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1. Introduction

Dirac operators were introduced into representation theory of real reductive groups
by Parthasarathy [24] with the aim of constructing discrete series representations (see
also Atiyah-Schmid [1]). In [25], the same author used the Dirac operator to establish
a very useful criterion for unitarizability of representations, the so-called Parthasarathy
Dirac-inequality.

In the 1990’s, D. Vogan revisited the theory with the aim of sharpening Parthasarathy-
Dirac inequality [28]. He introduced the notion of Dirac cohomology for Harish-Chandra
modules and stated a conjecture for the infinitesimal character of a module having non
vanishing Dirac cohomology. This conjecture was proved in [8]. At the same time,
Kostant introduced a Dirac operator in a much more general setting [15], [17], [16], often
named ”cubic Dirac operator”, because its definition involve a cubic term in a Cliford
algebra.

Since then, a vast literature on the subject has been published. See [9] for a nice
introduction, and [21] for a different point of view.

We will first focus on the role of Dirac operators in the representation theory of (g, K)-
modules. Then we will introduce Kostant cubic Dirac operator in the general setting and
state the main results about it (computation of its square, Huang-Pandzic theorem). We
make further study in the case of cubic dirac operators for Levi subalgebra, which allows
us to relate Dirac and Lie algebra cohomology for finite dimensional modules and unitary
(g, K)-modules in the hermitian symmetric case. We conclude by a few remarks on the
construction of discrete series, thereby completing a circle of ideas.

2. Preliminary material

We recall some well known facts about quadratic spaces and Clifford algebras, mainly
to introduce notation. A quadratic space (V,B) is a finite dimensional vector space over a
field K of characteristic 6= 2 endowed with a non-degenerate symmetric bilinear form. In
these notes, we will be interested only in the case K = C. The Clifford algebra Cl(V ;B)
of (V,B) is the quotient of the tensor algebra T (V ) by the two-sided ideal generated by
elements of the form

v ⊗ w + w ⊗ v + 2B(v, w) 1, (v, w ∈ V ).

This is the convention of [8] and [9], which differs by a sign with the convention in [15]
and [11]. Of course, over C there is no substantial difference between the two conventions.

Notice that all the terms in the above expression are of even degrees (2 or 0). Thus,
the graded algebra structure on T (V ) induces a filtered algebra structure on Cl(V ;B),
but also a structure of Z2-graded algebra (i.e. a super algebra structure). Simply put,
the Z2-grading and the filtration are defined by the condition that the generators v ∈ V
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of Cl(V ;B) are odd, of filtration degree 1. We denote by Gr(Cl(V ;B)) the graded super
algebra obtained from the filtration on Cl(V ;B). We get a decomposition

Cl(V ;B) = Cl0̄(V ;B)⊕ Cl1̄(V ;B).

The (super)algebra Cl(V ;B) is very close to the exterior algebra
∧
V . We view the latter

as a graded supercommutative superalgebra. In fact, Cl(V ;B) and
∧
V are isomorphic

as super vector spaces (Chevalley isomorphism). More precisely there is a representation

fCl : Cl(V ;B) −→ End(
∧

V )

of Cl(V ;B) in the exterior algebra
∧
V , which allows one to define the symbol map

σ : Cl(V ;B) −→
∧

V, x 7→ fCl(x) · 1

where 1 ∈ K is regarded as an element of degree 0 in
∧
V . The Chevalley isomorphism

is the map induced from Gr(Cl(V ;B)) on
∧
V by the symbol map. Its inverse is the

quantization map given by graded symmetrization, that is, for v1, . . . , vk ∈ V ,

q(v1 ∧ . . . ∧ vk) =
1

k!

∑
s∈Sk

sgn(s) vs(1)vs(2) · · · vs(k).

Let us denote by O(V,B) the group of linear isometries of (V,B). Its Lie algebra
o(V ;B) relates to the ”quadratic” elements of the Clifford algebra, more precisely, the
elements q(x), x ∈

∧2 V span a Lie subalgebra of Cl(V,B). Let us denote by {., .} the
induced bracket on

∧2 V , i.e.

[q(x), q(y)]Cl = q({x, y}), (x, y ∈
∧2 V ).

Here [. , .]Cl denotes the supercommutator bracket on Cl(V ;B). Then the transformation

x 7→ Ax, Ax(v) = [q(x), v]Cl, (v ∈ V )

defines an element Ax of o(V ;B), and the map

(2.1)
∧2 V → o(V ;B), x 7→ Ax

is a Lie algebra isomorphism. A formula for its inverse λ is given as follows. Let (ei)i be
a basis of V with dual basis (with respect to B) (ei)i, then if A ∈ o(V ;B),

λ(A) =
1

4

∑
i

A(ei) ∧ ei ∈
∧2 V .

