhood of Ey. Let a, b, a/b be small and positive and let

. b b, .
Q =|Ey — b, Ey + b[+i] — a,a], W =]Ey — §’E0 + §[+z] — g,a].

Let I, J be the intersections of W, Q with the real line and choose x € C§°(J)
equal to 1 near the closure of I. Let

fj (E) = N (Bj(a;—E)+i(a;—E)?) ‘
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Then

‘fJ‘Q\W| S 670_0)\j>
and (9.8) reads
[N B (E)E| > ™. (9.9)
The trace formula gives
(PR =1 X [+ O e EN. (9.10)

Res (P.)NW_

On the other hand we have a trace formula of D. Robert [67], which in our
situation implies:

1

tr [(xf;)(P)]g = (2mh)n

[ B(BYE + 00", (9.11)

(See the appendix of this chapter for an outline of a proof.)
Combining (9.10), (9.11), we get:

1 __ 1 -n —CLO)\]‘ (h1-7n
T = J B (B)IE + O(h™)e™ % + (k™).
so by (9.9) :

N — O(1)e" %
(2wh)™

IS L=

Res (P.)NW_

+ O;(h'™™).

Choose first j large enough to see that the previous expression is

1
2

= (2wh)"

efej)\j

+ 0_7' (hlin) .

Then fix j and choose h small enough to see that it can be bounded from
below by (27h) "e %% /3. The theorem follows. #

We next consider resonances generated by analytic singularities on the
negative axis.
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Theorem 9.3 We make the same general assumptions as in Theorem 9.1
and assume that the angle of scaling 0y is > w/2. Let 0 > E; € sing supp ,(u).
Let v : [0,1] — C be a C* curve with y(0) €]supsupp (1), +oo[, v(1) = Ex,
Im~(t) <0 for 0 <t < 1. Also assume that v is injective and ¥'(t) # 0, Vt.
Then for every neighborhood W of ([0, 1]), there exist constants C, hy > 0,
such that

1
S #(Res (P) N W) > éh‘”, 0 < h < ho(W).

0

Corollary 9.4 Let P, = —h*A + Vi(z) satisfy all the assumptions of the
local trace formula that make sense for one of the operators. Let the angle of
scaling satisfy 0y > w/2, and assume that Vi(x) = O({x)™"), for some n > n
in the region appearing in the corresponding complex scaling assumption. Let
0 > E; € singsupp ,(v-1), and let v : [0,1] — C be a C* curve with v(0) €
Jsupsupp (v4 1), +oo[, (1) = E1, Im+(t) < 0 for 0 <t < 1, 7 injective and
v'(t) # 0 everywhere. Then for every neighborhood W of ([0, 1]), there exist
C, hy > 0 such that

#(Res (P) N W) > éh‘”, 0.< h < ho(W).

To get the corollary, it suffices to apply Theorem 9.3 with Py = —h2?A. If
we combine the two corollaries, we get the following general statement:

Consider P, = —h?A + Vi(x) with angle of scaling f, > % and with
Vi = O({z)™), 7 > n in the corresponding scaling region. If V; # 0, then
#(PyNW) > ﬁh_", 0 < h < ho(W), where W is either any fixed complex
neighborhood of some point on |0, 400 or any neighborhood of a curve as in
Corollary 9.4.

We refer to [77] for the proof of Theorem 9.3, and we here only explain
some of the ideas. Let v, W be as in the theorem and assume that W is open
in {z € C\ {0}; =26y < argz < €} for some small ¢ > 0 (as in the local
trace formula). We may assume that the intersection of W with the real line
is the union of two intervals /1 C Ry, where Ry denote the open half-axes.
Let 2 DD W have the same properties as W and let J.. be the corresponding
intervals. Let ¥ € C5°(2) be equal to 1 on W, almost holomorphic at J.
For a suitable sequence f = f; (that will not be constructed in detail here),
with |f| <1 on Q\ W, we write the trace formula:

[ X AW ="trx+f;(P)]s" + "tr [x-£;(P)lg" + O(h™™).

AERes NW_
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Using the semiclassical trace formula, we get:

el (P = s [ ) (BNl E)IE + 05,

w(F) extends analytically from J, to a function wy on 2 N {Imz < 0} and
by Stokes’ formula, we get

[ X 1{(B)AE = — [ (x_f)(B)w (E — i0)dE + O(1).
It follows that

[ > fih= (9-12)

AERes P.NW_

e [ ENE)@(B) — w, (B — i0))dE + O(h ™) + O3k ™).

(2mh)"

Here w(F) — w4 (E —i0) can be obtained from p by convolution and we
can show that (E;, £1) both belong to the analytic wavefront set of w(F) —
wi(E —10).

Approximating Gaussian functions by suitable functions f; as above, we
can arrange so that the first term in the right hand side of (9.12) is > O(h™")
which permits us to conclude. #

We shall next consider clouds of resonances for systems, following the the
article of L. Nedelec [59]. Schrodinger operators with matrix-valued poten-
tials and similar systems appear frequently in quantum mechanics, for in-
stance when one reduces the dimension by means of the Born-Oppenheimer
reduction and similar methods that lead to a so called effective Hamiltonian.
Although these effective Hamiltonians are not in general exactly equal to
Schrodinger operators with matrix-valued potential, the latter form impor-
tant models for more general systems that could also be studied with more
or less the same methods.

Let

P=—-hm’A+V(2), (9.13)

with V(z) € Cp°(R™; Hermitianr X r matrices ), satifying

(H1) 36 € [0,5], € > 0, R > 0, such that V extends to a holomorphic
function on {rw; w € C", dist (w, S"7) < ¢, r € elONI| R, +ool}.
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(H2) There exists a Hermitian r x r-matrix Vj and a number 7 > n such
that ||V (z) — Vo|| < C(z)™ in the set in (H1).

Put Py = —h%2A + Vj, and let Ao S, .o < Ao be the eigenvalues of V),
x € R™ As in the scalar case, we can then define the resonances of P as
the eigenvalues of the scaled operator Py = Ty’ 0 < 6 < 6y in the set
R\ Uj_; (A0 +e7%*]0, +00l), and the resonances are independent of 6 in the
sence that for 0 < 0; < 6y < 6y, 6, < 0 < 6,, and for every 1 < 5 <r —1,
the eigenvalues of P in the triangle bounded by the interval |A; 0, Aj+1,0] and
the half-rays Ao +e 21]0, +o0o[, Aj110+ e 2%2]0, +oo[ are independent of 6.
A similar statement holds in the sector A, + e~ 21%%[]0, +oo].

Assume Ajo < Ajy10 for some 1 < 7 <7 and let W CC 2 be open and
relatively compact in

(Ajo + 17270110, 00]) N (JAz0, Aj10[+e > *R).

Here ¢y > 0 is small and we use the convention that A,;¢ = +00. Assume
that 7 := W NR, J:=QNR are intervals.
The local trace formula still holds:

Theorem 9.5 Let f = f(z;h) be holomorphic for z € Q with |f(z;h)| <1,
z € Q\W. Let 1 < x € C§°(J) be independent of h. Let P, := P. Then
[xf(P)]§ is of trace class and

wxf(P)= > flxh)+0OR™),

z€Res (P)NW_
where W_ = W N e 210900, 4-00[

The proof (see [59]) is essentially the same as in the scalar case.
On the other hand, we have Robert’s trace formula:

Theorem 9.6 Let g € C°(R) be independent of h. Then [g(P)]} is of trace
class and

1
(2wh)"

trlg(P)b = 5 [ [ tr (9(p(2,€)) = glpole,€)))dad + O™,

where (z,§) = &+ V(z), po(, &) = & + Vo(x).
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Here the integral can also be written
S [ [(0(€+ X3(@)) = g€ + Njolw)))dudg = (w, ),
j

where A (z) < ... < A.(z) denote the eigenvalues of V(z). As in the scalar
case,

w=Co(B)] "5 1, where (1,6) = Y- [ (6((2)) = 6(\s0))d.

For F E])\jp, )‘j—|—1,0[ we put

Z/Ak(m dzr + Z /k(z

k=j+1

Then on this interval, we have

ft = —=v;j, singsupp,(w) = singsupp, (1) = singsupp, (v;)-

dE

The arguments in the scalar case extend (see [59]) and give

Theorem 9.7 Let |Ajo, A\jt1,0[2 Eo € singsupp,(v;). Then for any neigh-
borhood W of Ey, there exist hy, C > 0, such that

1
#(Res(P)NW) > alf”, 0 < h < hy.

If A\x(z) is a simple eigenvalue near some point xg, then A\ (z) is a smooth
function there, and if Eq = Ag(xo) is a critical value, we expect in general
that Fy will belong to the analytic singular support of p. This is essentially
as in the scalar case. Multiple eigenvalues can also give rise to analytic
singularities of u and we now describe such a situation:

Let Ey €]Xj0, Aj+1,0l, 1 < j < r, with the convention A.119 = +00, and
assume:

0) n =2, V is real and symmetric.

1) For z = 0, there are exactly two eigenvalues \;(0), Ax+1(0) that are equal
to E().

2) If Ey = A\, (z) for some v and some = # 0, then A\, (z) is a simple eigenvalue,
and d\,(z) # 0.
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3) Let a(x)I + (ggi; —béj(va)c)

of V(z) to the 2-dimensional eigenspace corresponding to the two eigenvalues
M (), Ak41(z), for z in a neighborhood of 0. Then dc(0),db(0) are linearly
independent and da(0) = Bdb(0) + vdc(0) with 3% +4* < 1. Under these
assumtions it is proved in [59] that Ey € Singsupp,u.

) be a smooth representative of the restriction

Appendix.

We first recall the operator version of the Cauchy-Riemann-Green-Stokes
formula, which was used (in a slightly different operator version) by Dynkin
[22] and has been used very much since the work [39]. Let P : H — # be
some unbounded selfadjoint operator, and let f € Cg°(R). Let f € C§°(C)
be an almost holomorphic extension of f with the property that df vanishes
to infinite order on the real axis). Then since 1/(7z) is a fundamental solution
of the Cauchy-Riemann operator 0, we have

1 fen 1
F(E) = —;/6f(z)z ——L(dz), E€R. (A.1))
The operator version follows by replacing “E” by “P”:
1 [~
F(P)=— /af(z)(z ~ P)'L(dz), E €R. (A.2))

The proof is a straight forward application of the spectral theorem. ([39],
21], [20)).

Let P. be as in the main text of this chapter. Let x € C§°(R) be conve-
niently chosen, so that the infimum of the spectrum of P := —h2A+V.(z) +
X(hD) is > 1+ sup supp f. The resolvent identity gives

(2= P)' = (2= P)"" + (2= P)"'x(hD)(z = P)7". (A.3)
Using this in (A.2) we get, since f(P.) = 0:

f(P) = —% /gf(Z)(z — P)"'x(hD)(z — P) ' L(d>). (A.4)

As for instance in the proof of the invariance of the condition (7.12), we see
that [(z — P)"tx(hD)(z — P)~']} is of trace class with corresponding norm
< O(1)h™"[Im z|~No, for z € neighsupp (f). A convenient way to see this, is
to put P, = (1 —t)Py + tP1, and to write

~ 19

(2= P) " x(kD)(z = P) My = [ (2= P)x(hD)(z = P) M)dt, (A.5)
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then develop the right hand side and use the same arguments as in Chapter
7.
It follows that for any fixed o > 0:

1 aF D\— — o0
wlf(P =1t [ BT~ P) D) - P) L) + O(h).
(A.6)
Let 0 < 0 < % Then (z — P;)~! is an h-pseudodifferential operator with
symbol a of class S5(h=°(¢)~2) for [Imz| > h°, in the sense that

8;185(1 = O(h0UeHIBD =0 (g)-2).

(The detailed proof of this uses a semi-classical version of a lemma of R.
Beals, see [39] and also [21].) In this class, the symbol has an asymptotic
expansion:

1 hai(z,&,2)  h?as(z, &, 2) N
(z-—p(2,€)  (z—p)*  (G-p)®
[[Nésta version, skriv lite mer om egenskaperna hos a;.]] (See [21].) Using

this in (A.5), we see that [(z — P)~'x(hD)(z — P)~']} has a symbol of class
Ss(h=20(¢)=N(z)=") for every n > 0. The symbol is equal to

(=) X —p) T+ [ OB O Nz —pMdr. (A7)

We plug this into (A.6) and use that an h-pseudodifferential operator with
symbol a in Ss(m) is of trace class if m is integrable, and has the trace
27rh = [[a(z,§)dzdE. Tt follows that

wlf ey =— [ [ ) (=) T L)+ O ).

(A.8)

Here

J O~ B2, €) X(©) (=~ pIL(dr) =

since f(p.(x,&)) = 0 by construction.
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It follows that

1 1

wlf (P = o [ [V @€ ldnde + O,

as claimed.

