
CHAPTER 9

NEARBY AND VANISHING CYCLES OF eD-MODULES

Summary. We introduce the Kashiwara-Malgrange filtration for a eDX -module,
and the notion of strict R-specializability. This leads to the construction of the
nearby and vanishing cycle functors. One of the main results is a criterion for the
compatibility of this functor with the proper pushforward functor of eD-modules.

Throughout this chapter we use the following notation.

9.0.1. Notation.
• X denotes a complex manifold.
• H denotes a smooth hypersurface in X.
• Locally on H, we choose a decomposition X = H ⇥�t, where �t is a small disc

in C with coordinate t. We have the corresponding z-vector field e@t.
• D denotes an effective divisor on X with support denoted by |D|. Locally on D,

we choose a holomorphic function g : X ! C such that D = (g). We then have
|D| = g

�1
(0).

• Recall that eDX means DX or RFDX and, in the latter case, eDX -modules mean
graded eDX -modules (see Chapter 8). We then use (k) for the shift by k of the grading
(see Section 5.1.a). When the information on the grading is not essential, we just
omit to indicate the corresponding shift. We use the convention that, whenever eDX

means DX , all conditions and statements relying on gradedness or strictness are
understood to be empty or tautological.

9.0.2. Remark (Left and right eD-modules). For various purposes, it is more convenient
to work with right eD-modules. However, left eD-modules are more commonly used
in applications. We will therefore mainly treat right eD-modules and give the corre-
sponding formulas for left eD-modules in various remarks.

9.0.3. Remark (Restriction to z = 1). Throughout this chapter we keep the Conven-
tion 8.1.11. All the constructions can be done either for DX -modules or for graded
RFDX -modules, in which case a strictness assumption (strict R-specializability) is
most often needed. By “good behaviour with respect to the restriction z = 1”,
we mean that the restriction functor eM 7! M := eM/(z � 1) eM is compatible with
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the constructions. We will see that many, but not all, of the constructions in this
chapter have good behaviour with respect to setting z = 1. We will make this precise
for each such construction.

9.1. Introduction

This chapter has one main purpose: Given a coherent eDX -module, to give a suffi-
cient condition such that the restriction functor to a divisor D, producing a complex
of eDX -modules supported on the divisor D which corresponds to the functor D◆H⇤D◆

⇤
H

when ◆H : H ,! X is the inclusion of a smooth hypersurface, gives rise to a complex
of eDX -modules with coherent cohomology.

The property of being specializable along D will answer this first requirement. How-
ever, in the case where eDX = RFDX , strictness comes into play in a fundamental way
in order to ensure a good behaviour. This leads to the notion of strict specializability
along D. When forgetting the F -filtration, i.e., when considering DX -modules, the
strictness condition is empty.

Given any holomorphic function g on X with associated divisor D and for ev-
ery strictly R-specializable eDX -module eM along D, we introduce the nearby cycle
eDX -modules  g,�

eM (� 2 C
⇤ with |�| = 1) and the vanishing cycle module �g,1 eM.

They are the “generalized restriction functors”, which the usual restriction functors
can be deduced from.

The construction is possible when the Kashiwara-Malgrange V -filtration exists on
a given eDX -module. More precisely, the notion of V -filtration is well-defined in the
case when D is a smooth divisor. We reduce to this case by considering, when more
generally D = (g), the graph inclusion ◆g : X ,! X ⇥ C. The V -filtration can exist
on the pushforward D◆⇤ eM. We then say that eM is strictly specializable along D.

Kashiwara’s equivalence is an equivalence (via the pushforward functor ◆Y :Y ,!X)
between the category of coherent DY -modules and that of coherent DX -modules
supported on the submanifold Y . When Y has codimension 1 in X, this equivalence
can be extended as an equivalence between strict coherent eDY -modules and coherent
eDX -modules which are strictly R-specializable along Y .

Complex Hodge modules will satisfy a property of semi-simplicity with re-
spect to their support that we introduce in this chapter under the name of strict
S-decomposability (“S” is for “support”). The support of a coherent eDX -module eM
is a closed analytic subspace in X. It may have various irreducible components.
We introduce a condition that ensures the following to properties.

• The eDX -module eM decomposes as the direct sum of eDX -modules, each of which
supported by a single component.

• Moreover, each such summand decomposes itself as the direct sum of eDX -mod-
ules, each of which supported on an irreducible closed analytic subset of the support
of the given summand, in order to satisfy a “geometric simplicity property”, namely
each such new summand has no coherent sub- nor quotient module supported on a
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strictly smaller closed analytic subset. We then say that such a summand has pure
support.

In Section 9.8, we give a criterion in order that the functors  g,� and �g,1 com-
mute with proper pushforward. This will be an essential step in the theory of complex
Hodge modules (see Chapter 14), where we need to prove that the property of strict
S-decomposability (i.e., geometric semi-simplicity) is preserved by projective pushfor-
ward.

9.2. The filtration V•
eDX relative to a smooth hypersurface

Let H ⇢ X be a smooth hypersurface(1) of X with defining ideal IH ⇢ OX . Let
us set eI`

H
= eOX for ` < 0 and eI`

H
= I`

H
eOX for ` > 0. The sheaf of logarithmic vector

fields along H, denoted by e⇥X(logH) is the subsheaf of the sheaf e⇥X of holomorphic
vector fields on X which preserve the ideal eIH . This is a sheaf of Lie sub-algebras
of e⇥X . We denote by ◆H : H ,! X the inclusion.

9.2.a. The sheaf of rings V0
eDX and its modules. The subsheaf of algebras

of eDX generated by eOX and e⇥X(� logH) is called the sheaf of logarithmic differential
operators along H. We will denote it by V0

eDX . In local coordinates (t, x2, . . . , xn)

where H has equation t = 0, a local section of e⇥X(� logH) can be written as a1te@t+
a2

e@x2
+ · · ·+an

e@xn
, where ai are local sections of eOX . Local sections of V0

eDX consist
of local sections of eDX expressed only with te@t, e@x2

, e@xn
. This sheaf shares many

properties with eDX that we summarize below, and whose proof is left as an exercise
(see Exercise 9.1).

We denote by e⌦1

X
(logH) (sheaf of logarithmic 1-forms along H) the eOX -dual

of e⇥X(� logH). It is the locally free eOX -module locally generated by e⌦1

X
and

edg/g for any local equation g of H. In local coordinates as above, one can choose
edt/t, edx2, . . . ,

edxn as an eOX -basis.
We set e⌦k

X
(logH) = ^ke⌦1

X
(logH) and we consider the logarithmic de Rham com-

plex (e⌦•
X
(logH), ed), which contains (e⌦•

X
, ed) as a sub-complex. We also consider

the corresponding complex where we tensor each term with eOX(�H), and with in-
duced differential, that we denote by e⌦•

X
(logH)(�H). For each k > 0, the sheaf

e⌦k

X
(logH)(�H) maps injectively to e⌦k

X
and the cokernel is ◆H⇤e⌦k

H
. The morphism

T
⇤
◆H : e⌦k

X
! ◆H⇤e⌦k

H
is the pullback of forms. We then have a natural exact sequence

of complexes

0 �! (e⌦•
X
(logH)(�H), ed) �! (e⌦•

X
, ed) �! ◆H⇤(e⌦•

H
, ed) �! 0.

On the other hand, we have an exact sequence

0 �! (e⌦•
X
, ed) �! (e⌦•

X
(logH), ed) Res����! ◆H⇤(e⌦•�1

H
,�ed)(�1) �! 0,

(1)Other settings can be considered, for example a smooth subvariety, or a finite family of smooth
subvarieties, but they will not be needed for our purpose.
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where ResH is defined in local coordinates by (setting I = i1, . . . , ik)

ResH

⇣
'(t, x)

edt
t
^ edxI

⌘
= '(0, x)edxI .

The Tate twist (�1) is due to the division by edt.
We have ^n(e⌦1

X
(logH)) = e!X(H) := e!X ⌦eOX

eOX(H), and e!X(H) is a right
V0

eDX -module. One can then define the side-changing functors for V0
eDX -modules by

means of e!X(H).
If eN is a left, resp. right V0

eDX -module, one can define the logarithmic deRham
complex p

DRlog(
eN), resp. the logarithmic Spencer complex Sp

log
(eN) (since H is fixed,

there may be no confusion for what log is for), in a way similar to that of Section 8.4
by means of logarithmic forms and vector fields. For example (the • indicates the
term in degree zero),

p

DRlog
eN = {0! eN

(�1)n er
�������! e⌦1

X
(logH)⌦ eN �! · · · �! e⌦n

X
(logH)⌦ eN

•
! 0}.

The complex Sp
log

(V0
eDX) is a resolution of eOX as a left V0

eDX -module and
p

DRlog(V0
eDX) is a resolution of e!X(H) as a right V0

eDX -module (adapt Exercises
8.22 and 8.21 to V0

eDX). From now on, we denote both as p

DRlog(
eN).

To any (say, right) V0
eDX -module eN is associated a right eDX -module eM, defined by

(9.2.1) eM = eN ⌦
V0

eDX

eDX ,

where the left structure of eDX is used for the tensor product and the right one for
the right eDX -module structure.

9.2.2. Proposition. There exists a natural morphism of complexes p

DRlog
eN! p

DR eM.
If any local equation t of H acts in an injective way on eN, it is a quasi-isomorphism.

Proof. We treat the right case. By Exercise 9.1, we have

Sp
log

(eN) ' eN ⌦
V0

eDX

Sp
log

(V0
eDX),

and we recall (see Exercise 8.24) that, similarly, Sp( eM) ' eM⌦eDX

Sp(eDX). We have
a natural morphism Sp

log
(V0

eDX) ! Sp(eDX) and we obtained the desired natural
morphism Sp

log
(eN)!Sp( eM) as

Sp
log

(eN) ' eN ⌦
V0

eDX

Sp
log

(V0
eDX)

�! eN ⌦
V0

eDX

Sp(eDX) ' (eN ⌦
V0

eDX

eDX)⌦eDX

Sp(eDX) ' Sp( eM).

On the one hand, Sp
log

(V0
eDX) is a resolution of eOX as a left V0(

eDX)-module, and
Sp(eDX) is a resolution of eOX as a left eDX -module, that we can also regard as a resolu-
tion of eOX as left V0(

eDX)-module. On the other hand, since each term of Sp
log

(V0
eDX)

is V0
eDX -locally free, Sp

log
(eN) is a realization of eN⌦L

V0
eDX

eOX . If t : eN! eN is injective
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for any local equation of H, we have eN⌦
V0

eDX

eDX = eN⌦L

V0
eDX

eDX by Proposition 9.2.3

below, and thus, since each term of Sp(eDX) is eDX -locally free, we obtain

eN ⌦
V0

eDX

Sp(eDX) ' eN ⌦L

V0
eDX

Sp(eDX) ' eN ⌦L

V0
eDX

eOX .

It follows that the natural morphism above

eN ⌦
V0

eDX

Sp
log

(V0
eDX) �! eN ⌦

V0
eDX

Sp(eDX)

is a quasi-isomorphism.

9.2.b. Tensoring with respect to V0
eDX . In this section, we analyze more pre-

cisely the tensor product (9.2.1).

9.2.3. Proposition. Let eN be a right V0
eDX-module such that for some (or any) local

equation t of H, t : eN! eN is injective. Then

H
i
(eN ⌦L

V0
eDX

eDX) = 0 for i 6= 0,

that is,
eN ⌦L

V0
eDX

eDX ' eN ⌦
V0

eDX

eDX .

Furthermore,

eN ⌦
V0

eDX

eDX ' Coker

�eN ⌦eOX

e⇥X(� logH)
�
⌦eOX

eDX �! eN ⌦eOX

eDX

(n⌦ ✓)⌦ P 7�! (n✓ ⌦ P � n⌦ ✓P )

�
.

Proof. We first revisit Exercise 9.2. Recall (see Exercise 9.1) that SpV0
eDX is the

complex having V0
eDX ⌦eOX

e⇥X,k(logH) as its term in degree �k, and differential the
left V0

eDX -linear morphism

V0
eDX ⌦eOX

e⇥X,k(logH)
e���! V0

eDX ⌦eOX

e⇥X,k�1(logH)

given, for ✓ = ✓1 ^ · · · ^ ✓k

e�(P ⌦ ✓) =

kX

i=1

(�1)i�1
(P✓i)⌦ b✓i +

X

i<j

(�1)i+j
P ⌦ ([✓i, ✓j ] ^ b✓i,j),

with b✓i = ✓1^· · ·^✓i�1^✓i+1^· · ·^✓k, and a similar meaning for b✓i,j (see Exercise 9.1).
Since Sp(V0

eDX) is a resolution of eOX by locally free left V0
eDX -modules which are

eOX -locally free, we have
eN ' eN ⌦eOX

SpV0
eDX ,

with their right V0
eDX -module structure, by using the tensor right structure on the

right-hand side. The complex eN ⌦eOX

SpV0
eDX has eN⌦eOX

(V0
eDX⌦eOX

e⇥X,k(logH))

as its term in degree �k, and differential Id⌦e�, which is right V0
eDX -linear for the

tensor right structure (see Exercise 8.12(2a)). Let us make explicit the differential.
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For P 2 V0
eDX , the element [n⌦ (1⌦ ✓)] · P is complicated to express, but we must

have, by right V0
eDX -linearity of Id⌦e�,

(Id⌦e�)
⇥
(n⌦ (1⌦✓)) · P

⇤
=

⇥
(Id⌦e�)(n⌦ (1⌦ ✓))

⇤
· P

=


n⌦

h kX

i=1

(�1)i�1
✓i ⌦ b✓i +

X

i<j

(�1)i+j
1⌦ ([✓i, ✓j ] ^ b✓i,j)

i�
· P.

We now write

n⌦ (✓i ⌦ b✓i) = n✓i ⌦ (1⌦ b✓i)� [n⌦ (1⌦ b✓i)] · ✓i,

so the previous formula reads, after the involution

eN ⌦eOX

(V0
eDX ⌦eOX

e⇥X,k(logH)) ' (eN ⌦eOX

e⇥X,k(logH))⌦eOX

V0
eDX

transforming the tens structure to the triv one, by denoting e�triv the corresponding
differential:

(9.2.4) e�triv
⇥
(n⌦ ✓)⌦ P

⇤
=

kX

i=1

(�1)i�1
(n✓i ⌦ b✓i)⌦ P

�
kX

i=1

(�1)i�1
(n⌦ b✓i)⌦ (✓iP ) +

X

i<j

(�1)i+j
(n⌦ ([✓i, ✓j ] ^ b✓i,j))⌦ P

=
⇥e�eN(n⌦ ✓)

⇤
⌦ P �

kX

i=1

(�1)i�1
(n⌦ b✓i)⌦ (✓iP ),

where e�eN is the differential of the Spencer complex Sp
log

eN of eN as a right V0
eDX -mod-

ule.
We obtain, due to the local eOX -freeness of V0

eDX and eDX ,

eN ⌦L

V0
eDX

eDX ' (eN ⌦eOX

SpV0
eDX)⌦L

V0
eDX

eDX

'
�
(eN ⌦eOX

e⇥X,•(logH))⌦eOX

V0
eDX , e�triv

�
⌦L

V0
eDX

eDX

'
�
(eN ⌦eOX

e⇥X,•(logH))⌦L

eOX

V0
eDX , e�triv

�
⌦L

V0
eDX

eDX

'
�
(eN ⌦eOX

e⇥X,•(logH))⌦L

eOX

eDX , e�triv
�

'
�
(eN ⌦eOX

e⇥X,•(logH))⌦eOX

eDX , e�triv
�
.

In the last two lines, e�triv is given by (9.2.4), where P is now a local section of eDX .
We have thus realized eN ⌦L

V0
eDX

eDX as a complex (eF• ⌦eOX

eDX , e�triv), where each

term eFk is an eOX -module (here, we forget the right V0
eDX -module structure of eN).

With respect to the filtration eF•⌦eOX

Fk
eDX , e�triv has degree one, and the differential

gr
F

1
e�triv of the graded complex eF• ⌦eOX

gr
F eDX is expressed as

e�triv
⇥
(n⌦ ✓)⌦Q

⇤
=

kX

i=1

(�1)i(n⌦ b✓i)⌦ (✓i ·Q)
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for a local section Q of grF eDX . The filtration Fp(
eF• ⌦eOX

eDX , e�triv) whose term in
degree �k is eF�k ⌦eOX

Fp�k
eDX satisfies Fp(

eF• ⌦eOX

eDX , e�triv) = 0 for p < 0 and we
have

(9.2.5) gr
F
(eF• ⌦eOX

eDX , e�triv) = (eF• ⌦eOX

gr
F eDX , gr

F

1
e�triv),

compatible with the grading.

9.2.6. Assertion. The graded complex (eF• ⌦eOX

gr
F eDX , gr

F

1
e�triv) has zero cohomology

in any degree i 6= 0.

Proof. In local coordinates t, x2, . . . , xn such that H={t=0}, let us choose a basis
e@t, e@x2

, . . . , e@xn
as a basis of local vector fields, and let us replace e@t with te@t to

obtain a basis of logarithmic vector fields. Let ⌧, ⇠2, . . . , ⇠n resp. t⌧, ⇠2, ⇠2, . . . , ⇠n be
the corresponding basis of gr

F

1
eDX resp. grF

1
V0

eDX . Then gr
F
(eF• ⌦eOX

eDX , e�triv) is
identified with a Koszul complex. More precisely, it isomorphic to the simple complex
associated to the n-cube with vertices eN ⌦eOX

gr
F eDX = eN ⌦eC

eC[⌧, ⇠2, . . . , ⇠n] and
arrows in the i-th direction all equal to multiplication by ⇠i if i 6= 1 and by t ⌦ ⌧ if
i = 1.

In such a way we obtain that (eF• ⌦eOX

gr
F eDX , gr

F

1
e�triv) is quasi-isomorphic to the

complex
eN ⌦eC

eC[⇠1]
t⌦ ⌧�����! eN ⌦eC

eC[⇠1]
•

,

where • indicates the term in degree zero. Injectivity of the differential immediately
follows from the injectivity assumption on t : eN! eN.

By (9.2.5), the assertion applies to the graded complex gr
F
(eF• ⌦eOX

eDX , e�triv)
and therefore each gr

F

p
(eF• ⌦eOX

eDX , e�triv) has cohomology in degree zero at most.
It follows that each Fp(

eF• ⌦eOX

eDX , e�triv) satisfies the same property, and passing to
the inductive limit, so does the complex (eF• ⌦eOX

eDX , e�triv).
Lastly, eN ⌦

V0
eDX

eDX is isomorphic to the cokernel of

e�triv : (eN ⌦eOX

e⇥X(� logH))⌦eOX

eDX �! eN ⌦eOX

eDX ,

and the last formula of the proposition follows from the expression (9.2.4) of e�triv.

Let eN be a left eDX -module. We consider similarly the tensor product eDX⌦L

V0
eDX

eN
with the trivial left eDX -action, and where the right V0

eDX -action on eDX is used for
the tensor product.

9.2.7. Corollary. Let eN be a coherent left V0
eDX-module such that for some local equa-

tion t of H, t : eN! eN is injective. Then H
i
(eDX ⌦L

V0
eDX

eN) = 0 for i 6= 0.

Proof. Here, the right action of V0
eDX on eDX is used. The question is local, and we

can interpret the side-changing functor for V0
eDX -modules (given by eNleft 7! eNright

=

e!X(H) ⌦eOX

eNleft) as coming from an involution of V0
eDX induced by an involution
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of eDX (see Exercise 8.17). If (V0
eDX)

• is a finite resolution of eNleft by free V0
eDX -mod-

ule, it gives rise to a eDX -free resolution (eDX)
• of eDX ⌦L

V0
eDX

eN. Regarding these

modules as right eDX -modules via the involution above, Proposition 9.2.3 implies that
the cohomology of this complex vanishes in any nonzero degree.

9.2.c. The filtration V•
eDX . One can characterize sections of V0

eDX on an open
subset U of X as follows:

V0
eDX(U) = {P 2 eDX(U) | P · eIj

H
(U) ⇢ eIj

H
(U), 8 j 2 Z}.

This leads us to define a canonical increasing filtration of eDX indexed by Z. For
every k 2 Z, the subsheaf Vk

eDX ⇢ eDX (k 2 Z) consists of operators P such that
PeIj

H
⇢ eIj�k

H
for every j 2 Z. For every open subset U of X we thus have

(9.2.8) Vk
eDX(U) = {P 2 eDX(U) | P · eIj

H
(U) ⇢ eIj�k

H
(U), 8 j 2 Z}.

This defines an increasing filtration V•
eDX of eDX indexed by Z. Note that one can

also define Vk
eDX(U) with the right action, that is, as the set of Q 2 eDX(U) such

that eIj
H
(U) ·Q ⇢ eIj�k

H
(U), 8 j 2 Z. See Exercise 9.3 for basic properties of V•

eDX .
The Euler vector field E is the class E of te@t in gr

V

0
eDX in some local product

decomposition as in Exercise 9.3. See Exercise 9.4 for its basic properties. Let us
insist on the fact that E only depends on H, not on the generator chosen in the
ideal eIH .

9.2.9. Structure of grV
0
eDX and gr

V
eDX . What is the geometric meaning of the sheaf of

rings gr
V

0
eDX? A natural question is to relate the sheaf eDH of differential operators

on H with it. While eDH can be identified to the quotient gr
V

0
eDX/Egr

V

0
eDX =

gr
V

0
eDX/gr

V

0
eDX E, one cannot in general consider it as a subsheaf of grV

0
eDX . This is

related to the possible non-triviality of the normal bundle of H in X.
When H is globally defined by a holomorphic function g, Exercise 9.4(3) shows an

identification gr
V

0
eDX ' eDH [E]. More generally, for any effective divisor D defined by

a holomorphic function g : X ! C, we will often use the trick of the graph inclusion
◆g : X ,! X ⇥ C and we will then consider the filtration V•

eDX⇥C with respect to
X ⇥ {0}, so that we will be able to identify gr

V

0
eDX⇥C with the ring eDX [E].

What about the sheaf gr
V
eDX? Let ⌫ : NHX ! H denote the normal bundle of H

in X. Let us define the sheaf eD[NHX] of differential operators which are algebraic in the
fibers of ⌫. We first consider the sheaf eO[NHX] on X of holomorphic functions which
are algebraic in the fibers of ⌫. It is locally defined by using a local trivialization
of ⌫ as a product X ⇥ C, where C has coordinate t. Then eO[NHX] = eOX [t]. For
an intrinsic definitions, one extends in a canonical way ⌫ as a projective fibration
e⌫ : P(NHX � O) with fibers P

1 and we denote by X1 the section 1 of this bundle.
Then eO[NHX] := e⌫⇤eOP(NHX�O)(⇤X1). Now, eD[NHX] is by definition the sheaf of
differential operators with coefficients in eO[NHX]. It is similarly equipped with its
V -filtration V•

eD[NHX]. Then there is a canonical isomorphism (as graded objects)
gr

V eDX ' gr
V eD[NHX], and the latter sheaf is isomorphic (forgetting the grading) to

eD[NHX].
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9.2.10. Remark (Restriction to z = 1). The V -filtration restricts well when setting
z = 1, that is, VkDX = Vk

eDX/(z � 1)Vk
eDX = Vk

eDX/(z � 1)eDX \ Vk
eDX .

9.3. Specialization of coherent eDX-modules

In this section, we denote by H a smooth hypersurface of a complex manifold X

and by t a local generator of IH . We use the definitions and notation of Section 9.2.

9.3.1. Caveat. In Subsections 9.3.a–9.3.c, when eDX = RFDX , we will forget about the
grading of the eDX -modules and morphisms involved, in order to keep the notation
similar to the case of DX -modules. From Section 9.4, we will remember the shift of
grading for various morphisms, in the case of RFDX -modules (this shift has no effect
in the case of DX -modules).

9.3.a. Coherent V -filtrations

The coherence of the Rees sheaf of rings RV
eDX is proved in Exercise 9.8.

9.3.2. Definition (Coherent V -filtrations indexed by Z). Let eM be a coherent right
eDX -module. A V -filtration indexed by Z is an increasing filtration U•

eM which satis-
fies

Vk
eDX · U`

eM ⇢ U`+k
eM 8 k, ` 2 Z.

In particular, each U`
eM is a right V0

eDX -module. We say that it is a coherent V -filtra-
tion if each U`

eM is V0
eDX -coherent, locally on X, there exists `o > 0 such that, for

all k > 0,

U�k�`0
eM = U�`o

eMt
k and Uk+`0

eM =

kX

j=0

U`o
eMe@j

t
.

The definition is similar for left eDX -modules and decreasing filtrations.

We will have to consider the notion of filtration indexed by R, so we introduce the
notion of coherence for such a filtration.

9.3.3. Definition (Coherent V -filtrations indexed by R). Let eM be a coherent right
eDX -module. A V -filtration indexed by R is an increasing filtration U•

eM which satis-
fies

Vk
eDX · U↵

eM ⇢ U↵+k
eM 8 k 2 Z, ↵ 2 R.

We set U<↵
eM :=

S
↵0<↵

U<↵0 eM and gr
U

↵
eM := U↵

eM/U<↵
eM. We say that U•

eM is a
coherent V -filtration indexed by R if

• there exists a finite set A ⇢ (�1, 0] such that U<↵
eM = U↵

eM for ↵ /2 A+ Z and
• for each ↵ 2 A, the Z-indexed filtration U↵+•

eM is a coherent V -filtration in the
sense of Definition 9.3.2.