We assume from now on that K = C. The special orthogonal group SO(V ;B) admits
a central extension Spin(V,B) by Z2, which may be realized in the group Cl(V ;B)× of
invertible elements of the Clifford algebra.

Let us now recall some facts about Clifford modules.

Theorem 2.1. (i) Suppose that n = dimC(V ) is even. Then there are :

• two isomorphism classes of irreducible Z2-graded Cl(V,B)-modules,
• one isomorphism class of irreducible ungraded Cl(V,B)-modules,

• two isomorphism classes of irreducible Cl0̄(V,B)-modules.

(ii) Suppose that n = dimC(V ) is odd. Then there are

• one isomorphism class of irreducible Z2-graded Cl(V,B)-modules,
• two isomorphism classes of irreducible ungraded Cl(V,B)-modules,

• one isomorphism class of irreducible Cl0̄(V,B)-modules,

Let us denote by S the choice of an irreducible Z2-graded Cl(V,B)-modules.
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3. Dirac operator and (g, K)-modules

3.1. Notation and structural facts. Let G be a connected real reductive Lie group
with Cartan involution θ such that K = Gθ is a maximal compact subgroup of G. Let
us denote by g0 the Lie algebra of G, g its complexification, with Cartan involutions also
denoted by θ.

We fix an invariant nondegenerate symmetric bilinear form B on g0, extending the
Killing form on the semisimple part of g0. Let

g0 = k0

θ
⊕ p0, g = k

θ
⊕ p

be the Cartan decomposition of g0 and g respectively. We assume furthermore that in
extending the Killing form, we made sure that B|p0 remains definite positive and B|k0
definite negative.

Let Cl(p) = Cl(p;B) be the Clifford algebra of p with respect to B. We denote by K̃
the spin double cover of K, i.e., the pull-back of the covering map Spin(p0)→ SO(p0) by
the adjoint action map Ad|p0 : K → SO(p0). The compact groups Spin(p0) and SO(p0)
embed in their complexification Spin(p) and SO(p), so we get the following diagram :

K̃ //

��

Spin(p0) �
� //

��

Spin(p) �
� //

��

Cl0̄(p)×

K
Ad|p0// SO(p0) �

� // SO(p)

The complexification of the differential at the identity of the Lie group morphism Ad|p0 :
K → SO(p0), is the Lie algebra morphism

ad|p : k→ so(p), X 7→ ad(X)|p

Let us denote by α the composition of this map with the identification so(p) '
∧2 p of

(2.1) and the inclusion q :
∧2 p ↪→ Cl(p) :

(3.1) α : k→ Cl(p).

There is an explicit expression for α : k → Cl(p): if (Yi)i is a basis of p with dual basis
(Zi)i, then for any X ∈ k,

(3.2) α(X) =
1

4

∑
i,j

B([Zi, Zj], X) YiYj.

A key role will be played in what follows by the associative Z2-graded superalgebra
A = U(g)⊗ Cl(p). The Z2-grading comes from the Z2-grading on Cl(p), i.e. elements in
U(g) ⊗ 1 are even. We will often use the super Lie algebra structure on A given by the
(super)commutator bracket.

The group K acts on U(g) through K ⊂ G by the adjoint action, and on Cl(p) through

the map K̃ → Cl0̄(p)× in the first row of the diagram above and conjugation in Cl(p)

(this action of K̃ on Cl(p) factors through K) . Thus we get a linear action of K on A =
U(g)⊗Cl(p). Differentiating this action at the identity, and taking the complexification,
we get a Lie algebra representation of k in U(g)⊗Cl(p). This represention can be described
as follows. The map (3.1) is used to define a map

∆ : k −→ A = U(g)⊗ Cl(p), ∆(X) = X ⊗ 1 + 1⊗ α(X)
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which is a morphism of Lie algebra (it takes values in the even part of the super Lie
algebra A). Thus it extends to an algebra morphism

(3.3) ∆ : U(k) −→ A = U(g)⊗ Cl(p).

The action of an element X ∈ k on A is then given by the adjoint action of ∆(X), i.e.
a ∈ A 7→ [∆(X), a]. We denote by AK (resp. Ak) the subalgebra of K-invariants (resp.
k-invariants) in A. Since K is assumed to be connected, AK = Ak.