10 Resonances generated by closed trajecto-
ries.

In this chapter we show how closed classical trajectories can give rise to
singularities in the local trace-formula, leading to the existence of many res-
onances. Here enters also some version of the so called Gutzwiller trace
formula. This strategy was used by Bardos-Lebeu-Rauch [7], in order to
show that there are infinitely many resonances associated to certain types of
strictly convex obstacles, and later by Ikawa [45] in the case of an obstacle
composed by several strictly convex disjoint parts. Quantitative results with
lower bounds on some counting function for the resonances were obtained
by Sjostrand and Zworski [84]. The lower bounds in [84] were originally ob-
tained by using the exact Bardos-Guillot-Ralston trace-formula, and hence
limited to the case of odd space-dimensions, however the local trace-formula
can be used here as well ([75]), and as a consequence we avoid the restriction
on the dimension. Here we prefer to discuss an analogous recent result by
J.F. Bony [11], which treats explicitly the semi-classical situation. It is also
a bit sharper than the corresponding result in [84].
Let
P =" ay(z;h)(hDy)* : L*(R™) — L*(R") (10.1)

laf<2

satisfy the general assumptions of Chapter 7. Assume for simplicity that

ao(z;h) ~ > al (z)h (10.2)

j20
in C;° and that this also holds in the complex domain (as in (7.41)). Let

p=po(z,6) = Y ag(x)E” (10.3)

laj<2
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be the semi-classical principal symbol of P. Let

" Op 0 dp O

P Z(a—&'axj N %3@')

=1

(10.4)

be the corresponding Hamilton field.

Let Ey > 0, Ty > 0 and assume that v : R 2 t — (t) € p 1(Ep) is
a Ty-periodic H,-trajectory along which dp # 0. Let us recall some prop-
erties of the associated Poincaré map: At a point py = 7(t9), the space
T,,(p~ (Ep))/RHy(po) is a symplectic vectorspace: If o = Y d&; A dx; is the
standard symplectic form that we also view as a bilinear form: (o, A s) =
te- Sy —ty-Se, t = (ty,te), s = (84, S¢), then the symplectic orthogonal space
of Ty, (p™*(Ey)) is RH, C T,,(p~*(Eo)) and we get a natural non-degenerate
alternate bilinear form on T, (p™(Ey))/RH,(po). A more or less equivalent
version of this, is that if ¥ C p~'(F,) is a hypersurface (i.e. of dimension
(2n —1) — 1 = 2(n — 1)) passing through p, transversally to H,(po), then
near po, (3, 0)y) is a symplectic manifold.

The (non-linear) Poincaré map is then obtained in the following way:
Start at p € ¥ Nneigh (pg) and follow the H,-trajectory until you hit ¥ again
for a unique time ¢(p) = Ty +O(|p— po|), at the point k(p) = exp(t(p)H,)(p)-
k is then the non-linear Poincaré map. (If py = 7(sg) is a different base
point, and ¥ C p~'(E,) a hypersurface transversal to H,(f), let & be the
corresponding Poincaré map. Then

where o : ¥ N neigh (po) — % N neigh (5) is given by a(p) = exp(r(p)H,(p),
with t(p) = so — to + O(|p — po|), - Then it is easy to check that the
non-linear Poincaré map x : ¥ N neigh (py) — X N neigh (pp) is a canoni-
cal transformation (or symplectomorphism, i.e. a map which conserves the
symplectic form) and the corresponding linearized Poincaré map drk(po) :
T,X — T, will of course be a symplectomorphism also. Notice that
T,2 ~ T, (p~ (Ep))/(RH,(po)). Since dk(po) is a real symplectomorphism,
we know that its eigenvalues can be grouped into the following families:

1) The value 1 with even multiplicity,

2) The value —1 with even multiplicity.

3) The values A and A~! for some A €] — oo, —1[U]1, +o0[

4) The values A, A for some A with [A| =1, Im A > 0.
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5) The values A, A~1, X, X ", for some A € C with S\ > 0, [A| > 1.

For each of the groups in 3)-5), the eigenvalues have the same multiplictity.

Assume that the (linearized) Poincaré map is non-degenerate in the sense
that 1 is not an eigenvalue of dk(pg). Then by the implicit function theorem,
applied to the map p — k(p) — p, we see that po is an isolated fixed point of
k and this situation is stable under small perturbations of p — Ey,. We can
therefore vary E € neigh (Fp, R) and see that for each such energy, there is
a unique closed trajectory yg in p~'(E) of period T(E) = Ty + O(E — Ey).
Moreover this trajectory depends smoothly on E in the obvious sense.

The set S = Ugeneigh (5o,R)R(7E) (where “R”) stands for “range of”, is
a smooth symplectic 2-dimensional manifold. Write P = dkg(pg), where
pe € R(ve) and kg denote a fixed point and Poincaré map at energy E.

Assume that vy = 7g, is (up to trivial reparametrizations) the only Tj
periodic H,-trajectory in p~'(E;). (This assumption can be weakened to
allow for finitely many trajectories, obtained from v, by the action of some
finite symmetry group.) Notice that this assumption implies that Fy is not
a critical value of p.

Under the above assumptions we have the following theorem, due to J.F.
Bony [11].

Theorem 10.1 Let e,;4 > 0. Then 3C > 0 such that for every interval
[a(h),b(h)] C [Eo — &, Eo+ 5], 0 < h < &, we have
Z eT(Re)\)(Im)\)(l—u)/h Z (105)
AERes PNW

1 o) . b(h) — a(h)
_ T*(E 1— 20 — ey, PV
o Ly T (B det(1 = Py,) /2 — O(h/) 02,

where

W ={X € C;a(h) —Chlog% < ReX < b(h) +C’hlog1,

h
logh - B

7T(Re)\)(n—1+e

and T*(E) > 0, is the primitive period, i.e. the smallest positive period of
YE-

Corollary 10.2 Under the same assumptions, we have the same lower bound
on #(Res (P)NW).
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Outline of the proof. Let P; be two operators as above, with [a,;]; =
O(1)(z)~™, for some 7 > n. We have then an extension of the local trace
formula: Let

Q =] — b,b[+i] — a,a], W =] — g g[+i] - g,a], a,b> 0.

Let I, J be the intersections of W, Q with the real line and choose x € C§°(J)
equal to 1 near the closure of I. Put Q5 = Ey + 6Q, Ws = Ey + 6W,

Xs(E) = x(55%).

Theorem 10.3 Let Ch < 6 < 1/C, with C > 1 sufficiently large. Let
f(z; h) be holomorphic in Qs with |f(z;h)| < 1 for z € Qs \ Ws. Then

[Pl =1 > fh)lg+O01)o~ A" (10.6)

AERes P

The proof is an adaptation of the usual one. See [11]. Another basic
ingredient is the Gutzwiller trace formula, which in this version was obtained
by D. Robert [67] and to which J.F. Bony [11] has given a detailed proof,
involving the approximation of e~*F/" by Fourier integral operators.

We now describe that formula in the special case that we will need it. Let
A > 0 be small and let g(t) € C§°(neigh (T([Ey — A, Ey + A]); R)) be equal
to 1 near T'([Ey — A, Eq + A]). Put

[o(F) = fyon(F) = [ e HF Bng(g)e (- TEIClosh b2,

Let

F(F) = FiF) = o TENE-B
vClogh-!

Let 1[Eo—2A,E0+2A} < X € Cgo(]Eo —3A,Ey + 3AD, and put P = P. It

is possible to construct P, as in the local trace-formula, so that P, has no

resonances in a fixed h-independent neighborhood of [Fy— A, Fy+ A], and so

that the principal symbol p, has no closed classical trajectories with energy

in [Ey — 3A, Ey + 3A] with period in some fixed neighborhood of T'([E, —

3A, Ey + 34])

Theorem 10.4 For E € [Ey — A, Ey + A] and h small enough, we have

tr [ fo) ()]0 =
eiSOmp)/htie(m) /4= $10E) T ()| det(1 — P, )| 2 + O(hlogh ™).
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Here S(vg) = [,, & - dz is the action of yg and o(yg) and Si(ye) are real-
valued.

We can now end the outline of the proof of Theorem 10.1. Combining
the last two theorems we get

1
> fop(W)| = T (E)|det(1 = Py)| /2 = O(hlog 7).
AERes (P)NWg p,

[[Hér blir mitt handskrivna manus alltfor otydligt. Skall terkomma till detta
senare! Beviset avslutas i alla fall med att man integrerar olikheten m.a.p.

11 From quasi-modes to resonances.

We shall describe a result of P. Stefanov which culminates a series of works,
started by Stefanov—Vodev [88] and continued by Tang—Zworski [89]. Actu-
ally many of the basic ideas can be traced back much further to works of
Agmon, Agranovich and others in connection with the completeness of the
set of generalized eigenfunctions for non-selfadjoint operators.

Let P = P(h) : H — H be a a semiclassical black box operator as in
chapter 7, for which we can define the resonances in e1=2%0:0]0, +-00[. As
already mentioned in that chapter, we can also define the resonances as the
poles of the meromorphic extension from the upper half-plane across |0, +00[
of (z—P)™' : Heomp — Dioc-

We need some remarks about truncated spectral projections. Let

Lpo,ro) < X € Cg°(R")

be such that “the exterior” operator () has analytic coefficients in a neigh-
borhood of supp (1 — x). We choose 'y so that 'y = R™ near supp x. Let
2o € €172601]0. + o[ be a resonance, 0 < 6 < 6. Let

1

o = —— —P) Yz, Bpb=P_.,0< 1, 11.1
Moz = o /BD(zo,e)(z b) " dz, Py T €< (11.1)

be the corresponding spectral projection. We know that rankmg ,, is inde-
pendent of the choice of 6 with —%arg 20 < 0 < 6.

Lemma 11.1 rank (xmg ) = rank (mg_,,)-
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Proof. We know that R(mg .,) = N ((Py — 20)™°) for some 1 < Ny < m(zp)-
Let u € R(my,,,) with xu = 0. From the extension lemma 7.2, we conclude
that u = 0. It follows that rank (7 ,) < rank (x7,z,), and the lemma follows
since the opposite inequality is obvious. #

Recall that Hy = Hp, ® L2(Ly \ B(0, Ry)). Let Ty = Ty. If u € L?(Ty),

then u*(z) := u(z) € L*(T_4), and we see that L*(T'_4) and L?(T'y) become
mutually dual spaces for the scalar product (ulv) = [r, u(z)v*(z)dz. This
extends in the natural way to a duality between Hy and H_g4, and P_4 :
Heo — H_p becomes the adjoint of Py. If z; is an eigenvalue of Py, then Z; is
an eigenvalue of P_y, and we get m_g, = 5 2 for the corresponding spectral
projections. It follows that

rank (mp ,,x) = rank (Ym_gz,) = rank (7_gz,) = rank (mp_,,)-
Hence R(7g.,) = R(mg,,X), and we get:
rank (mg ,,) = rank (xmp ,,) = rank (mg ,,Xx) = rank (xmg ., X)- (11.2)

Let R(z) : Heomp — Dioc denote the meromorphic extension of (z — P) !

from e1%¢l]0, 4-00[ to el=2%0:0l]0, 4-00[. From Chapter 7 it follows that if z,
is a resonance, then

1
rank 7,, < rank g ,, ~5a18 % <6 <6b,, (11.3)

where
1

= — R(z)dz.
Mo 2me /(;D(zo,e) (z) “

On the other hand, since x(z — P;)~'x = xR(2)x, it is clear that
XTz0X = XT0,20 X (11.4)
so from (11.2), (11.3), we get,
rank (7,,) = rank (xm,,x) = rank (mg,,) = rank (xmp ., x)- (11.5)

Recall that among our assumptions we have (7.12):

N (P [=A, ) = 0(1)c1>(%), A> 1

125



We also made assumptions on & which imply that ®(¢) = O(t"*/?) for some
n* > n. The following result is a simple long-range extension of a result of
P. Stefanov [87]. (The main novelty of Stefonov’s result compared to that of
Tang-Zworski [89] was that Stefanov is able to treat multiplicities in the case
when quasi-modes are very close to each other.)

Theorem 11.2 Let H C|0, ho| have 0 as an accumulation point. Let 0 <
ag < a(h) < b(h) < by < 0o be two functions on H. Assume that for every
h € H, 3m(h) € {1,2,...} and E;(h) € [a(h),b(h)], uj(h) € D, 1 < j <
m(h), such that suppu; € K CC R", where K is independent of h,

[(P(h) = Ej(R)))u;(h)|l5 < R(h), 1 <5 <m(h),

|(ui(h)|uj(h)) = bi;| < R(h),
where R(h) = O(h>®). Let S(h) be a function with

max(h~" "' R(h),e"P/*) < S(h) = O(h™),

for some fixed constant D > 0.
Then for every k € N, 3h(S, k) > 0, such that for H > h < h(S, k), P(h)
has at least m(h) resonances in

[a(h) — 6B* b(h) + 6h*] +i[0, 25 (h)h ™).