318 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

In other words, giving a coherent V -filtration indexed by R is equivalent to giving
a finite family of coherent V -filtrations (U↵+•

eM)↵2A which are nested, that is, which
satisfy for all ↵,↵0 2 A and `, `0 2 Z, the relation

(9.3.4) ↵+ ` 6 ↵
0
+ `

0
=) U↵+`

eM ⇢ U↵0+`0
eM.

9.3.5. The Rees module of a V -filtration indexed by A + Z. The following construction
of extending the set of indices will prove useful (see Section 5.1.d). Let A ⇢ (�1, 0]
be a finite subset containing 0 and set r = #A. Let us fix the 1

r
Z-numbering of

A+Z = {. . . ,↵�1/r,↵0,↵1/r, . . . } which respects the order and such that ↵k = k for
any k 2 Z. We denote by A

V•
eDX the filtration indexed by 1

r
Z defined by A

Vp/r
eDX :=

Vbp/rc eDX . The Rees ring is RAV
eDX :=

L
k2Z

A
Vk/r

eDXu
k with u

r
= v. Note that

gr
A
V

k/r
eDX = 0 if k/r /2 Z and

gr
A
V eDX =

L
k2Z

gr
A
V

k/r
eDX =

L
p2Z

gr
V

p
eDX .

For a V -filtration U•
eM indexed by A+ Z we similarly set RU

eM =
L

k2Z U↵k/r

eMu
k,

which is an RAV
eDX -module since bk/rc + ↵`/r = ↵bk/rc+`/r 6 ↵(k+`)/r. The cohe-

rency property in Definition 9.3.3 is equivalent to the coherency of RU
eM. As an

RV
eDX -module, we have RU

eM =
L

↵2A
RU↵+Z

eM.

9.3.6. Remark (Left and right). In the following, it will be more natural to consider
decreasing V -filtrations on left eDX -modules, mimicking the t-adic filtration on eOX ,
while the V -filtrations on right eDX -modules will remain increasing. In such a way, the
formulas for the Bernstein polynomial below remain very similar. As usual, decreasing
filtrations are denoted with an upper index. We will mainly work in the context of
right eD-modules, and we will give the main formulas in both cases. Let us insist,
however, that both cases are interchanged naturally by the side changing functor
(Exercise 9.25) and that the final formulas in terms of the functors  ,� are identical.

9.3.b. Specializable coherent eDX-modules. Let H ⇢ X be a smooth hypersur-
face. Let eM be a coherent eDX -module and let m be a germ of section of eM. In the
following, we abuse notation by denoting E 2 V0

eDX any local lifting of the Euler
operator E 2 gr

V

0
eDX , being understood that the corresponding formula does not

depend on the choice of such a lifting.

9.3.7. Definition.
(1) A weak Bernstein equation for m is a relation (right resp. left case)

(9.3.7 ⇤) m · (z`b(E)� P ) = 0 resp. (z`b(E)� P )m = 0,

where
• ` is some non-negative integer,
• b(s) is a nonzero polynomial in a variable s with coefficients in C, which

takes the form
Q

↵2A
(s�↵z)⌫↵ for some finite subset A 2 C (depending on m),

• P is a germ in V�1
eDX , i.e., P = tQ = Q

0
t with Q,Q

0 germs in V0
eDX .
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(2) We say that eM is specializable along H if any germ of section of eM is the
solution of some weak Bernstein equation (9.3.7 ⇤).

9.3.8. Remark. The full subcategory of Mod(eDX) consisting of eDX -modules which are
specializable along H is abelian (see Exercises 9.16 and 9.17).

Assume that eM is eDX -coherent and specializable along H. According to Bézout,
for every local section m of eM, there exists a minimal polynomial

bm(s) =

Y

↵2R(m)

(s� ↵z)⌫↵ , R(m) ⇢ C finite,

giving rise to a weak Bernstein equation (9.3.7 ⇤). We say that eM is R-specializable
along H if for every local section m, we have R(m) ⇢ R. We then set:

(9.3.9) ordH(m) = maxR(m), resp. ordH(m) = minR(m).

9.3.10. Definition (Filtration by the order along H). Assume that eM is a right eDX -mod-
ule. The filtration by the order along H is the increasing filtration V•

eMxo
indexed

by R defined by (↵ 2 R)

V↵
eMxo

= {m 2 eMxo
| ordH,xo

(m) 6 ↵},(9.3.11)

V<↵
eMxo

= {m 2 eMxo
| ordH,xo

(m) < ↵}.(9.3.12)

We do not claim that it is a coherent V -filtration. The order filtration satisfies
(see Exercise 9.15):

8 k 2 Z, 8↵,� 2 R, V↵
eMxo

· Vk
eDX,xo

⇢ V↵+k
eMxo

.

It is a filtration of eM by subsheaves V↵
eM of V0

eDX -modules. We set

(9.3.13) gr
V

↵
eM := V↵

eM/V<↵
eM.

These are gr
V

0
eDX -modules. In particular, they are equipped with an action of the

Euler field E. We already notice, as a preparation to strict R-specializability, that
they satisfy part of the strictness condition.

9.3.14. Lemma. The gr
V

0
eDX-module gr

V

↵
eM has no z-torsion.

Proof. It is a matter of proving that, for a section m of V↵
eM, if mz

j is a section of
V<↵

eM for some j > 0, then so does m. But one checks in a straightforward way that,
if P in Exercise 9.15 is equal to z

j , then the inequality there is an equality (with
k = 0).

9.3.15. The case of left eDX -modules. Recall that the order of a local section m is defi-
ned as ordH(m)=minR(m). In Exercise 9.15 we have ordH,xo

(Pm)>ordH,xo
(m)�k.

The filtration by the order along H is the decreasing filtration V
• eMxo

indexed by R

defined by

V
� eMxo

= {m 2 eMxo
| ordH,xo

(m) > �},

V
>� eMxo

= {m 2 eMxo
| ordH,xo

(m) > �}.
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The order filtration satisfies

8 k 2 Z, 8↵,� 2 R, Vk
eDX,xo

· V � eMxo
⇢ V

��k eMxo
.

We set gr
�

V
eM := V

� eM/V
>� eM. Lemma 9.3.14 also applies. See Exercise 9.25 for the

side-changing properties.

9.3.c. Strictly R-specializable coherent eDX-modules. A drawback of the set-
ting of Section 9.3.b is that we cannot ensure that the order filtration is a coherent
V -filtration.

9.3.16. Lemma (Kashiwara-Malgrange V -filtration). Let eM be an R-specializable cohe-
rent eDX-module. Assume that, in the neighbourhood of any xo 2 X there exists a
coherent V -filtration U•

eM indexed by Z with the following two properties:
(1) its minimal weak Bernstein polynomial bU (s) =

Q
↵2A(U)

(s � ↵z)⌫↵ satisfies
A(U) ⇢ (�1, 0],

(2) for every k, Uk
eM/Uk�1

eM has no z-torsion.
Then such a filtration is unique and equal to the order filtration when considered
indexed by integers, which is therefore a coherent V -filtration as such. It is called the
Kashiwara-Malgrange filtration of eM.

9.3.17. Remark. Exercise 9.26 shows that, under the assumption of Lemma 9.3.16, the
filtration by the order (indexed by R) is coherent, in the sense of Definition 9.3.3, and
that te@t � ↵z is nilpotent on gr

V

↵
eM for each ↵ 2 R (in fact, ↵ 2 A(U) + Z).

Proof of Lemma 9.3.16. Assume U•M satisfies (1) and (2). Let m be a local sec-
tion of Uk

eM and let U•(m · eDX) be the V -filtration induced by U•
eM on m · eDX .

By Exercise 9.11(1), it is a coherent V -filtration. There exists thus ko > 1 such that
Uk�ko

(m · eDX) ⇢ m · V�1
eDX . It follows that

R(m) ⇢ (A(U) + k) [ · · · [ (A(U) + k � ko + 1)

and thus ordHm = maxR(m) 6 k, so m ⇢ Vk
eM.

Conversely, assume m is a local section of Vk
eM. It is also a local section of

Uk+ko

eM for some ko > 0. Its class in gr
U

k+ko

eM is annihilated both by z
`
bm(E) and by

z
`
0
bU (E�(k + ko)z) (for some `, `0 > 0), so if ko > 0, both polynomials have no com-

mon z-root, and this class is annihilated by some non-negative power of z, according
to Bézout. By Assumption (2), it is zero, and m is a local section of Uk+ko�1

eM, from
which we conclude by induction that m is a local section of Uk

eM, as wanted.

9.3.18. Definition (Strictly R-specializable eDX -modules). Assume that eM is R-speciali-
zable along H. We say that it is strictly R-specializable along H if

(1) there exists a finite set A ⇢ (�1, 0] such that the filtration by the order along H

is a coherent V -filtration indexed by A+ Z,
and for some (or every) local decomposition X ' H ⇥�t,

(2) for every ↵ < 0, t : grV
↵
eM! gr

V

↵�1
eM is onto,

(3) for every ↵ > �1, e@t : grV↵ eM! gr
V

↵+1
eM(�1) is onto.
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For each ↵ 2 A+ Z, we denote by N the endomorphism E�↵z Id on gr
V

↵
eM, which is

nilpotent, due to (1).

See Exercise 9.26 for the relation between Definition 9.3.18 and Lemma 9.3.16, and
Exercise 9.18 for the equivalence between “some” and “every” in the definition above.

9.3.19. Remark (Morphisms preserve the V -filtration). Any eDX -linear morphism ' :

eM! eN between strictly R-specializable eDX -modules preserves the V -filtration, pos-
sibly not strictly. See Exercises 9.16, 9.17 and 9.23.

9.3.20. Remark (The need of a shift). We will now remember explicitly the grading in
the case of RFDX -modules. Recall (see (5.1.4) and (5.1.5 ⇤⇤)) that, given a graded
object M =

L
p
Mp (with Mp in degree �p), we set M(k) =

L
p
M(k)p with M(k)p =

Mp�k.
If we regard the actions of t and e@t as morphisms in Mod(eDH)-modules,

that is, graded morphisms of degree zero, we have to introduce a shift by �1
(see Remark 5.1.5) for the action of e@t, which sends Fpz

p to Fp+1z
p+1. The same

shift has to be introduced for the action of E, as well as for that of N = (E�↵z Id).
We have seen that, for strictly R-specializable RFD-modules, the module grV

↵
eM are

graded RFD-modules in a natural way. Let us emphasize that, in Definition 9.3.18(2)
and (3),

• the morphism t is graded of degree zero,
• the morphism e@t is graded of degree one; this explains why we write 9.3.18(3) as

e@t : grV↵ eM ⇠�! gr
V

↵
eM(�1) for ↵ > �1.

9.3.21. Proposition. Assume that eM is strictly R-specializable along H. Then, every
gr

V

↵
eM is a graded gr

V

0
eDX-module, and is strict as such (see Definition 5.1.6).

Proof. Recall that, for a graded module, strictness is equivalent to absence of z-tor-
sion (see Exercise 5.2(1)). Therefore, the second point follows from the first one and
from Lemma 9.3.14.

Let us consider the first point. We first claim that a local section m of eM is a local
section of V↵

eM if and only if it satisfies a relation

m · b(E) 2 V↵
eM

for some b with z-roots 6 ↵. Indeed, if m is a local section of V�
eM with � > ↵

and satisfying such a relation, the Bézout argument already used and the absence of
z-torsion on each gr

V

�
eM (Lemma 9.3.14) implies that m is a local section of V<�

eM.
Property 9.3.18(1) implies that there is only a finite set of jumps of the V -filtration
between ↵ and �, so by induction we conclude that m 2 V↵

eM. The converse is clear.
The grading on eM induces a natural left action of z@z on eM: for a local section

m =
L

p
mp of eM =

L
p
eMp, we set z@zm :=

L
p
pmp. We define a right action of

�@zz by the trick of Exercise 8.17: we set m(�@zz) := z@zm. This action is natural
in the sense that it satisfies the usual commutation relations with the right action
of eDX . We claim that, for every ↵ 2 R, we have V↵

eM(�@zz) ⇢ V↵
eM. Let m be a
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local section of V↵
eM, which satisfies a relation mbm(E) = m · P with P 2 V�1

eDX .
Then one checks that

m(�@zz)bm(E) = mbm(E)(�@zz) +mQ, Q 2 V0
eDX

= mP (�@zz) +mQ, P 2 V�1
eDX

= m(�@zz)P +mR, R 2 V0
eDX .

We conclude that m(�@zz) 2 V↵
eM by applying the first claim above.

Since the eigenvalues of (�@zz) on eM are integers and are simple, the same prop-
erty holds for V↵

eM, showing that V↵
eM decomposes as the direct sum of its (�@zz)-

eigenspaces, which are its graded components of various degrees.

9.3.22. Caveat. For a morphism ' between eDX -modules which are strictly R-specia-
lizable along H, the kernel and cokernel of ', while being R-specializable along H,
need not be strictly R-specializable. See Exercises 9.20, 9.23, as well as Definition
9.3.29, Caveat 9.3.30 and Proposition 9.3.38 for further properties.

9.3.23. Remark (The case of left eDX -modules). For left eDX -modules, we take � > �1
in 9.3.18(2) and � < 0 in 9.3.18(3) for gr

�

V
eM. The nilpotent endomorphism N of

gr
�

V
eM is induced by the action of �(E��z).

9.3.24. Side-changing. Let eM be a left eDX -module and let eMright
= e!X⌦ eM denote the

associated right eDX -module. Let us assume that H is defined by one equation g = 0,
so that gr

�

V
eM and gr

V

↵
eMright are respectively left and right eDH -modules equipped

with an action of E (see Exercise 9.4(3)).
Assume first that eM = eOX and eMright

= e!X . We have

V
keOX =

(
eOX if k 6 0,

g
keOX if k > 0,

and Vke!X =

(
e!X if k > �1,
g
�(k+1)e!X if k 6 �1.

We have grV�1
e!X =e!H⌦dg/z, so that dg/z induces an isomorphism (see Remark 5.1.5)

e!H(�1) ⇠�! gr
V

�1
e!X , that is, gr

V

�1
(eOright

X
) ' (gr

0

V
eOX)

right
(�1).

Arguing similarly for eM and eMright gives an identification

gr
V

↵
( eMright

) ' (gr
�

V
eM)

right
(�1), � = �↵� 1.

With this identification, the actions of E (resp. N) on both sides coincide. Be aware
that this identification depends on the choice of the defining equation g of H.
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9.3.25. Proposition. Assume that eM is strictly R-specializable along H. Then, in any
local decomposition X ' H ⇥�t we have

8↵ < 0, t : V↵
eM �! V↵�1

eM is an isomorphism;(a)

8↵ > 0, V↵
eM = V<↵

eM+ (V↵�1
eM)e@t;(b)

t : gr
V

↵
eM �! gr

V

↵�1
eM is

(
an isomorphism if ↵ < 0,

injective if ↵ > 0;

(c)

e@t :grV↵ eM�!gr
V

↵+1
eM(�1) is

(
an isomorphism if ↵ > �1,
injective if ↵ < �1;

(d)

In particular (from (b)), eM is generated as a eDX-module by V0
eM.

Proof. Because V↵+•
eM is a coherent V -filtration, (a) holds for ↵ ⌧ 0 locally

and (b) for ↵ � 0 locally. Therefore, (a) follows from (c) and (b) follows from (d).
By 9.3.18(2) (resp. (3)), the map in (c) (resp. (d)) is onto. The composition
te@t = (E�↵z) + ↵z is injective on gr

V

↵
eM for ↵ 6= 0 since (E�↵z) is nilpotent and

gr
V

↵
eM is strict, hence (c) holds. The argument for (d) is similar.

9.3.26. Remark (Restriction to z = 1). Let us keep the notation of Exercise 9.24. For a
coherent DX -module M which is R-specializable, 9.3.18(2) and (3) are automatically
satisfied. Moreover, the morphisms in 9.3.25(c) and (d) are isomorphisms for the
given values of ↵. In other words, for coherent DX -modules, being R-specializable
is equivalent to being strictly R-specializable. In particular, Exercise 9.24 applies to
coherent RFDX -modules which are strictly R-specializable along H.

In the application of strict R-specializability to pure or mixed Hodge modules,
we will see that the nilpotent endomorphisms N on each gr

V

↵
eM (↵ 2 A+ Z) and the

morphisms t : gr
V

0
eM ! gr

V

�1
eM and e@t : grV�1

eM ! gr
V

0
eM(�1) (see Definition 9.3.18)

underlie morphisms of mixed Hodge modules (with a suitable shift, they are denoted
by var and can), and therefore are strict. It is thus valuable to highlight this property
and some of its consequences.

9.3.27. Definition (Strong strict R-specializability). We will say that eM is strongly strict-
ly R-specializable along H if the nilpotent endomorphisms N

` (` > 1) on each gr
V

↵
eM

(↵ 2 A + Z) and, for some (or any) decomposition X ' H ⇥ �t, the morphisms
t : gr

V

0
eM! gr

V

�1
eM and e@t : grV�1

eM! gr
V

0
eM(�1) are strict.

9.3.28. Lemma. If eM is strongly strictly R-specializable along H, then for each ↵ 2
A + Z and each ` 2 Z, denoting by M•gr

V

↵
eM the monodromy filtration of grV

↵
eM, the

eDH-modules gr
M

`
gr

V

↵
eM are strict.

Proof. This is Proposition 5.1.10.

9.3.29. Definition (Strictly R-specializable morphisms). A morphism ' between strictly
R-specializable coherent left eDX -modules is said to be strictly R-specializable if for
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every ↵ 2 [�1, 0], the induced morphism gr
V

↵
' is strict (i.e., its cokernel is strict),

and a similar property for right modules.

9.3.30. Caveat. The composition of strictly R-specializable morphisms need not be
strictly R-specializable (see Caveat 5.1.7).

9.3.31. Proposition. If ' is strictly R-specializable, then gr
V

↵
' is strict for every ↵ 2 R,

and Ker', Im' and Coker' are strictly R-specializable along H and their V -filtra-
tions are given by

(9.3.31 ⇤)
V↵ Ker' = V↵

eM \Ker', V↵ Coker' = Coker('|V↵
fM),

V↵ Im' = Im('|V↵
fM) = V↵

eN \ Im'.

Proof. Let us equip Ker' and Coker' with the filtration U• naturally induced by
V•

eM, V•
eN. By using 9.3.25(c) and (d) for eM and eN, we find that gr

U

↵
Ker' and

gr
U

↵
Coker' are strict for every ↵ 2 R. By the uniqueness of the V -filtration, the

first line in (9.3.31 ⇤) holds, and therefore all properties of Definition 9.3.18 hold for
Ker' and Coker'. Now, Im' has two possible coherent V -filtrations, one induced
by V•

eN and the other one being the image of V•
eM. For the first one, strictness of

gr
↵
Im' holds, hence Im' is strictly R-specializable and V↵ Im' = Im' \ V↵

eN. For
the second one U↵ Im', grU

↵
Im' is identified with the image of grV

↵
', hence is also

strict, so U• Im' is also equal to V• Im'. Then all properties of Definition 9.3.18 also
hold for Im'.

9.3.32. Corollary. Let eM•
= {· · · di�! eMi

di+1�! · · · } be a complex bounded above whose
terms are eDX-coherent and strictly R-specializable along H. Assume that, for ev-
ery ↵ 2 [�1, 0], the graded complex gr

V

↵
eM• is strict, i.e., its cohomology is strict.

Then each differential di and each H
i eM• is strictly R-specializable along H and gr

V

↵

commutes with taking cohomology.

Proof. By using 9.3.25(c) and (d) for each term of the complex gr
V

↵
eM•, we find that

strictness of the cohomology holds for every ↵ 2 R. We argue by decreasing induction.
Assume eMk+1

= 0. Then the assumption implies that dk : eMk�1 ! eMk is strictly
R-specializable, so we can apply Proposition 9.3.31 to it. We then replace the complex
by · · · eMk�2

dk�1�! Ker dk ! 0 and apply the induction hypothesis. Moreover, the strict
R-specializability of eMk

/Ker dk ' Im dk+1 implies that of dk�1.

9.3.33. Definition (Strictly R-specializable W -filtered eDX -module)
Let ( eM,W•

eM) be a coherent eDX -module equipped with a locally finite filtration by
coherent eDX -submodules. We say that ( eM,W•

eM) is a strictly R-specializable filtered
eDX-module (along H) if each W`

eM and each gr
W

`
eM is strictly R-specializable.

9.3.34. Lemma. Let ( eM,W•
eM) be a strictly R-specializable filtered eDX-module. Then

each W`
eM/Wk

eM (k < `) is strictly R-specializable along H.
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Proof. By induction on ` � k > 1, the case ` � k = 1 holding true by assumption.
Let U•(W`

eM/Wk
eM) be the V -filtration naturally induced by V•W`

eM. It is a cohe-
rent filtration. By induction we have U•(W`�1

eM/Wk
eM) = V•(W`�1

eM/Wk
eM) and

U•gr
W

`
eM = V•gr

W

`
eM. Similarly, V•W`

eM \W`�1
eM = V•W`�1

eM. We conclude that
the sequence

0 �! gr
V

• (W`�1
eM/Wk

eM) �! gr
U

• (W`
eM/Wk

eM) �! gr
V

• gr
W

`
eM �! 0

is exact, hence the strictness of the middle term.

9.3.d. eDX-modules and V0
eDX-modules. In this section, we consider the question

of how much V0
eM or V�1

eM determines eM when eM is strictly R-specializable along H,
that is, how much a eDX -module which is strictly R-specializable is determined by a
logarithmic (along H) eDX -module.

We assume that X = H⇥�t and we associate to a eDX -module eM which is strictly
R-specializable along H the following set of data:

( eM6�1,
eM0, c, v) = (V�1

eM, gr
V

0
eM, e@t, t),

where we regard V�1
eM as a coherent V0

eDX -module, grV
0
eM as a coherent grV

0
eDX -mod-

ule, and the data c = e@t, v = t as gr
V

0
eDX -linear morphisms

gr
V

�1
eM

c

))

(�1)

))

gr
V

0
eM.

v

ii

A morphism ' : ( eM1,6�1,
eM1,0, c, v)! ( eM2,6�1,

eM2,0, c, v) is a pair ('6�1,'0) which
satisfies, denoting by '�1 the morphism induce by '6�1 on gr

V

�1
eM1,6�1:

(9.3.35) c � '�1 = '0 � c, '�1 � v = v � '0.

9.3.36. Proposition (Recovering morphisms from their restriction to V�1 and gr
V

0
)

Any morphism

('6�1,'0) : (V�1
eM1, gr

V

0
eM1,

e@t, t) �! (V�1
eM2, gr

V

0
eM2,

e@t, t)

can be lifted in a unique way as a morphism ' : eM1 ! eM2.

9.3.37. Lemma (Recovering morphisms from their restriction to V0)
Assume that X = H ⇥�t and that eM1,

eM2 are strictly R-specializable along H.
Let '60 : V0

eM1 ! V0
eM2 be a morphism in Mod(V0

eDX) such that the diagram

(D0)

V�1
eM1

e@t
✏✏

'60
// V�1

eM2

e@t
✏✏

V0
eM1

'60
// V0

eM2

commutes. Then '60 extends in a unique way as a morphism ' : eM1 ! eM2.
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Proof. We show inductively the existence and uniqueness of '6k : Vk
eM1 ! Vk

eM2

(k > 1) such that '6k|Vk
fM1

= '6k�1 and the diagram

(Dk)

Vk�1
eM1

e@t
✏✏

'6k
// Vk�1

eM2

e@t
✏✏

Vk
eM1

'6k
// Vk

eM2

commutes. Let us check for example the case k = 1. For the uniqueness, if  1|V0
fM1

=0

and  1 � e@t : V0
eM1 ! V1

eM2 is zero. A local section m of V1
eM1 writes, according to

9.3.25(d), m = m0 +m
0
0
e@t where m0,m

0
0

are local sections of V0
eM1. Then  1(m) =

 1(m
0
0
e@t) = 0.

Let us show the existence. For m,m
0
, n, n

0 2 V0
eM1, if m�m

0
= (n

0 � n)e@t, then
we have n

0 � n 2 V�1
eM2, according to 9.3.25(d). Therefore, setting '61(m+ ne@t) =

'60(m) + '60(n)
e@t well defines a V0

eDX -linear morphism '61 : V1
eM1 ! V1

eM2 for
which (D1) commutes.

Proof of Proposition 9.3.36. According to Lemma 9.3.37, the morphism ' can be
uniquely reconstructed from '60 : V0

eM1 ! V0
eM2 such that (D0) commutes.

We then reconstruct '60 from the data ('6�1,'0).
We consider the morphisms

gr
V

�1
eM(1)

A
// V�1

eM� gr
V

�1
eM(1)� gr

V

0
eM B

// gr
V

�1
eM

e
�

// (0, e, ee@t)

(m, e, ")
�

// [m] + e · e@tt� " · t

where, for m 2 V�1
eM, [m] denotes its class in gr

V

�1
eM. Clearly, the composition is

zero, so that A and B define a complex C
• of V0

eDX -modules (by regarding each
gr

V

↵
eM as a V0

eDX -module). It is also clear that A is injective and B is surjective, so
that H

j
(C

•
) = 0 for j 6= 1.