We can now introduce the Dirac operator D :

Definition 3.1. if (Yi)i is a basis of p and (Zi)i is the dual basis with respect to B, then

D =
∑
i

Yi ⊗ Zi ∈ U(g)⊗ Cl(p)

is independent of the choice of basis (Yi)i and K-invariant for the adjoint action on both
factors. Then D is an element of AK .

3.2. An equivalence of category. We are interested in the representation theory of
G, and the category of representations we consider is M(g, K), the category of Harish-
Chandra modules (i.e. (g, K)-modules for the pair Harish-Chandra pair (g, K) (cf. [13])).
The main idea of the subject is to study X ∈M(g, K) by considering the natural action
of the remarkable operator D on X ⊗ S, where S is a module of spinors for C(p).

Let us make first some remarks about the correspondence X 7→ X ⊗ S. Recall that a
generalized Harish-Chandra pair ([13], Chapter I) (A ,K) is :

- a complex associative unital algebra A ,
- a compact Lie group K, its Lie algebra k0 with complexification k.
- a locally K-finite action of K on A by algebra automorphisms.
- an algebra homomorphism ι : U(k)→ A satisfying

k · (ι(u)) = ι(k · u), (u ∈ U(k)), (k ∈ K).

On the left hand side, the dot represents the given K-action on A , while on the right
hand side, it represents the usual adjoint action.

Of course, to say that (g, K) is an Harish-Chandra pair means that (U(g), K) is a gen-
eralized Harish-Chandra pair with the obvious adjoint action of K on U(g) and inclusion
ι of U(k) in U(g). Now, if we come back to the notation of the previous section, we

can easily check that (A = U(g) ⊗ Cl(p), K̃) is also a generalized Harish-Chandra pair,

the action of K̃ on A being the one described in the previous section, and ι is the map
denoted by ∆ in (3.3).

In the same way, Harish-Chandra modules (or (A ,K)-modules) for a generalized Harish-
Chandra pair (A ,K) are left modules M for A which are also spaces for a locally finite
representation of K, subject to the compatibility conditions

k(am) = (k · a)(km), (k ∈ K), (a ∈ A ), (m ∈M),

(ι(u))m = um, (u ∈ U(k)), (m ∈M).

We denote by M(A ,K) the category of Harish-Chandra modules for the generalized
Harish-Chandra pair (A ,K). For the pair (U(g),K), this is just the categoryM(g, K) of
Harish-Chandra modules in the usual sense.

Now, if X is a (g, K)-module, then X ⊗ S is a (A, K̃)-module : A = U(g) ⊗ Cl(p)

acts on X ⊗ S in the obvious way, while K̃ acts on X (through K) and on S (through
Spin(p0) ⊂ Cl(p)), and thus on the tensor product X ⊗ S. This defines a functor

X 7→ X ⊗ S, M(g, K)→M(A, K̃).
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In fact, using that Cl(p) (resp. Cl0̄(p)) is a simple algebra with unique irreducible module
S when dim p is even (resp. odd), we deduce immediately

Proposition 3.2. The functor X 7→ X⊗S fromM(g, K) toM(A, K̃) is an equivalence
of categories.

Its inverse is the functor M 7→ HomCl(p)(S,M) (resp. M 7→ HomCl0̄(p)(S,M)) if dim p

is even (resp. odd).

Thus we don’t loose any information by passing from X to X ⊗ S and back. As we
said above, the main idea is to use the action of the Dirac operator on X ⊗ S to obtain
information about X. Let us now put this principle into perspective by discussing a
theorem of Harish-Chandra.

3.3. On a theorem of Harish-Chandra. A well known theorem due to Harish-Chandra
[6], asserts that an irredible (g, K)-module is characterized by the action of U(g)K on any
non-trivial K-isotypic component. A simplified algebraic proof of this result was given
by Lepowsky-McCollum [20]. The original idea of Harish-Chandra was to use this fact
to study and classify irreducible (g, K)-modules. For instance, a proof of the subquo-
tient theorem of Harish-Chandra, which says that any irreducible repredentation of G
is equivalent to a subquotient of a principal series representation,is based on this fact
([31], Thm. 3.5.6). The action of U(g)K on any the trivial K-isotypic component of a
spherical representation is also well understood. The problem with continuing this ap-
proach is that the associative algebra U(g)K is highly non commutative and very little is
known about its structure and representation theory (although see [18] for some recent
progress). In his thesis [29], Vogan made some use of this idea in his classification of
irreducible (g, K)-modules via their lowest K-type. In [23], we proved an analogue of

Harish-Chandra result, but for irreducible modules in the category M(A, K̃). Our goal
was to take advantage of the fact that the algebra AK = (U(g) ⊗ Cl(p))K is slightly
better understood than U(g)K . At least, we can give a interesting non trivial element of
it, namely the Dirac operator D. We will se below that in fact AK has the structure of a
differential superalgebra, the differential being given by the adjoint action of D. For the
moment, let us give more details about what we have just said about Harish-Chandra’s
theorem and its generalization in [23].