The difficulty is that the problem is non-selfadjoint. Under the same assump-
tions, it is much easier to prove that P*(h) has at least m(h) eigenvalues in
[a(h) — B*,b(R) + R*]. In particular, we know that m(h) = O(h~™). The
following lemma is essentially from [89].

Lemma 11.3 For z in some fived compact subset of e1=20001]0, co[, there
exists A > 0 such that we have

o log o(h)-
Ix(z = P(h) " Xlposn < Aeth™™ 1oss(h) g

if dist (z, Res P(h)) > g(h) > 0. (Here (z—P(h))"! denotes the meromorphic
extension of the resolvent, when Imz < 0.)

Proof. Recall from Chapter 8 that
2= Py=(1+K(2)(z—B), 0=,

126



where ||K|| = O(1). Also recall that x(z — P(h))"'x = x(z — Py)~'x. It is
therefore enough to show that

— b 1
(1 + K(2)) 7Y < Ae™ " 8% when dist (z, Res P) > g(h). (11.6)

Recall that N
det(1 + K(z)) = GD,,

—nt . _ap-oe L
where |G| > A e 4" ™ It is easy to see that |D,| > A le™*" g5 and
we get (11.6) with a new constant A. #

Notice that ||x(z — P)™'x|| < 1/|Imz|, for Imz > 0. We state the
following consequence of the maximum principle essentially from [89].

Lemma 11.4 For h € H, let F(z;h) be holomorphic near Q5(h) = [E(h) —
5h*, E(h) + 5h*] + i[—S(R)h~'"" S(h)], with E(h) € R, S(h) as in the
theorem. Assume that

|F(z;h)| < Aexp(Ah™ log ) on Qs(h),

hS(h)

|F(z;h)| < on Q5(h) N {z; Im z > 0}.

|Im z|

Then there exist hy = hy(S, A, k) > 0, B = B(S, A, k) > 0 (independent of
h) such that

B
, z€ [E(h) —h* E(h) +h*], h€ H, h < hy.

\F(z;h)] < %

Proof. This is a routine argument for subharmonic functions. Consider the
subharmonic function

f(2) = log |F(z; h)] = log ( S(lh) ) E?hz) :g((}f?)};z_ll_u
1 —Im z + S(h))
RS GG + b

—((log A) + AR~ log (

which is < 0 on the horizontal segments of 0€5(h) and satisfies

1)) < (10g 4) + 4K~ log ()
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on the vertical segments.
After the change of coordinates, z = (S + Sh™'"")w, Q5 becomes a

rectangle of vertical “width” 1 and of horizontal “length” wi;?i’—lf—n”)

a long rectangle, the Poisson kernel decays exponentially (see for instance
[76]), and it follows that in the rectangle of the same center and same width

and of length

In such

m we have

1

hS
1

§.

—1—'n’:l
1£(2)| < ((log A) + Ah™™ log (—))e M /(SA+AT7)

< O(h™) log ( !

<
hg) = log

Restricting this further to real z, we get

1

log |F'(z;h)| < O(1) log R

and the lemma follows. #

Let 2y be a resonance. Then we know that for z € neigh (z):

N (')
(z— Py)~ Z _ Db 4 ol (2),
j=1 Z —_ ZO
where
7r(1) =T
20,0 — "zo0,0

is the spectral projection and R(ﬂ'(j) ) C R(Tap0) = R(T2p0X), J = 1, if we

20,0
choose x as in the beginning of this chapter. It follows that R(Xﬂ'zO 0X) C
R(x72.0X), and recalling that x(z — P)~'x = x(z — Pp)"'x, we get

N
x(z—P) 'x =3 (2—2) 7A; +hol(z), z € neigh (z), (11.7)
j=1

with A; = x7sx, R(4;) C R(A1), rank (A1) = m(z).

End of the proof of the theorem. Let z;(h), ..., zpn)(R), be the distinct
resonances of P(h) in

Qs(h) := [a(h) — 6%, b(h) + 6k*] + i[—2S(R)A"" S(R)],
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and let
1

AD () = Avy(h) = 5= | X = P) X
Here we choose x as above, with the additional property that 15 < x. Let
7(h) be the orthogonal projection onto M) A (RYH, ©'(h) = 1 — = (h).
Then 7/(h)x(z — P(h)) 'x is holomorphic for z in a neighborhood of Qg(h).
On the other hand, we have

I (W) x(z — P) Xl < At o8 mstm (11.8)
in Qg(h) \ USY D(z;, hS(h)). Put
Q5(h) = [a(h) — 5h*,b(R) + 5h*] + i[—S(h)R~1™ S(R)]. (11.9)

Then (11.8), the maximum principle and the upper bound on M (h) imply
that (11.8) holds in all of Q5(h), without any discs removed. (Notice that
we cannot have any connected chain of discs D(z;, hS(h)) from Q5(h) to
9% (h) \ R.)
Now for Im z > 0, we have
I (WX = P(R) o < o (11.10)

and together with (11.8) and Lemma 11.4, this implies:

17 (W)X (2 — P(h)) "Xl < %

Now, use the quasimodes and conclude that for Imz > 0:
' (h)uj(h) = 7' (R)x(z = P)"'x(z — P)y;,

where we also used that x = 1 near supp u;. Let z tend to E; and obtain:

z € [a(h) — A*,b(R) + hF].  (11.11)

B g
"ui|| < —— < Bh™
| < gy Blb) < B

In other words,
Tu; = Uu;j + wj,
with
lwjl] < BR™H.
It follows that
ajk = (muglmug) — ;= O(h" ),

so the matrix 1 + (a;) is invertible and hence (Wuj);”:(?) are linearly inde-

pendent. Hence dimR(w) > m(h), so M (h) > m(h). #
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12 Microlocal analysis and dynamical bounds

In this chapter, we develop some amount of analytic microlocal analysis in
order to study upper bounds for the number of resonances for second order
operators in the semi-classical limit. In the case the coefficients are analytic
everywhere, the first and most basic result (Theorem 12.13) is that if there
are no trapped classical trajectories at some positive energy, say 1, then
there is a complex neighborhood of 1, independent of h, which contains
no resonances when h is small enough. The second main result (Theorem
12.15) is un upper bound on the number of resonances in certain possibly
h-dependent neighborhoods of 1 in terms of a certain escape function, which
measures the amount of trapped trajectories. When the classical dynamics
is hyperbolic this leads to a more explicit estimate in terms of the dimension
of the set of trapped trajectories. (See Theorem 12.22.). The first result
is implicit in Helffer-Sjostrand [38] and is really a direct consequence of the
theory developed there which is a direct microlocal treatment of resonances
by means of certain FBI-transforms and suitable weighted spaces. The other
two results were obtained in [72]. The theory of [38] permits to treat operators
with a quite general behaviour near infinity and that was of importance in
some of the main applications there. In [72] we used the same theory as the
general frame-work.

Lahmar-Benbernou and Martinez [10] noticed that if we retrict the atten-
tion to operators that converge to the Laplacian near infinity, then one can
use a Bargman transform (which is a special case of FBI-transforms) after a
simple complex scaling, and get a simpler version of the theory. This simpli-
fies the treatment near infinity. We follow that approach here, which permits
to get faster to the main ideas of [38], [72], and especially the approach of
[72] is followed without any essential changes.

12.1 Trajectories and escape functions

We will consider a simplified version of scattering for classical particles (Si-
mon, Hunziker) and the relation with the existence of certain escape func-
tions. We follow the appendix of [29]. Consider the classical Hamiltonian

p(z, &) = Z aq(x)€%, (12.1)

al<2
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where a, € C®(R™R), 0%a,(z) = 05(1)(z) 7%, x — 00, B # 0,

p(z,&) — €2 =0, T — oo, (12.2)
S au@) > SIEP. (123
|a|=2

We shall mainly work near the energy surface p~1(1).
Let
G(z, &) =z-¢. (12.4)

If po(z,&) = &2, then H, G = 2¢ - O,(z - €) = 2£2, which is > 1/C on
pot([1—€,14¢]) if € < 1/2. If we restrict the attention to p=*([1 —¢, 14-¢]) =:
3, then

|(pg = phe) (@, €)| = 0o(1), |(0 = Ph) (&) = o(1)(z) ™", || = oo,
while G, (x)*G} remain bounded, so
[(HpG — Hp,G)(,6)| = 0, 3 3 (,8) — oo (12.5)

Also note that the Hy-flow is complete in the sense that a trajectory ¢ —
exp(tH,)(z,£) cannot reach infinity in finite time.
Fix € €]0, 1]. Clearly there is a compact set K C 27, such that

1 —
H,G > =, on 5\ K. (12.6)

for some C' > 0. Choose T > 0 large enough so that
Kc{peX:1-T<G(p)<T-1}. (12.7)
Define the outgoing (+) and incoming (-) tails:
Iy = {p € T5; exp(tH,) 4 oo, t — oo},

I ={peX;exp(tH,) / co, t — +oo}.

Notice that if p € X5 \ 'y, then G(exptH,(p)) <1 —T for some t(p) < 0,
and that G(exptHy(p)) \y —o0, t(p) >t — —oo. It follows that I'; is closed
(and the same holds for I'_).
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Proposition 12.1 Foreverys € R, 'y N{p € X5;G(p) < s} andT_N{p €
Y5 G(p) > s} are compact,

Proof. We only consider the first of the two sets. Notice that I';, N {p €
¥e; G(p) < s} is empty when s < 1 —T. Clearly there is a compact set

K C 3, depending on s, such that if p € K and |t| < (s 4+ T —1)C, then
exptH,(p) € K. Then if i € e\ K, G(u) < s, we know that exp(tH,)(p)
reaches the region G < 1—7 for some t € [-C(s+7T —1),0]. Hence p & I'..

7

Define the trapped set K := ', NT"_. It is easy to see that K is compact.
Proposition 12.2 IfT'_ # 0 (orif 'y #0), then K # 0.

Proof. Let p € I'_. Then {exptH,(p); t > 0} is contained in a compact
set L, so we have expt;H,(p) — po € ¥, for some sequence t; — +oo.
Put p; = expt;H,(p). For every S > 0, we have exp tH,(p;) — exptH,(po)
uniformly for |t| < S. But exptH,(p;) = exp(t; +t)H,(p;), for |t| < S and
j large enough so that t; > S. Hence exptH,(po) € L, |t| < S. Since S can
be chosen arbitrarily large, we conclude that py € K. #

Though we will not need it in the following, we also consider the true
tails:
T =Ti\ K.

On %7 we have the symplectic volume which is Hj-invariant. For any s <
T —1, theset 7-N{p € X; G > s} is bounded and hence of finite volume.
On the other hand, for s <1 — 1", we have

exp(tHy)(T-N{G > s}) \ 0, t = +o0.
Hence
Vol (T- N {G > s}) = Vol (exp(tH,)(T- N {G > s})) = 0, ¢ — +oo.
We get:

Proposition 12.3
Vol (71) = 0.

In [29] we also proved:

132



Proposition 12.4 The following three statements are equivalent:

(a) T+ #0

(b)) - #0

(c) If Ko = {p € %; dist (p, K) < a}, then K and K, \ K are non-empty
for every a > 0.

Ezample. A potential well in an island. [[[Elaborate.]]|

We next construct a modification G of G with G = G ~outside a bounded
set and with Hpé > 0 everywhere on 7. Increasing K if necessary, we
may assume that K C K. Let Hy = {p € Y5 G(p) = T} We have a
diffeomorphism x, : R x Hy — X \ I'_, given by . (t,p) = exp(tH,)(p).
Similarly, we have a diffeomorphism x_ : R x H_p — ¥¢ \ Iy (with the
obvious definition of H_7).

Choose 0 < fi € Cg°(Xs \ T') such that f, > H,(G) with equality
in {G > T} and outside a compact set in {7 < G < T}. Let G4 €
C* (%5 \ ') be the solution of

H,Gy = [y, G+|HT =T

Then Gy = G in {G > T} and outside a compact set in {-7 < G < T}.
We also have G, < G and choosing f, large enough, we may assume that

limsup G4(p) < —T. (12.8)

p—T_UH_r

Let f ,G_ have the analogous properties.
Choose 0y € C*(R;[0,1]) with 1 = 6, +6_, suppb, C|1 — T, +o0],
suppf_ C] — o0, T — 1], and put
t t
xe(t) = [ 00)ds, x-(0)= [ 0-(s)ds

We may further arrange so that 6_(—t) = 6, (¢). Then x/, = 6. and we have
supp x4+ CJ1 — T, +oo[, supp x— C] — o0, T — 1],

X+(t) + x-(t) =1t.
Put G = x4 o G4 + x_ o G_ and notice that y; o G4 extends to a smooth
function (= 0) near {G < —T}UT'_. Similarly xy_ o G_ is smooth and well-
defined on all of 37, By construction we have G = G in {G < T} U{G >
T}U({—T <G < T} \ acompact set).
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We have B
HyG = (X, 0 G2)fs + (X0 G_)f- >0, (12.9)

VG = (X, oG{)VGL+ (X oG )VG_, (12.10)
and get

Proposition 12.5 Given G = z - §, we can find a new “escape” function
G € C*(R™;R), equal to G outside a compact set, such that on 3, we have
G=0ina neighbohood of K = I'y NT'_ and such that locally uniformly on
e

p

H,(G) > i\vé\. (12.11)
Co

We may arrange so that Hy(G) > 0 in Y outside an arbitrarily small neigh-

borhood of K, and so that H,(G) > 0 everywhere on X5 in the case when
K =0.