Let us consider the morphism from V0
eM to the middle term defined by the for-

mula µ 7! (µ · t, 0, [µ]), where [µ] denotes the class of µ in gr
V

0
eM. It is injective:

if [µ] = 0, then µ 2 V<0
eM, and if moreover tµ = 0, then µ = 0, according to 9.3.25(a).

Furthermore, the intersection of its image with ImA is zero.
We claim that the induced morphism V0

eM ! H
1
(C

•
) is an isomorphism. Injec-

tivity has been seen above. Modulo ImA, any element of KerB can be represented
in a unique way as (m, 0, �) with [m] = � · t. We choose any lifting e� 2 V0

eM of � and
9.3.25(a) implies that there exists ⌘ 2 V<0

eM such that m� e� · t = ⌘ · t. We conclude
by setting µ = e� + ⌘.

Let '60 : V0
eM1 ! V0

eM2 be a V0
eDX -linear morphism such that (D0) commutes.

The associated pair ('6�1,'0) determines a morphism C
•
1
! C

•
2

between the corre-
sponding complexes, and therefore a morphism between their cohomology. Conversely,
a pair ('6�1,'0) satisfying (9.3.35) determines a morphism of complexes, and thus a
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morphism H
1
(C

•
1
) ! H

1
(C

•
2
), that is, a morphism '60. One then checks that (D0)

commutes.

9.3.38. Proposition (Morphisms inducing an isomorphism on V<0)
Assume that X = H ⇥ �t. Let eM, eN be strictly R-specializable along H and

let ' : eM ! eN be a eDX-linear morphism which induces an isomorphism V0
eM ⇠�!

V0
eN of V0

eDX-modules. Then the eDX-module Ker', resp. Coker', is identified with
the eDX-module D◆H⇤ Ker gr

V

0
', resp. D◆H⇤ Coker gr

V

0
'. In particular, if ' is strictly

R-specializable along H, then Coker' is strict.

We first analyze the V0
eDX -module eM/V<0

eM.

9.3.39. Structure of eM/V<↵o

eM. Let eM be a coherent right eDX -module which is strict-
ly R-specializable along H. Let us fix ↵o 2 R. Then eM/V<↵o

eM is a V0
eDX -module.

We make explicit its structure when ↵o = �1.
(1) An easy induction shows that eM/V<↵o

eM is strict.
(2) Moreover, each local section of eM/V<↵o

eM is annihilated by a product of terms
(E�↵z)N for some N � 0. Together with Bézout, it follows that eM/V<↵o

eM decom-
poses as

L
↵>↵o

Ker(E�↵z)N with N � 0, and the ↵-summand can be identified with
gr

V

↵
eM. Thus eM/V<↵o

eM can be identified with
L

↵>↵o
gr

V

↵
eM as a V0

eDX -module.
In general, this V0

eDX -module structure does not extend to a eDX -module structure:
in local coordinates, let m be a local section of V↵o

eM with a nonzero class in gr
V

↵o

eM;
then mt = 0 in eM/V<↵o

eM, while me@tt = [m]e@tt in gr
V

↵o

eM may be distinct from z[m],
so that the relation m · [e@t, t] = zm may not hold in eM/V<↵o

eM. We analyze more
precisely this obstruction when ↵o = 0.

(3) Assume now that X ' H⇥�t. Let s be a new variable and, for ↵ 2 A+Z, let
us equip gr

V

↵
eM[s] := gr

V

↵
eM⌦CC[s] with the following right V0

eDX -structure defined by

m
(j)

↵
s
j · t =

(
0 if j = 0,
�
m

(j)

↵ (E+jz)
�
s
j�1 if j > 1,

(m
(j)

↵
s
j
)te@t =

�
m

(j)

↵
(E+jz)

�
s
j
.

One checks that this is indeed a V0
eDX -module structure (i.e., [te@t, t] acts as zt) and

that eM/V�1
eM can be identified with

L
↵2[0,1)

gr
V

↵
eM[s], since e@t : grV↵ eM ! gr

V

↵+1
eM

is an isomorphism for ↵ > 0. With this structure, we have

gr
V

↵
eMs

j
= Ker(te@t � (↵+ j)z)

N (with N � 0 locally).

(4) We equip gr
V

↵
eM[s] with the action of e@t defined by (m

(j)

↵ s
j
)e@t = m

(j)

↵ s
j+1.

Then the relation [e@t, t] = z holds on sgr
V

↵
eM[s], but on the component gr

V

↵
eM of

s-degree zero, we have [e@t, t] = E+z. It follows that this action does not define a
eDX -module structure on gr

V

↵
eM[s] unless E acts by zero on gr

V

↵
eM.

Proof of Proposition 9.3.38. Since ' is also V0
eDX -linear, it induces a morphism

['] : eM/V<0
eM ! eN/V<0

eN, which decomposes with respect to the decomposition of
9.3.39(2). Each summand is then identified with gr

V

↵
' (↵ > 0). Since ' induces an



328 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

isomorphism on V0, grV↵' is an isomorphism for ↵ 2 (�1, 0), hence for each ↵ > 0

not in N.
We have Ker' ' Ker['] and similarly with Coker. Since t is nilpotent on each

local section of eM/V<0
eM and eN/V<0

eN, it is nilpotent on the coherent eDX -modules
Ker',Coker', which are thus supported on H.

The decomposition of 9.3.39(2) induces decompositions

Ker' =
L
k2N

Ker gr
V

k
' and Coker' =

L
k2N

Coker gr
V

k
'

as V0
eDX -modules. The action of e@t defined on the model of 9.3.39(3) descends

to the corresponding models of Ker' and Coker', and since E acts by 0 on
Ker gr

V

0
',Coker gr

V

0
', the obstruction in 9.3.39(4) to extending the V0

eDX -structure
to a eDX -structure vanishes. We thereby obtained the desired identification.

9.4. Nearby and vanishing cycle functors

9.4.1. Definition (Strict R-specializability along D). Let D be an effective divisor in X

and let eM be a coherent eDX -module. We say that eM is strictly R-specializable along D

if for some (or any) local equation g defining D, denoting by X ,
◆g�! X ⇥C the graph

inclusion of g, eMg is strictly R-specializable along X ⇥ {0}.

In order to justify this definition, one has to check
• that the condition does not depend on the choice of g defining D,
• and that it is compatible with Definition 9.3.18 when D = H is a smooth hyper-

surface defined by an equation t.

For the first point, if u(x) is a local invertible function, one considers the isomorphism
'u : (x, t) 7! (x, u(x)t). Then ◆ug = 'u � ◆g, and one deduces the assertion from the
property that eMg is strictly R-specializable along (u(x)t) (see Exercise 9.18).

The second point is treated in Exercise 9.31.

9.4.2. Remark (strict R-specializability of eOX and e!X ). While OX and !X are R-spe-
cializable along any divisor D, as provided by the theory of the Bernstein-Sato poly-
nomial, the strict R-specializability of eOX and e!X does not follow from that theory.
It relies on Hodge properties and will only be obtained in Section 14.6, as a particular
case of Theorem 14.6.1.

9.4.3. Definition (Nearby and vanishing cycle functors). Assume that eM is coherent and
strictly R-specializable along (g). We then set

• (Left case)

(9.4.3 ⇤)
(
 g,�

eMleft
:= gr

�

V
( eMleft

g
), � = exp(� 2⇡i�), � 2 (�1, 0],

�g,1
eMleft

:= gr
�1

V
( eMleft

g
)(�1).
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• (Right case)

(9.4.3 ⇤⇤)
(
 g,�

eM := gr
V

↵
( eMg)(1), � = exp(2⇡i↵), ↵ 2 [�1, 0),

�g,1
eM := gr

V

0
( eMg).

Then  g,�
eM,�g,1

eM are eDX -modules supported on g
�1

(0), equipped with an endo-
morphism E induced by te@t. We set

N =

(
�(E��z) in the left case,
(E�↵z) in the right case.

9.4.4. Remark (Choice of the shift). The choice of a shift (�1) for �g,1 in the left case
has already been justified in dimension 1 (see (7.2.16)). In the right case, the choice
of a shift (1) for  g,�

eM and no shift for �g,1 eM is justified by the following examples.

(1) If eM = e!X⇥C we have gr
V

�1
e!X⇥C(1) ' e!X by identifying e!X⇥C with

e!X ⌦eOX

eOX⇥C dt/z (see Remark 9.3.24).
(2) If eM is a right eDX⇥C-module of the form D◆⇤eN where eN is a right eDX⇥{0}-

module and ◆ : X ⇥ {0} ,! X ⇥ C is the inclusion, then gr
V

0
eM = eN.

9.4.5. Lemma (Side-changing for the nearby/vanishing cycle functors)
The side-changing functor commutes with the nearby/vanishing cycle functors,

namely

 g,�(
eMright

) = ( g,�
eMleft

)
right

, �g,1(
eMright

) = (�g,1
eMleft

)
right

.

It is moreover compatible with the actions of N.

Proof. If eN is a left eDX⇥C-module which is strictly R-specializable along X ⇥ {0},
we have (see Remark 9.3.24)

gr
V

↵
(e!X⇥C ⌦ eN)(1) ' e!X ⌦ gr

�

V
(eN) 8↵ 2 R, � = �↵� 1.

We apply this to eN = eMleft

g
, so that eNright

= eMright

g
. The right action of te@t corre-

sponds to the left action of �e@tt = �(te@t + z), so the right action of N = (te@t � ↵z)
corresponds to that of �(te@t + z + ↵z) = �(E��z) = N.

9.4.6. Proposition. Let g : X ! C be a holomorphic function and let eM be a coherent
eDX-module. Assume that eM is strictly R-specializable along g = 0. Then  g,�

eM and
�g,1

eM are eDX-coherent.

Proof. By assumption,  g,�
eM and �g,1

eM are gr
V

0
eDX⇥C = eDX [E]-coherent. Since N

is nilpotent on  g,�
eM and �g,1 eM, the eDX -coherence follows.

9.4.7. Definition (Morphisms N, can and var, nearby/vanishing Lefschetz quiver)
Assume that eM is strictly R-specializable along g = 0. The nilpotent operator N

is a morphism

 g,�
eM N��!  g,�

eM(�1), �g,1
eM N��! �g,1

eM(�1).
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When � = 1, the nilpotent operator N on  g,1
eM and �g,1 eM is the operator obtained

as the composition var � can and can � var in the nearby/vanishing Lefschetz quiver :

(9.4.7 ⇤)  g,1
eM

can = �e@t ·
**

�g,1
eM

var = t ·
jj

(�1)

jj

(left case)

(9.4.7 ⇤⇤)  g,1
eM

can = · e@t
**

�g,1
eM

var = · t
jj

(�1)

jj

(right case)

with the same convention as in (3.4.8).

9.4.8. Definition (Monodromy operator). We work with right DX -modules. Assume
that M is R-specializable along (g). The monodromy operator T on  g,�M is the op-
erator induced by exp(2⇡i t@t) (for left DX -modules T = exp(� 2⇡i t@t)). On  g,�M,
we have T = � exp 2⇡iN, and the nilpotent operator N is given by 1

2⇡i
log(�

�1
T). On

�g,1M we have T = exp 2⇡iN and N =
1

2⇡i
log T.

9.4.9. Remark (Monodromy filtration on nearby and vanishing cycles)
The monodromy filtration relative to N on  g,�

eM and �g,1
eM (see Exercise 3.3.1

and Remark 3.3.4) is well-defined in the abelian category of graded eDX -modules with
the automorphism � induced by the shift (1) of the grading (or in the abelian category
of DX -modules). The Lefschetz decomposition holds in this category, with respect to
the corresponding primitive submodules P` g,�

eM, P`�g,1
eM for ` > 0.

Nevertheless, strict R-specializability is not sufficient to ensure that each such
primitive submodule (hence each graded piece of the monodromy filtration) is strict.
The following proposition gives a criterion for the strictness of the primitive parts.

9.4.10. Proposition. Assume eM is strictly R-specializable along (g) and fix � 2 S
1. The

following properties are equivalent.
(1) For every ` > 1, N`

:  g,�
eM!  g,�

eM(�`) is a strict morphism.
(2) For every ` 2 Z, grM

`
 g,�

eM is strict.
(3) For every ` > 0, P` g,�

eM is strict.
We have similar assertions for �g,1M.

Proof. This is Proposition 5.1.10, see also Lemma 9.3.28.

9.4.11. Remark (Restriction to z = 1 of the monodromy filtration)
If M is a coherent RFDX -module which is strictly R-specializable along D and

setting M = M/(z � 1)M, we have  g,�M =  g,�M/(z � 1) g,�M and �g,1M =

�g,1M/(z � 1)�g,1M, according to Exercise 9.24, and the morphisms can and var

for M obviously restrict to the morphisms can and var for M, as well as the nilpotent
endomorphism N.
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Similarly, the monodromy filtration M•(N) on  g,�M,�g,1M restricts to the mon-
odromy filtration M•(N) on  g,�M,�g,1M, since everything behaves C[z, z

�1
]-flatly

after tensoring with C[z, z
�1

].

9.5. Strictly non-characteristic restrictions in codimension one

We revisit the results of Section 8.6.b in case ◆Y : Y ,! X denote the inclusion of
a closed submanifold of codimension one, that we denote by H. We will consider left
eDX-modules and the corresponding setting for the V -filtration in this section.

9.5.1. Example. Assume that Y = H is a hypersurface defined by a coordinate function
t : X ! C and that M is a holonomic (more generally, coherent) DX -module with
characteristic variety CharM ⇢ T

⇤
X. Then, if H is non-characteristic with respect

to M, M is DX/C-coherent in the neighbourhood of H and t : M ! M is injective
(see e.g. [MT04, Prop. II.3.4 & Prop. III.3.3] and the references therein). It follows
that the filtration U

kM = t
kM for k > 0 and U

kM = M for k 6 0 is a good V -filtra-
tion, which is equal to the Kashiwara-Malgrange filtration, so that M = V

0M.

9.5.2. Proposition.

(1) if eM is strictly non-characteristic along H, it is also strictly R-specializable
along H,

(2) if eM is non-characteristic and strictly R-specializable along H, it is strictly
non-characteristic along H.

In such a case, gr
�

V
eM = 0 unless � 2 N, the nilpotent endomorphism te@t on gr

0

V
eM

is equal to zero, and eM is strongly strictly R-specializable along H in the sense of
Definition 9.3.27. Lastly, D◆

⇤
H
eM is naturally identified with gr

0

V
eM.

Proof. Since the question is local, we may assume that X ' H ⇥�t.

(1) The previous proposition says that t : eM ! eM is injective and the definition
amounts to the strictness of eM/t eM.

Since eM is eDX/C-coherent (Exercise 9.34), the filtration defined by U
k eM = t

k eM
(k 2 N) is a coherent V -filtration and E : gr

0

U
eM ! gr

0

U
eM acts by 0 since e@tU0 eM ⇢

U
0 eM = eM. It follows that eM is specializable along H and that the Bernstein poly-

nomial of the filtration U
• eM has only integral roots. Moreover, t : grk

U
eM ! gr

k+1

U
eM

is onto for k > 0. We will show by induction on k that each gr
k

U
eM is strict. The as-

sumption is that gr0
U
eM is strict. We note that E�kz acts by zero on gr

k

U
eM. If grk

U
eM

is strict, then the composition e@tt, that acts by (k + 1)z on gr
k

U
eM, is injective, so

t : gr
k

U
eM! gr

k+1

U
eM is bijective, and gr

k+1

U
eM is thus strict. It follows that eM is strict-

ly R-specializable along H, and the t-adic filtration U
• eM is equal to the V -filtration.

(2) It follows from the assumption that M is non-characteristic along H, hence
M = V

0M by Example 9.5.1, and gr
�

V
M = 0 for any � < 0. By strict R-specia-

lizability of eM, we deduce that gr
�

V
eM = 0 for any � < 0, hence eM = V

0 eM, that
t : eM! eM is injective, and that eM/t eM = gr

0

V
eM is strict.
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If eM satisfies (1), equivalently (2), we have seen in the proof of (1) that gr�
V
eM = 0

for � /2 N. Since gr
�1

V
eM = 0, we deduce that te@t acts by zero on gr

0

V
eM. Then eM

tautologically satisfies the conditions for strong strict R-specializability of Definition
9.3.27.

We note that gr
0

V
eM is naturally a eDH -module since E acts by 0, and eDH =

gr
V

0
eDX/Egr

V

0
eDX , and one checks that the identification D◆

⇤
H
eM = eM/IH eM = gr

0

V
eM

is compatible with the action of eDH .

9.5.3. Remark (The case of right eDX -modules). Let eM be a left eDX -module and let
eMright

:= e!X ⌦eOX

eM be the associated right eDX -module (with grading). If eM is
strictly non-characteristic along H, then so is eMright. We have

D◆
⇤
H
eMright

:= e!H ⌦eOH
D◆

⇤
H
eM = e!H ⌦eOH

gr
0

V
eM = gr

V

�1
eMright

(1),

according to Remark 9.3.24.
Assume that H is globally defined by the smooth function g. Then

D◆H⇤(D◆
⇤
H
eMright

) = D◆H⇤(gr
0

V
eM) = D◆H⇤(gr

V

�1
eMright

)(1) =  g,1
eMright

,

according to Exercise 9.31.

9.6. Strict Kashiwara’s equivalence

We now return to the case of right eDX -module when considering the pushforward
functor.

Let ◆Y : Y ⇢ X be the inclusion of a complex submanifold. The following is known
as “Kashiwara’s equivalence”.

9.6.1. Proposition (see [Kas03, §4.8]). The pushforward functor D◆Y ⇤ induces a natural
equivalence between coherent DY -modules and coherent DX-modules supported on Y ,
whose quasi-inverse is the restriction functor D◆

⇤
Y
.

Be aware however that this result does not hold for graded coherent RFDX -
modules. For example, if X = C with coordinate s and ◆Y : Y = {0} ,! X denotes
the inclusion, D◆Y ⇤C[z] = �⌧ · C[z, e@⌧ ] with �⌧ ⌧ = 0. On the other hand, consider
the C[z, ⌧ ]he@⌧ i-submodule of C[z]⌦C D◆Y ⇤C = �⌧C[z, @⌧ ] generated by �⌧@⌧ (note: @⌧
and not e@⌧ ). This submodule is written �⌧C[z] �

L
k>0

�⌧
e@k
⌧
@⌧ . It has finite type

over C[z, ⌧ ]he@⌧ i by construction, each element is annihilated by some power of s, and
D◆

⇤(�1)

Y
(�⌧@⌧ · C[z, ⌧ ]he@⌧ i) = �⌧C[z], but it is not equal to D◆Y ⇤C[z].

Note also that this proposition implies in particular that D◆
⇤(k)
Y D◆Y ⇤M = 0 for

k 6= �1, if M is DX -coherent. In the example above, we have D◆Y ⇤C = C[@⌧ ] and the
complex D◆

⇤
Y D◆Y ⇤C is the complex C[@⌧ ]

·⌧�! C[@⌧ ] with terms in degrees �1 and 0.
It has cohomology in degree �1 only.

However, this is not true for graded coherent RFDX -modules. With the similar
example, the complex D◆

⇤
Y D◆Y ⇤C[z] is the complex C[z, e@⌧ ]

·⌧�! C[z, e@⌧ ]. We have
e@k
⌧
· ⌧ = kze@k�1

⌧
, so the cokernel of s is not equal to zero.
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9.6.2. Proposition (Strict Kashiwara’s equivalence). Let Y be a smooth closed subman-
ifold of X, and let ◆Y : Y ,! X denote the inclusion. Then the functor D◆Y ⇤ :

Modcoh(
eDY ) 7! Modcoh(

eDX) is fully faithful. If moreover Y = H is smooth of codi-
mension 1 in X, it induces an equivalence between the full subcategory of Modcoh(

eDH)

whose objects are strict, and the full subcategory of Modcoh(
eDX) whose objects are

strictly R-specializable along H and supported on H. An inverse functor is eM 7!
gr

V

0
eM.

Proof the full faithfulness. It is enough to prove that each morphism ' : D◆Y ⇤eN1 !
D◆Y ⇤eN2 takes the form D◆Y ⇤ for a unique  : eN1 ! eN2. Because of uniqueness, the
assertion is local with respect to Y , hence we can assume that there exist local coordi-
nates (x1, . . . , xr) defining Y . Assume eM = D◆Y ⇤eN for some coherent eDY -module eN.
Then one can recover eN from eM as the eDY -module eM/

P
i
eM · e@xi

. As a consequence,
 must be the morphism induced by ' on eM/

P
i
eM · e@xi

, hence its uniqueness. On
the other hand, since eM1 is generated by eN1 ⌦ 1 over eDX (see Exercise 8.45), ' is
determined by its restriction to eN1⌦1, that is by  , and the formula is ' = D◆Y ⇤ .

9.6.3. Lemma. Assume X ' H ⇥ C with coordinate t on the second factor. Let eM be
a coherent eDX-module supported on H ⇥ {0}.

(1) Assume that there exists a strict eDH-module eN such that eM ' D◆H⇤eN. Then
(a) eN = Ker[t : eM! eM],
(b) eN is eDH-coherent,
(c) eM is strict and strictly R-specializable along H,
(d) eN = gr

V

0
eM.

(2) Conversely, if eM is strictly R-specializable along H, then such an eN exists. In
particular, eM is also strict.

9.6.4. Remark (Strictness and strict R-specializability). Let eM be as in Lemma 9.6.3,
that is, eDX -coherent and supported on H ⇥ {0}. Then the filtration U0

eM = Ker t ⇢
U1

eM = Ker t
2 ⇢ · · · is a filtration by V0

eDX -submodules and obviously admits a
weak Bernstein polynomial. Assume moreover that eM is strict. Then every gr

U

k
eM is

also strict: if m 2 Uk
eM and z

`
m 2 Uk�1

eM, that is, if tk+1
m = 0 and t

k
z
`
m = 0,

then t
k
m = 0 by strictness of eM and thus m = 0 in gr

U

k
eM. Therefore, U•

eM is the
Kashiwara-Malgrange filtration V•

eM in the sense of Lemma 9.3.16, and Properties
9.3.18(1) and (2) are satisfied.

However, the condition that eM is strict is not enough to obtain the conclusion of
9.6.3(1), as shown by the following example. The point is that 9.3.18(3) may not hold.
Assume that H is reduced to a point and let eM be the eDX -submodule of the DX [z]-
module eCh@ti generated by 1 and @t (recall that eC := C[z]), that we denote by [1]

and [@t] for the sake of clarity. By definition, we have [1]t = 0 and [@t]t
2
= 0. For the

Kashiwara-Malgrange filtration V•
eM defined above, e@t : grV0 eM = eC! gr

V

1
eM = [@t]

eC
is not onto, for its cokernel is [@t]C. In other words, eM is not strictly R-specializable
at t = 0 and not of the form D◆H⇤eN.
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Proof of Lemma 9.6.3.
(1) Assume eM = D◆H⇤eN for some strict eDH -module eN. We have D◆H⇤eN =L
k>0

◆H⇤eN⌦�te@kt with �tt = 0 (see Exercise 8.46(1)). The action of t on D◆H⇤eN is the
z-shift n⌦ �te@kt 7! zkn⌦ �te@k�1

t
, hence eN = Ker t because eN is strict. Given a finite

family of local eDX -generators of eM, we produce another such family made of homoge-
neous elements, by taking the components on the previous decomposition. Therefore,
there exists a finite family of local sections ni of eN such that ni⌦ �t generate eM. Let
eN0 ⇢ eN be the eDH -submodule they generate. Then D◆H⇤eN0 ! D◆H⇤eN = eM is onto.
On the other hand, since eN0 is also strict, this map is injective: If

P
N

k=1
n
0
k
⌦�te@kt 7! 0,

then n
0
N
⌦ �te@Nt 7! 0, and s

N
n
0
N
⌦ �te@Nt = ?z

N
n
0
N
⌦ �te@Nt 7! 0, where ? is a nonzero

constant; so z
N
n
0
N

= 0 in eN, hence n
0
N

= 0. We conclude eN0
= eN since both are

equal to Ker t in D◆H⇤eN. Therefore, eN is locally finitely eDH -generated in eM, and then
is eDH -coherent. One then checks that the filtration Uj

eM :=
L

j

k>0
◆H⇤eN ⌦ �te@kt is a

coherent V -filtration of eM, and eN = gr
U

0
eM. We deduce that each gr

U

k
eM is strict, and

eM is strictly R-specializable. Lastly, n ⌦ �t satisfies (n ⌦ �t)te@t = 0, so V•
eM = U•

eM
jumps at non-negative integers only.

(2) Assume that eM is strictly R-specializable along H. Then V<0
eM = 0, according

to 9.3.25(a). Similarly, grV
↵
eM = 0 for ↵ /2 Z. As t : gr

V

k
eM ! gr

V

k�1
eM is injective for

k 6= 0 (see 9.3.25(c)), we conclude that

gr
V

0
eM ' V0

eM = Ker[s : eM! eM].

Since e@t : grVk eM! gr
V

k�1
eM is an isomorphism for k 6 0, we obtain

eM =
L
`>0

gr
V

0
eMe@`

t
= D◆⇤gr

V

0
eM.

Lastly, E acts by zero on gr
V

0
eM, which is therefore a coherent eDH -module by means

of the isomorphism gr
V

0
eDX/Egr

V

0
eDX ' eDH . It is strict since eM is strictly R-specia-

lizable.