Let us consider a generalized Harish-Chandra pair (A ,K) and the category M(A ,K)
of Harish-Chandra modules for this pair. The key fact is that M(A ,K) is equivalent
to the category of non-degenerate modules over an algebra with idempotents (or algebra
with an approximate identity), namely the Hecke algebra R(A ,K) constructed in [13],
§I.5. As a vector space, R(A ,K) is isomorphic to

A⊗U(k) R(K),

where R(K) is the convolution algebra of K-finite distributions on K (see [13], Definition
I. 115). The algebra product is a little bit subtle, and we refer to [13] for details.

The relevant result is then Proposition 3.8 below, due to J. Bernstein, whose main
application is in the theory of reductive p-adic groups ([27], Section I.3). Bernstein told
us that the idea of his proof came from the treatment of Harish-Chandra’s result given
by Godement in [5]. We start by recalling a few basic facts about idempotented algebras.
The reference for these results is [27], Section I.3.

Definition 3.3. Let A be a ring (possibly without unit). We say that A is an idempo-
tented ring if for any finite subset {a1, . . . , an} of A, there exists an idempotent e in A
(e2 = e) such that ai = eaie for all i.
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Definition 3.4. A module M for the idempotented ring A is non-degenerate if for any
m ∈M , there exists an idempotent e in A such that e ·m = m.

For an A-module M , we denote by MA the non-degenerate part of M , i.e., the largest
non-degenerate submodule of M .

Let us remark that a ring with unit is an idempotented ring, and that non-degenerate
modules are in this case simply the unital modules, i.e., the modules on which the unit
of the ring acts as the identity.

We denote byM(A) the category of non-degenerate left modules for the idempotented
ring A. When A is a ring with unit, M(A) is the category of left unital A-modules.

Let A be an idempotented C-algebra, and let e be an idempotent element of A. Let
M be a non-degenerate A-module. Then M decomposes as

(3.4) M = e ·M ⊕ (1− e) ·M
Notice that eAe is an algebra with unit e, and that e ·M is a unital eAe-module.

Let us define the functor :

je : M(A)→M(eAe), M 7→ e ·M.

The functor je is exact.
Let us denote by:

— M(A, e) the full subcategory of M(A) of modules M such that M = Ae ·M .
— Irr(A) the set of isomorphism classes of simple non-degenerate A-modules,
— Irr(eAe) the set of isomorphism classes of simple unital eAe-modules,
— Irr(A, e) the subset of Irr(A) of modules M satisfying e ·M 6= 0.

Modules inM(A, e) are thus the modules M inM(A) generated by e·M , and Irr(A, e)
is the set of isomorphism classes of irreducible objects in M(A, e).

Lemma 3.5. Consider the induction functor i:

i : M(eAe)→M(A), Z 7→ A⊗eAe Z.
Then je ◦ i is naturally isomorphic to the identity functor of M(eAe), i.e.,

(3.5) je ◦ i(Z) ∼= Z, Z ∈M(eAe),

these isomorphisms being natural in Z.

One deduces from this that A · (e · i(Z)) = i(Z), thus the functor i takes values in
M(A, e).

Of course, it is possible that je annihilates some modules in M(A), and therefore
one cannot hope to obtain all non-degenerate A-modules from modules in M(eAe) by
induction. Nevertheless, we get all irreducible modules in M(A, e).

Definition 3.6. Let M be a non-degenerate A-module and let e ∈ Idem(A). Let us
define the non-degenerate A-module :

Me := M/F (eA,M), where F (eA,M) = {m ∈M | eA ·m = 0}.

Lemma 3.7. Let M be a non-degenerate A-module. Then (Me)e = Me.

Proposition 3.8. The map M 7→ e ·M gives a bijection from Irr(A, e) onto Irr(eAe),
with inverse given by W 7→ (A⊗eAeW )e.