12.2 Bargmann transforms and pseudodifferential op-
erators

We first review some well-known facts about Bargmann transforms (which
can be viewed as linearized models for FBI-tranforms) following [78]. Let
#(z,y) be a holomorphic quadratic form (i.e. a homogenous polynomial of
degree 2) on C} x Cy such that

det ¢, # 0, Im ¢lj, > 0. (12.12)

In the case of a classical Bargmann transform, we have ¢(z,y) = %(x —y)2
Put
®(z) = sup —Im¢(z,y) (12.13)
yeR"
Notice that the supremum is attained at a unique point y(z) € R". In the
special case above, we get ®(z) = ;(Imz)2.
For u € §'(R"), 0 < h < 1, the function

Tu(z;h) = C’h’?’"/‘l/ei‘z’(‘”’y)/hu(y)dy, x e C" (12.14)

is entire and satisfies |Tu(x;h)| < On(1){z)Vee®@/? for some N, € R. If
u € S(R™), then |Tu(x;h)| < Oy p(1){z)Ne®@/ for every N € R.
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We view T as a semiclassical Fourier integral operator with associated
linear canonical transformation

kr : 3 (y, =), (z,9)) = (2. 4,(z,y)) € C. (12.15)

For every x € C™ there is a unique point (y(z),n(r)) € R* with m, o
rkr(y(z),n(z)) = =, where 7, is the natural projection C2% — C7. Indeed,
y(x) must be the same as above and n(z) = —¢} (v, y(z)). Let {(x ) € C" be

the point with (z,{(z)) = rr(y(z), n(z)), so that {(z) = ¢ (=, y(z)).
Compare with

200 20 20
T3 (@) = § g (CIm (e y(o)) = 5 (T B =
20 — 0

2 (0, 9) = 5 0yt = (o), 9(0)) = E(a)

We conclude that

kr(R?") = Ag = {(z, gg—i( ));z € Cr}. (12.16)
Since kr is canonical for the complex symplectic form o = 377 dn; A dy;, and
R?" is I-Lagrangian, i.e. a Lagrangian manifold for the real symplectic form
Im o, the same holds for o| As Further, the real 2-form og,, is nondegenerate,
so the same holds for o As We say that Ag, like R?" is an IR-manifold:
Lagrangian for Im o and symplectic for the restriction of Reo.

What does this means in terms of ®? In general, let F'(z) be a smooth
real-valued function on some open set in C" and define A as above. Consider
the restriction to Ap of the fundamental one form & - dz (whose exterior
differential equals o):

- do, %g—F dx ~ —BF (12.17)
1 2(9F 2 OF

SO
~Imo), =d(-Im¢-dz), = d°F = 0.

Hence Ar is I-Lagrangian for all sufficiently smooth F'. Conversely, every
smooth I-Lagrangian manifold of the form & = £(z) is locally of the form Ap
for a suitable smooth function F' (exercise). From (12.17) we get

20F 2 0P’F

:d(z Ox dx):;]Z

2_

X afjaxk
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We check that Ag is R-symplectic iff det( ) # 0. Returning to Ag we then

know that det 3 ‘9 > # 0. On the other hand (12.13) tells us that ®(z) is the
supremum of a famlly of pluriharmonic functions, so it is plurisubharmonic
and then also strictly plurisubharmonic:

0P
0Z0x

> 0. (12.19)

Remark. IR-manifolds in C2" z¢ are totally real of maximal real dimension 2n.
(More details should be given here in later versions, and in the meanwhile
we refer to [73, 78].)

We shall show that 7 is bounded: L?*(R?) — Hg(C") := Hol (C"*) N
L2(C™; e~ 22@/h [ (dx)), where L(dr) denotes the Lebesgue measure on C"
and Hol (Q2) denotes the space of holomorphic functions on the open set
Q C C™. The formal adjoint of 7" is given by

T*v(y) = éhf%n /efw*(E’y)/h'u(.’L‘)672@(w)/hL(d$), (12'20)

where ¢*(z,y) := ¢(x 7) is holomorphic. Then we get for v € Hol (C"), with
lv| < Onp(1){z)Ne®@/P for all N:

TT*v(z) = |CPCyh~%+3 / e Y=y (2)e R L(dz), Cp >0, (12.21)

where ;
\II(,%" ’U)) = Vc‘y§(¢(x7 y) - ¢*(’U), y))

Here “vc.,” means “critical value with respect to y of” .
U(x,w) is holomorphic in both variables and

1
U(z,T) = vc.y§(¢(x, y) — ¢"(T,y)) = ®(z). (12.22)
Consider the strictly plurisubharmonic quadratic form
1 1 1 1 11—

which vanishes on the anti-diagonal D = {y = T}. Computing 9, and 9z of
(12.22), we get
0,V = 0,9, 0,¥ = 03P on D.
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It follows that 0,F' = 0, 0yF = 0 on D and since F is real-valued, that VF' =
0 on D. The strict plurisubharmonicity of F' now implies that F(z,y) ~
|z — 7|2, or in other words,

—®(z) + 2Re ¥ (z,2) — ®(2) ~ —|z — 2|*. (12.23)
Let ITu denote the right hand side of (12.21). Using (12.23) we see that
IM=001): L*(e?*/"(dr)) — Hol N L*(e7**/"I(dx)) =: Hy.
Taking 0,0z of (12.22) and using (12.19), we get
det 0,0, (z,y) # 0.

For A > 0, u € Hol (C"), |u| < Ox(1){z)Noe®@)/h consider

Lou(z e @90y (y)dyd, (12.24)
Ta(z
. 28<I> x+y A—
FA(a:).H O —( 5 )+12(x—y).

It is easy to see that the integral converges and is independent of A (by
Stokes’ formula). Letting first A become very large we can further replace I'y
by

200 r4+y. A—
—(z — <t<1.
S +ifa—y) 0<t<

Pt,)\ 0=t 9
Then let A — +o00 and consider

L (z—y)-
I u(z %h //P ST )y
w1y (y) L(dy) — ulz), A — oo
We obtain
Lu(z) = u(z), v € Hs. (12.25)

On the other hand, we can use the Kuranishi trick to write Iyu(z) as

Lou(z = //F e (P@A=YW2)y (1) dydz. (12.26)
)\
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This is done by a change of variables, using that 2(¥(z,z) — ¥(y,z)) =
i(x —y) - 0(x,y, z) with 0(z,y,2) = 29 (Y, z). Here T'\(z) is the image
contour in the (y, z)-variables.

If we replace T, (x) by the contour z = 3 (which can be justified by means

of Stokes’ formula), we get

%//e%q’(‘”’y)u(y)e%(I’(y)dydy, (12.27)

which is a non-vanishing constant times ITu(z) in (12.21). Both IT and (12.27)
are positive semi-definite on Hg, so C in (12.27) is C' > 0. Adjusting the
contant C' in the definition of T, we get ITu(z) precisely. Using Stokes’
formula, we check quite easily that ITu(z) = Lyu(z) for u € Hol (C") with
lu(z)| < C(h)(x)Noe®@)/ for some Ny > 0. In view of (12.25) we have shown
that

Mu = u, (12.28)

for such functions u, and in particular for u € Hg. It is also clear that II is
self-adjoint in L2 := L?(C"; e 2%/"L(dx)). Finally IT maps the latter space
into Hg, so

I1 is the orthogonal projection : L3 — Hsg. (12.29)

We next claim that
T is unitary: L*(R") — Hsg. (12.30)

We have already seen that T is bounded: L?*(R") — Hg and that 77* = 1 on
Hs, so it only remains to see that 7" is injective: If Tu = 0, then (0%7Tu)(0) =
0 for all « € N", and hence

| eFCp(y)uty)dy = 0.

for every polynomial p. If we let F denote the Fourier transform, then this
means that

tion is entire.
We next look at the action of pseudodifferential operators. Let S(Ag, m)
be the space of all C*-functions a on Ag such that 0%a = O, (m) for every
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multiindex o, when identifying Ag linearly with R**. Here m is an order
function with
m(x) < C(',E - y>N0m<y)7 z,Yy € A@,

for some constants C, Ny > 0. When our symbols depend on h, it is assumed
that the above estimates are uniform.

If u € ON,h(1)<x>_Ne‘I’(m)/h for every N, we put

l

ek @y x;—yﬂ)u(y)dyd& (12.31)

Oph( )

where ['(z) is the contour: 6§ = %aq’(%@i) Notice that on this contour,

—®(z) + Re (i(z —y) - 0) + @(y) = 0,

so the integral converges. Using this parametrization, we get

Opyp(a)u(z) = h™ /k z,y; h)u(y)dy,

where Ozk = Opk, so by integration by parts, we see that Op,(a)u(z) is
holomorphic if u is.

Let m be a second order function on Ag. Both m and m will be viewed
as functions on C?, by the natural identification 7, : Ag — CZ, where
7z - (x,€) — x is the projection onto the z-space. Let
Ly ;= L (CYmPe " L(dz)), Hy gz = Hol(C") N L 5

$,m

Proposition 12.6 Opy(a) extends to a bounded operator: Hg 5 — H, 5

m?’
’m

whose norm is uniformly bounded with respect to h.
Proof. For 0 <t <1, let I';(z) be the contour

200 —
0 a:+y) T Y

b= zax( 2 (x —y)’

parametrized by y € C" and let GJo1j(z) be the (n 4+ 1)-contour obtained by
letting also ¢ € [0, 1] be a parametrizing variable.
Now we have an almost holomorphic extension @ of a to C*°(C?") such
that 200 200
— _ 209y . 200 .
Bi(r,€) = Ox(Dmz)l — S 51¥, 6~ 25| < O(1),
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for every N > 0 and such that a(z,&) = O(1)m(z). For simplicity we shall
write a instead of a. Then Stokes’ formula gives

Oph( )

i@y ””;y O)u(y)dydd  (12.32)

Ty(z

1 £ omp)o
+(27rh) /G[O,l]( )e ( J055(al

For the first term to the right, we notice that along I';(z) we have dydf =
O(1)dydy and

r+vy

,0)) A dydo.

=yl

—<I>(x)+Re(£x— T

M y)-0) +@(y) =

Hence the first term to the right in (12.32) can be written

m x <I>(.1;) 1 |z—y|? _Py)__
h™ /eh@wfxyﬁ)Wk nom(y) L(dy),
m(x)
with
t+y, Mz

f(z,y;h) = O(1)m(

so the reduced kernel

is of modulus
y|?

< Ch™ e hl(E y)( y>N0

which is the kernel of a uniformly bounded convolution operator: L? — L2,
Thus the first term of the right hand side of (12.32) is

T2 2
O(1): Lz > L -

For the last term in (12.32), we notice that along Gi,1)(z):

r+y

r+y
(

N
T —
> )tN ‘ y| (dy)d

Falel (@ =y~

L0)) A dydd = On(1)m

for every N > 0.
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For every t we then get the reduced operator

v h” /e 2 <” -“’> ki(z,y; h)v(y)L(dy),
with

vz =yt
T

a:—l—y)?ﬁ(a:) 1 tN|x—y|N
2 ‘m(z)m(y) (z-—y)~

for some fixed Ny > 0. We estimate the L?>-norm of this operator by the
L'-norm of the corresponding convolution kernel:

[ke(z, y; k)| = On (1)m( < On(1)t

|

22 |z |V

On(1)h" /e‘%Wt Sy M)

Cut the integral into two parts: |z| < 1, [z] > 1: For [, ;... we get the
bound:

O [~ ey
0

0(1)h_n /oo 6_%(§)hﬂoﬂ@ . hN+N20+2ntN_N+NZO+2n _ O(l)hNgNO,
0 r

if N is large enough.
For [, -1, we get the bound:

O(l)hin/ooe 2hTtN N0+2nd7n’
r

1

and the change of variables r = %p gives

n [ e, h dp  n
1 n ) No+2n <
O™ [~ e o <

O(l)h_n /too 6—EpNo—|—2n dth0+2ntN—No—2n‘
£ p

h

The last integral is O((1 4 L)) for every M > 0. For t < h'/2, we gain
as many powers of h as we like from ¥ ~No=27_ For t > h'/? the integral is

O((£) ™) < O(hM/2) for all M and we also gain as many powers of h as we
like.
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We conclude that the last term in (12.32) defines an operator which is

o\ . 2~ 2~
O(h ).Lq,,m—>Lq>ﬂ.

This completes the proof of the proposition. #

Ezercise: Show that TS(R") = Ny>oHg (zyv. Hint: We already know that
TS C Ny>p.... It then suffices to show that T*(Ny>¢...) C S, since TT™* =
on Hq>.