End of the proof of Proposition 9.6.2. It remains to prove essential surjectivity. Let
V•

eM be the V -filtration of eM along H. By the argument in the second part of
the proof of Lemma 9.6.3, we have local isomorphisms eM ⇠�! D◆⇤gr

V

0
eM which induce

the identity on V0
eM = gr

V

0
eM. By full faithfulness they glue in a unique way as a

global isomorphism eM ' D◆⇤gr
V

0
eM.

9.6.5. Corollary. Assume codimH = 1. Let eN be eDH-coherent and set eM = D◆H⇤eN.
If eM = eM1 � eM2 with eM1,

eM2 being eDX-coherent, then there exist coherent eDH-sub-
modules eN1,

eN2 of eN such that eN = eN1 � eN2 and eMj = D◆H⇤eNj for j = 1, 2.

Proof. Each eMi is coherent and supported on H. We set eNi = eMi \ eN. Locally,
choose a coordinate t defining H and set eN0

i
= eMi/

eMi · e@t. Since eN = eM/ eM · e@t,
we deduce that eN = eN0

1
� eN0

2
, and we have a (local) isomorphism eMi ' D◆⇤eN0

i
. Then

one checks that eN0
i
= eNi, so it is globally defined.
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We now consider the behaviour of strict R-specializability along a function with
respect to strict Kashiwara’s equivalence. Let ◆ : X ,! X1 be the inclusion of a smooth
hypersurface in X, let g1 : X1 ! C be a holomorphic function and let g = g1 � ◆.
We have a commutative diagram

X
� �
◆g
//

� _

◆

✏✏

X ⇥ Ct� _

◆
0
✏✏

X1

� �
◆g1
// X1 ⇥ Ct

We can regard 9.6.6(1) as the particular case of Theorem 9.8.8 below where f is a
closed embedding ◆.

9.6.6. Proposition. Let eN be a coherent eDX-module and set eM = D◆⇤eN.
(1) Assume that eN is strictly R-specializable along (g). Then eM is strictly R-spe-

cializable along (g1).
(2) Assume that eM is strictly R-specializable along (g1). Then eN is strictly R-spe-

cializable along (g).
In such a case, we have  g1,�

eM ' D◆⇤ g,�
eN and �g1,1 eM ' D◆⇤�g,1eN. Moreover, with

respect to these identifications,canfM = D◆⇤ caneN and varfM = D◆⇤ vareN.

Proof. The first statement is easy to check. Let us consider the second one. We first
consider the case where X1 = X ⇥C⌧ and H1 = H ⇥C⌧ , with X = H ⇥Ct and g, g1

are the projection to Ct. We denote by V the V -filtration along t. We have eM =

D◆⇤eN =
L

k
◆⇤eN ⌦ �⌧ e@k⌧ .

Let us first prove that the V -filtration of eM is compatible with the decomposition.
Let

P
N

i=0
ni⌦�⌧ e@i⌧ be a section in V↵

eM. We will prove by induction on N that ni⌦�⌧ 2
V↵

eM for every i. It is enough to prove it for i = N . We have
�P

N

i=0
ni⌦ �⌧ e@i⌧

�
· ⌧N =

?z
N
nN ⌦ �⌧ 2 V↵

eM for some nonzero constant ?. If nN ⌦ �⌧ 2 V�
eM for � > ↵, then

the class of nN ⌦ �⌧ in gr
V

�
eM is annihilated by z

N , hence is zero since gr
V

�
eM is strict.

Therefore, nN ⌦ �⌧ 2 V↵
eM.

Let us define U↵
eN as the subsheaf of eN consisting of those sections n such that

n⌦�⌧ 2 V↵
eM. Then one has V↵

eM =
L

i
◆⇤U↵

eN⌦�⌧ e@i⌧ and gr
V

↵
eM =

L
i
◆⇤gr

U

↵
eN⌦�⌧ e@i⌧ .

In particular, each gr
U

↵
eN is strict. Clearly, each U↵

eN is a V0
eDX0 -module. We argue

as in Lemma 9.6.3(1) to show that each U↵
eN is V0

eDX0 -coherent.
From the properties of V•

eM one deduces that U•
eN satisfies the characteristic prop-

erties of the V -filtration, hence is equal to it. Therefore, eN is strictly R-specializable
along H and Properties 9.3.18(2) and (3) are clearly satisfied, as they hold for eM.
The last statement is then clear by the computation of the V -filtrations above.

For the general case, the assumption is that ◆g1⇤(◆⇤eN) is strictly R-specializable
along X1 ⇥ {0}, hence so is ◆0⇤(◆g⇤eN). Since the question is local, we can assume
that ◆ is the inclusion X ⇥ {0} ,! X ⇥ eC⌧ = X1 and similarly for ◆0 after taking the
product with eCt. We are then reduced to the previous case and we obtain the strict
R-specializability of ◆g⇤eN along (t).
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9.7. Support-decomposable eD-modules

Let g : X ! C be a holomorphic function. We set D := (g) and |D| = g
�1

(0).
Let ◆g : X ,! X ⇥ C denote the graph embedding associated with g. We set H =

X ⇥ {0} ⇢ X ⇥ C.
Let us make precise the behaviour of the support of nearby and vanishing cycles.

9.7.1. Proposition. Assume that eM is eDX-coherent and strictly R-specializable along D.

(1) For every � 2 S
1, dimSupp g,�

eM < dimSupp eM.
(2) If Supp eM ⇢ |D|, then  g,�

eM = 0 for any � 2 S
1, and eM ' �g,1 eM.

Proof.
(1) Clearly, the support is contained in g

�1
(0) \ Supp eM. The question is local.

Let xo 2 g
�1

(0) \ Supp eM. Assume that a local component Sxo
of Supp eM at xo is

contained in f
�1

(0). It is enough to prove the vanishing of  g,�
eM in the neighbour-

hood of a point x
0
o
2 Sxo

\ (Supp eM)
smooth. We can choose local coordinates at x

0
o

such that g = t
r for some r > 1. By the example of Section 9.9.a below, we are

reduced to proving that, near x
0
o
, we have  t,�

eM = 0 for every � 2 S
1. This follows

from Lemma 9.6.3(2).
(2) The first statement follows from the first point. By Proposition 9.6.2 we have

eMg = D◆t⇤gr
V

0
eMg =: D◆t⇤�g,1 eM. On the other hand, we recover eM from eMg as

eM = Dp⇤ eMg, where p : X⇥C! C is the projection. We then use that p�◆t = IdX .

9.7.2. Proposition. Let eM be a coherent eDX-module which is strictly R-specializable
along (g).

(1) The following properties are equivalent:
(a) var : �g,1

eM!  g,1
eM(�1) is injective,

(b) eMg has no proper subobject in Modcoh(
eDX⇥C) supported on H,

(c) There is no strictly R-specializable inclusion eN ,! eMg with eN strictly
R-specializable supported on H.

(2) If can :  g,1
eM ! �g,1

eM is onto, then eMg has no proper quotient satisfying
9.3.18(1) and supported on H.

9.7.3. Definition (Middle extension along (g)). Let eM be a coherent eDX -module which
is strictly R-specializable along (g). We say that eM is a middle extension along (g) if
var : �g,1

eM!  g,1
eM(�1) is injective and can :  g,1

eM! �g,1
eM is onto. (See Remark

3.3.12 for the terminology.)

The nearby/vanishing Lefschetz quiver of a middle extension is isomorphic to the
Lefschetz quiver (proof as Exercise 9.36)

(9.7.4)  g,1
eM

can = N

**

ImN.

var = incl

jj

(�1)

jj
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9.7.5. Proposition. Let eM be as in Proposition 9.7.2. The following properties are
equivalent:

(1) �g,1 eM = Imcan�Ker var,
(2) eM= eM0� eM00 with eM0

, eM00 strictly R-specializable along (g), eM0 being a middle
extension along (g) and eM00 supported on g

�1
(0).

Moreover, such a decomposition is unique, and if eM, eN satisfy these properties, any
morphism ' : eM! eN decomposes correspondingly.

Proof of Propositions 9.7.2 and 9.7.5. All along this proof, we set eN = eMg for short.
9.7.2(1) (1a), (1b): It is enough to show that the morphisms

Ker[t : V0
eN! V�1

eN]
i
I

ww ))

Ker[t : eN! eN] Ker[t : gr
V

0
eN! gr

V

�1
eN]

are isomorphisms. It is clear for the right one, since t : V
<0eN ! V

<�1eN is an
isomorphism, according to 9.3.25(a). For the left one this follows from the fact that t
is injective on gr

V

↵
eN for ↵ 6= 0 according to 9.3.25(c).

(1b) , (1c): let us check ( (the other implication is clear). Let eT denote the
t-torsion submodule of eN and eT0 the eDX⇥C-submodule generated by

eT0 := Ker[t : eN �! eN].

9.7.6. Assertion. eT0 is strictly R-specializable and the inclusion eT0
,! eN is strictly

R-specializable.

This assertion gives the implication ( because Assumption (1c) implies eT0
= 0,

hence t : eN! eN is injective, so eT = 0.

Proof of the assertion. Let us show first that eT0 is eDX⇥C-coherent. As we remarked
above, we have eT0 = Ker[t : gr

V

0
eN ! gr

V

�1
eN]. Now, eT0 is the kernel of a linear

morphism between eDH -coherent modules (H = X ⇥ {0}), hence is also eDH -coherent.
It follows that eT0 is eDX⇥C-coherent.

Let us now show that eT0 is strictly R-specializable. We note that eT0 is strict because
it is isomorphic to a submodule of grV

0
eN. Let U•

eT0 be the filtration induced by V•
eN

on eT0. Then U<0
eT0

= 0, according to 9.3.25(a), and gr
U

↵
eT0

= 0 for ↵ 62 N. Let us
show by induction on k that

Uk
eT0

= eT0 +
eT0

e@t + · · ·+ eT0
e@k
t
.

Let us denote by U
0
k
eT0 the right-hand term. The inclusion � is clear. Let xo 2 H,

m 2 Uk
eT0
xo

and let ` > k such that m 2 U
0
`
eT0
xo

. If ` > k one has m 2 eT0
xo
\ V`�1

eNxo
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hence mt
` 2 eT0

xo
\ V�1

eNxo
= 0. Set

m = m0 +m1
e@t + · · ·+m`

e@`
t
,

with mjt = 0 (j = 0, . . . , `). One then has m`
e@`
t
t
`
= 0, and since

m`
e@`
t
t
`
= m` ·

`Y

j=1

(te@t + jz) = `!m`z
`

and eT0 is strict, one concludes that m` = 0, hence m 2 U
0
`�1

eT0
xo

. By induction, this
implies the other inclusion.

As gr
U

↵
eT0 is contained in gr

V

↵
eN, one deduces from 9.3.25(d) that e@t : gr

U

k
eT0 !

gr
U

k+1
eT0 is injective for k > 0. The previous computation shows that it is onto,

hence eT0 is strictly R-specializable and U•
eT0 is its Malgrange-Kashiwara filtration.

It is now enough to prove that the injective morphism gr
U

0
eT0 ! gr

V

0
eN is strict. But

its cokernel is identified with the submodule Im[t : gr
V

0
eN ! gr

V

�1
eN] of grV�1

eN, which
is strict.

9.7.2(2) If can is onto, then eN = eDX⇥C · V<0
eN. If eN has a t-torsion quotient eT

satisfying 9.3.18(1), then V<0
eT = 0, so V<0

eN is contained in Ker[eN! eT] and thus
eN = eDX⇥C · V<0

eN is also contained in this kernel, that is, eT = 0.
9.7.5(1)) 9.7.5(2) Set

U0
eN0

= V<0
eN + e@tV�1

eN and eT0 = Ker[t : eN �! eN].

The assumption (1) is equivalent to V0
eN = U0

eN0 � eT0. Define

Uk
eN0

= Vk
eDX · U0

eN0 and Uk
eN00

= Vk
eDX · eT0

for k > 0. As Vk
eN = Vk�1

eN + e@tVk�1
eN for k > 1, one has Vk

eN = Uk
eN0

+ Uk
eN00 for

k > 0. Let us show by induction on k > 0 that this sum is direct. Fix k > 1 and let
m 2 Uk

eN0 \ Uk
eN00. Write

m = m
0
k�1

+ n
0
k�1

e@t = m
00
k�1

+ n
00
k�1

e@t,
(
m

0
k�1

, n
0
k�1
2 Uk�1

eN0
,

m
00
k�1

, n
00
k�1
2 Uk�1

eN00
.

One has [n
0
k�1

]e@t = [n
00
k�1

]e@t in Vk
eN/Vk�1

eN, hence, as
e@t : Vk�1

eN/Vk�2
eN �! Vk

eN/Vk�1
eN

is bijective for k > 1, one gets [n0
k�1

] = [n
00
k�1

] in Vk�1
eN/Vk�2

eN and by induction one
deduces that both terms are zero. One concludes that m 2 Uk�1

eN0\Uk�1
eN00

=0 by
induction.

This implies that eN = eN0 � eN00 with eN0
:=

S
k
Uk

eN0 and eN00 defined similarly. It
follows from Exercise 9.20(1) that both eN0 and eN00 are strictly R-specializable along H

and the filtrations U• above are their Malgrange-Kashiwara filtrations. In particular,
eN0 satisfies (1) and (2). By Corollary 9.6.5 we also know that eN0

= eM0
g

and eN00
= eM00

g

for some coherent eDX -modules eM0
, eM00.

9.7.5(2) ) 9.7.5(1): One has V<0
eN00

= 0. Let us show that Im can = gr
V

0
eN0 and

Ker var = gr
V

0
eN00. The inclusions Im can ⇢ gr

V

0
eN0 and Ker var � gr

V

0
eN00 are clear.
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Moreover gr
V

0
eN0 \ Ker var = 0 as eN0 satisfies (1). Lastly, can : gr

V

�1
eN0 ! gr

V

0
eN0 is

onto, as eN0 satisfies (2). Hence gr
V

0
eN = Imcan�Ker var.

Let us now prove the last assertion. We first note that the uniqueness statement
follows from the statement on morphisms: if we have two decomposition eM = eM0

1
�

eM00
1
= eM0

2
� eM00

2
, then the identity morphism decomposes correspondingly.

Let us consider a morphism ' : eM0� eM00 ! eN0� eN00. First, by (1b) in Proposition
9.7.2, the component eM00 ! eN0 is zero. For the component eM0 ! eN00, let us denote
by eM0

1
its image. The V -filtration on eM0

fun,1
induced by V•

eN00
g

is coherent (Exercise
9.11(1)) and satisfies 9.3.18(1), hence by Proposition 9.7.2(2) we have eM0

fun,1
= 0.

9.7.7. Definition (S(upport)-decomposable eDX -modules). We say that a coherent
eDX -module eM is

• S-decomposable along (g) if it is strictly R-specializable along (g) and satisfies
the equivalent conditions 9.7.5;

• S-decomposable at xo 2 X if for any analytic germ g : (X,xo) ! (C, 0) such
that g�1

(0)\Supp eM has everywhere codimension 1 in Supp eM, eM is S-decomposable
along (g) in some neighbourhood of xo;

• S-decomposable if it is S-decomposable at all points xo 2 X.

9.7.8. Lemma.
(1) If eM is S-decomposable along (g), then it is S-decomposable along (g

r
) for every

r > 1.
(2) If eM = eM1 � eM2, then eM is S-decomposable of some kind if and only if eM1

and eM2 are so.
(3) We assume that eM is S-decomposable and its support Z is a pure dimensional

closed analytic subset of X. Then the following conditions are equivalent:
(a) for any analytic germ g : (X,xo) ! (C, 0) such that g

�1
(0) \ Z has

everywhere codimension 1 in Z, eMg is a middle extension along (g);
(b) near any xo, there is no eDX-coherent submodule of eM with support having

codimension > 1 in Z;
(c) near any xo, there is no nonzero morphism ' : eM! eN, with eN S-decom-

posable at xo, such that Im' is supported in codimension > 1 in Z.

Proof. Property (1) is an immediate consequence of the example of Section 9.9.a, and
Property (2) follows from the fact that for any germ g, the corresponding can and
var decompose with respect to the given decomposition of eM. Let us now prove (3).
Both conditions (3a) and (3b) reduce to the property that, for any analytic germ g :

(X,xo)! (C, 0) which does not vanish identically on any local irreducible component
of Z at xo, the corresponding decomposition eM = eM0 � eM00 of 9.7.5(2) reduces to
eM = eM0, i.e., eM00

= 0. For the equivalence with (3c), we note that, according to the
last assertion in Proposition 9.7.5, and with respect to the decomposition ' = '

0�'00

along a germ g, we have Im' 6= 0 and supported in g
�1

(0) if and only if Im'
00 6= 0,
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and thus eM00 6= 0. Conversely, if eM00 6= 0, the projection eM! eM00 gives a morphism
contradicting (3c).

9.7.9. Definition (Pure support). Let eM be S-decomposable and having support a pure
dimensional closed analytic subset Z of X. We say that eM has pure support Z if the
equivalent conditions of 9.7.8(3) are satisfied.

9.7.10. Proposition (Generic structure of a S-decomposable module)
Assume that eM is holonomic and S-decomposable with pure support Z, where Z

is smooth. Then there exists a unique holonomic and S-decomposable eDZ-module eN
such that eM = D◆Z⇤eN. Moreover, there exists a Zariski dense open subset Z

o ⇢ Z

such that eN|Zo is eOZo-coherent and strict.

Proof. Let us consider the first statement. By uniqueness, the question is local on Z.
We argue by induction on dimX. Let H be a smooth hypersurface containing Z

such that H = {t = 0} of some local coordinate system (t, x2, . . . , xd). Since eM
is strictly R-specializable along t, the strict Kashiwara’s equivalence implies that
eM = D◆H⇤eN for a unique coherent eDH -module eN. Moreover, eN is strictly R-spe-
cializable along any holomorphic function on H, according to Proposition 9.6.6. If
this function is the restriction g|H of a holomorphic function on X, then one checks
that a decomposition 9.7.5(2) for eM along (g) comes from a decomposition 9.7.5(2)
for eN along (g|H). We conclude that eN is also S-decomposable, and has pure support
Z ⇢ H. Continuing this way, we reach a coherent eDZ-module which is S-decomposa-
ble. It is easy to check that eN is holonomic since, if Char eM denotes the characteristic
variety of eM, it is obtained by a straightforward formula from Char eN.

Coming back to the global setting, we consider the characteristic variety Char eN
of eN, which is contained, by definition, in a set of the form

�S
i
T

⇤
Zi
Z
�
⇥Cz, where Zi

is an irreducible closed analytic subset of Z, one of them being Z. We set Z
o
=

Z r
S

i|Zi 6=Z
Zi. In such a way, we obtain a Zariski-dense open subset Z

o of Z such
that Char eN|Zo ⇢ T

⇤
ZoZ

o⇥Cz. We conclude from Exercise 8.69 that eN|Zo is eOZo -coh-
erent.

Let us now restrict to Z
o and prove that eN is strict there. If t is a local coordinate,

notice that each term of the V -filtration V•
eN is also eOZo -coherent (recall that we

know that eN is strictly R-specializable along t). It follows that the V -filtration is
locally stationary, hence eN = V0

eN, since gr
V

↵
eN = 0 for ↵� 0 (Proposition 9.3.25(d)),

hence for all ↵ > 0. Let m be a local section of eN killed by z. Then m is zero in
eN/eNt by strict R-specializability. As eN is eOZo -coherent, Nakayama’s lemma (applied
to eN ⌦eOZo

OZo⇥Cz
) implies that m = 0.

9.7.11. Corollary. Let eM be holonomic and S-decomposable. Then eM is strict.

Proof. The question is local, and we can assume that eM has pure support Z with Z

closed irreducible analytic near xo. Proposition 9.7.10 applied to the smooth part
of Z produces a dense open subset Z

o of Z such that eM|Zo is strict. Let m be a
local section of eM near xo 2 Z killed by z. Then m · eDX is supported by a proper
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analytic subset of Z near xo by the previous argument. As eM has pure support Z,
we conclude that m = 0.

9.7.12. Corollary. Let eM be holonomic and S-decomposable. Then there exist irre-
ducible closed analytic subsets Zi of X such that Char eM =

�S
i
T

⇤
Zi
X
�
⇥ Cz.

Proof. Since eM is strict, there exists a coherently F -filtered DX -module (M, F•M)

such that eM = RFM. We can thus apply Exercise 8.71(1).

9.7.13. Corollary. Let Z ⇢ X be a closed analytic subset of X and let eM be holonomic
and S-decomposable with pure support Z. Then there exists a dense open subset Z

o

of Z, a neighbourhood nb(Z
o
) in X, and a eDZo-holonomic module eN which is eOZo-

locally free of finite rank, such that eM|nb(Zo) = D◆Zo⇤eN.

Proof. By restricting first to a neighbourhood of the smooth locus of Z, we can
assume that Z is smooth, so that the setting is that of Proposition 9.7.10, and we can
also assume that X = Z. Recall that, by strictness, eM = RFM. According to the
same proposition, we can also assume that M is OX -coherent, hence OX -locally free
(see Exercise 8.69(3)).

The filtration F•M has then only a finite number of jumps, and gr
FM is also

OX -coherent. Up to restricting to a dense open subset, we can assume that gr
FM

is OX -locally free. For each p, let vp be a local family of elements of FpM whose
classes in gr

F

p
M form a local frame. Then (vp)p is a local frame of M. We have

a natural surjective morphism
L

p
z
peOXvp ! RFM, which induces an isomorphism

after tensoring with eOX [z
�1

] over eOX , since both terms have (vp)p as an eOX [z
�1

]-
basis. Each local section of the kernel is thus annihilated by some power of z, hence
is zero since the left-hand term is obviously strict. Therefore, RFM is eOX -locally
free.

We will now show that a S-decomposable holonomic eDX -module (see Definition
8.8.23) can indeed be decomposed as the direct sum of holonomic eDX -modules hav-
ing as pure support closed irreducible analytic subsets. These subsets are then called
the pure components of (the support of) eM (note that a pure component could be in-
cluded in another one). We first consider the local decomposition and, by uniqueness,
we get the global one. It is important for that to be able to define a priori the pure
components. They are obtained from the characteristic variety of eM, equivalently
of M, according to Corollary 9.7.12.

9.7.14. Proposition. Let eM be holonomic and S-decomposable at xo, and let (Zi, xo)i2I

be the family of closed irreducible analytic germs (Zi, xo) such that Char eM =S
i
T

⇤
Zi
X ⇥ Cz near xo. There exists a unique decomposition eMxo

= �i2I
eMZi,xo

of
germs at xo such that eMZi,xo

= 0 or has pure support (Zi, xo).

Proof. For the existence of the decomposition, we will argue by induction on
dimSupp eM. The case where dimSupp eM is clear. First, we reduce to the case when
the support Z of eM (see Proposition 8.8.11) is irreducible at xo. For this purpose,
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let us decompose the germ of Z at xointo its irreducible components
S

j
Zj . Let

g be a germ of holomorphic function at xo such that g
�1

(0) \ S has everywhere
codimension 1 in Z and contains the support of the kernel and cokernel of

L
j

�Zj

eM �! eM

(see Lemma 8.8.12). Let us consider the decomposition eM = eM0� eM00 with eM0 being
a middle extension along (g) and eM00 supported on g

�1
(0). Since the kernel and

cokernel of the above morphism have support contained in g
�1

(0), we conclude that
it induces an isomorphism

L
j
�Zj

eM ! eM0. Moreover, since S-decomposability is
stable by direct summand (Lemma 9.7.8(2)), each �Zj

eM and eM00 are S-decomposa-
ble. We can apply the induction hypothesis to eM00, and we are reduced to treat each
�Zj

eM, so we can assume that Z is irreducible and has dimension > 1.
Let us now choose a germ g : (X,xo)! (C, 0) which is non-constant on Z and such

that g
�1

(0) contains all the components Zi defined by Char eM, except Z. We have,
as above, a unique decomposition eM = eM0� eM00 of germs at xo, where eM0 is a middle
extension along (g), and eM00 is supported on g

�1
(0), by the assumption of S-decom-

posability along (g) at xo. Moreover, eM0 and eM00 are also S-decomposable at xo.
We can apply the induction hypothesis to eM00.

Let us show that eM0 has pure support Z near xo: if eM0
1

is a coherent submodule
of eM0 supported on a strict analytic subset Z ⇢ Z, then Z is contained in the union
of the components Zi, hence eM0

1
is supported in g

�1
(0), so is zero. We conclude

by 9.7.8(3b).
For the uniqueness of the decomposition, we note that, given two local decom-

positions with components eMZi,xo
, eM0

Zi,xo
, the components 'ij of any morphism

' : eMxo
! eMxo

vanishes as soon as i 6=j. Indeed, we have either codimZi
(Zi \ Zj)>1,

or codimZj
(Zi \ Zj) > 1. In the first case we apply Lemma 9.7.8(3c) to eMZi,xo

. In
the second case, we apply Lemma 9.7.8(3b) to eM0

Zj ,xo
. We apply this same result to

' = Id : eM! eM to obtain uniqueness.

By uniqueness of the local decomposition, we get:

9.7.15. Corollary. Let eM be holonomic and S-decomposable on X and let (Zi)i2I be
the (locally finite) family of closed irreducible analytic subsets Zi such that Char eM =S

i
T

⇤
Zi
X ⇥ Cz. There exists a unique decomposition eM = �i

eMZi
such that each

eMZi
= 0 or has pure support Zi.