We now describe the consequences for the categoryM(A, K̃) of Harish-Chandra mod-

ules for a generalized pair (A, K̃). As we said above, this category is naturally equivalent

to the category of non-degenerate R(A, K̃)-modules ([13] Chapter I).
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Let (γ, Fγ) be an irreducible finite-dimensional representation of K̃. Let us denote by
Θγ̃ the character of the contragredient representation (γ̃, F ∗γ ), and let

χγ =
dim(Vγ)

vol (K)
Θγ̃ dk

be the idempotent element of R(K̃) giving the projection operators on K̃-isotypic com-

ponents of type γ. Then 1⊗ χγ defines an idempotent of R(A, K̃).

Theorem 3.9. The algebra

(1⊗ χγ) ·R(A, K̃) · (1⊗ χγ)
is isomorphic to

AK ⊗U(k)K End(Fγ).

Then for any (A, K̃)-module V , (1 ⊗ χγ) · V is the K̃-isotypic component V (γ) of V .
Thus Theorem 3.9 and the computation in its proof give

Theorem 3.10. Let us fix an irreducible finite-dimensional representation (γ, Fγ) of K̃.

Then the map V 7→ V (γ) from the set of equivalence classes of irreducible (A, K̃)-modules

V with non-zero K̃-isotypic component V (γ) to the set of equivalence classes of simple
unital AK ⊗U(k)K End(Vγ)-modules is a bijection, with inverse given by

W 7→
(
R(A, K̃)⊗[AK⊗U(k)K

End(Fγ)] W
)

1⊗χγ
.

To resume, the idea we want to use is the following : to study an (g, K)-module X, one
would like to study the action of U(g)K on a (non-zero) K-isotypic component of X, but
since a little is known about U(g)K , we will instead study the action of (U(g)⊗ Cl(p))K

a (non-zero) K-isotypic component of X ⊗S. The structure of (U(g)⊗Cl(p))K is better
(but not completely) understood than the he structure of U(g)K . We will now see what
can be said from that fact that it contains the Dirac operator D.

3.4. The square of the Dirac operator. The most important property of D is the
formula

(3.6) D2 = −Casg ⊗ 1 + ∆(Cask) + (‖ρk‖2 − ‖ρg‖2)1⊗ 1

due to Parthasarathy [24] (see also [9]). Here Casg (respectively Cask) denotes the Casimir
element of U(g). The constant (‖ρk‖2 − ‖ρg‖2) is explained below.

We will discuss the proof later, in the more general setting of Kostant cubic Dirac
operator.

This has several important consequences. To state them, we need more notation. Let
us fix a maximal torus T in K, its Lie algebra t0, with complexification t. Let a denotes
the centralizer of t in p. Then

h := t⊕ a

is a fundamental Cartan subalgebra of g, and the above decomposition also gives an
imbedding t∗ → g∗. Let R = R(g, h) denotes the root system of h in g, W = W (g, h)
its Weyl group. Let us also choose a positive root system R+ in R. As usual, ρ denotes
the half-sum of positive roots, an element in h∗. Similarly, we introduce the root system
Rk = R(k, t), its Weyl group Wk, a positive root system R+

k , compatible with R+, and
half-sum of positive roots ρk.

The bilinear form B on g restricts to a non degenerate symmetric bilinear form on h,
which is definite positive on the real form it0 ⊕ a. We denote by 〈. , .〉 the induced form
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on it∗0⊕a and in the same way its extension to h∗. The norm appearing in (3.6) is defined
for any λ ∈ h∗ by ‖λ‖2 = 〈λ, λ〉.

Recall the Harish-Chandra algebra isomorphism

(3.7) γg : Z(g) ' S(h)W

between the center Z(g) of the envelopping algebra U(g) and the W -invariants in the
symmetric algebra S(h) on h. Accordingly, a character χ of Z(h) is given by an element
of h∗ (or rather its Weyl group orbit). If λ ∈ h∗, we denote by χλ the corresponding
character of Z(g). We say that a module X in M(g, K) has infinitesimal character λ if
any z ∈ Z(g) acts on X by the scalar operator χλ(z)IdX .

Assume that X has infinitesimal character Λ ∈ h∗. Let (γ, Fγ) be an irreducible

representation of K̃ with highest weight τ = τγ ∈ t∗. We denote the corresponding

K̃-isotypic component of X ⊗ S by (X ⊗ S)(γ). Then D2 acts on (X ⊗ S)(γ) by the
scalar

(3.8) − ‖Λ‖2 + ‖τ + ρk‖2.