Ezercise: Show that Ny>oHg ;v is dense in Hg. Hint: Let x € C§°(C™) be
equal to 1 near 0 and consider II(x(%)u), R — oo.

We end this section by discussing the link with h-pseudodifferential op-
erators on R™. If m is an order function on R** and a € S(R?",m), then
we can define Op,(a) : S(R") — S(R") and we have boundedness results in
Sobolev spaces analogous to the Hy - above. A classical way of developing
the theory for the Weyl quantization on R™ (see [21] for more details) is to
observe that if £(z,&) is a real linear form on R*", then Op,(¢) = ¢(z, hD,)
and that this operator is essentially self-adjoint from C§°(R™). Moreover

e~it@hDz) — Op, (e~ 1@4)), (12.33)

Imitating a proof of an important invariance property for the Weyl-
quantization under conjugation by certain metaplectic operators, one then
observes that if k£ is the linear form on Ag with

koky==¢, (12.34)

then
k(z,hD,)Tu = Tl(x,hD;)u, Yu € S. (12.35)

Now on the transform side, we have from (12.35) and the unitarity of 7', that
k(x,hD,) is essentially self-adjoint on Hg from TS(R™) and we also check
that

k(z,D,) = Op,(k), e *@hD=) = Qp, (¢7H#@),

Again from (12.35), it follows that
e @D = TemilwhDa), (12.36)

If @ € S(R*™) and b € S(Ag) are related by bo kr = a, then we can
represent a as a superposition of linear exponentals of the type e #(#%) (by
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Fourier’s inversion formula) and we get a corresponding superposition of b in
exponentials e~ *(#£) Passing the quantizations, we get

Opp(b) o T =T o Opy(a). (12.37)

By a density argument this relation extends to the case b € S(Ag, m), a €
S(R*™ mokr).

For the later applications, we will need very little calculus of pseudo-
differential operators. For short presentations, see [32] for the classical way
(with further references given there) with a maximal use of the method of
stationary phase, and [21] for the approach sketched here with essentially no
explicit use of stationary phase.

12.3 Pseudodifferential operators with holomorphic sym-
bols

Assume that a(z, ) is holomorphic in a tubular neighborhood Ag +W of Ag,
where W is an open bounded neighborhood of 0 € C?*, and of class S(m)
there, where m is an order function defined first on A and then extended
to a full neighborhood by putting m(z,¢) = m(z, 252 (z)).

In this case, we have no remainder term in a formula like (12.32) and we

get

Opy, (a)u( (z) et $+y ,0)u(y)dydo, UEH@,%
’ (12.38)
if ¢ > 0 is small enough, so that I'.(z) C A + W.
Let B
®(z) = ®(x) + f(2), (12.39)

where f € CY!(C™) has support in some fixed compact set and sufficiently
small norm: || f{lc11 = ||V fl|Lip+supcn | f ()], where [|gllLip = sup,, [g(2) —
9(y)|/|x — y|. Recall that the gradient of a Lipschitz function g belongs to
L% and that ||g||lLip = ||Vg||L= (with the right choice of pointwise norm), so
the same holds for the derivatives of functions of class C'*!.

We can define the Hilbert space H Py which coincides with Hg ; as a
space. The corresponding norms are equwalent for every fixed A but not
uniformly when h — 0. We have an associated Lipschitz manifold Agz: § =
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%%(az) which coincides with Ag outside a compact set and which is close to

Ag in the sense of Lipschitz graphs (since f is small in C*!).
If ¢ > 0 is small enough, we can use Stokes’ formula to replace I'.(z) in
(12.40) by

~ 200 z+y . r—y
To(z): 0=22" . 12.40
(@) 0= S () i =L (12.40)
Lemma 12.7 Op,(a) is bounded: Hz ~ — Hy jm uniformly with respect

to h.

Proof. On the level of the amplitudes, the estimates are the same as before,
so we only have to check that along I'.(z), we have

N

z—y|

@) (12.41)

[+

|eh (@) 0-3@+3W)| < o~

Along f‘c(x), we have using notation from R?" ~ C":

Re (i(z — y) - 0) = <v<’13(”“;ry),x—y>—c|“’_y|2 (12.42)

(x—y)’

while Taylor’s formula with integral remainder gives:

B(z) - B(y) — (VE( L), —y) = (12.43)
([a-n@ T et e e T 22

1 — — — —
= ([ a-nur G - (e T T,

Since the support of f belongs to some fixed compact set, we see that

Ja=nr L) - (e = Ol e (o)
Combining this with (12.42), (12.43), we get

Re(i(s —1)+0) — 8(a) + (1) = ~(c+ O ) L2, (1240
which gives (12.41), when || f”||z is small enough. #
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Although not necessary in the following, we end this section with a brief
discussion of other quantizations. (See [78] for more details on the holomor-
phic side and [21] for the real case.) For t € [0, 1], put (formally):

//F = biha(te + (1 — t)y, 0)u(y)dydd, (12.45)

Oph,t(a)u T 27rh

where I'y(z): 0 = 222 (tz + (1 — t)y). Along I'; we get
—®(z)+Re(i(z—vy)-0)+P(y) = (2t — 1)®(x — y).
Hence,

Proposition 12.8 Let ® be strictly convex and let a € S(Ag,m). Then
Opy4(a) is a well-defined and uniformly bounded operator: Hg 5 — Hg 5 /m
for 0 <t < 1. When0<t< % it is enough to assume that a = O(m(z)) to
have the same conclusion, and when t = 0 we even get a uniformly bounded
operator: Ly ~ — Heg 5 /-

Next we are interested in describing the same operator with different
quantizations. This is very classical in the real case, when Op,, is well-
defined for 0 < ¢ < 1. If a; € S(R?",m) depends smoothly on ¢, we get for

u€S:
9:0py, 4 (as)u(z) (12.46)

N ( : //e%(fc_y)'aat(at(m + (1 =)y, 0))u(y)dydd

27rh

/ / k@99 (9,0,) (tz + (1 — 1)y, )u(y)dydd +

27rh // HED (g — y) - (Bpar) (b + (1 — )y, O)u(y)dydd,

where the last term equals

F(a—y) — =
27rh / (=0p) (e %) - Opas(tr + (1 — t)y, O)u(y)dydd (12.47)

27rh // By 89 Orar)(tx + (1 — 1)y, 0)u(y)dydo.

We conclude that Opy, ,(a;) is independent of t if a; fulfills the Schrédinger
type equation

8tat = %(89 . 8w)at. (1248)
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The Cauchy problem for this equation is well-posed in the sense that if a, =
ai—s is given in S(R*", m) for some s € [0, 1], then we get a unique solution
a; € C*([0,1]; S(R?™, m)).

The same discussion can be carried out in the complex framework, except
that (12.48) is now of heat equation type (on Ag) and can be solved only in
the forward time direction. Thus if a; € S(Ag, m) is given, we can find a; €
C*([s,1]; S(Ag, m)) which is entire for ¢ > s such that Op,, ,(a,) = Op,, ;(a;)
fort > s. Notice that Op,, , maps weighted L?-spaces into weighted L*-spaces
of holomorphic functions.

We point out that the strict convexity condition on @ in the proposition
dissappears if we choose to represent our operators as in (12.26). The case
t = 0 gives Toplitz operators.

The above calculations show that if a € S(Ag, m) then for s,t € [0, 1] we
have

Opyi(a) — Opy (@) = O(h) : Hg; — Hg

If we also know that a has a holomorphic extension of class S(m) to a tubular
neighborhood of Ag, then we can replace ® by ® = &+ f in the above result,
provided that the C*'-norm of f is suffiently small.

(12.49)

m/m:

12.4 Approximation by multiplication operators

The main result of this section is

Proposition 12.9 Let a be holomorphic and of class S(m) in a tubular
neighborhood of Ag. Let ® € CY be a small perturbation of ® as before.

Then with &(z) = 292(z):

n

Opy (a)u(z) = a(z, &(z))u(z) + (0 a(z, £(2))) (hDs; — &(x))u(z) + Ru(z),

1
(12.50)
where R is of norm O(h): Hg ~ — L2

®,m g,ﬁw/m

Proof. We write Op,(a)u(z) in (12.38) with the contour (12.40). We also
assume that m = m = 1 for simplicty. By Taylor expansion, we get

0) = a(z,£(z)) + (0ca)(z, £(2)) - (6 - £(2)) (12.51)
_%(an)(aﬂ, () - (z = y) + Oz — y[") + |0 — £@@)[).
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Here the third term to the right gives no contribution to (12.38):
J[ 40— y) - (@ua) o ) uly)dydo =
(Bpa(z, £(x // 2 O (eF @00y (y))dydh = 0.

The first two terms to the right in (12.51) lead to the corresponding terms
n (12.50). Along the contour (12.40), we have 6 — &£(z) = O(]z — y|), so the
remainder term in (12.51) gives contribution O(|z — y|?) in (12.38) and that
gives an operator R with norm O(h). #

We use the above result to study certain scalar products.

Proposition 12.10 Let a be as before and let 1 (x) be locally Lipschitz on C™
with Y(x), |Vi(z)| = O(my(x)), where my together with mq, mo are order
functions with mym < mymy. Then

WOp,(@)ul)zz = [ d(@)ale ¢(@)u(e)o@)e P Lids) (1252
+OWlully, il

foru e H v e Hg

®,my’ ®ma”

That the action of a pseudodifferential operator can be approximated
by a multiplication operator with an error O(h!/2) after a suitable integral
transform was used in [79] and in [19]. That the error becomes only O(h) for
scalar products was observed in [19] and used there to give a short proof of the
sharp Garding inequality. Here we are in a more general situation, and the
limited regularity in the weights is quite essential for the later applications.
(We follow [74].)

Proof. Assume m, = m = my; = my = 1 for simplicity. Substituting (12.50)
into (12.52), we see that we only have to estimate

/¢(w)(5gja)($,§($))(hl7xj — &(@)u()o(@)e M L(ds).  (12.53)

Here (0¢;a)(z,&(r)) is Lipshitz, so we can make an integration by parts in
(12.53) and get (9(h)||u||H$||v||117g plus

/ () (9,0) (2, £(2) Ju(w)v(@) (—hDs; — &(2)) (e @) L(dw),  (12.54)
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which vanishes, since (—hD,, — Ej(x))(e_zg’(w)/h) = 0. We also used that
hD,.;v(x) = 0 since v is holomorphic. #
This can be iterated. Let b be second symbol like a with associated order

functions m; and write m = m, for the order function associated to a.

Proposition 12.11 Let a,b, ), mg, my, my, mq, ma be as above with mymgmy <
myms. Then,

(¥Opy (a)u|Op, (b)v) 2 = (12.55)
/ P(x)a(z, €(@))u(z)b(z, E@))o(@)e 2@/ L(dz) + O lully | Mol

foru e H%,ml’ v e H;

®,ma "

Corollary 12.12 Under the appropriate part of the same assumptions, we
have

0Py (a)ullz; = lla(z, &(z))u(o)llze + O ullz |

a

forue H%,ma'

12.5 Absence of resonances in the analytic non-trapping
case

Let
P =Y ay(z;h)(hD,)* : H*(R") — L*(R?) (12.56)
<2

satisfy the general assumptions for “Q)” in Chapter 7, that we here recall:
aq(z; h) is independent of A for |a| = 2,
ay (-3 h) is bounded in C§°, uniformly with repect to h, and a,(-; h) = aq0(-)+
O(h) in this space, where a, ¢ is independent of h .
Plaj=2 Ga(7)€* > €%
Ylal<2 Ga(T; )EY — &%, |z| — oo, uniformly with respect to h.

In addition to the assumption that the coefficients extend holomorphically
to some angle, we assume them to be analytic everywhere. Thus we assume

(A) There exists a constant C' > 0 such that the coefficients a, extend
holomorphically in z to {z € C% |Imz| < C~'(Rex)}, and the relevant
parts of the preceding assumptions extend to this complex domain.
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are defined to be the eigenvalues in this sector of P

Recall that if @ > 0 is small enough, then the resonances of P in 6—1’[0,20[]0’ +oo[

R

Let p(z,£) = X|a/<2 @a,0(7)€* and make the non-trapping assumption

(NT) There are no trapped H-trajectories in p *(1).

By a trapped trajectory we mean a (maximal) integral curve R 5 t —

exp(tH,)(po) € p (1) such that |exp(tH,)(po)| # oo both when ¢ — —oo
and when ¢t — +o00. According to section 12.1, this means that “K” there is
empty, if “¢” there is small enough. According to Proposition 12.5,, we can
find an “escape” function

G(z,8) + f(z,8), (12.57)

with f € C°(R?*; R), such that

H,G >0onp'(1). (12.58)
Consider the IR-manifold:

Ag: Im (z,€) = eHg(Re (z,€)), 0 < ek 1. (12.59)

(We leave as an exercise to verify that this is really an IR-manifold.)