As indicated above, a closed analytic irreducible subset Z of X such that eMZ 6= 0

is called a pure component of eM.

Proof of Corollary 9.7.15. Given the family (Zi)i2I and xo 2 X, the germs (Zi, xo)

are equidimensional, and Proposition 9.7.14 gives a unique decomposition eMxo
=

�i2I
eMZi,xo

by gathering the local irreducible components of (Zi, xo). The uniqueness
enables us to glue all along Zi the various germs eMZi,x

.
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9.7.16. Corollary. Let eM0
, eM00 be two holonomic eDX-module which are S-decompo-

sable and let (Zi)i2I be the family of their pure components. Then any morphism
' : eM0

Zi
! eM00

Zj
vanishes identically if Zi 6= Zj.

Proof. The image of ' is supported on Zi\Zj , which has everywhere codimension > 1

in Zi or Zj if Zi 6= Zj . We then apply Lemma 9.7.8.

9.7.17. Remark (Restriction to z = 1). Let us keep the notation of Exercise 9.24 and
let us assume that eM is eDX -coherent and strictly R-specializable. It is obvious that,
if can is onto for eM, it is also onto for M := eM/ eM(z � 1). On the other hand, it is
also true that, if var in injective for eM, it is also injective for M (see Exercise 5.2(3)).
As a consequence, if eM is a middle extension along (g), so is M. Moreover, if eM is
S-decomposable along (g) at xo, so is M, and the strict decomposition eM = eM0� eM00

restricts to the decomposition M = M0 �M00 given by 9.7.5(2).
We conclude that, if eM is S-decomposable, then M is S-decomposable, and the

pure components are in one-to-one correspondence.

9.7.18. The structure of grM
`
gr

V eM. Assume that X = H ⇥�t and let us consider the
V -filtration along t. Let eM be strictly R-specializable along (t). For each ↵ 2 A+Z, let
M•gr

V

↵
eM denote the monodromy filtration of the nilpotent operator N (see Section 3.3,

with Section 3.1.2 for the twist (�1) induced by the action of N). If moreover eM
is S-decomposable along (t), we make precise the structure of the gr

V eDX -module
gr

M

`
gr

V eM :=
L

↵2A+Z gr
M

`
gr

V

↵
eM when eM.

The isomorphisms 9.3.18(2) and (3) commute with the action of N, hence induce,
for each `, corresponding isomorphisms

t : gr
M

`
gr

V

↵
eM ⇠�! gr

M

`
gr

V

↵�1
eM (↵ < 0),

e@t : grM` gr
V

↵
eM ⇠�! gr

M

`
gr

V

↵+1
eM (↵ > �1).

Furthermore, te@t acts as ↵z Id on gr
M

`
gr

V

↵
eM.

For any ↵ 2 (�1, 0), we can thus write (omitting edt)

gr
M

`
gr

V

↵+Z eM '
h
gr

M

`
gr

V

↵
eM⌦eC

eC[t]t
i
� gr

M

`
gr

V

↵
eM�

h
gr

M

`
gr

V

↵
eM⌦eC

eC[e@t]e@t
i
,

where the action of gr
V
eDX = eDH [t]he@ti is described as follows (the action of eDH is

the natural one on gr
M

`
gr

V

↵
eM) for k > 0:

(m⌦ t
k
) · t = m⌦ t

k+1
, (m⌦ t

k+1
) · e@t = (↵� k)z(m⌦ t

k
),

(m⌦ e@k
t
) · e@t = m⌦ e@k+1

t
, (m⌦ e@k+1

t
) · t = (↵+ k + 1)z(m⌦ e@k

t
)

It is thus naturally identified with (omitting edt)

(9.7.18 ⇤) gr
M

`
gr

V

↵
eM⇥eC

h
eC[t]he@ti

�
(te@t � ↵z)eC[t]he@ti

i
.

Let us now consider gr
M

`
gr

V

Z
eM. As eM is assumed to be S-decomposable along (t),

we can assume that either eM is supported on H or that eM is a minimal extension
along H.
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In the first case, the structure of eM is known by the strict Kashiwara’s equivalence:
eM ' gr

V

0
eM ⇥eC

eC[e@t]. Furthermore, N acts by zero on gr
V

0
, so we also have gr

V

Z
eM '

gr
V

0
eM⇥eC

eC[e@t].
In the second case, we claim that (omitting edt)

(9.7.18 ⇤⇤) gr
M

`
gr

V

Z eM '
h
gr

M

`
gr

V

�1
eM⇥eC

eC[t]
i
�
h
gr

M

`
gr

V

0
eM⇥eC

eC[e@t]
i
,

where e@t acts by zero on gr
M

`
gr

V

�1
eM ⇥eC 1 and t acts by zero on gr

M

`
gr

V

0
eM ⇥eC 1.

The point is to check that vart and cant induce the zero morphisms after passing
to gr

M

`
: this is provided by Lemma 3.3.13(b). Note that the first case also admits this

description.

9.8. Direct image of strictly R-specializable coherent eDX-modules

Let us consider the setting of Theorem 8.8.15. So f : X ! X
0 is a proper holo-

morphic map, and eM is a coherent right eDX -module. Let H
0 ⇢ X

0 be a smooth
hypersurface. We will assume that H := f

⇤
(H

0
) is also a smooth hypersurface of X.

If eM has a coherent V -filtration U•
eM along H, the RV

eDX -module RU
eM is therefore

coherent. With the assumptions above it is possible to define a sheaf RV
eDX!X0

and therefore the pushforward Df⇤RU
eM as an RV

eDX0 -module (where V•
eDX0 is the

V -filtration relative to H
0).

We will show the RV
eDX0 -coherence of the cohomology sheaves Df

(k)

⇤ RU
eM of the

pushforward Df⇤RU
eM if eM is equipped with a coherent filtration. By the argument

of Exercise 9.10, by quotienting by the v-torsion, we obtain a coherent V -filtration on
the cohomology sheaves Df

(k)

⇤ eM of the pushforward Df⇤ eM.
The v-torsion part contains much information however, and this supplementary

operation killing the v-torsion looses it. The main result of this section is that, if eM is
strictly R-specializable along H, then so are the cohomology sheaves Df

(k)

⇤ eM along H
0,

and moreover, when considering the filtration by the order, the corresponding Rees
modules Df

(k)

⇤ RV
eM have no v-torsion, and can thus be written as RUDf

(k)

⇤ eM for
some coherent V -filtration U•Df

(k)

⇤ eM. This coherent V -filtration is nothing but the
Kashiwara-Malgrange filtration of Df

(k)

⇤ eM. We say that the Kashiwara-Malgrange
filtration behaves strictly with respect to the pushforward functor Df⇤.

Another way to present this property is to consider the individual terms V↵
eM

of the Kashiwara-Malgrange filtration as V0
eDX -modules. By introducing the sheaf

V0
eDX!X0 , one can define the pushforward complex Df⇤V↵

eM for every ↵, and
the strictness property amounts to saying that for every k and ↵, the morphisms
Df

(k)

⇤ V↵
eM! Df

(k)

⇤ eM are injective. In the following, we work with right eDX -modules
and increasing V -filtrations.

9.8.a. Definition of the pushforward functor and the coherence theorem

We first note that our assumption on H,H
0
, f is equivalent to the property that,

locally at xo 2 H, setting x
0
o
= f(xo), there exist local decompositions (X,xo) '

(H,xo)⇥ (C, 0) and (X
0
, x

0
o
) ' (H

0
, x

0
o
)⇥ (C, 0) such that f(y, t) = (f |H(y), t).
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Let U•
eM be a V -filtration of eM and let RU

eM be the associated graded RV
eDX -

module. Our first objective is to apply the same reasoning as in Theorem 8.8.15 by
replacing the category of eD-modules with that of graded RV

eDX -modules.
The sheaf eDX!X0 has a V -filtration: we set Vk

eDX!X0 := eOX ⌦f�1eO
X0

f
�1

Vk
eDX0 .

One checks in local decompositions as above that, with respect to the left eDX -struc-
ture one has V`

eDX · Vk
eDX!X0⇢Vk+`

eDX!X0 . We can write

(9.8.1) RV
eDX!X0 := eOX ⌦f�1eO

X0
f
�1

RV
eDX0 = RV

eOX ⌦f�1RV
eO

X0
f
�1

RV
eDX0 .

Indeed, this amounts to checking that
eOX ⌦f�1eO

X0
f
�1

RV
eOX0 = RV

eOX ,

which is clear. According to Exercise 9.7, RV
eDX0 is RV

eOX0 -locally free, so RV
eDX!X0

is RV
eOX -locally free.

We define
(9.8.2) Df⇤RU

eM := Rf⇤
�
RU

eM⌦L
RV

eDX

RV
eDX!X0

�

as an object of Db
(RV

eDX0).

9.8.3. Theorem. Let eM be a eDX-module equipped with a coherent filtration F•
eM. Let

U•
eM be a coherent V -filtration of eM. Then the cohomology modules of Df⇤RU

eM have
coherent RV

eDX0-cohomology.

9.8.4. Lemma. Let eL be an RV
eOX-module. Then

(eL⌦
RV

eOX

RV
eDX)⌦L

RV
eDX

RV
eDX!X0 = eL⌦

f�1RV
eO

X0
f
�1

RV
eDX0 .

Proof. It is a matter of proving that the left-hand side has cohomology in degree 0

only, since this cohomology is easily seen to be equal to the right-hand side. This can
be checked on germs at x 2 X. Let eL•

x
be a resolution of eLx by free RV

eOX,x-modules.
We have

(eLx⌦RV
eOX,x

RV
eDX,x)⌦L

RV
eDX,x

RV
eDX!X0,x

= (eLx ⌦L
RV

eOX,x

RV
eDX,x)⌦L

RV
eDX,x

RV
eDX!X0,x (Ex. 9.7)

= (eL•
x
⌦

RV
eOX,x

RV
eDX,x)⌦L

RV
eDX,x

RV
eDX!X0,x

= (eL•
x
⌦

RV
eOX,x

RV
eDX,x)⌦RV

eDX,x

RV
eDX!X0,x

= eL•
x
⌦

RV
eOX,x

RV
eDX!X0,x = eLx ⌦L

RV
eOX,x

RV
eDX!X0,x

= eLx ⌦RV
eOX,x

RV
eDX!X0,x (RV

eDX!X0,x is RV
eOX,x-free)

= eLx ⌦f�1RV
eO

X0,x0
f
�1

RV
eDX0,x0 .

As a consequence of this lemma, we have
(9.8.5) Df⇤(eL⌦RV

eOX

RV
eDX) = (Rf⇤eL)⌦RV

eO
X0

RV
eDX0

and the cohomology of this complex is RV
eDX0 -coherent.
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9.8.6. Remark. Assume that eL = eK ⌦eOX

RV
eOX for some eOX -module eK. Note that,

by flatness (see Exercise 9.7),
eK⌦L

eOX

RV
eDX = eK⌦eOX

RV
eDX = eL⌦

RV
eOX

RV
eDX .

Hence, by Lemma 9.8.4 and (9.8.1),

(eK⌦eOX

RV
eDX)⌦L

RV
eDX

RV
eDX!X0 = eK⌦

f�1eO
X0
f
�1

RV
eDX0 = eK⌦L

f�1eO
X0
f
�1

RV
eDX0 ,

and thus (9.8.5) becomes

Df⇤(eK⌦eOX

RV
eDX) = Rf⇤ eK⌦f�1eO

X0
RV

eDX0 .

9.8.7. Lemma. Assume that eM is a eDX-module having a coherent filtration F•
eM and

let U•
eM be a coherent V -filtration of eM. Then in the neighbourhood of any compact

set of X, RU
eM has a coherent F•RV

eDX-filtration.

Proof. Fix a compact set K ⇢ X. We can thus assume that eM is generated by a
coherent eOX -module eF in some neighbourhood of K, i.e., eM = eDX · eF. Consider the
V -filtration U

0
•
eM generated by eF, i.e., U 0

•
eM = V•

eDX · eF. Then, clearly, RV
eOX · eF =L

k
Vk

eOX · eFvk is a coherent graded RV
eOX -module which generates RU 0 eM as an

RV
eDX -module.

If the filtration U
00
•
eM is obtained from U

0
•
eM by a shift by �` 2 Z, i.e., if RU 00 eM =

v
`
RU 0 eM ⇢ eM[v, v

�1
], then RU 00 eM is generated by the RV

eOX -coherent submodule
v
`
RV

eOX · eF.
On the other hand, let U

00
•
eM be a coherent V -filtration such that RU 00 eM has a

coherent F•RV
eDX -filtration. Then any coherent V -filtration U•

eM such that Uk
eM ⇢

U
00
k
eM for every k satisfies the same property, because RU

eM is thus a coherent graded
RV

eDX -submodule of RU 00 eM, so a coherent filtration on the latter induces a coherent
filtration on the former.

As any coherent V -filtration U•
eM is contained, in some neighbourhood of K, in

the coherent V -filtration U
0
•
eM suitably shifted, we get the lemma.

Proof of Theorem 9.8.3. The proof now ends exactly as that for Theorem 8.8.15.

9.8.b. Strictness of the Kashiwara-Malgrange filtration by pushforward

9.8.8. Theorem (Pushforward of strictly R-specializable eD-modules)
Let f : X ! X

0 be a proper morphism of complex manifolds, let H 0 be a smooth
hypersurface of X 0 and assume that IH := IH0OX defines a smooth hypersurface H

of X. Let eM be a coherent right eDX-module equipped with a coherent filtration.
Assume that eM is strictly R-specializable along H with Kashiwara-Malgrange filtration
V•

eM indexed by A + Z with A finite contained in (�1, 0], and that each cohomology
module Df

(i)

|H⇤gr
V

↵
eM is strict (↵ 2 [�1, 0]).

Then each cohomology module Df
(i)

⇤ eM, which is eDX0-coherent according to Theorem
8.8.15, is strictly R-specializable along H

0 and moreover,
(1) for every ↵, i, the natural morphism Df

(i)

⇤ (V↵
eM)! Df

(i)

⇤ eM is injective,
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(2) its image is the Kashiwara-Malgrange filtration of Df
(i)

⇤ eM along H
0,

(3) for every ↵, i, grV
↵
(Df

(i)

⇤ eM) = Df
(i)

|H⇤(gr
V

↵
eM).

As an important corollary we obtain in a straightforward way:

9.8.9. Corollary. Let f : X ! X
0 be a proper morphism of complex manifolds. Let

g
0
: X

0 ! C be any holomorphic function on X
0 and let eM be eDX-coherent and strictly

R-specializable along (g) with g = g
0 � f . Assume that for all i and �, Df

(i)

⇤ ( g,�
eM)

and Df
(i)

⇤ (�g,1
eM) are strict.

Then Df
(i)

⇤ eM is eDX0-coherent and strictly R-specializable along (g
0
), we have for

all i and �,

( g,�(Df
(i)

⇤ eM),N) = Df
(i)

⇤ ( g,�
eM,N),

(�g,1(Df
(i)

⇤ eM),N) = Df
(i)

⇤ (�g,1
eM,N),

and the morphisms can, var for Df
(i)

⇤ eM are the morphisms Df
(i)

⇤ can, Df
(i)

⇤ var.

We first explain the mechanism which leads to the strictness property stated in
Theorem 9.8.8(1).

9.8.10. Proposition. Let H
0 ⇢ X

0 be a smooth hypersurface. Let (eN•
, U•

eN•
) be a

V -filtered complex of eDX0-modules, where U• is indexed by Z. Let N > 0 and assume
that

(1) H
i
(gr

U

k
eN•

) is strict for all k 2 Z and all i > �N � 1;
(2) there exists a finite subset A ⇢ (�1, 0] and for every k 2 Z there exists ⌫k > 0

such that
Q

↵2A
(E�(↵+ k)z)

⌫k acts by zero on H
i
(gr

U

k
eN•

) for every i > �N � 1;
(3) there exists ko such that for all k 6 ko and all i > �N � 1, the right mul-

tiplication by some (or any) local reduced equation t of H
0 induces an isomorphism

t : Uk
eNi ⇠�! Uk�1

eNi;
(4) there exists io 2 Z such that, for all i > io and any k 2 Z, one has

H
i
(Uk

eN•
) = 0;

(5) H
i
(Uk

eN•
) is V0

eDX0-coherent for all k 2 Z and all i > �N � 1.
Then for every k 2 Z and i > �N the morphism H

i
(Uk

eN•
)! H

i
(eN•

) is injective.
Moreover, the filtration U•H

i
(eN•

) defined by

UkH
i
(eN•

) = image
⇥
H

i
(Uk

eN•
) �! H

i
(eN•

)
⇤

satisfies gr
U

k
H

i
(eN•

) = H
i
(gr

U

k
eN•

) for all k 2 Z.

Proof. It will have three steps. During the proof, the indices k, j, ` will run in Z.

First step. This step proves a formal analogue of the conclusion of the proposition.
Put

\
Uk

eN•
= lim �̀Uk

eN•
/U`

eN• and beN•
= lim�!

k

\
Uk

eN•
.

Under the assumption of Proposition 9.8.10, we will prove the following:

(a) For all j 6 k, [
Uj

eN• ! \
Uk

eN• is injective (hence, for all k, \
Uk

eN• ! beN• is

injective) and \
Uk

eN•
/

\
Uk�1

eN•
= Uk

eN•
/Uk�1

eN•.
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(b) For every j 6 k and any i, Hi
(Uk

eN•
/Uj

eN•
) is strict.

(c) H
i
(
\
Uk

eN•
) = lim �`

H
i
(Uk

eN•
/U`

eN•
) (i > �N).

(d) H
i
(
\
Uk

eN•
)! H

i
(
beN•

) is injective (i > �N).

(e) H
i
(
beN•

) = lim�!k
H

i
(
\
Uk

eN•
) (i > �N).

We note that the statements (b)–(d) imply that H
i
(
beN•

) is strict for i > �N ,
although H

i
(eN•

) need not be strict.

Define UkH
i
(
beN•

) = image
⇥
H

i
(
\
Uk

eN•
)! H

i
(
beN•

)
⇤
. Then the statements (a) and (d)

imply that

gr
U

k
H

i
(
beN•

) = H
i
(
\
Uk

eN•
/

\
Uk�1

eN•
) = H

i
(gr

U

k
eN•

) (i > �N).

For ` < j < k consider the exact sequence of complexes

0 �! Uj
eN•

/U`
eN• �! Uk

eN•
/U`

eN• �! Uk
eN•

/Uj
eN• �! 0.

As the projective system (Uk
eN•

/U`
eN•

)` trivially satisfies the Mittag-Leffler condition
(ML) (see e.g. [KS90, Prop. 1.12.4]), the sequence remains exact after passing to
the projective limit, so we get an exact sequence of complexes

0 �! [
Uj

eN• �!\
Uk

eN• �! Uk
eN•

/Uj
eN• �! 0,

hence (a).
Let us show by induction on m = k � ` 2 N that, for all ` < k and i > �N ,
(i)

Q
↵2A

Q
`<j6k

(E�(↵+ j)z)
⌫j annihilates H

i
(Uk/U`),

(ii) for all j such that ` < j < k, we have an exact sequence,

(9.8.11) 0 �!H
i
(Uj

eN•
/U`

eN•
) �! H

i
(Uk

eN•
/U`

eN•
) �! H

i
(Uk

eN•
/Uj

eN•
)�! 0.

(iii) H
i
(Uk

eN•
/U`

eN•
) is strict.

If ` = k� 1, (i) and (iii) are true by assumption and (ii) is empty. Moreover, (ii)m
and (iii)<m imply (iii)m. For ` < j < k and k � ` = m, consider the exact sequence

(9.8.12) · · ·  
i

���! H
i
(Uj/U`) �! H

i
(Uk/U`) �! H

i
(Uk/Uj)

 
i+1

�����! H
i+1

(Uj/U`) �! · · ·

For any i > �N , any local section of Im 
i+1 is then killed by some power ofQ

↵2A

Q
j<r6k

(E�(↵+r)z) and by some power of
Q

↵2A

Q
`<r6j

(E�(↵+r)z) accord-
ing to (i)<m, hence is zero by Bézout and (iii)<m, and the same property holds for
Im 

i, so the previous sequence of Hi is exact, hence (ii)m. then, according to (i)<m,
(i)m follows.

Consequently, the projective system (H
i
(Uk

eN•
/U`

eN•
))` satisfies (ML), so we

get (c). Moreover, taking the limit on ` in (9.8.11) gives, according to (ML), an exact
sequence

0 �! H
i
(
[
Uj

eN•
) �! H

i
(
\
Uk

eN•
) �! H

i
(Uk

eN•
/Uj

eN•
) �! 0,

hence (d). Now, (e) is clear.
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Second step. For every i, k, denote by eTi

k
⇢ H

i
(Uk

eN•
) the IH0 -torsion subsheaf of

H
i
(Uk

eN•
). We set locally IH0 = tOX0 . We will now prove that it is enough to show

(9.8.13) 9 ko, k 6 ko =) eTi

k
= 0 8 i 2 [�N, io].

We assume that (9.8.13) is proved (step 3). Let ` 6 ko and i > �N , so that
eTi

`
= 0 (for i > io, one uses Assumption 4), and let k > `. Then, by definition of a

V -filtration, tk�` acts by 0 on Uk
eN•

/U`
eN•, so that the image of Hi�1

(Uk
eN•

/U`
eN•

) in
H

i
(U`

eN•
) is contained in eTi

`
, and thus is zero. We therefore have an exact sequence

for every i > �N :

0 �! H
i
(U`

eN•
) �! H

i
(Uk

eN•
) �! H

i
(Uk

eN•
/U`

eN•
) �! 0.

Using (9.8.11), we get for every j < k the exact sequence

0 �! H
i
(Uj

eN•
) �! H

i
(Uk

eN•
) �! H

i
(Uk

eN•
/Uj

eN•
) �! 0.

This implies that Hi
(Uj

eN•
)! H

i
(eN•

) = lim�!k
H

i
(Uk

eN•
) is injective. For every k, let

us set
UkH

i
(eN•

) := image
⇥
H

i
(Uk

eN•
) ,�! H

i
(eN•

)
⇤
.

We thus have, for every k 2 Z and i > �N ,

gr
U

k
H

i
(eN•

) = H
i
(gr

U

k
eN•

).

Third step: proof of (9.8.13). Let us choose ko as in 9.8.10(3). We notice that the

multiplication by t induces an isomorphism t :
[
Uk

eNi
⇠�! \

Uk�1
eNi for k 6 ko and

i > �N � 1, hence an isomorphism t : H
i
(
\
Uk

eN•
)

⇠�! H
i
(
\

Uk�1
eN•

), and that (d)
in Step 1 implies that, for all i > �N and all k 6 ko, the multiplication by t on

H
i
(
\
Uk

eN•
) is injective.

The proof of (9.8.13) is done by decreasing induction on i. We assume that, for
every k 6 ko, we have eTi+1

k
= 0 (this holds for i = io given by 9.8.10(4)). We have

(after 9.8.10(3)) an exact sequence of complexes, for every k 2 N and • > �N � 1,

0 �! Uk
eN• t

k

���! Uk
eN• �! Uk

eN•�
Uk�k

eN• �! 0.

As eTi+1

k
= 0, we have, for every k > 1 an exact sequence

H
i
(Uk

eN•
)

t
k

���! H
i
(Uk

eN•
) �! H

i
(Uk

eN•
/Uk�k

eN•
) �! 0,

hence, according to Step 1,

H
i
(
\
Uk

eN•
)/H

i
(
\

Uk�k
eN•

) = H
i
(Uk

eN•
/Uk�k

eN•
) = H

i
(Uk

eN•
)/t

k
H

i
(Uk

eN•
).

According to Assumption 9.8.10(5) and Exercise 9.12, for k big enough (locally on X
0),

the map eTi

k
! H

i
(Uk

eN•
)/t

k
H

i
(Uk

eN•
) is injective. It follows that eTi

k
! H

i
(
\
Uk

eN•
) is

injective too. But we know that t is injective on H
i
(
\
Uk

eN•
) for k 6 ko, hence eTi

k
= 0,

thus concluding Step 3.
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9.8.14. Remark. In Proposition 9.8.10, Condition (4) can be replaced by the following
two conditions:

(4’) there exists io 2 Z such that, for all i > io one has H
i
(eN•

) = 0 and, for any k,
H

i
(gr

U

k
eN•

) = 0,
(5’) for each k 2 Z each p 2 Z and each i > io, the cohomology H

i
((Uk

eN•
)p) is

OX-coherent, where (Uk
eNj

)p denotes the p-th graded component of Uk
eNj.

Indeed, let us show that, together with Condition 9.8.10(3), (4’) and (5’) im-
ply (4). Due to the long exact sequence (9.8.12), one obtains by induction that
H

i
(Uk

eN•
/Uk�j

eN•
)=0 for any i > io, any k and any j 2 N. By Condition (3) we

have, for k 6 ko, a long exact sequence

· · · �! H
i
(Uk

eN•
)

t��! H
i
(Uk

eN•
) �! H

i
(Uk

eN•
/Uk�1

eN•
) �! · · ·

and this implies that t is bijective on H
i
(Uk

eN•
) if i > io + 1 and k 6 ko, hence on

each component Hi
((Uk

eN•
)p). The coherency condition implies that, for each i > io,

each k 6 ko and any p 2 Z, there exists a neighborhood of t = 0 (possibly depending
on p) such that H

i
((Uk

eN•
)p) = 0. Since Uk

eN•
= eN• away from t = 0, (4’) implies

that the vanishing holds everywhere, that is, Hi
(Uk

eN•
) = 0 for k 6 ko. That it holds

for any k is obtained from the vanishing H
i
(Uk

eN•
/Uk�j

eN•
)=0 seen above.