In particular, we see that the kernel of D2 on X ⊗ S is a direct sum of full K̃-isotypic
components of X ⊗ S : these are exactly those (X ⊗ S)(γ) for which

(3.9) ‖τ + ρk‖2 = ‖Λ‖2.

Another useful consequence of (3.6) is

(3.10) D2 is in the center of the algebra AK .

4. Dirac operator and unitarizable of (g, K)-modules

We continue with the notation of the previous section. Assume now that the (g, K)-
module X is endowed with a definite positive invariant Hermitian product 〈. , .〉X . In-
variance means that elements in g0 act as skew-symmetric operators on X, i.e.

〈X.v, w〉X = −〈v,X · w〉X , (v, w ∈ X), (X ∈ g0).

For X ∈ g, this means that the adjoint of X is −X̄, where the bar denotes complex
conjugation with respect to the real form g0 of g. We say that the (g, K)-module is
unitarizable.

There is a well-known a definite positive Hermitian product 〈. , .〉S on S so that the
elements of p0 ⊂ C(p) act as skew-symmetric operators on S (see [31] or [9] 2.3.9). If X is
a unitarizable (g, K)-module, X ⊗S is then equiped with the definite positive Hermitian
product tensor product of 〈. , .〉X and 〈. , .〉S, denoted by 〈. , .〉X⊗S.

It is clear that D is symmetric with respect to 〈. , .〉X⊗S. In particular D2 is a positive
symmetric operator on X ⊗ S. From (3.8) we get

Proposition 4.1 (Parthasarathy-Dirac inequality). Assume that the unitarizable (g, K)-
module X has infinitesimal character Λ ∈ h∗. Let (γ, Fγ) be an irreducible representation

of K̃ with highest weight τ = τγ ∈ t∗ such that (X ⊗ S)(τ) 6= 0. Then

‖τ + ρk‖2 ≥ ‖Λ‖2.

Remark 4.2. If the (g, K)-module X is unitarizable and has an infinitesimal character,
it is then also easily seen that D acts semisimply on X ⊗ S. In particular

(4.1) kerD2 = kerD.
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Similarly, if X is finite-dimensional, then there is a natural inner product on X ⊗ S
such that D is skew-symmetric with respect to this inner product. So D acts semisimply
on X ⊗ S and (4.1) holds also for finite-dimensional X (but now D2 ≤ 0).

Parthasarathy’s Dirac inequality gives a powerful criterion of unitarizability for irre-
ducible (g, K)-modules. This can be slightly refined as follows ([22]).

Proposition 4.3. Assume that G is semisimple with no compact simple factor. Let X
be a (g, K)-module, let 〈. , .〉X be any definite positive Hermitian product on X and let
〈. , .〉X⊗S be the Hermitian form on X ⊗ S constructed as above. Then X is unitary with
respect to 〈. , .〉X (i.e. invariant) if and only if D is a symmetric operator on X ⊗ S with
respect to 〈. , .〉X⊗S.

Example 4.4. Spherical principal series of SL(2,R)
Spherical principal series of SL(2,R)× SL(2,R)

5. Dirac cohomology

Let us now review Vogan’s definition of Dirac cohomology.

Definition 5.1. Let X ∈M(g, K). The Dirac operator D acts on X⊗S. Vogan’s Dirac
cohomology of X is the quotient

HD
V (X) = kerD/(kerD ∩ ImD).

Since D ∈ AK , K̃ acts on kerD, ImD and HD
V (X).

This is particularly helpful if X is unitary, in which case there is a natural inner product
on X ⊗S such that D is symmetric with respect to this inner product. If furthermore X
is admissible, then it follows that D acts semisimply on X ⊗ S and so

(5.1) kerD2 = kerD = HD
V (X).

In this case, the Dirac cohomology of X is a sum the full isotypic components X ⊗ S(γ)
such that (3.9) holds.

For general X, (4.1) does not hold, but note that D is always a differential on kerD2,
and HD

V (X) is the usual cohomology of this differential.
Let us state the main result of [8], which gives a strong condition on the infinitesimal

character of a (g, K)-module X with non zero Dirac cohomology.

Proposition 5.2. Let X ∈ M(g, K) be a Harish-Chandra module with infinitesimal

character Λ ∈ h∗. Assume that (γ, Fγ) is an irreducible representation of K̃ with highest
weight τ = τγ ∈ t∗ such that (X ⊗ S)(γ) contibutes to HD

V (X). Then

(5.2) Λ = τ + ρk up to conjugacy by the Weyl group W.

Thus for unitary X, (3.9) is equivalent to the stronger condition (5.2), provided that
γ appears in X ⊗ S.