Outside a bounded set, we have Hg = -6, — - J¢ and here A.g becomes:

Imz = eRex, Im& = —eReé. (12.60)

Let I'. C C™ be given by

Imz = eRex, (12.61)

so that I, = ¢?OR", with 0(¢) = arctge. Then the projection of A.g \
(compact set) is equal to I'. and we claim that A.g coincides with T*T,
outside a bounded set. (We view T*T. as a subset of C27% as in Chapter 7.)
Indeed for (z,€) € A \ (compact set), we have Im& = —eRe¢ in addition
to (12.61) and hence

§-dap, = (1—ie)Rel - (1 +ie)dRex = (1+ €)Reé - dRex

is real. Also notice that the parametrization x : R" 3 y — (1+i€)y =z € I,
induces an identification of T*R"™ = RZ" and T*I'. via the map

(y,m) = (5(y), 'da(y) 'n) = (1 +ie)y, (1 +ie) 'n).
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Next parametrize A.g by R*" 3 (z,&) — (z,€) +ieHg(r,€) and compute
Pe =Dy, by Taylor expansion:

pe = p((,€) + ieHg(x,€)) = p(x,€) — ieH,G (x,€) + O((6)%).  (12.62)
This estimate is uniform since

_ 9 9 5o = Oyl ()18
Ha = O((a)) 2+ O((&) g, 02006 = O((a)" (€ )
0z 0p = O((€)* P(a) ),
and we can work in boxes |z —2o| < 3(%o), | —&| < £(&), using the rescaled
variables (y,7), given by

T = o + (w0)y, &= 2E& + (o),

for which
0 0

OyoyHa = O(1) 5+ 0() 5. 3j0yp = O((&)”)

Using this together with (12.58), we see that for € > 0 small enough, we have
with the parametrization used in (12.62):

Rep.(z,£) = p(z, €) + O(e(€)?), Imp.(z,€) < —g+0e|p<x,s> —1[. (12.63)
In particular, we have

[pe(z,€) — 1] > €(€)?/C. (12.64)

Let T': L?(R") — Hgy(C") be a Bargman transform as in (12.14). Re-
placing the integration contour R" there by I'., we get a new Bargman tran-
form

T :L*(I'e) — Hgo(C"), (12.65)

by identifying I'. with R™ in the natural way. Viewing I'e C C™ and T*T', C
C?" as subspaces in the natural way, we justify the writing “I"” rather than
“T.” and we have an associated canonical tranformation

kr 2 C*" — C*" with 7 (T*T.) = Agp, (12.66)
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where ®0 = sup,p —Im¢(z,y). Clearly ®?(z) = ®f(x) + O(e)|z| is a
quadratic form which is strictly plurisubharmonic.

Now recall that A, = A.g coincides with T*I', outside a bounded set and
that both manifolds are e-perturbations of R?" in the natural sense. Then
kr(A¢) is an IR-manifold, equal to Ago outside a bounded set and e-close to
that manifold everywhere, so

rr(Ae) = Ag,, (12.67)

where @ (z) = ®%(z) + €g(z, €), where g is C* in both arguments and has
its x-support in a fixed compact set.

Theorem 12.13 Under the assumptions above, and in particular (A) and
(NT), there exist constants hy,Co > 0 such that P has no resonances in the
disc D(1,Cy"), for 0 < h < hy.

Corollary 12.14 Let V € C*(R"; R) extend to a holomorphic function in
Imz| < (Re)/C which tends to 0 when || — oo in that domain. Then
there exist Cy,Cy > 0, such that P = —A + V(x) has no resonances in
{z€ C;Rez>C,Imz > —-Rez/Cy}.

Proof of the Corollary. It will follow from the proof of the theorem,
that we we have uniformity with respect to additional parameters if the
assumptions hold uniformly.

Consider P — z with Rez > 1, [Im z| < Re z/Cy and write this operator
as

1 tIm z 1
R A+ —V —1- h? = —.
(Re2)( +Rez Rez)’ Re z
Theorem 12.13 implies that we have no resonances when Re z is large and
Im z/Re z is small. #

Proof of the theorem. Let € > 0 be sufficiently small but fixed. Let
Q=ToP, oT™". (12.68)

Then (using the same letters for symbols and operators)

Q@ = Op,(Q) = Q“(z, hDy; h), (12.69)
where on the symbol level,
(Q o kr)(z,& h) = P(z,& h). (12.70)
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Here P denote the Weyl-symbol of our operator P which is holomorphic in
a tubular neighborhood of T*T'. and satisfies P(z,&;h) = p(x, &) + O(h(£)?)
there. (See for instance [21].) We see that Q(-; h) is holomorphic in a tubular
neighborhood of Ago of the form Ago + W, with W independent of ¢, and in
this neighborhood we have

Q(z, & h) = O(m(x,€)), Q@ =q+ O(hm), (12.71)

where m is the order function with mokr = (£)?, and ¢ is given by gorr = p.
For € > 0 small enough, Ag,_ is well inside Ago + W, so we can consider

Q" : Hg, m — Hs.. (12.72)
Let z € D(0,Cy") with Cy' < € (e being fixed). Then
lg(z,&) — z| ~ m(z,€) on Ag,, (12.73)
and Corollary 12.12 together with (12.71) imply that

(1= Oc(h))

Q" = 2)ullzzy, > 5= Ilullzzg, m- (12.74)

If z is a resonance, let v € H?(T.) be a corresponding eigenfunction of P, s0
that (P—z)v = 0on .. Applying T we get v :=Tv € He_m, (Q*—2)Tv =0
and (12.74) implies that if A > 0 is small enough, then v = Tv = 0 and so
v = 0 in contradiction with the assumption that z is a resonance. #

12.6 Dynamical upper bounds in terms of escape func-
tions

We drop the non-trapping assumtion (NT), and keep all the other assump-

tions of the preceding section (including (A)). Let K be the union of trapped

trajectories in X = p~'([1 —€g, 1 +€]), where ¢ > 0 is small and fixed. Let
G be a real-valued function on R??, such that

G and H,G are of class C"', G =z - £ for |(z,&)| large, (12.75)
H,G is > O(1)7'|VG/|? locally uniformly in %°,
H,G > 0 outside a small neighborhood of K in 37°.
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In section 12.1 we saw that such smooth functions always exist, but our
estimates will depend on a specific such function, and good choices of such
functions seem to require limited regularity as we shall see in section 12.7.

For 0 <6 <r<1,0 <Cy', let M(r,6) be the number of resonances of
P in D(1 +4r,7 +6). Let W be a small neighborhood of K in ¥:°, outside
which H,G is bounded from below by some positive constant. Put

V(r,8) = Vol ({p € W; (p(p) — 1)*> + 2H,G + (H,G)* < 2ré + 6*}) (12.76)
= Vol ({p € W; [(p(p) — iH,G) — (1 +ir)[> < (r +6)*}).
Notice that this quantity increases when r or ¢ increases. Also, if
V(r,8) = Vol ({p € W; (p(p) — 1)* + H,G < r6}),
then V (r,8) < V(r,368), V(r,8) < V(r, 36).
Theorem 12.15 For Cy,Cy > 0 sufficiently large and for Coh < 6 <r <1,
d < 1/Cy, r6 > Coh, we have
M(r,6) < CV(r,Co)h™". (12.77)

Define I'; as in (12.61) and let T : L?(I'.) — Hg(C") be a Bargman
transform as in section 12.5. As there, we define ®., so that

kr(Ac) = As,, kr(T*Te) = Ago, @ = @) + €g(-, ), (12.78)

where ¢g(-,¢€) is bounded in C*' when ¢ varies, and has uniformly compact
support. (We recall the definition of Az below.)

Having already fixed a small ¢y > 0, we will let € > 0 be small and (later)
fixed. Let m be the order function with m o kp = (£)>.

By abuse of notation, we let P also denote the conjugated operator

TP, T'. Then (on the transform side)
P= 0(1) : Hég,m — H@Q, H(I>5,m — H@s,

uniformly in €, h.
Consider the Hermitian form:

qu,u) = (P =1—idr)ul|(P =1 —ir)u)m, , 0 <r <1, (12.79)

formally equal to (Qu|u)m,, , with @ = (P — 1 —ir)*(P — 1 —4r), where *
indicates that we take the adjoint in the Hilbert space Hg,.
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Let A.g be the the image of
R 5 (2,€) - (2,€) + ieHa(x, €), (12.80)

and identify R?" and A.g by means of this map. We also identify A.g and
A, by means of k7, and Ag. and C} by means of the natural projection
Tyt (2,€) — 2. Consequently we shall view p. := p, A, also as a function on
R?", Ag, or C" whenever convenient.

According to Corollary 12.12, we have

qu,u) = /C [pe = 1 —ir[*|ue **/"L(dz) + O()|lul}y, m (12:81)

(where p, is viewed as a function on C").

If we now consider p, as a function on R?*, we know that the values of
Pe on the complement of %70 and on the complement of W in %0 avoid a set
of the form {z; [Rez — 1| < Cy', Imz > —¢/Cy} and consequently we have
here

pe—1—ir[2> (r+ <2, (12.82)
Co
when € > 0 is small enough. In the complement of ¥7°, we even have
2
e — 1 —ir? > r? ﬂ. 12.
Ip irl* >r +(9(1) (12.83)

In a neighborhood of K in 3:°, we take a closer look:

pe = p((2,8) +iHe(x,€)) = p(z,§) —ieH,G(z,€)+O(e") [ VG +i0(€°) [ VG,

(12.84)
where the first remainder term is real and the second one is purely imaginary.
Hence, using (12.75):

—Imp. = €(1 + O(€%))H,G, (12.85)
Repe = p+ O(e))H,G = p+ O(e)lmp.. (12.86)
It follows that near K in 35°, we have
pe—1—irf> = (Rep. —1)° + (r — Imp,)’
= (p—1+0(e)lmp.)* + (r — Imp,)’
> L(p 1)~ O@)(~Tmp)? + 7 +2r(~Tmpy) + (~Tmp.)

! 1
>+ 5(p— 1) + 2r(=Tmpe) + 5 (~Tmpc)” :

154



1 1
pe—1—irf? > 2+ J(p— 17+ 2(-Tmp) + S(-Tmp?,  (12.87)

near K in 37°.
Using these estimates and a variant of (12.81), we shall first prove:

Proposition 12.16 For 0 < r <1, we have
q(u,u) > (r* — Crh)||u||%,¢s. (12.88)

Proof. We drop the subscript Hg_ for the corresponding norms and scalar
products. Consider,

q(u,u) = r*||ul|?

(P —=1—ir)ul(P—1—1ir)u) — r?||ul? (12.89)
I(P = Dul® + ir[((P = 1)ulu) — (u|(P - 1)u)]

r(Il(P = 1)ul|* — 2Im (Pulu))

([ (1pe = 1 = 2mp))[uf*e** " L(dz) + OW)llully, )

v

From (12.85), (12.86) it is clear that |p. — 1|* — 2Imp, is > 0 in X and
> O(1)*(&)? in the complement of ¥¢°. Using this in (12.89), we get q(u, u)—
r¥flull* = =Crhlul*. #

We want to make finite rank perturbations of ¢ for which the lower bound
(12.88) improves. Fix a sufficiently small € > 0 for which the previous esti-
mates hold. We start by combining (12.82), (12.83), (12.85), (12.87) to see
that for 6 > 0 small enough, we have

|p6 -1- iT|2 > 7"2 4+ 7 in R2n \ WC&,'I‘; (12'90)
where
Wesr = {p € R*™; (p(p) —1)* +2rH,G + (H,G)? < 2Cré + (C9)?}, (12.91)

and C > 0 is sufficiently large and independent of §. (Recall that ¢ > 0 has
now been fixed.)
Using this in (12.81), we get

q(u,u) > (r* + 16 — O(h))|[ull® — (rd + O(h)) I 1wes, ullzz,  (12.92)

where ® = ..
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We shall next show that the last term in (12.92) is very small on certain
subspaces of Hg of finite and explicitly controled codimension. Let y, €
C§°(B(0,1)) (where B(0,1) is the open unit ball in C") be a radial function
with [ xo(z)L(dz) = 1. Let {(z) = 2‘%(9“" Usmg the mean-value property
for the holomorphic function y — ¢#®~ (=1 E(z) , we get the representation
of the identity operator on Hg:

Tu(z)(= u(z)) = h~ / Feyy xhl_/zy) u(y) L(dy). (12.93)

Let

K(z,y;h) = e%(x‘y)'“””)Xo(—xhl_/gy)h*".

Then the reduced kernel e=(*@=*WV/hK (5 y: h) is O(1)h™"xo(44) and we
deduce that the last member of (12.93) defines a bounded operator: L% — L%
of norm O(1) uniformly with respect to h.