Proof of Theorem 9.8.8
9.8.15. Lemma. Let U•

eM be a V -filtration indexed by A+Z of a eDX-module eM which
satisfies the following properties:

(a) t : U↵
eM! U↵�1

eM is bijective for every ↵ < 0,
(b) e@t : grU↵ eM! gr

U

↵+1
eM is bijective for every ↵ > �1.

Then, for each ↵ 2 A, RU↵+•
eM has a resolution eL•

↵
⌦eOX

RV
eDX , where each eLi

↵

is an eOX-module.

Proof. Property (b) implies

(b’) for every ↵ > 0, e@t : U↵/U↵�1 ! U↵+1/U↵ is bijective.
Therefore, we have a surjective morphism

U↵
eM⌦eOX

Vk
eDX �! U↵+k

eM if

(
↵ 2 [�1, 0) and k 6 0, or
↵ 2 [0, 1) and k > 0.

It follows that, for each ↵ 2 [�1, 0), we have a surjective morphism

'↵ : (U↵
eM� U↵+1

eM)⌦eOX

RV
eDX �! RU↵+•

eM.

We note that V•
eDX satisfies (a) and (b’) with ↵ 2 Z.

Set eK↵ = Ker'↵, that we equip with the induced filtration U•
eK↵. We thus have

an exact sequence for every ↵:

0 �! U•
eK↵ �! (U↵

eM� U↵+1
eM)⌦eOX

V•
eDX �! U↵+•

eM �! 0,
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from which we deduce that U•
eK↵ satisfies (a) and (b’), enabling us to continue the

process.

The assertion of the theorem is local on X
0, and we will work in the neighbourhood

of a point x
0
o
2 H

0. We consider the Kashiwara-Malgrange filtration V•
eM as indexed

by Z, and it satisfies the properties 9.8.15(a) and (b’), according to Proposition 9.3.25.
We can then use a resolution eL• ⌦RV

eDX of RV
eM as in Lemma 9.8.15, that we stop

at a finite step chosen large enough (due to the cohomological finiteness of f) such
that

Df
(i)

⇤ (RV
eM) 6= 0 =) Df

(i)

⇤ (RV
eM) = Df

(i)

⇤ (eL• ⌦eOX

RV
eDX)

and similarly, for any k 2 Z, setting gr
V

k
= Vk/Vk�1,

Df
(i)

|H⇤(gr
V

k
eM) 6= 0 =) Df

(i)

|H⇤(gr
V

k
eM) = Df

(i)

|H⇤(
eL• ⌦eOX

gr
V

k
eDX).

In such a case, Df
(i)

⇤ (RV
eM) = H

i
�
f⇤ God

•
(eL• ⌦

f�1eO
X0

f
�1

RV
eDX0)

�
, according to

Remark 9.8.6. We thus set

(eN•
, U•

eN•
) =

�
f⇤ God

•
(eL• ⌦

f�1eO
X0

f
�1 eDX0), f⇤ God

•
(eL• ⌦

f�1eO
X0

f
�1

V•
eDX0)

�
.

Since the sequences
0 �! Vk

eDX0 �! eDX0 �! eDX0/Vk
eDX0 �! 0

0 �! Vk�1
eDX0 �! Vk

eDX0 �! gr
V

k
eDX0 �! 0and

are exact sequences of locally free eOX0 -modules, they remain exact after applying
eL•⌦eO

X0
, then also after applying the Godement functor (see Exercise 8.49(1)), and

then after applying f⇤ since the latter complexes consist of flabby sheaves.
This implies that Uk

eN• is indeed a subcomplex of eN• and

gr
U

k
eN•

= f⇤ God
•
(eL• ⌦

f�1eO
X0

f
�1

gr
V

k
eDX0).

Property 9.8.10(5) is satisfied according to Theorem 9.8.3, and Properties 9.8.10(3)
and (4) are clear.

We have eHi
(gr

U

k
eN•

)=Df
(i)

|H⇤gr
V

k
eM for i>�N for some N such that Df

(i)

|H⇤gr
V

k
eM=0

if i < �N , so that 9.8.10(1) holds by assumption and 9.8.10(2) is satisfied by taking
a suitable finite set A ⇢ (�1, 0] and the maximum of the local values ⌫k along the
compact fiber f

�1
(x

0
o
).

From Proposition 9.8.10 we conclude that 9.8.8(1) holds for k 2 Z and any i.
Denoting by U•Df

(i)

⇤ eM the image filtration in 9.8.8(1), we thus have RUDf
(i)

⇤ eM =

Df
(i)

⇤ RV
eM and therefore

gr
U

k
(Df

(i)

⇤ eM) = Df
(i)

|H⇤(gr
V

k
eM).

In particular, the left-hand term is strict by assumption on the right-hand term.
By the coherence theorem 9.8.3, we conclude that U•Df

(i)

⇤ eM is a coherent V -filtra-
tion of Df

(i)

⇤ eM. Therefore, U•Df
(i)

⇤ eM satisfies the assumptions of Lemma 9.3.16.
Moreover, the properties 9.3.18(2) and (3) are also satisfied since they hold for eM.
We conclude that Df

(i)

⇤ eM is strictly R-specializable along H
0 and that U•(Df

(i)

⇤ eM) is
its Kashiwara-Malgrange filtration indexed by Z. Now, Properties (1)–(3) in Theorem
9.8.8 are clear.



352 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

In order to pass from the Z-indexed V -filtration to the R-indexed V -filtration,
we use the correspondence of Exercise 9.26.

9.9. Examples of computations of nearby and vanishing cycles

In this section, we make explicit some examples of computation of nearby and
vanishing cycles simple situations, anticipating more complicated computations in
Chapter 15.

9.9.a. Strict R-specializability along (g
r
). Let g be a holomorphic function on X

and let eM be a coherent eDX -module which is strictly R-specializable along (g).
The purpose of this example is to show that eM is then also strictly R-specializa-
ble along (g

r
) for every r > 2, and to compare nearby and vanishing cycles of eM with

respect to g and to h := g
r.

9.9.1. Proposition. Let eM be a coherent eDX-module which is strictly R-specializable
along (g). Then eM is strictly R-specializable along (h) and

(a) ( h,�
eM,N) = ( g,�r

eM,N/r) for every �,
(b) (�h,1

eM,N) = (�g,1
eM,N/r),

(c) denoting by ◆g : X ,! X ⇥ C the graph inclusion and setting eN = eMg, there is
an isomorphism

8
<

:  h,1
eM

canh
,,

�h,1
eM

varh(�1)

ll

9
=

; '

8
>>>>>>>>><

>>>>>>>>>:

gr
V

�r
eN

canh := cang �(rgr�1
)
�1

##

 g,1
eM

g
r�1

⇠oo
cang

,,

�g,1
eM

varh := g
r�1 � varg

(�1)

bb

varg(�1)

ll

9
>>>>>>>>>=

>>>>>>>>>;

Proof. It is equivalent to prove the assertion with eM = eN, g = t and h = t
r, so

we will only consider this setting. We can then write D◆h⇤ eM =
L

k2N
eM ⌦ �e@k

u
as a

eDX [u]he@ui-module, with

(m⌦ �)e@k
u
= m⌦ �e@k

u
8 k > 0,

(m⌦ �)e@t = (me@t)⌦ � � (rg
r�1

m)⌦ �e@u,
(m⌦ �)u = (mt

r
)⌦ �,

(m⌦ �)eOX = (meOX)⌦ �,

and with the usual commutation rules. We then have the relation

r(m⌦ �)ue@u = [mte@t]⌦ � � (mt⌦ �)e@t.

We will denote by V
t the V -filtration with respect to the variable t and by V

u that
with respect to the variable u.
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For ↵ 6 0, we set

U↵(D◆h⇤ eM) :=
�
V

t

r↵
eM⌦ �

�
· V u

0
(eDX [u]he@ui),

and for ↵ > 0 we define inductively

U↵(D◆h⇤ eM) := U<↵(D◆h⇤ eM) + U↵�1(D◆h⇤ eM)e@u.

We will prove that the filtration U•(D◆h⇤ eM) is the V -filtration V
u
(D◆h⇤ eM).

• Let us assume that ↵ 6 0. Using the above relation we obtain that, if

V
t

r↵
eM(te@t � r↵z)

⌫r↵ ⇢ V
t

<r↵
eM,

then

U↵(D◆h⇤ eM)(ue@u � ↵z)⌫r↵ ⇢ U<↵(D◆h⇤ eM),

from which we conclude that (ue@u � ↵z) is nilpotent on gr
U

↵
(D◆h⇤ eM) for ↵ 6 0.

• By using the relation

(mte@t)⌦ � = (m⌦ �)(te@t � rue@u),

we see that, if m1, . . . ,m` generate V
t

r↵
eM over V t

0
eDX (↵ 6 0), then m1⌦�, . . . ,m`⌦�

generate U↵(D◆h⇤ eM) over V
u

0
(eDX [u]he@ui), from which we conclude that U↵(D◆h⇤ eM)

is V
u

0
(eDX [u]he@ui)-coherent for every ↵60, hence for every ↵.

By using the analogous property for eM we obtain that, for every ↵,

U↵�1(D◆h⇤ eM) ⇢ U↵(D◆h⇤ eM)u,

U↵+1(D◆h⇤ eM) ⇢ U<↵+1(D◆h⇤ eM) + U↵(D◆h⇤ eM)e@u,resp.

with equality if ↵ < 0 (resp. if ↵ > �1), from which we deduce that U•(D◆h⇤ eM) is a
coherent V -filtration.

• For ↵ 6 0, we check that

U↵(D◆h⇤ eM) = U<↵(D◆h⇤ eM) +

X

k>0

(V
t

r↵
eM⌦ �)e@k

t
.

We deduce, by considering the degree in e@t, that the natural morphism
L
k

(gr
V

t

r↵
eM⌦ e@k

t
) �! gr

U

↵
(D◆h⇤ eM)

L
k

[mk]⌦ e@k
t
7�!

hX

k

(mk ⌦ �)e@kt
i

is an isomorphism of eDX -modules. It follows that grU
↵
(D◆h⇤ eM) is strict for any ↵ 6 0.

Since Properties (2) and (3) of Definition 9.3.18 clearly hold for U•(D◆h⇤ eM), we con-
clude from Exercise 9.28 that eM is strictly R-specializable along (h) with Kashiwara-
Malgrange filtration V

u

• (D◆h⇤ eM) equal to U•(D◆h⇤ eM). The assertions (a), (b) and (c)
follow in a straightforward way.
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9.9.b. Specialization along a strictly non-characteristic divisor

Let D = D1 [D2 be a divisor with normal crossings in X and smooth irreducible
components D1, D2. We set D1,2 = D1 \ D2, which is a smooth manifold of codi-
mension two in X. Let eM be a right eDX -module which is strictly non-characteristic
along D1, D2 and D1,2. Let us summarize some consequences of the assumption on
nearby cycles. In local coordinates we will set Di={xi=0} (i=1, 2) and we denote
by ◆i : Di ,! X the inclusion, and similarly ◆1,2.

(a) eM is strictly R-specializable along D1 and D2. We denote by V
(i)

•
eM the

V -filtration of eM along Di (i = 1, 2).
(b) gr

V
(i)

↵
eM = 0 if � /2 N.

(c) gr
V

(i)

�1
eM = D◆

⇤
i
eM = ◆

⇤
i
eM. In local coordinates, grV

(i)

�1
eM = eM/ eMxi.

9.9.2. Lemma. For i = 1, 2, the eDDi
-module D◆

⇤
i
eM is strictly non-characteristic, hence

strictly R-specializable, along D1,2 and V
(j)

• gr
V

(i)

�1
eM is the filtration induced by V

(j)

•
eM

({i, j} = {1, 2}), so that

gr
V

(2)

�1
gr

V
(1)

�1
eM = gr

V
(1)

�1
gr

V
(2)

�1
eM = D◆

⇤
1,2

eM = ◆
⇤
1,2

eM.

Proof. The first point is mostly obvious, giving rise to the last formula, according
to (c). For the second point, we have to check in local coordinates that ( eM/ eMx1)x

k

2
=

eMx
k

2
/ eMx1x

k

2
for every k > 1, that is, the morphism

eM/ eMx1

x
k

2���! eMx
k

2
/ eMx1x

k

2

is an isomorphism. Recall (see Exercise 9.34) that eM is eDX/C2 -coherent, so by taking
a local resolution by free eDX/C2 -modules, we are reduced to proving the assertion for
eM = eD`

X/C2 , for which it is obvious.

Our aim is to compute, in the local setting, the nearby cycles of eM along g = x1x2

(after having proved that eM is strictly R-specializable along (g), of course). We con-
sider then the graph inclusion ◆g : X ,! X ⇥Ct. The following proposition also holds
in the left case after side-changing.

9.9.3. Proposition. Under the previous assumptions, the eDX-module eM is a middle
extension along (g), we have  g,�

eM = 0 for � 6= 1 and there are functorial isomor-
phisms

(9.9.3 ⇤) P` g,1
eM '

8
>><

>>:

 x1,1
eM�  x2,1

eM if ` = 0,

 x1,1
 x2,1

eM(�1) =  x2,1
 x1,1

eM(�1) if ` = 1,

0 otherwise.

Proof. We set eN = eMg. We have eN = ◆g⇤ eM[e@t] with the usual structure of a right
eDX⇥C-module (see Example 8.7.7). We identify ◆g⇤ eM as the component of e@t-degree
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zero in eN. Let U•eN denote the filtration defined by

U�1(
eN) = ◆g⇤ eM · eDX ⇢ eN, U�k�1(

eN) =

(
U�1(

eN) · tk if k > 0,
P

`6�k
U�1(

eN) · e@`
t

if k 6 0.

We wish to prove that U•
eN satisfies all the properties of the V -filtration of eN.

Let m be a local section of eM. From the relation

(9.9.4) (m⌦ 1)e@x1
= (me@x1

)⌦ 1�mx2 ⌦ e@t

we deduce

(m⌦ 1)e@tt = (me@x1
x1)⌦ 1� (m⌦ 1)x1

e@x1

= (me@x2
x2)⌦ 1� (m⌦ 1)x2

e@x2
,

(9.9.5)

showing that U�1(
eN) is a V0

eDX⇥Ct
-module. If (mi)i2I is a finite set of local eDX/C2 -

generators of eM (see Exercise 9.34), we deduce that it is a set of eDX -generators, hence
of V0

eDX⇥Ct
-generators, of U�1(

eN). It follows that U•
(eN) is a good V -filtration of eN.

Moreover, the formulas above imply

(m⌦ 1)(e@tt)2 =
�
(me@x1

e@x2
⌦ 1)+ (m⌦ 1)e@x1

e@x2
� (me@x2

⌦ 1)e@x1
� (me@x1

⌦ 1)e@x2

�
· t,

giving a Bernstein relation. Since (e@tt)2 vanishes on gr
U

�1
(eN), the monodromy filtra-

tion is given by

M�2gr
U

�1
(eN) = 0, M�1gr

U

�1
(eN) = gr

U

�1
(eN) · e@tt,

M0gr
U

�1
(eN) = Ker[e@tt : grU�1

(eN)! gr
U

�1
(eN)], M1gr

U

�1
(eN) = gr

U

�1
(eN).

As a consequence,

P0gr
U

�1
(eN) = gr

M

0
gr

U

�1
(eN) = Ker e@tt/ Im e@tt,

P1gr
U

�1
(eN) = gr

M

1
gr

U

�1
(eN) = gr

U

�1
(eN)/Ker e@tt

⇠�! M�1gr
U

�1
(eN)(�1).

We will identify these eDX -modules with those given in the statement. This will also
prove that gr

U

�1
(eN) is strict, because  x1,1

eM, x2,1
eM, x1,1

 x2,1
eM are strict.

Let G•
eN denote the filtration by the order with respect to e@t. It will be useful

to get control on the various objects occurring in the computations, mainly because
when working on gr

GeN, the action of e@x1
amounts to that of �x2 ⌦ e@t and similarly

for e@x2
, and the action of x1, x2 on eM is well understood, due to Exercise 9.37.

9.9.6. Lemma. We have U�1(
eN) \Gp(

eN) =
P

k1+k26p
( eM⌦ 1)e@k1

x1

e@k2

x2
.

Proof. Any local section ⌫ of U�1(
eN) can be written as

P
k1,k2>0

(mk1,k2
⌦ 1)e@k1

x1

e@k2

x2

for some local sections mk1,k2
of eM and, if q = max{k1 + k2 | mk1,k2

6= 0}, the degree
of ⌫ with respect to e@t is 6 q and the coefficient of e@q

t
is

(�1)q
X

k1+k2=q

mk1,k2
x
k1

2
x
k2

1
.
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If this coefficient vanishes, Exercise 9.37 implies that

⌫ =

X

k1+k26q

((µk1�1,k2
x1 � µk1,k2�1x2)⌦ 1)e@k1

x1

e@k2

x2
.

The operator against µi,j ⌦ 1 is (x1
e@x1
� x2

e@x2
)e@i

x1

e@j
x2

, and (9.9.5) implies

(µi,j ⌦ 1)(x1
e@x1
� x2

e@x2
) = (µi,j(x1

e@x1
� x2

e@x2
))⌦ 1,

so that ⌫ 2
P

k1+k26q�1
( eM⌦ 1)e@k1

x1

e@k2

x2
.

As a consequence, let us prove the equality

(9.9.7) e@�1

t
(U�1(

eN)) \ U�1
eN =

X

k1,k2

( eM·(x1, x2)⌦ 1)e@k1

x1

e@k2

x2
,

where e@�1

t
(U�1(

eN)) := {⌫ 2 U�1(
eN) | ⌫e@t 2 U�1(

eN)}, and that t acts injectively on
U�1

eN.
Let ⌫ =

P
q6p

⌫q ⌦ e@q
t

be a nonzero local section of U�1(
eN) of G-order p, so that

⌫p 6= 0. We will argue by induction on p. By the lemma we have

⌫p =

X

k1+k2=p

(mk1,k2
⌦ 1)e@k1

x1

e@k2

x2
with

X

k1+k2=p

mk1,k2
x
k1

2
x
k2

1
6= 0 in eM.

Assume ⌫e@t is a local section of U�1(
eN). Then

P
k1+k2=p

mk1,k2
x
k1

2
x
k2

1
is a local

section of eM·(x1, x2)
p+1, that is, is equal to
X

k1+k2=p

µk1,k2
x
k1

2
x
k2

1
with µk1,k2

2 eM·(x1, x2),

so ⌫�
P

k1+k2=p
(µk1,k2

⌦1)e@k1

x1

e@k2

x2
a local section of U�1(

eN)e@t\U�1
eN and has G-order

6 p� 1. We can conclude by induction.
Assume now that ⌫t = 0. We have

0 = (⌫t)p =
⇥
(⌫p ⌦ e@p

t
)t
⇤
p
= ⌫p ⌦ te@p

t
= ⌫px1x2 ⌦ e@p

t
,

so ⌫px1x2 = 0 in eM, and thus ⌫p = 0, a contradiction.

Recall that eM = V
(1)

�1
eM (V -filtration relative to x1), so that eM/ eMx1 = gr

V
(1)

�1
eM

and eN1 := ( eM/ eMx1)[
e@x1

] '  x1,1
eM(�1), according to Exercise 9.31. Similarly, eN12 '

 x1,1
 x2,1

eM(�2). The map

(9.9.8) mk1,k2
⌦ e@k1

x1

e@k2

x2
7�! (mk1,k2

⌦ 1)e@k1

x1

e@k2

x2
· e@tt

sends eM·(x1, x2)[
e@x1

, e@x1
] to U�2

eN(�1), according to (9.9.4) and defines thus a sur-
jective morphism

 x1,1
 x2,1

eM(�2) = eN12 �! gr
M

�1
gr

U

�1
eN(�1).

Let us prove that it is also injective. Let us denote by [mk1,k2
] the class of mk1,k2

in
eM/ eM·(x1, x2). Let

P
[mk1,k2

]⌦ e@k1

x1

e@k2

x2
be nonzero and of degree equal to p and set

⌫ =

X

k1+k26p

(mk1,k2
⌦ 1)e@k1

x1

e@k2

x2
.
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Assume that ⌫e@tt 2 U�2
eN, hence, by the injectivity of t, ⌫e@t 2 U�1

eN. The proof
of (9.9.7) above shows that, for k1 + k2 = p, there exists µk1,k2

2 eM·(x1, x2) such
that

P
k1+k2=p

(mk1,k2
� µk1,k2

)x
k1

2
x
k2

1
= 0, and by Exercise 9.37 we conclude that

mk1,k2
2 eM·(x1, x2), so [mk1,k2

] = 0, a contradiction.
As a consequence, if ⌫e@tt =

P
(mk1,k2

⌦ 1)e@k1

x1

e@k2

x2

e@tt belongs to U�2
eN = U�1

eN · t,
(9.9.7) implies ⌫ 2

P
( eM·(x1, x2)⌦ 1)e@k1

x1

e@k2

x2
. We obtain therefore

(9.9.9) gr
M

1
gr

U

�1
eN N��!⇠ gr

M

�1
gr

U

�1
eN(�1) '  x1,1

 x2,1
eM(�2),

and these modules are strict. Note that the isomorphism eN12

⇠�! gr
M

1
gr

U

�1
eN =

U�1
eN/(e@tt)�1

U�1
eM) is induced by

(9.9.10) mk1,k2
⌦ e@k1

x1

e@k2

x2
7�! (mk1,k2

⌦ 1)e@k1

x1

e@k2

x2
.

Let us now consider M0. Note that (9.9.7) and the injectivity of t imply

M0gr
U

�1
eN =

X

k1,k2

( eM·(x1, x2)⌦ 1)e@k1

x1

e@k2

x2
mod U�2

eN,

and clearly
P

k1,k2
( eMx1x2 ⌦ 1)e@k1

x1

e@k2

x2
⇢ U�2

eN. Note also that (mx1 ⌦ 1)e@k1

x1
⌘

(me@k1

x1
x1)⌦ 1 mod Im e@tt, according to (9.9.5). As a consequence,

M0gr
U

�1
eN =

X

k1

( eMx2 ⌦ 1)e@k1

x1
+

X

k2

( eMx1 ⌦ 1)e@k2

x2
mod (U�1

eNe@tt+ U�2
eN),

and we have a surjective morphism

(9.9.11)  x1,1
eM(�1)�  x2,1

eM(�1) = eN1 � eN2 �! gr
M

0
gr

U

�1
eN,

sending mk1,0
⌦ e@k1

x1
to (mk1,0

x2⌦1)e@k1

x1
and m0,k2

⌦ e@k2

x2
to (m0,k2

x1⌦1)e@k2

x2
. In order

to show injectivity, we first check that it is strict with respect to the filtration G•
eN

and the filtration by the degree in e@x1
, e@x2

on eN1,
eN2.

Assume that (mk1,0
x2 ⌦ 1)e@k1

x1
+ (m0,k2

x1 ⌦ 1)e@k2

x2
2 Gp�1

eN for k1, k2 6 p. Then
we find that mp,0 2 eMx1 and m0,p

eMx2, as wanted. By the same argument we deduce
the injectivity.

Due to the strictness of eN1,
eN2,

eN12, we conclude at this point that grU�1
eM is strict.

If we show that gr
U

k
eN is also strict for any k, then U•eN satisfies all properties char-

acterizing the V -filtration. As a consequence, eM is strictly R-specializable along (g),
gr

U

�1
eN =  g,1

eM(�1), and (9.9.3 ⇤) holds.
Clearly, e@t : gr

U

�1
eN ! gr

U

0
eN is onto. So we are left with proving the following

assertions:
(i) t

k
: gr

U

�1
eN! gr

U

�1�k
eN is an isomorphism (equivalently, injective) for k > 1,

(ii) t : gr
U

0
eN! gr

U

�1
eN is injective (so gr

U

0
eN is strict),

(iii) e@k
t
: gr

U

0
eN! gr

U

k
eN is an isomorphism (equivalently, injective) for k > 1.

Proof of the assertions.
(i) If ⌫ 2 U�1

eN satisfies ⌫tk = µt
k+1 for some µ 2 U�1

eN then, by injectivity of t
on U�1

eN, ⌫ = µt, so ⌫ 2 U�2
eN.

(ii) If ⌫ 2 U�1
eN is such that ⌫e@t · t 2 U�2

eN, then there exists µ 2 U�1
eN such that

(⌫e@t � µ)t = 0 hence, by t-injectivity, ⌫e@t 2 U�1
eN.
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(iii) We prove the injectivity by induction on k > 1. Let ⌫ 2 U�1
eM and consider

⌫e@t mod U�1
eN as an element of gr

U

0
eN. If (⌫e@t)e@kt 2 Uk�1

eN, then (⌫e@k
t
)e@tt = 0 in

gr
U

k�1
eN. Since e@tt� kz is nilpotent on gr

U

k�1
eN and since gr

U

k�1
eN is strict (by (ii) and

the induction hypothesis), e@tt is injective on gr
U

k�1
eN, so (⌫e@t)e@k�1

t
= 0 in gr

U

k�1
eN,

and by induction ⌫e@t = 0 in gr
U

0
eN.