6. Why is Dirac cohomology an interesting invariant ?

Many interesting modules have non-vanishing Dirac cohomology :
- Finite dimensional representations (Kostant). Dirac cohomology is given by to ex-

tremal weights.
- Discrete series, and more generally Vogan-Zuckerman Aq(λ)-modules ([7]).
- Highest weight modules [11], [10], [12]
- Unipotent representations [2], [3]

Dirac cohomology is related to other kinds of cohomological invariants
9



- n-cohomology for highest weight-modules [11], [12]
-(g, K)-cohomology for Aq(λ)-modules [7],

7. Dirac cohomology and (g, K)-cohomology

An important problem in the theory of automorphic forms is to compute cohomology
of locally symmetric spaces. Matsushima’s formula ([?]) relates this problem to com-
putation of (g, K)-cohomology of irreducible unitary Harish-Chandra modules for the
corresponding semisimplegroup G. Vogan and Zuckerman [30] have classified all irre-
ducible unitary Harish-Chandra modules X such that H∗(g, K,X ⊗ F ∗) 6= 0 where F
is a finite-dimensional representation of G. They are precisely the cohomologically in-
duced modules Aq(λ) with the same infinitesimal character as F . Moreover, they have
explicitely computed the cohomology.

Let X ∈M(g, K) be an irreducible unitary Harish-Chandra module and suppose that
X has the same infinitesimal character as an irreducible finite dimensional representation
F (this is an obvious necessary condition for H∗(g, K,X ⊗ F ∗) to be non zero).

A calculation ([31], Chapter 9) shows that if dim p is even :

H∗(g, K;X ⊗ F ∗) = HomK̃(HD(F ), HD(X)),

and if dim p is odd :

H∗(g, K;X ⊗ F ∗) = HomK̃(HD(F ), HD(X))⊕ HomK̃(HD(F ), HD(X)).

8. Dirac cohomology of some (g, K)-modules

In [7] the Dirac cohomology of finite dimensional representations is computed, gener-
alizing the result in [15] which assumed that G and K have equal rank.

Let us recall the setting : G is a connected real reductive groupe with maximal compact
subgroup K, h0 = t0 ⊕ a0 is a Cartan fondamental subalgebra of g0, l0 = dimR a0. We
have root system R = R(g, h), Rk = R(k, t), and the non reduced root system R(g, t). Let
W = W (g, h), Wk = W (k, t) and W (g, t) be the corresponding Weyl groups. Note that
W (g, t) can be identified with θ-stable elements in W . We choose compatible positive
root systems R+ ⊂ R, R+

k ⊂ Rk and R(g, t)+ ⊂ R(g, t). Denote by Cg(h), Ck(t), and
Cg(t) the corresponding closed Weyl chambers. Note that Cg(t) is contained in Cg(h) and
in Ck(t). Let

W (g, t)1 = {w ∈ W (g, t) |w(Cg(t)) ⊂ Ck(t)}
Let us denote by Eµ the irreducible finite dimensional representation of k with highest

weight µ.

Theorem 8.1. Let Vλ be an irreducible finite dimensional (g, K)-module with highest
weight λ. If λ 6= θ(λ), then HD(Vλ) = 0. If λ = θ(λ), then as a k-module, the Dirac
cohomology of Vλ is

HD(Vλ) =
⊕

w∈W (g,t)1

2[l0/2] Ew·(λ+ρ)−ρk .

In [7] the Dirac cohomology of Aq(λ)-modules is computed. The notation is the same
as above, but we need more. Fix some element H ∈ it0 and let l be the 0-eigenspace of
ad(H) in g and U the sum of the eigenspaces of ad(H) in g for the positive eigenvalues.
Then

q = l⊕ u
10



is a paraolic subalgebra of g with Levi factor l and nilpotent radical u. Note that l, u and
q are stable under θ, and that l is stable under complex conjugation, so that l0 is a real
form of l. Let us denote by L the connected subgroup of G with Lie algebra l0. Assume
that our choice of positive root system R+ is compatible with q in the sense that

R(u) = {α ∈ R | gα ∈ u}
is contained in R+. We note also that h ⊂ l. We take R+

l = R(l, h) ∩ R+ as a choice of
positive root system in Rl = R(l, h). Likewise R(l, t) ⊂ R(g, t) and R+(l, t) = R(l, t) ∩
R+(g, t).