Let z be close to . We shall compare the kernel K (z,y; h) with the rank

1 kernel _
r—y

K;(x,y;h) = ei(w_y)'f(x)/hXo(W

V"

If |z — &| < eh!/? (with a new € > 0, the earlier one being now fixed and

forgotten), we check that the difference betwen the corresponding reduced

kernels is O(eh™") and has its support in a domain |z — y| < Const. h*/2.
Now let W CC C" be a compact set which can be covered by M (W, eh!/?)

balls, B; = B(z;,eh'/?). Let W = UMlW be a partition of W with W; C B;,
W; "Wy =0 for j # k. ForxGW],Weputx( ) = ;. ThenWer—Hc( )
takes at most M (W, eh/2) values and |z — Z(z)| < eh!/2. For z ¢ W, we put
xu(z) =0 and for z € W, we put

= o [ ebten G (O ) 1 ).
Then the discussion above gives:
Lemma 12.17 x : L2 — L2 is of finite rank < M (W, eh*/?) and

[1wu — xul|z < Cellulls, u € He(C"). (12.94)

We next estimate M (W, r):
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Lemma 12.18 Let W C C" be compact and let M(W,r) be the minimal
number of closed balls of radius r > 0, centered at points of W, that cover

W. Then

Vol (W)r=2" < Vol (B(0, 1)) M (W, r) < 22"Vol (W + B(0, g))ﬂ". (12.95)

Proof. Clearly
Vol (W) < M(W,r)Vol (B(0,r)) = M (W, r)Vol (B(0,1))r?",

which gives the first inequality in (12.95). To prove the second inequality,
let A(r) be the maximum number of closed disjoint balls of radius r/2 that
can be centered at points of W, and let B(z;,7/2), j =1, ..., A(r) be such a
family of balls. Then,

r

o).

A(r)Vol (B(0, g)) < Vol (W + B(0

so that
r

2
The second part of (12.95) will then follow, if we prove that M (W, r) < A(r),
and to do so, it is enough to prove that the B(xz;,r) cover W. If that were
not the case, there would be a point x € W which is not in any of the
B(zj,r) and hence B(z,r/2) N B(x;,7/2) = ( for every j, which contradicts
the maximality of the disjoint family B(xz;,r/2). #

A(r)Vol (B(0,1)) < 2"~ 2"Vol (W + B(0, =)). (12.96)

Lemma 12.19 Let ¢ > 0 be a C"'-function on C™ with liminf), o ¢ > 0.
If Ao > 0 s sufficiently small, there exists a constant Cy; > 0 such that for
h < X< A\, we have for 0 <e < 1:

Vol (W + B(0, eh'/?)) < Vol (W, enirzais2), (12.97)
where Wy = {z; ¢(z) < A}.

Proof. We prove the corresponding inclusions for the sets. If z € K, we
have §(z) < X and |g'(z)| < CAY2, so if |y| < eh!/?, then

Gz +1y) < A+ C(A2ehY? 4 €h) < X+ Cieh!/2AV2,
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We now return to (12.92) and apply the last three lemmas with ¢ =
(p(p) — 1) + 2rH,G + (H,G)? in (12.91). We conclude that there exists an
operator x,s = O(1) : L3 — L% of rank

< Vol (Wes, + B(0, eh!/?))e 2"h "
< Vol (WC5+C251/2T71/2€,11/2’T)6_2nh_n,

when 76 > Cyh, such that
[(Awes,, = x)ull < O(e)lull, u € He.
Choose € > 0, so that the last “O(e)” is < 1/3 and use it in (12.92):

q(u,u) > (r* + 23L5 — O(h))l|ull® = (ro + O(R))lIxull*, u € Hom- (12.98)

Notice that
rank (x) < CV(r,Co)h™", (12.99)

for a new sufficiently large constant C' > 0.

Proof of Theorem 12.15. Consider still the Hermitian form (12.79):
qu,u) = (P —1—ir)u|(P—1—ir)u)p,, © € He pn.

From (12.81) it follows that ¢ is a closed quadratic form with domain Heg .
Consequently, by the Lax-Milgram theorem, there exists a unique self-adjoint
operator > 0 in Hg such that

D(Q) C Hom, (12.100)

q(u,u) = (Qulu), u € D(Q). (12.101)

Formally, @ = (P—1—1ir)*(P—1—1ir). Let u; < us < ... be an enumeration
of first all the discrete eigenvalues of /2 below the essential spectrum,
repeated according to their multiplicity, and then if there are only finitely
many such eigenvalues, the infimum of the essential spectrum repeated “ad
eternam”. Then we have the max-min formula

pa = sup inf q(u,u), (12.102)
E is asubspace of Hg uEE
of codimension <N -1 llull=1

with the convention that q(u,u) = 400 if u € Hg \ Hg -

158



Proposition 12.16 tells us that
p1 > Vr2—Crh > 1 — O(h), (12.103)

where we now restrict all parameters as in Theorem 12.15. On the other
hand, (12.98), (12.99) show that if E = N (x) (the null-space of x), then

2rd
: 2
inf q(u,u) > r° + == = O(h),

lull=1
and since codim N (x) < CV(r,Cdo)h ™, we conclude from (12.102), that

pa >+ ? — O(h), for N > CV(r,Co)h ™. (12.104)

Multiplying ¢ by a constant (affecting the “C” above), we may assume that,
pun > 1+ 20, for N > CV(r,Co)h™". (12.105)

Let z1, 22, ... be the resonances of P in D(1 + ir,r + 2/Cy) repeated ac-
cording to their multiplicity and arranged so that j +— |z; —1—ir|. Then we
have the Weyl inequalities:

N
pi oy < H |zj — 1 —ir|, (12.106)
1

viewing z; — 1 — ir as the eigenvalues of P — 1 — 4r. Notice that these
inequalities are “opposite” to the corresponding ones for a compact operator,
where the singular values are enumerated in decreasing order and similarly
for the moduli of the eigenvalues. See the appendix (dans la prochaine version
c’est promis!) for a proof.

Let M(r,0) be as in the theorem. If M(r,0) < CV(r,Cd)h™", we are
done. If not, we apply (12.106) with N = M(r,d) and get from (12.103),
(12.105), with N = [CV (r,Cé)h ™ ™]:

(r—CR)N(r+26)MN < (r+6)M,

) ~—r—Ch’ "’
r—+ 20 7+ 20
< .
Mlog(r+5) _Nlog(r—Ch)
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Here the logarithms are of the order of magnitude §/r, so we get M < O(1)N.
#

By replacing the energy “1” be a real energy E which varies in a neigh-
borhood of E, one obtains a variant of the main theorem. If J C neigh (1,R)
is an interval and 0 < € < 1, let

R(J,e) ={pe W;p(p) € J, HG < €}. (12.107)
Then we have

Theorem 12.20 We make the same assumptions as in Theorem 12.15. Then
there are constants Cy, C > 0 such that for every subinterval I of [1—€q/2, 1+
€0/2], we have when Coh < 6 < Cy'',

Ms(1,6) < CVol (R(I + [-C6,C6],068))h™, (12.108)

where & = max(8, h'/?). Here Ms(I,8) denotes the number of resonances in
the rectangle I — [0, d[.

In a later version of these notes we will put in the detailed proof, but
in this version we only give the outline: Cover I — 4[0,d[ by a “minimal”
number of discs D(E; + ir,r + 26) and remember the constraints 1 > r > 4,
ré > Coh. If & > h'Y2, we take r ~ § and if Coh < § < hY?, we take
r ~ h/d. Then estimate the number of resonances in D(E; + ir,r + 20) by
CVol({p € W; p—1iH,G € D(E; + ir,r + C¢§)}. When summing over j we
notice that every point in the lower half plane can belong to at most a fixed
finite number of the discs D(E; + it,r + C9). #

12.7 Quick review of the case when the classical flow
is hyperbolic

Recall that K,I's were defined in X0 for some small fixed ¢ > 0. Let

K , ', be the corresponding sets in Effo. We make the following hyperbolicity
assumptions about the classical dynamics:

(Hyp 1) In a neighborhood Q,, of every point py € K, we can represent Ty
as a union of closed disjoint Cllmanifolds of dimension n + 1, such that if
p € QNI and if EF = T,(T',), where I'; , is the corresponding leaf,

then E depends continuously on p € Q,, N Ty, and contains Hy(p). Same

~

assumption about E =T,(I"_ ).
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(Hyp 2) E: and E are transversal for every p € K , and are indpendent of
the choice of §2,,, containing p.

(Hyp 3) There exists a constant C' > 0, such that with &, = exptH,,:
1d®,(v)|| < Ce~*C||v||, v € T,(R™)/ES, pe K, t >0, (12.109)

|d®_(v)|| < Ce |||, v € T,(R™)/E;, pe K, t >0, (12.110)

where d®, is considered as a map T,(R*")/E; — Tg,(,) (R*" )/Ecbt(p

Theorem 12.21 Under the above assumptions and after an arbitrarily small
decrease of €y, we can find G as in Theorem 12.15 such that

H,G > édist (-, K)?, near K in ¥ and >0 in %0\ K. (12.111)

Let L C R?" be bounded and put L. = {p € R?"; dist (p, L) < €}, for
e > 0. We define the Minkowski codimension of L; codim (L), to be the
supremum of all d > 0, such that Vol (L.) < O(e?) when ¢ — 0. Clearly
0 < codim (L) < 2n when L # (). We say that L is of pure dimension if
the supremum is attained, so that Vol (L) < O(e®d™ @), Put dim (L) =
2n — codim (L). The following result is a consequence of Theorem 12.20 and
Theorem 12.21:

Theorem 12.22 Under the above assumptions, let d = codim (K K) if K is
of pure codimension, and otherwise let 0 < d < codim K. Then there is a
constant Cy > 0 such that for 0 < h < C’O_ , Coh < 0 < Cyt, the number of
resonances of P in the rectangle | — 9, $[—i[0, 4] is < Coéd/zh "

Remains to add to this section: The proof of Theorem 12.21 and a discus-
sion of the example of several strictly convex obstacles and the corresponding
example of approximating potentials.

References

[1] J. Aguilar, J.M. Combes, A class of analytic perturbations for one-body
Schrédinger Hamiltonians. Comm. Math. Phys., 22(1971), 269-279.

[2] L. Ahlfors, Complex analysis. An introduction to the theory of analytic
functions of one complex variable. Third edition. International Series
in Pure and Applied Mathematics. McGraw-Hill Book Co., New York,
1978.

161



[3] A.A. Arsenev, On the resonance properties of the scattering amplitude

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

for the Schrodinger equation with a trapping potential. Teoret. Mat. Fiz.
104(2)(1995), 214-232, and Theoret. and Math. Phys. 104(2)(1995),
935-949 (1996).

A.A. Arsenev, The singularities of the analytic continuation and the
resonance properties of the solution of a scattering problem for the
Helmholtz equation, (Russian) Dokl. Akad. Nauk SSSR 197(1971), 511~
512.

E. Balslev, J.M. Combes, Spectral properties of many-body Schrodinger
operators with dilatation-analytic interactions, Comm. Math. Phys.,
22(1971), 280-294.

C. Bardos, J.C. Guillot, J. Ralston, La relation de Poisson pour

I’équation des ondes dans un ouvert non-borné, Comm. PDE 7(1982),
905-958.

C. Bardos, G. Lebeau, J. Rauch, Scattering frequencies and Gevrey 3
singularities, Invent. Math. 90 (1987), no. 1, 77-114.

J.T. Beale, Scattering frequencies of resonators, Comm. Pure Appl.
Math. 26(1973), 549-563.

A. Lahmar-Benbernou, A. Martinez, Semiclassical asymptotics of the
residues of the scattering matriz for shape resonances, Asymptot. Anal.
20(1)(1999), 13-38.

A. Lahmar-Benbernou, A. Martinez, On Helffer-Sjéstrand’s theory of

resonances, International Math. Research Notices, 2002, no 13, 697-
717.

J.F. Bony, Minoration du nombre de résonances engendrées par une
trajectoire fermée, Comm. PDE.,

P. Briet, J.M. Combes, P. Duclos, On the location of resonances for
Schrodinger operators in the semiclassical limit. I. Resonance free do-
mains, J. Math. Anal. Appl. 126(1)(1987), 90-99.

162



[13] P. Briet,J.M. Combes, P. Duclos, On the location of resonances for
Schrodinger operators in the semiclassical limit. II. Barrier top reso-
nances, Comm. Partial Differential Equations 12 (1987), no. 2, 201-222.
Erratum in Comm. Partial Differential Equations 13 (1988), no. 3, 377—
381.

[14] Russell Brown, P.D. Hislop, A. Martinez, Figenvalues and resonances
for domains with tubes: Neumann boundary conditions, J. Differential
Equations 115(2)(1995), 458—476.

[15] N. Burq, Acta Math. 1998.

[16] N. Burq, Lower bounds for shape resonance widths of long range
Schrodinger operators,Preprint Univérsité de Paris Sud, 2000.

[17] N. Burq, J. Sjéstrand, In preparation.

[18] J.M. Combes, P. Duclos,M. Klein, R. Seiler, The shape resonance,
Comm. Math. Phys. 110(2) (1987), 215-236.