This concludes the proof of Proposition 9.9.3.

9.9.c. Nearby cycles along a monomial function of a smooth eD-module

We consider a situation similar to that of the previous example, where we increase
the number of active variables but we simplify the eDX -module. We will work in the
left setting, which is more natural in this context.

Let eM be a smooth eDX -module (see Definition 8.8.22). The purpose of this section
is to compute the nearby cycles of eM with respect to a function g which takes the
form g(x1, . . . , xn) = x1 · · ·xr for some local coordinates x1, . . . , xn on X and for some
r > 1. The goal is to show that, first, eM is strictly R-specializable along (g) = D, and
to compute the primitive parts in terms of the restriction of eM to various coordinate
planes.

The computation is local on X. Thus X denotes a neighbourhood of the origin
in C

n with coordinates (x1, . . . , xr, y), y = (xr+1, . . . , xn), and D is the divisor (g) in
this neighbourhood.

We set eO = eOX,0. For a (possibly empty) subset I ⇢ {1, . . . , r}, we denote by
J = I

c its complementary subset, by eOI the ring C{(xi)i2I , y}[z] and by ◆I the
inclusion {xj = 0, 8 j 2 J} ,! X. In particular, the ring eO? contains no variables
x1, . . . , xr. For ` 6 r, let us denote by J`+1 the set of subsets J ⇢ {1, . . . , r} having
cardinal equal to `+ 1.

9.9.12. Proposition. Under these assumptions
(1) eM is strictly R-specializable and a middle extension along (g);
(2) The morphisms N, can, var are strict;
(3) for � 2 S

1, we have  g,�
eM = 0 unless � = 1 and, for any ` > 0, there is a

functorial isomorphism

(9.9.12 ⇤) P` g,1(
eM)

⇠�!
L

J2J`+1

D◆I⇤(D◆
⇤
I
eM)(�`) (I = J

c
),

where P` g,1
eM denotes the primitive part of grM

`
 g,1

eM.

9.9.13. Remarks.
(1) According to Proposition 9.4.10, (3) implies that N

` is strict for any ` > 1.
(2) Since �g,1 eM = ImN after (1), we have a similar formula for P`�g,1(

eM), accord-
ing to Lemma 3.3.13.

Proof when eM = eO. Let us set (see Example 8.7.7(2))

eN = D◆g⇤eO(�1) = ◆⇤eO[e@t],
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where ◆g : X ,! X ⇥ Ct is the graph inclusion of g. Once we know that eN is strictly
R-specializable along (t), we have  g,1

eO = gr
0

V
eN(1).

We set yj = xr+j for j = 1, . . . , n� r. If e� denotes the eD-generator 1 of eN, we have
the following relations:

(9.9.14) te� = g(x)e�, xi
e@xi

e� = �(te@t + z)e�, e@yj

e� = 0, t

⇣ rY

i=1

e@xi

⌘
e� = (�te@t)re�.

If we set U
0eN = (V0

eD) · e� and, for k > 1,

U
k eN = t

k
U

0eN = (V0
eD) · tke�, U

�k eN = (Vk
eD) · U0eN = (Vk

eD) · e�,

this shows that the coherent V -filtration U
•eN satisfies the R-specializability property:

b(�te@t + kz)U
k eN ⇢ U

k+1eN with b(s) = s
r
.

Each gr
k

U
eN is thus equipped with a nilpotent operator N satisfying N

r
= 0, and with

monodromy filtration M•gr
k

U
eN.

Claim. gr
M

`
gr

k

U
eN is strict for any k, `.

As a consequence of this claim, we obtain that gr
k

U
eN is strict for any k, hence

U
•eN is the order filtration V

•eN, which is indexed by Z, according to Lemma 9.3.16.
Moreover, Properties 9.3.18(2) and (3) are obviously satisfied, due the definition of
U

•eN, so eN is strictly R-specializable along (t). Also by construction, the morphism
can is onto.

It will be convenient to work within the localized module eO(⇤D) := eO[1/g] and its
direct image eN(⇤D) = D◆g⇤eO(⇤D) = eN[1/g], so that we can invert the variables xi for
i = 1, . . . , r. In such a way, we highlight and make simple the action of �te@t, while
the action of other operators are less obvious. We consider eN as a sub eD-module
of eN(⇤D).

9.9.15. Lemma. eN(⇤D) is a free rank 1 module over eO(⇤D)[te@t] with generator e�.

Proof. We have e@j
t
e� = x

�j1
(e@j

t
t
j
)e�, showing that eN(⇤D) =

L
j
eO(⇤D)(e@j

t
t
j
)e�, hence

also eN(⇤D) =
L

j
eO(⇤D)(te@t)je�.

In order to prove the claim, it is necessary to have a canonical expression of local
sections of Uk eN modulo U

k+1eN. For that purpose, we introduce a family of polyno-
mials of one variable s indexed by an integer k and a multi-index a 2 Z

r. For k 2 Z

we set

qa,k(s) =

rY

i=1

Y

`2(�k,ai]

(s� `z),

where the index ` a priori runs in Z and we take the convention that the product
indexed by the empty set is 1. For a 2 Z

r and k 2 Z, we set

Jk(a) = {i 2 {1, . . . , r} | ai > �k}, xJk(a) = (xi)i2Jk(a).



360 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

The following relations are easily checked:

qa,k+1(s) = (s+ kz)
#Jk(a)qa,k(s)

qa�1,k+1(s� z) = qa,k(s)

qa,k(s) = qa�1i,k
(s) ·

(
1 if i /2 Jk(a� 1i),

(s� aiz) if i 2 Jk(a� 1i).

We also set

Qa,k(s) =

(
qa,k(s) if k > 0,

qa,k(s) ·
Q

j2[k,0)
(s+ jz)

min(1,#Jj(a)) if k 6 �1,
that is, for k 6 �1, Qa,k(s) is the gcd of the polynomials qa,k(s) ·

Q
j2[`,0)

(s + jz)

for ` varying in [k, 0), and

⌫k(a) =

8
>><

>>:

#Jk(a) if k > 0,

#Jk(a)�min(1,#Jk(a)) =

(
#Jk(a)� 1 if #Jk(a) > 1,

0 if #Jk(a) = 0,

if k 6 �1.

(so that ⌫k(a) 6 r 6 n). We have the relation

(9.9.16) Qa,k+1(s) = ?(s+ kz)
⌫k(a)Qa,k(s).

Let us also notice that

(9.9.17) Qa,k(s) is a multiple of Qa�1i,k
(s) 8 i 2 {1, . . . , r}, 8 k 2 Z.

Indeed, this is clear for qa,k, hence if k > 0. On the other hand, we have Jk(a�1i) ⇢
Jk(a), so min(1,#Jj(a � 1i)) 6 min(1,#Jj(a)) and the assertion also holds for
k > �1.

9.9.18. Lemma. For k 2 Z, the filtration U
•eN has the following expression:

U
k eN =

X

a2Zr

eO[te@t]x�a
Qa,k(�te@t)e�.

Proof. Let us start with U
0eN. Let us rewrite a section P (x, e@x, t, te@t) · e� of U

0eN.
The differential operator P 2 V0(

eD) can be written as a sum of monomials of the
form (te@t)q e@axh(x, t) with h holomorphic in its variables. Since h(x, t)e� = h(x, g(x))e�,
we can simply consider (by using commutation relations) monomials of the form
(te@t)qh(x)e@ax . Moreover, since e@yj

e� = 0, we can assume that a 2 N
r. Using now the

relation xi
e@xi

e� = �(te@t + z)e�, we write

e@a
x
e� = x

�a
rY

i=1

aiY

`=1

(�te@t � `z) · e� = x
�a

Qa,0(�te@t) · e�.

At this point, we have obtained

U
0eN =

X

a2Nr

eOhte@tix�a
Qa,0(�te@t)e�.
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We note that, if ai 6 0 for some i 2 {1, . . . , r}, then Qa�1i,0
(s) = Qa,0(s), and thus

x
�(a�1i)Qa�1i,0

(�te@t) = xix
�a

Qa,0(�te@t) 2 eOx�a
Qa,0(�te@t).

Therefore, the above expression of U0eN is equal to that in the statement. For k > 0,
we write

U
k eN = t

k
X

a2Zr

eOhte@tix�a
Qa,0(�te@t)e� =

X

a2Zr

eOhte@tix�a
Qa,0(�te@t + kz)t

ke�

=

X

a2Zr

eOhte@tix�a+k1
Qa,0(�te@t + kz)e� =

X

a2Zr

eOhte@tix�a
Qa,k(�te@t)e�.

Let us now consider U
�k eN for k > 1. We write

e@k
t
x
�a

Qa,0(�te@t)e� = x
�a

Qa,0(�te@t � kz)e@k
t
e�

= (�1)kx�(a+k1)
Qa,0(�te@t � kz)

kY

j=1

(�te@t � jz)e�,

and we note that Qa,0(s� kz) = qa,0(s� kz) = qa+k1,�k(s). One obtains the desired
assertion by induction on k.

The algebraic case. We consider a similar setting as above with the simplification
that the variables x1, . . . , xr are polynomial variables. Namely, we now set eO =

eO?[x1, . . . , xp] and we keep the notation for the corresponding objects eD, eN, U
•eN.

We will prove Proposition 9.9.12 in this setting. The above results can be expressed
in a more precise way.

9.9.19. Lemma. For every k 2 Z, Uk eN can be decomposed as

(9.9.20) U
k eN =

L
a2Zr

eO?[te@t] · x�a
Qa,k(�te@t)e�.

Proof. Recall that eO[te@t] =
L

a2Zr
eO?[te@t] ·x�a. The lemma characterizes an element

of Uk eN through the possible coefficients of x�ae� with respect to such a decomposition.
We start from the expression of Lemma 9.9.18 and we argue by induction on

a. It suffices to consider a term xix
�a

Qa,k(�te@t)e�, i 2 {1, . . . , r}. Since Qa,k is a
multiple of Qa�1i,k

in eC[e@t] (see (9.9.17)), xix
�a

Qa,k is a multiple of x�(a�1i)Qa�1i,k
.

From (9.9.16) we deduce that, as an eO?[te@t]-module, Uk eN/U
k+1eN admits a sim-

ilar direct sum decomposition, for which the coefficient of x
�a

Qa,k
e� can vary in

the quotient module eO?[te@t]/(�te@t + kz)
⌫k(a). In particular, it is strict, and N,

which is induced by the action of (�te@t + kz), is a strict morphism. The elements
x
�a

Qa,k · (�te@t + kz)
`e� (0 6 ` 6 ⌫k(a)� 1) lift a eO?-basis of this component and N

has only one Jordan block of size ⌫k(a) on this component.



362 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

We can now denote the filtration U
•eN by V

•eN. Since N has only one Jordan block
of size ` > 0 on each term such that ⌫k(a) = `+1, we deduce that, as an eO?-module,

P`gr
k

V
eN '

L
a2Zr

⌫k(a)=`+1

eO? · x�a
.

Let us now focus on gr
0

V
eN =  g,1

eO and gr
�1

V
eN = �g,1

eO(1). We have already seen
that e@t : gr0V eN ! gr

�1

V
eN(1) is onto. Let us check that t : gr

�1

V
eN ! gr

0

V
is injective

and strict. Let us fix a 2 Z
r. The corresponding component of gr

�1

V
eN is nonzero

only if ⌫�1(a) > 1, that is, #J�1(a) > 2. We note that J�1(a) = J0(a � 1). A lift
x
�a

Qa,�1(�e@tt)(�e@tt)`e� (0 6 ` 6 ⌫�1(a)� 1) of a basis element of gr�1

V
eN is sent by

t to
x
�(a�1)

Qa,�1(�te@t)(�te@t)`e� = x
�(a�1)

Qa�1,0(�te@t)(�te@t)`+1e�
since Qa,�1(s) = Qa�1,0(s) · smin(1,#J0(a�1))

= sQa�1,0(s). We now note that
⌫0(a� 1) = ⌫�1(a) + 1, so `+1 6 ⌫0(a�1) and the image in gr

0

V
eN is a basis element.

The cokernel of t on this component is identified with eO?x�(a�1)
Qa�1,0(�te@t)e�,

hence is strict. One similarly checks that N is strict on gr
0

V
eN and gr

�1

V
eN, and

e@t : gr
0

V
eN ! gr

�1

V
eN is obviously strict, being onto. At this point, we have proved

all the statements of Proposition 9.9.12 except the second part of (3) that we now
consider.

We wish to identify P`gr
0

V
eN as a eD-module. We have the decomposition as an

eO?-module:
P`gr

0

V
eN =

L
J⇢{1,...,r}
#J=`+1

L
a

J0(a)=J

(P`gr
0

V
eN)a,

and if #J0(a) = `+1, the image of eO?x�a
Qa,0(�te@t) by the projection V

0eN! gr
0

V
eN

is contained in M`gr
0

V
eN and the morphism eO?x�a

Qa,0(�te@t) ! gr
M

`
gr

0

V
eN induces

an isomorphism onto (P`gr
0

V
eN)a. It is now convenient to go back to the original

expression of the elements of eN.
Recall that, for J = J0(a), x

�aJ

J
QaJ ,0

(�te@t)e� is nothing but e@aJ

xJ

e�. For J ⇢
{1, . . . , r}, we denote by I = J

c its complement. We conclude that
•
L

J|#J=`+1
x
1I

I
eOI [

e@xJ
]e� is contained in M`V

0eN,
• and maps eO?-linearly isomorphically onto P`gr

0

V
eN.

Let us denote by ◆I the inclusion {xj = 0 | j 2 J} ,! X.

9.9.21. Lemma. The eO?-linear isomorphism defined as the composition
L

#J=`+1

D◆I⇤eOI(�(`+ 1)) =
L

#J=`+1

eOI [
e@xJ

]e�J
⇠�!

L
#J=`+1

x
1I

I
eOI [

e@xJ
]e� ⇠�! P`gr

0

V
eN

sending e�J to the class of x1I

I
e� is a eD-linear isomorphism.

The shift �(`+1) comes from the definition of the pushforward of left eD-modules
by a closed embedding (see Exercise 8.46(2)). Since P` g,1

eO = P`gr
0

V
eN(1), this ends

the proof of Proposition 9.9.12 for eO in the algebraic case.
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Proof of the lemma. We are left with proving eD-linearity. This amounts to proving
that xjx

1I

I
e� and e@xi

x
1Ie� have image zero in gr

M

`
gr

0

V
eN. This follows from the previous

computations with the polynomials Qa,0. For example, the set J
0 associated with

xjx
1i

I
e� satisfies #J

0
= `, so this element is mapped to M`�1gr

0

V
eN.

Analytic case for eO. Le us denote by eOalg the ring denoted by eO above, and eOan the
analytic version considered in the proposition. We have similarly eNan

= eOan⌦eOalg
eNalg.

By flatness of eOan over eOalg, the filtration defined by eOan ⌦eOalg V
•eNalg satisfies all

the properties necessary for eNan to be strictly R-specializable along (t). Moreover,
gr

k

V
eNan is obtained in the same way from gr

k

V
eNalg, and similarly for P`gr

0

V
eNan. Also,

Lemma 9.9.21 holds in this analytic setting. We conclude Proposition 9.9.12 holds
for eNan if it holds for eNalg.

Proof for any smooth eDX -module . If now eM is any smooth eDX -module, we note that
eMg = eM⌦eOX

eN with its usual twisted structure of eDX -module, and that the action of
t resp. e@t comes from that on eN. As eM is assumed to be eOX -locally free, the filtration
of eMg defined by V↵(

eMg) =
eM ⌦eOX

V↵(
eN) satisfies all properties of the Malgrange-

Kashiwara filtration. Notice also that Lemma 9.9.21 holds if we replace D◆⇤eOI with
D◆⇤(D◆

⇤ eM). It is then easy to deduce all assertions of the proposition for eM from the
corresponding statement for eN.

9.10. Exercises

Exercise 9.1 (V0
eDX -modules). Let H be a smooth hypersurface of X.

(1) Denote by e⌦1

X
(logH) (sheaf of logarithmic 1-forms along H) the eOX -dual of

e⇥X(� logH). Express a local section of e⌦1

X
(logH) in local coordinates.

(2) Show that ^n(e⌦1

X
(logH)) = e!X(H) := e!X ⌦eOX

eOX(H).
(3) Show that e!X(H) is a right V0

eDX -module.
(4) Define the side-changing functors for V0

eDX -modules by means of e!X(H).
(5) Define the logarithmic de Rham complex and the logarithmic Spencer complex

for a left resp. right V0
eDX -module in a way similar to that of Section 8.4 by means

of logarithmic forms and vector fields.
(6) Show that Sp(V0

eDX) is a resolution of eOX as a left V0
eDX -module and

p

DR(V0
eDX) is a resolution of e!X(H) as a right V0

eDX -module. [Hint : Argue as in
Exercises 8.21 and 8.22.]

(7) Show the analogues of Exercises 8.31, 8.24 and 8.26.

Exercise 9.2 (The Spencer complex of eDX regarded as a right V0
eDX -module)

Let H be a smooth hypersurface of X. We regard eDX as a right V0
eDX -module and

consider the corresponding Spencer complex Sp(eDX ;V0
eDX) := eDX⌦V0

eDX

Sp(V0
eDX).

(1) Choose local coordinates (t, x2, . . . , xn) such that H = {t = 0} and let
⌧, ⇠2, . . . , ⇠n be the corresponding logarithmic vector fields. Show that (⇠2, . . . , ⇠n, t⌧)
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is a regular sequence on the ring eOX [⌧, ⇠2, . . . , ⇠n] and deduce that the corresponding
Koszul complex is a resolution of eOX [⌧ ]/(t⌧).

(2) Arguing as in Exercise 8.21, show that Sp(eDX ;V0
eDX) is a resolution of

eDX/eDX · e⇥X(� logH) by locally free left eDX -modules.
(3) Identify locally eDX/eDX · e⇥X(� logH) with eOXhe@ti/(eOXhe@ti · te@t).
(4) Let eN be a right V0

eDX -module. Show that, if t : eN ! eN is injective, then
eN ⌦eOX

Sp(eDX ;V0
eDX) is a resolution of eN ⌦eOX

(eDX/eDX · e⇥X(� logH)) as a right
V0

eDX -module, by using the tens right V0
eDX -module structures. [Hint : Use that

the terms of Sp(eDX ;V0
eDX) are left eDX -locally free, hence eOX -locally free to con-

clude that eN⌦eOX

Sp(eDX ;V0
eDX) ' eN⌦L

eOX

(eDX/eDX · e⇥X(� logH)); express locally
eN ⌦L

eOX

(eDX/eDX · e⇥X(� logH)) as the complex

eN ⌦eOX

eOXhe@ti
· te@t�����! eN ⌦eOX

eOXhe@ti

and check that the differential is injective.]
(5) Conclude that, under the previous assumption on eN, we have

H
i
(eN ⌦eOX

Sp(eDX ;V0
eDX)) = 0 for i 6= 0.

Exercise 9.3 (The V -filtration of eDX ). Show the following properties.
(1) Let us fix a local decomposition X ' H⇥�t (where �t ⇢ C is a disc with

coordinate t). With respect to this decomposition we have

V0
eDX = eOXhe@x, te@ti, V�j

eDX =

(
t
j · V0

eDX ,

V0
eDX · tj ,

Vj
eDX =

8
>>>><

>>>>:

jX

k=0

e@k
t
· V0

eDX ,

jX

k=0

V0
eDX · e@k

t
,

(j > 0)

(2) For every k, Vk
eDX is a locally free V0

eDX -module.
(3) eDX =

S
k
Vk

eDX (the filtration is exhaustive).
(4) Vk

eDX · V`
eDX ⇢ Vk+`

eDX with equality for k, ` 6 0 or k, ` > 0.
(5) V0

eDX is a sheaf of subalgebras of eDX .
(6) Vk

eDX |XrH = eDX |XrH for all k 2 Z.
(7) gr

V

k
eDX is supported on H for all k 2 Z,

(8) The induced filtration Vk
eDX \ eOX = eI�k

H
eOX is the eIH -adic filtration of eOX

made increasing.
(9)

�T
k
Vk

eDX

�
|H = {0}.

Exercise 9.4 (Euler vector field).
(1) Show that the class E of te@t in gr

V

0
eDX in some local product decomposition as

above does not depend on the choice of such a local product decomposition. [Hint :
see [MM04, Lem. 4.1-12].]

(2) Show that V0
eDX acts on eOH = eOX/eIH and with respect to this action that

V<0
eDX acts by 0, so that gr

V

0
eDX acts on eOH , and that E acts by 0. Conclude that
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there exists a morphism gr
V

0
eDX/Egr

V

0
eDX ! eDH and check by a local computation

that it is an isomorphism.
(3) Show that if H has a global equation g, then gr

V

0
eDX ' eDH [E].

(4) Conclude that gr
V

0
eDX is a sheaf of rings and that E belongs to its center.

Exercise 9.5 (Euler vector field, continued).
(1) Show the identification (which forgets the grading) between gr

V eDX and
eD[NHX]. [Hint : see [MM04, Lem. 4.1-12].]

(2) Let M be a monodromic D[NHX]-module, i.e., a D[NHX]-module for which the
action of E has a minimal polynomial with coefficients in C. Show that M has a finite
filtration by DH -submodules. [Hint : Reduce first to the case where the minimal
polynomial has only one root ↵; in this case, filter M so that E�↵ Id vanishes on
each graded piece; identify then gr

V

0
DX/(E�↵)grV

0
DX with DH .]

Exercise 9.6. Show the equivalence between the category of eOX -modules with inte-
grable logarithmic connection er : eM ! e⌦1

X
(logH) ⌦ eM and the category of left

V0
eDX -modules. Show that the residue Res er corresponds to the induced action of E

on eM/eIH eM.

Exercise 9.7 (The Rees sheaf of rings RV
eDX ). Introduce the Rees sheaf of rings

RV
eDX :=

L
k
Vk

eDX · vk ⇢ eDX [v, v
�1

] associated to the filtered sheaf (eDX , V•
eDX)

(see Section 5.1.3), and similarly RV
eOX =

L
k
Vk

eOX · vk ⇢ eOX [v, v
�1

], which is the
Rees ring associated to the eIH -adic filtration of eOX .

(1) Show that RV
eOX = eOX [v, tv

�1
], where t = 0 is a local equation of H. Identify

this sheaf of rings with eOX [v, w]/(t � vw) and show that, as an eOX -module, it is
isomorphic to eOX [v]� weOX [w]. Conclude that RV

eOX is eOX -flat.
(2) Show that RV

eDX = eOX [v, tv
�1

]hve@t, e@x2
, . . . , e@xn

i.
(3) Conclude that RV

eDX is locally free over RV
eOX and is eOX -flat.

Exercise 9.8 (Coherence of RV
eDX ). We consider the Rees sheaf of rings RV

eDX :=L
k
Vk

eDX · vk as in Exercise 9.7. The aim of this exercise is to show the coherence of
the sheaf of rings RV

eDX . Since the problem is local, we can assume that there are
coordinates (t, x2, . . . , xn) such that H = {t = 0}.

(1) Let K be a compact polycylinder in X. Show that RV
eOX(K) = RV (

eOX(K))

is Noetherian, being the Rees ring of the eIH -adic filtration on the ring eOX(K) (which
is Noetherian, by a theorem of Frisch). Similarly, as eOX,x is flat on eOX(K) for every
x 2 K, show that the ring (RV

eOX)x = RV
eOX(K)⌦eOX(K)

eOX,x is flat on RV
eOX(K).

(2) Show that RV
eOX is coherent on X by following the strategy developed in

[GM93]. [Hint : Let e⌦ be any open set in X and let ' : (RV
eOX)

q

|e⌦
! (RV

eOX)
p

|e⌦

be any morphism. Let K be a polycylinder contained in e⌦. Show that Ker'(K)

is finitely generated over RV
eOX(K) and, if K

� is the interior of K, show that
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Ker'|K� = Ker'(K)⌦
RV

eOX(K)
(RV

eOX)|K� . Conclude that Ker'|K� is finitely gen-
erated, whence the coherence of RV

eOX .]
(3) Consider the sheaf eOX [⌧, ⇠2, . . . , ⇠n] equipped with the V -filtration for which ⌧

has degree 1, the variables ⇠2, . . . , ⇠n have degree 0, and inducing the V -filtra-
tion (i.e., t-adic in the reverse order) on eOX . First, forgetting ⌧ , Show that
RV (

eOX [⇠2, . . . , ⇠n]) = (RV
eOX)[⇠2, . . . , ⇠n]. Secondly, using Vk(

eOX [⌧, ⇠2, . . . , ⇠n]) =P
j>0

Vk�j(
eOX [⇠2, . . . , ⇠n])⌧

j for every k 2 Z, show that we have a surjective
morphism

RV
eOX [⇠2, . . . , ⇠n]⌦eC

eC[⌧ 0] �! RV (
eOX [⌧, ⇠2, . . . , ⇠n])

V`
eOX [⇠2, . . . , ⇠n]q

`
⌧
0j 7�! V`

eOX [⇠2, . . . , ⇠n]⌧
j
q
`+j

.

If K ⇢ X is any polycylinder show that RV (
eOX [⌧, ⇠2, . . . , ⇠n])(K) is Noetherian, by

using that
�
RV

eOX(K)
�
[⌧

0
, ⇠2, . . . , ⇠n] is Noetherian.