Let λ ∈ l∗ be the complexified differential of a unitary character σ of L satisfying

〈α, λt〉 ≥ 0

(In particular, σ is in the good range). We can them form the Vogan-Zuckerman module
Aq(λ) ([13]). It is the unique irreducible unitary (g, K)-module satisfying

(i) the restriction of Aq(λ) to K contains the irreducible representation with highest
weight µ(λ, q) = λt + 2ρ(u ∩ p) where ρ(u ∩ p) is the half-sum of all t-weights in u ∩ p
counted with multiplicity.

(ii) Aq(λ) has infinitesimal character λ+ ρ.
(iii) if an irreducible representation with highest weight µ of K occurs in Aq(λ), then

µ is of th form

µ = µ(λ, q) +
∑

α∈R(u∩p,t)

nα α,

where the nα’s are non-negative integers. In particular the lowest K-type of Aq(λ) is the
one with highest weight µ(λ, q) which occurs with multiplicity one.

The set W (l, t)1 is defined with respect to l as it was defined above with respect to g.
Notice that W (l, t)1 = (l, t) ∩ (g, t)1.

Theorem 8.2. If λ 6= θ(λ), then HD(Aq(λ)) = 0. If λ = θ(λ) then as a k-module, the
Dirac cohomology of Aq(λ) is

HD(Aq(λ)) =
⊕

w∈W (l,t)1

2[l0/2] Ew·(λ+ρ)−ρc .

[10] : Dirac cohomology of Wallach representations is computed. Wallach representa-
tions are special families of irreducible unitary highest weight modules. So their Dirac
cohomology coincide, up to a twist, with their n = p+-chomology, which is computed by
Enright, but the computation there is more explicit.

9. Kostant’s cubic Dirac operator

.
In [15], B. Kostant introduces cubic Dirac operators, which are a generalization of Dirac

operators considered above. The setting is the following. Let g be a complex reductive
Lie algebra, and fix an invariant nondegenerate symmetric bilinear form B on g extending
the Killing form on the semisimple part of g. Suppose that r is a reductive subalgebra of g
such that the restriction of B to r is non-degenerate. Let s be the orthogonal complement
of r with respect to B. Then the restriction of B to s is non degenerate and we have a
decomposition

g = r⊕ s.

Let Cl(s) be the Clifford algebra of s.
11



As in Section 2, the exterior algebra
∧
s is identified with the Clifford algebra Cl(s) as

a vector space via Chevalley isomorphism. Thus, for elements u, v in
∧

s, we distinguish
between their Clifford product uv and their exterior product u ∧ v. Exterior product by
u in

∧
s is denoted by e(u) ∈ End(

∧
s). The bilinear form B on s extends to a non

degenerate bilinear form on
∧

s, still denoted by B, and this gives an identification of
∧

s
with its dual (

∧
s)∗. For X ∈ s, we denote by ι(X) the transpose of e(X) with respect

to B. For any v ∈
∧

s and any X ∈ s, the Clifford product Xv is then given by

(9.1) Xv = (e(X) + ι(X))(v),

and the Clifford relations extend to

(9.2) Xv − (−1)kvX = 2ι(X)w

for v ∈
∧k s and any X ∈ s.

The restriction of the fundamental 3-form of g gives an element ν ∈
∧3 s characterized

by the identity

(9.3) B(ν,X ∧ Y ∧ Z) =
1

2
B(X, [Y, Z]), (X, Y, Z ∈ s)

Let (Xi)i be an orthonormal basis of s. Then Kostant’s cubic Dirac operator D(g, r)
is the element

(9.4) D(g, r) =
∑
i

Xi ⊗Xi + 1⊗ ν

of U(g)⊗Cl(s). The terminology is explained by the fact that the element ν is of degree
3.

The element ν is expressed in terms of the basis (Xi)i as

(9.5) ν =
1

2

∑
i<j<k

B([Xi, Xj], Xk) XiXjXk

and since the xi are orthogonal, we have also

(9.6) ν =
1

2

∑
i<j<k

B([Xi, Xj], Xk) Xi ∧Xj ∧Xk

One can now easily see that D in independent of the choice of the basis (Xi)i.
Let us recall briefly some construction of Section 3, which carry over immediately to

the more general setting of this section. Firstly, there is the map α : r → so(s) → Cl(s)
which is the composition of the action map r→ so(s) followed by the standard inclusion
of so(s) into Cl(s) using the identification so(s) ∼=

∧2 s.
From this, we construct the diagonal embedding of U(r) in U(g)⊗Cl(s). We embed r

in U(g)⊗ Cl(s) via

X 7−→ X ⊗ 1 + 1⊗