[19] A. Cordoba, C. Fefferman,
[20] E.B. Davies, bok om spektral teori med HS-formeln

[21] M. Dimassi, J. Sjostrand, Spectral asymptotics in the semi-classical
limit, London Math. Soc. Lecture Note Series, 268. Cambridge Uni-
versity Press, Cambridge, 1999.

[22] Dynkin,

[23] C.A. Fernandez, Resonances in scattering by a resonator, Indiana Univ.
Math. J., 34(1)(1985), 115-125.

[24] C. Fernandez, R. Lavine, Lower bounds for resonance width in potential
and obstacle scattering, Comm. Math. Phys., 128(1990), 263-284.

[25] R. Froese, P. Hislop, "upper bounds”

[26] C. Gérard, Asymptotique des poles de la matrice de scattering pour deuz
obstacles strictement converes. Mém. Soc. Math. France (N.S.) No. 31,
(1988),

163



[27] C. Gérard, A. Martinez, Prolongement méromorphe de la matrice de

scattering pour des problémes a deux corps da longue portée, Ann. Inst.
H. Poincaré Phys. Théor. 51(1)(1989), 81-110.

[28] C. Gérard, A. Martinez, D. Robert, Breit-Wigner formulas for the scat-
tering phase and the total scattering cross-section in the semi-classical
limit, Comm. Math. Phys. 121(2)(1989), 323-336.

[29] C. Gérard, J. Sjostrand, Semiclassical resonances generated by a closed
trajectory of hyperbolic type, Comm. Math.Phys., 108(1987), 391-421.

[30] C. Gérard, J. Sjostrand, Résonances en limite semiclassique et exposants
de Lyapunov, Comm. Math. Phys. 116(1988), 193-213.

[31] I.C. Gohberg, M.G. Krein Introduction to the theory of linear non-
selfadjoint operators. Translations of Mathematical Monographs, Vol.
18 American Mathematical Society, Providence, R.I. 1969.

[32] A. Grigis, J. Sj6strand,

[33] V. Guillemin, R. Melrose, The Poisson summation formula for manifolds
with boundary, Adv. Math. 32(1979), 128-148.

[34] L. Guillopé, M. Zworski, Polynomial bounds on the number of resonances
for some complete spaces of constant negative curvature near infinity,
Asympt. Anal. 11(1)(1995), 1-22.

[35] L. Guillopé, M. Zworski, “traceformula for hyperbolic surfaces”.

[36] E. Harrel, General lower bounds for resonances in one dimension,
Comm. Math. Phys., 86(1982), 221-225.

[37] B. Helffer, A. Martinez, Comparaison entre les diverses notions de
résonances, Helv. Phys. Acta 60(8)(1987), 992-1003.

[38] B. Helffer, J. Sjostrand, Résonances en limite semi-classique, Mém. Soc.
Math. France (N.S.) No. 24-25, (1986),

[39] B. Helffer, J. Sjostrand, Equation de Schrodinger avec champ
magnétique et équation de Harper, Springer Lecture Notes in Physics,
345(1989), 118-197.

164



[40] P.D. Hislop, I.M. Sigal, Semiclassical theory of shape resonances in quan-
tum mechanics. Mem. Amer. Math. Soc. 78 (1989), no. 399.

[41] P.D. Hislop, A. Martinez, Scattering resonances of a Helmholtz res-
onator, Indiana Univ. Math. J. 40(2)(1991), 767-788.

[42] L. Hérmander, The analysis of linear partial differential operators, I-IV,
Springer Verlag, 1983-1985.

[43] W. Hunziker, Distortion analyticity and molecular resonance curves.
Ann. Inst. H. Poincaré Phys. Théor. 45(4)(1986), 339-358.

[44] M. Ikawa, On the scattering matriz for two convez obstacles, Hyperbolic
equations and related topics (Katata/Kyoto, 1984), 63-84, Academic
Press, Boston, MA, 1986.

[45] M. Ikawa, On scattering poles for several conver bodies, Quantum and
chaos: how incompatible? (Kyoto, 1993). Progr. Theoret. Phys. Suppl.
No. 116, (1994), 107-119.

[46] A. Intissar, A polynomial bound on the number of the scattering poles for

a potential in even-dimensional spaces R™, Comm. Partial Differential
Equations 11(4)(1986), 367-396.

[47] G. Jona-Lasinio, C. Presilla, J. Sjostrand, On Schrédinger equations
with concentrated nonlinearities, Ann. Physics 240(1)(1995), 1-21.

[48] N. Kaidi, P. Kerdelhue, Forme normale de Birkhoff et résonances,
preprint 1998, Université de Paris Sud.

[49] A. Knauf, Qualitative aspects of classical potential scattering. Regul.
Chaotic Dyn., 4(1)(1999), 3-22.

[50] P. Lax, R. Phillips, Scattering theory, Second edition, Pure and Applied
Mathematics, 26. Academic Press, Inc., Boston, MA, 1989.

[61] G. Lebeau, Fonctions harmoniques et spectre singulier, Ann. Sci. Ecole
Norm. Sup. (4)13(2)(1980), 269-291.

[52] G. Lebeau, L. Robbiano, Contrile exact de l’équation de la chaleur,
Comm. Partial Differential Equations 20(1-2)(1995), 335-356.

165



[63] G. Lebeau, L. Robbiano, Stabilization of the wave equation by the bound-
ary, Partial differential equations and mathematical physics (Copen-
hagen, 1995; Lund, 1995), 207-210, Progr. Nonlinear Differential Equa-
tions Appl., 21, Birkhduser Boston, Boston, MA, 1996.

[54] R. Melrose, Polynomial bound on the distribution of poles in scattering
by an obstacle, Proc. Journées e.d.p. St Jean de Monts, 1984, Soc. Math.
de France.

[55] R. Melrose, Scattering theory and the trace of the wave group, J. Funct.
Anal., 45(1982), 29-40.

[56] R. Melrose, J. Sjostrand, Singularities in boundary value problems, I
and II, Comm. Pure Appl. Math., 31(1978), 593-617, and 35(1982),
129-168.

[57] L. Nedelec, Résonances semi-classiques pour l'opérateur de Schrodinger
matriciel en dimension deur, Ann. Inst. H. Poincaré Phys. Théor.
65(2)(1996), 129-162.

[58] L. Nedelec, Asymptotique du nombre de résonances de l’opérateur
de Schrodinger avec potentiel linéaire et matriciel, Math. Res. Lett.
4(2,3)(1997), 309-320.

[59] L. Nedelec, Resonances for matriz Schrédinger operators, Duke Math.
J., to appear

[60] V. Petkov, Sur la conjecture de Lax et Phillips pour un nombre
fini d’obstacles strictement convexes, Sémina}ire sur les Equations aux
Dérivées Partielles, 1995-1996, Exp. No. XI, Ecole Polytech., Palaiseau.

[61] V. Petkov, G. Vodev, Upper bounds on the number of scattering poles
and the Laz-Phillips conjecture, Asymptotic Anal. 7(2)(1993), 97-104.

[62] V. Petkov, M. Zworski, Breit-Wigner approzimation and the distribution
of resonances, Comm. Math. Phys. 204(2)(1999), 329-351. Correction,
to appear.

[63] G. Popov, On the contribution of degenerate periodic trajectories to the
wave-trace, Comm. Math. Phys. 196(2)(1998), 363-383.

166



[64] C. Presilla, J. Sjostrand, Nonlinear resonant tunneling in systems cou-
pled to quantum reservoirs, Physical Review B, 55(15)(15 April 1997-1),
9310-9313.

[65] C. Presilla, J. Sjostrand, Transport properties in resonant tunneling het-
erostructures, J. Math. Physics, 37(10)(1996), 4816-4844.

[66] M. Reed, B. Simon, Methods of modern mathematical physics, I-IV,
Academic press, New-York, 1978.

[67] D. Robert, "semiklassisk spaar-formel foer h-oberoende funktioner av
en h-pseudo”

[68] M Rouleux, Resonances for a semi-classical Schrédinger operator near
a non-trapping energy level, Publ. Res. Inst. Math. Sci. 34(6)(1998),
487-523.

[69] M. Rouleux, Absence of resonances for semiclassical Schrodinger oper-
ators with Gevrey coefficients, in preparation

[70] B. Simon, Phys. Lett. A 71 (1979), no. 2-3, 211-214.

[71] J. Sjostrand, Semiclassical resonances generated by a non-degenerate
critical point, Springer Lect. Notes in Math., 1256, 402-429.

[72] J. Sjostrand, Geometric bounds on the density of resonances for semi-
classical problems, Duke Math. J., 60(1)(1990), 1-57.

[73] J. Sjostrand, Singularités analytiques microlocales. Astérisque, 95(1982).

[74] J. Sjostrand, Density of resonances for strictly convex analytic obstacles,
Canad. J. Math. 48(2)(1996), 397-447.

[75] J. Sjostrand, A traceformula and review of some estimates for res-
onances, p. 377-437 dans Microlocal Analysis and Spectral Theory,
NATO ASI Series C, vol. 490, Kluwer 1997.

[76] J. Sjostrand, Resonances for bottles and trace formulae. Math. Nachr. a
paraitre

[77] J. Sjostrand, A trace formula for resonances and application to semi-
classical Schrodinger operators. Séminaire e.d.p., Ecole Polytechnique,
1996-97, exposé no 2.

167



[78] J. Sjostrand, Function spaces associated to global I-Lagrangian mani-
folds., pages 369-423 in Structure of solutions of differential equations,
Katata/Kyoto, 1995, World Scientific 1996

[79] J. Sjostrand, Ann Inst. Fourier ~ 1976.

[80] J. Sjostrand, M. Zworski, Complex scaling and the distribution of scat-
tering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769.

[81] J. Sjostrand, M. Zworski, Distribution of scattering poles near the real
azis, Comm. Partial Differential Equations 17(5,6)(1992), 1021-1035.

[82] J. Sjostrand, M. Zworski, Estimates on the number of scattering poles
near the real axis for strictly convexr obstacles, Ann. Inst. Fourier,
43(3)(1993), 769-790.

[83] J. Sjostrand, M. Zworski, The complex scaling method for scattering by
strictly convex obstacles, Ark. f. Matematik, 33(1)(1995), 135-172.

[84] J. Sjostrand, M. Zworski, Lower bounds on the number of scattering
poles. Comm. Partial Differential Equations 18(5,6)(1993), 847-857.

[85] J. Sjostrand, M. Zworski, Lower bounds on the number of scattering
poles. II. J. Funct. Anal. 123(2)(1994), 336-367.

[86] J. Sjostrand, M. Zworski, Asymptotic distribution of resonances for con-
ver obstacles, Acta Math. 183(2)(1999), 191-253.

[87] P. Stefanov, Quasimodes and resonances: sharp lower bounds. Duke
Math. J. 99(1)(1999), 75-92.

[88] P. Stefanov, G. Vodev, Neumann resonances in linear elasticity for an
arbitrary body. Comm. Math. Phys. 176(3)(1996), 645-659.

[89] S.H. Tang, M. Zworski, From quasimodes to reasonances, Math. Res.
Lett. 5(3)(1998), 261-272.

[90] S.H. Tang, M. Zworski, "resonance expansions

[91] B.R. Vainberg, Asymptotic methods in equations of mathematical
physics, Gordon & Breach Science Publishers, New York, 1989.

168



[92] G. Vodev, Sharp polynomial bounds on the number of scattering poles for
metric perturbations of the Laplacian in R™, Math. Ann. 291(1)(1991),
39-49.

93] G. Vodev, Sharp bounds on the number of scattering poles for perturba-
tions of the Laplacian, Comm. Math. Phys. 146(1)(1992), 205-216.

[94] G. Vodev, On the distribution of scattering poles for perturbations of the
Laplacian. Ann. Inst. Fourier (Grenoble) 42(3)(1992), 625-635.

[95] G. Vodev, Sharp bounds on the number of scattering poles in even-
dimensional spaces, Duke Math. J. 74(1)(1994), 1-17.

[96] G. Vodev, Sharp bounds on the number of scattering poles in the two-
dimensional case, Math. Nachr. 170(1994), 287-297.

[97] G. Vodev, extension du th. de Burq
[98] G. Vodev, extension du th. de Burq

[99] M. Zerzeri, Majoration du nombre de résonances pres de l’aze réel pour
une perturbation, a support compact, abstraite, du laplacien, preprint,
Université de Paris Nord, 1999, Comm. PDE, to appear

[100] M. Zworski, Distribution of poles for scattering on the real line J. Funct.
Anal. 73(2)(1987), 277-296.

[101] M. Zworski, Sharp polynomial bounds on the number of scattering poles,
Duke Math. J. 59(2)(1989), 311-323.

[102] M. Zworski, Poisson formulae for resonances, S,ém. Equations
aux Dérivées Partielles, 1996-1997, Exp. No. XIII, Ecole Polytech.,
Palaiseau, 1997.

[103] M. Zworski, Dimension of the limit set and the density of resonances
for convex co-compact hyperbolic surfaces, Inv. Math. 136(2)(1999), 353
409.

169