(4) As RV
eDX can be filtered (by the degree of the operators) in such a way that,

locally on X, grRV
eDX is isomorphic to RV (

eOX [⌧, ⇠2, . . . , ⇠n]), conclude that, if K is
any sufficiently small polycylinder, then RV

eDX(K) is Noetherian.
(5) Use now arguments similar to that of [GM93] to concludes that RV

eDX is
coherent.

(6) Show similarly that RV
eDX is Noetherian in the sense of Remark 8.8.3.

Exercise 9.9 (Characterization of coherent V -filtrations indexed by Z)
Let eM be a coherent eDX -module. Show that the following properties are equiva-

lent for a V -filtration U•
eM indexed by Z.

(1) U•
eM is a coherent filtration.

(2) The Rees module RU
eM :=

L
`
U`

eMv
` is RV

eDX -coherent.
(3) For every x 2 X, replacing X with a small neighbourhood of x, there exist

integers �j=1,...,q, µi=1,...,p, ki=1,...,p and a presentation (recall that [•] means a shift of
the grading)

qL
j=1

eDX [�j ] �!
pL

i=1

eDX [µi] �! eM �! 0

such that U`
eM = image(

L
p

i=1
Vki+`

eDX [µi]).

Note that, as for eIH -adic filtrations on coherent eOX -modules, it is not enough to check
the coherence of gr

U
eM as a gr

V eDX -module in order to deduce that U•
eM is a coherent

V -filtration.

Exercise 9.10 (From coherent RV
eDX -modules to eDX -modules with a coherent V -filtra-

tion indexed by Z)
(1) Show that a graded RV

eDX -module M can be written as RU
eM for some

V -filtration on some eDX -module eM if and only if it has no v-torsion.
(2) Show that, if M is a graded coherent RV

eDX -module, then its v-torsion is a
graded coherent RV

eDX -module.
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(3) Conclude that, for any graded coherent RV
eDX -module M, there exists a

unique coherent eDX -module and a unique coherent V -filtration U• eM such that
M/v-torsion = RU

eM.

Exercise 9.11 (Some basic properties of coherent V -filtrations indexed by R)
We consider coherent V -filtrations indexed by A+Z for some finite set A ⇢ (�1, 0]

as in Definition 9.3.3.
(1) Show that the filtration naturally induced by a coherent V -filtration on a cohe-

rent eDX -module on a coherent sub or quotient eDX -modules is a coherent V -filtration.
[Hint : Consider first each Z-indexed V -filtration U↵+•

eM. For the case of a submod-
ule, use the characterization of Exercise 9.9(2) and the classical Artin-Rees lemma,
as in Corollary 8.8.8. This proof shows the interest of considering RU

eM. End by
proving that (9.3.4) holds for the induced filtrations.]

(2) Deduce that, locally on X and for each ↵ 2 A, there exist integers �j=1,...,q,
`j=1,...,q, µi=1,...,p, ki=1,...,p and a presentation

L
q

j=1
eDX [�j ]!

L
p

i=1
eDX [µi]! eM!

0 inducing for every ` a presentation
qL

j=1

V`j+`
eDX [�j ] �!

pL
i=1

Vki+`
eDX [µi] �! U↵+`

eM �! 0.

(3) Show that two coherent V -filtrations U•
eM and U

0
•
eM are locally comparable,

that is, locally on X there exists ↵o 2 R+ such that, for every ↵ 2 R,

U↵�↵o

eM ⇢ U
0
↵
eM ⇢ U↵+↵o

eM.

[Hint : Reduce to the case of Z-indexed V -filtrations and use (2).]
(4) If U•

eM is a coherent V -filtration, then for every ↵o 2 R, the filtration U•+↵o

eM
is also coherent.

(5) If U•
eM and U

0
•
eM are two coherent V -filtrations, then the filtration U

00
↵
eM :=

Uv
eM+ U

0
↵
eM is also coherent.

(6) Assume that H is defined by an equation t = 0. Prove that, locally on X,
there exists ↵o such that, for every ↵ 6 ↵o, t : U↵ ! U↵�1 is bijective. [Hint : Use
(2) above.]

Exercise 9.12. Let U be a coherent left V0
eDX -module and let eT be its t-torsion sub-

sheaf, i.e., the subsheaf of local sections locally killed by some power of t. Show
that, locally on X, there exists ` such that eT \ t

`U = 0. Adapt to the right case.
[Hint : Consider the t-adic filtration on V0

eDX , i.e., the filtration V�j
eDX with j > 0.

Show (e.g. in the left case) that the filtration t
jU is coherent with respect to it, and

locally there is a surjective morphism (V0
eDX)

n ! U which is strict with respect to
the V -filtration. Deduce that its kernel eK is coherent and comes equipped with the
induced V -filtration, which is coherent. Conclude that, locally on X, there exists
j0 > 0 such that Vj0�j

eK = t
j
V

j0 eK for every j > 0. Show that, for every j > 0 there
is locally an exact sequence (up to shifting the grading on each V•

eDX summand)

(V�j
eDX)

m �! (V�(j+j0)
eDX)

n �! t
(j+j0)U �! 0.
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As t : Vk
eDX ! Vk�1

eDX is bijective for k 6 0, conclude that t : t
j0U! t

j0+1U is so,
hence eT \ t

j0U = 0.]

Exercise 9.13. Show that a coherent eDX -module eM is specializable along H if and
only if one of the following properties holds:

(1) locally on X, some coherent V -filtration U•
eM (resp. U• eM, left case) has a weak

Bernstein polynomial, i.e., there exists a nonzero b(s) and a non-negative integer `
such that

(9.10.0 ⇤) 8 k 2 Z, gr
U

k
eM · z`b(E�kz) = 0, resp. z`b(E�kz)grk

U
eM = 0;

(2) locally on X, any coherent V -filtration U
• eM (resp. U•

eM) has a weak Bernstein
polynomial.
[Hint : In one direction, take the V -filtration generated by a finite number of local
generators of eM; in the other direction, use that two coherent filtrations are locally
comparable.]

Exercise 9.14. Assume that eM is (right) eDX -coherent and specializable along H.
(1) Fix `o 2 Z and set U

0
`
eM = U`+`o

eM. Show that bU 0(s) can be chosen as
bU (s� `oz).

(2) Set bU = b1b2 where b1 and b2 have no common root. Show that the filtra-
tion U

0
k
eM := Uk�1

eM+ b2(E�kz)Uk
eM is a coherent filtration and compute a polyno-

mial bU 0 in terms of b1, b2.
(3) Conclude that there exists locally a coherent filtration U•

eM for which bU (s) =Q
↵2A

(s� ↵z)⌫↵ and Re(A) ⇢ (�1, 0].
(4) Adapt the result to the left case.

Exercise 9.15. Assume that eM is an R-specializable coherent right eDX -module. Show
that, for m 2 eMxo

and P 2 Vk
eDX,xo

, we have

ordH,xo
(mP ) 6 ordH,xo

(m) + k.

[Hint : Use that [E, V�1
eDX ] ⇢ V0

eDX and that the coherent V -filtrations (mP · eDX)\
m · V•

eDX and mP · V•
eDX of mP · eDX are locally comparable.]

In the left case, show that

ordH,xo
(Pm) > ordH,xo

(m)� k.

Exercise 9.16 (R-specializability).
(1) In a short exact sequence 0 ! eM0 ! eM ! eM00 ! 0 of coherent eDX -modules,

show that eM is R-specializable along H if and only if eM0 and eM00 are so.
(2) Let ' : eM1 ! eM2 be a morphism between R-specializable modules along H.

Show that ' is compatible with the order filtrations along H. Conclude that, on the
full subcategory consisting of R-specializable eDX -modules of the category of eDX -mod-
ules (and morphisms consist of all morphisms of eDX -modules), grV

↵
is a functor to

the category of grV
0
eDX -modules.
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Exercise 9.17 (R-specializability for DX -modules).

(1) Show that, for an R-specializable DX -module M, the assumption of Lemma
9.3.16 is satisfied. [Hint : Choose a finite set of local sections generating M and con-
sider the V -filtration they generate.] Conclude that Properties (1)–(3) of Definition
9.3.18 are also satisfied.

(2) Show that any morphism between coherent R-specializable DX -modules is
strictly compatible with the V -filtrations and its kernel and cokernel are coherent
R-specializable DX -modules.

Exercise 9.18. Show that the notion of strict R-specializability does not depend on
the choice of a local decomposition X ' H⇥�t. [Hint : Use the formulas in [MM04,
Lem. 4.1-12].]

Exercise 9.19 (Strict R-specializability and Bernstein polynomials)
Assume that eM is strictly R-specializable along H and let m be a local section

of eM, with Bernstein polynomial bm. We have seen in the proof of Proposition 9.3.21
that m is a local section of V↵

eM if and only if the z-roots of bm are 6 ↵. Prove
that any z-root � of bm is such that gr

V

�
eM 6= 0. [Hint : Since eDX · m \ V•

eM is
a good V -filtration of eDX · m (see Exercise 9.11(1)), there exists N > 0 such that
eDX ·m\V↵�N

eM ⇢ V�1
eDX ·m; let ⌫(�) be the order of nilpotency of E�� on gr

V

�
eM;

show that the product
Q

�2(↵�N,↵]
(E��)⌫(�) sends m to V�1

eDX ·m and conclude.]

Exercise 9.20 (Strict R-specializability and exact sequences)
We consider an exact sequence 0! eM1 ! eM! eM2 ! 0 of coherent eDX -modules.

(1) Assume that eM is strictly R-specializable along H and that the exact sequence
splits, i.e., eM = eM1 � eM2. Show that eM1,

eM2 are strictly R-specializable along H.
[Hint : Show that the order filtration of eM splits, and deduce the V -coherence of the
summands.]

(2) If eM is strictly R-specializable along H, but the exact sequence does not split,
set

U↵
eM1 = V↵

eM \ eM1, U↵
eM2 = image(V↵

eM).

• Show that these V -filtrations are coherent (see Exercise 9.11(1)) and that,
for every ↵, the sequence

0 �! gr
U

↵
eM1 �! gr

V

↵
eM �! gr

U

↵
eM2 �! 0

is exact.
• Conclude that U•

eM1 satisfies the Bernstein property 9.3.16(1) and the
strictness property 9.3.16(2) (with index set R), and thus injectivity in 9.3.25(a)
and (d), but possibly not 9.3.18(2) and (3). Deduce that U↵

eM1 = V↵
eM1. [Hint :

Use the uniqueness property of Lemma 9.3.16.]
• If each gr

U

↵
eM2 is also strict, show that U↵

eM2 = V↵
eM2.

• If moreover one of both eM1,
eM2 is strictly R-specializable, show that so is

the other one.
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(3) Conclude that if eM and eM2 are strictly R-specializable, then so is eM1 and for
every ↵, the sequence

0 �! gr
V

↵
eM1 �! gr

V

↵
eM �! gr

V

↵
eM2 �! 0

is exact.

Exercise 9.21 (Strictness of submodules supported on the divisor H)
Assume that eM is strictly R-specializable along H and let eM1 be a coherent eDX -

submodule of eM supported on H. Show that eM1 is strict. [Hint : Use Exercise 9.20(2)
and show that V<0

eM1 = 0; from strictness of each gr
V

↵
eM1, deduce that each V↵

eM1 is
strict and conclude.]

Exercise 9.22 (Compatibility with Kashiwara’s equivalence)
Let ◆ : X ,! X1 be a closed inclusion of complex manifolds, and let H1 ⇢ X1

be a smooth hypersurface such that H := X \ H1 is a smooth hypersurface of X.
Show that a coherent eDX -module eM is strictly R-specializable along H if and only if
eM1 := D◆⇤ eM is so along H1, and we have, for every ↵,

(gr
V

↵
eM1,N) = (D◆⇤gr

V

↵
eM,N).

[Hint : Assume that X1 = H⇥�t⇥�x and X = H⇥�t⇥{0}, so that eM1 = ◆⇤ eM[e@x];
show that the filtration U↵

eM1 := ◆⇤V↵
eM[e@x] satisfies all the characteristic properties

of the V -filtration of eM1 along H1.]

Exercise 9.23 (Strict R-specializability and morphisms).
(1) Let ' : eM ! eN be an isomorphism between strictly R-specializable eDX -mod-

ules. Show that it is strictly compatible with the V -filtrations and for any ↵, grV
↵
' is

an isomorphism. [Hint : Use the uniqueness in Lemma 9.3.16.]
(2) Let ' : eM ! eN be any morphism between coherent eDX -modules which are

strictly R-specializable along H. Show that the order filtration on Im' is a coherent
V -filtration, and that Im' is strictly R-specializable if and only if so is Ker'. [Hint :
Apply Exercise 9.20(2).]

(3) Let ' : eM ! eN be a morphism between strictly R-specializable eDX -modules.
It induces a morphism gr

V

↵
' : gr

V

↵
eM! gr

V

↵
eN. Show that if grV

↵
' is a strict morphism

for every ↵, then Coker' is also strictly R-specializable and ' is strictly compatible
with V , so that the sequence

0 �! gr
V

↵
Ker' �! gr

V

↵
eM �! gr

V

↵
eN �! gr

V

↵
Coker' �! 0

is exact for every ↵.

Exercise 9.24 (Restriction to z = 1). Let eM be a coherent eDX -module. Assume that eM
is R-specializable along H.

(1) Show that for every ↵,

(z � 1) eM \ V↵
eM = (z � 1)V↵

eM.
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[Hint : Let m = (z�1)n be a local section of (z�1) eM\V↵
eM; then n is a local section

of V�
eM for some �; if � > ↵, show that the class of n in gr

V

�
eM is a annihilated by

z � 1; conclude with Exercise 5.2(1).]
(2) Conclude that M := eM/(z � 1) eM is R-specializable along H and that, for

every ↵,

V↵M = V↵
eM/(z � 1)V↵

eM = V↵
eM/

�
(z � 1) eM \ V↵

eM
�
,

gr
V

↵
M = gr

V

↵
eM/(z � 1)gr

V

↵
eM.

(3) Show that (V↵
eM)⌦eC[z]

eC[z, z�1
] = V↵M[z, z

�1
].

Exercise 9.25 (Side changing). Define the side changing functor for V0
eDX -modules

by replacing eDX with V0
eDX in Definition 8.2.2. Show that eMleft is R-specia-

lizable along H if and only if eMright is so and, for every � 2 R, V
�
( eMleft

) =⇥
V���1(

eMright
)
⇤left. [Hint : Use the local computation of Exercise 8.17.]

Exercise 9.26 (Indexing with Z or with R). The order filtration is naturally indexed
by R, while the notion of V -filtration considers filtrations indexed by Z. The purpose
of this exercise is to show how both notions match when the properties of Lemma
9.3.16 are satisfied. Let U•

eM be a filtration for which the properties of Lemma 9.3.16
are satisfied. Then we have seen that U•

eM coincides with the “integral part” of the
order filtration V•

eM. Show the following properties.

(1) The weak Bernstein equations (9.3.7 ⇤) and (9.10.0 ⇤) hold without any power
of z, i.e., for every k the operator E�kz has a minimal polynomial on Uk

eM/Uk�1
eM =

Vk
eM/Vk�1

eM which does not depend on k.
(2) The eigen module of E�kz on this quotient module corresponding to the eigen-

value ↵z isomorphic to gr
V

↵+k
eM and the corresponding nilpotent endomorphism is

(9.10.0 ⇤) N := (E�(k + ↵)z).

In particular, each gr
V

↵+k
eM is strict and we have a canonical identification

Vk
eM/Vk�1

eM =
L

�1<↵60

gr
V

↵+k
eM.

(3) For every ↵ 2 (�1, 0], identify V↵+k
eM with the pullback of

L
�1<↵06↵

gr
V

↵0+k
eM

by the projection Vk
eM ! Vk

eM/Vk�1
eM, and show that the shifted order filtration

indexed by integers V↵+•
eM is a coherent V -filtration.

(4) Conclude that there exists a finite set A ⇢ (�1, 0] such that the order filtration
is indexed by A+ Z, and is coherent as such (see Definition 9.3.3).

Exercise 9.27. Check that if 9.3.18(2) and 9.3.18(3) hold for some local decomposition
X ' H ⇥�t at xo 2 H, then they hold for any such decomposition.
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Exercise 9.28 (A criterion to recognize the V -filtration). Assume that eM is coherent
and R-specializable along H and let U•

eM be a good V -filtration indexed by A+Z for
some finite set A ⇢ (�1, 0]. Assume that U•

eM satisfies the following properties:
(1) gr

U

↵
eM is strict for any ↵ 6 0,

(2) same as 9.3.18(2),
(3) same as 9.3.18(3).

Argue as in the proof of Proposition 9.3.25 to deduce that t : gr
V

↵
eM ! gr

V

↵�1
eM is

an isomorphism for any ↵ < 0 and, inductively, that e@t : gr
V

↵
eM ! gr

V

↵+1
eM(�1) is

an isomorphism for any ↵ > �1. Conclude that gr
U

↵
eM is strict for any ↵, that eM is

strictly R-specializable along H, and that U•
eM is the V -filtration of eM.

Exercise 9.29 (Complement to 9.3.39). We keep the notation of 9.3.39. Show that
eM/V�2

eM can be identified, as a V0
eDX -module, to

L
�2(�2,�1]

gr
V

�
eM�

L
↵2(�1,0]

gr
V

↵
eM[s],

where the V0
eDX -module structure on the latter term is a little modified with respect

to that of
L

↵2(�1,0]
gr

V

↵
eM[s], namely:

• t acts by zero on
L

�2(�2,�1]
gr

V

�
eM,

• for ↵ 2 (�1, 0] and j = 0, m↵

0
· t = m

↵

0
t 2 gr

V

↵�1
eM (instead of 0),

• all the remaining actions are the same as in (3).

Exercise 9.30. Justify that  g,� and �g,1 are functors from the category of R-specia-
lizable right eDX -modules to the category of right eDX -modules supported on g

�1
(0).

[Hint : Use Exercise 9.16(2).]

Exercise 9.31. Assume that X = H ⇥ �t and let g denote the projection to �t, so
that ◆g is induced by the diagonal embedding �t ,! �t1

⇥ �t2
. Let eM be a right

eDX -module.
(1) Show that we have  g,�

eM ' D◆H⇤gr
V

↵
eM(1) and �g,1

eM = D◆H⇤gr
V

0
eM, where

◆H : H ,! X denotes the inclusion:
(a) Set u = (t1� t2)/2, v = (t1+ t2)/2 and eMg =

L
k
◆g⇤ eM⌦ e�ue@ku, and show

that the right action of u, e@u, v, e@v reads

(m⌦ e�ue@ku) · u = kzm⌦ e�ue@k�1

u
, (m⌦ e�ue@ku) · e@u = m⌦ e�ue@k+1

u
,

(m⌦ e�ue@ku) · v = mt⌦ e�ue@ku, (m⌦ e�ue@ku) · e@v = me@t ⌦ e�ue@ku.

(b) Using the relation e@t1 =
1

2

e@u +
1

2

e@v, show that eMg '
L

k
◆g⇤ eM ⌦ e�ue@kt1

with the obvious right action of e@t1 .
(c) With respect to the latter decomposition, show that

(m⌦ e�u)t2 = mt⌦ e�u, (m⌦ e�u)e@t2 = me@t ⌦ e�u �m⌦ e�ue@t1 .

(d) Show that the filtration U↵(
eMg) =

L
k
◆g⇤V↵

eM ⌦ e�ue@kt1 has a Bernstein
polynomial with respect to t2 and that gr

U

↵
( eMg) = D◆H⇤gr

V

↵
eM.

(e) Conclude.
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(2) Show that can = e@t2 and var = t2 for eMg are D◆g⇤(e@t) and D◆g⇤(t), with
e@t : grV�1

eM! gr
V

0
eM(�1) and t : gr

V

0
eM! gr

V

�1
eM.

Exercise 9.32 (Strict R-specializability and ramification). We take up the notation of
Section 9.9.a. Let q > 1 be an integer and let ⇢q : C ! C be the ramification
u 7! t = u

q. We set Xq = X0 ⇥ Cu and we still denote by ⇢q the induced map
Xq ! X. Since we will deal with pullbacks of eDX -modules, we will work in the left
setting. Let eM be a left eDX -module.

(1) Show that the pullback D⇢
⇤ eM (Definitions 8.6.3 and 8.6.6) can also be defined

as follows:
• as an eOXq

-module, we set D⇢
⇤
q
eM = ⇢

⇤
q
eM = eOXq

⌦
⇢
�1

q
eOX

⇢
�1

q
eM;

• for coordinates xi on X0, the action of e@xi
is the natural one, i.e., e@xi

(1⌦m) =

1⌦ e@xi
m;

• the action of e@u is defined, by a natural extension using Leibniz rule, from
e@u(1⌦m) = qu

q�1 ⌦ e@tm.

(2) Identify D⇢
⇤
q
eM with

L
q�1

k=0
u
k⌦ eM and make precise the eDXq

-module structure
on the right-hand term.

(3) Assume that eM is R-specializable along (t). Show that any local section of
D⇢

⇤
q
eM satisfies a weak Bernstein functional equation, by using that

u
k ⌦ te@tm =

1

q
(ue@u � kz)(u

k ⌦m).

(4) Assume that eM is strictly R-specializable along (t). Show that the filtration
defined by the formula

V
�

D⇢
⇤
q
eM =

q�1L
k=0

(u
k ⌦ V

(��k)/q eM),

satisfies all properties required for the Kashiwara-Malgrange filtration.
(5) Show that, for any µ 2 S

1,

 u,µ(D⇢
⇤
q
eM) '

L
�q=µ

 t,�
eM,

and, under this identification, the nilpotent endomorphism Nu corresponds to the
direct sum of the nilpotent endomorphisms qNt. Conclude that we have a similar
relation for the graded modules with respect to the monodromy filtration and the
corresponding primitive submodules.

Exercise 9.33. Show that both conditions in Definition 8.6.10 are indeed equivalent.
[Hint : Use the homogeneity property of Char eM.]

Exercise 9.34. With the assumptions of Theorem 8.6.11, show similarly that, if Y is
defined by x1 = · · · = xp = 0 then, considering the map x : X ! C

p induced by
x := (x1, . . . , xp), then eM is eDX/Cp -coherent.
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Exercise 9.35 (Middle extension property for holonomic DX -modules)
(1) Show that an R-specializable DX -module M, the property of being a middle

extension along (g) (i.e., can is onto and var is injective) is equivalent to the property
that M has no submodule not quotient module supported in {g = 0}. [Hint : Notice
that Property 9.3.18(1) is empty in Proposition 9.7.2(2).]

(2) Show that, if M is holonomic, this property is equivalent to the property that
both M and its dual DX -module have no submodules supported in {g = 0}.

(3) Show that if M is smooth (i.e., is a vector bundle with flat connection), then it
is a middle extension along any divisor (g). [Hint : Use that the dual module is also
smooth.]

(4) Let eM be a eDX -module which is strictly R-specializable along (g) and let M be
the underlying DX -module. Show that if eM is a middle extension along (g), then M

is a middle extension along (g). [Hint : Use Definition 9.7.3 both for eM and M and
exactness of the functor eM 7!M.]

Exercise 9.36 (Nearby/vanishing Lefschetz quiver for a middle extension)
Show that the nearby/vanishing Lefschetz quivers (9.4.7 ⇤⇤) and (9.4.7 ⇤) are iso-

morphic to the quiver

 g,1
eM

can = N

**

ImN.

var = incl

jj

(�1)

jj

Exercise 9.37. In the setting of Lemma 9.9.2, prove that (x1, x2) is a regular sequence
on eM, i.e., x1

eM \ x2
eM = x1x2

eM. Show that, for every k > 1, if we have a relationP
k1+k2=k

x
k1

2
x
k2

1
mk1,k2

= 0 in eM, then there exist µi,j 2 eM for i, j > 0 (and the
convention that µi,j = 0 if i or j 6 �1) such that mk1,k2

= x1µk1�1,k2
� x2µk1,k2�1

for every k1, k2.

9.11. Comments

The idea of computing the monodromy of a differential equation with regular sin-
gularities only in terms of the coefficients of the differential equation itself, that is, in
an algebraic way with respect to the differential equation, goes back to the work of
Fuchs. In higher dimension, this has been extended in terms of vector bundles and
connections by Deligne [Del70]. On the other hand, the algebraic computation of
the monodromy by Brieskorn [Bri70] opened the way to the differential treatment
of the monodromy as done by Malgrange in [Mal74], and generalized in [Mal83].
The general definition of the V -filtration has been obtained by Kashiwara [Kas83].
It has been developed for the purpose of the theory of Hodge modules by M. Saito
[Sai88], and an account has been given in [Sab87a]. The theory of the V -filtration is
intimately related to that of the Bernstein-Sato polynomial [Ber68, BG69, Ber72]
and [Kas76, Kas78].
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For the purpose of the theory of Hodge modules, M. Saito has developed the notion
of V -filtration for filtered DX -modules. His approach will be explained in Chapter 10.
In the present chapter, we have followed the adaptation of M. Saito’s approach for
eDX -modules, inspired by [Sab05]. For example, the proof of the pushforward theorem
9.8.8 is a direct adaptation of loc. cit., which in turn is an adaptation of a similar
result of M. Saito in [Sai88], namely, Theorem 10.5.4. The computation of Section
9.9.b followed the same path. On the other hand, the result in Section 9.2.b is due to
[Wei20] and the proof is taken from [ES19].




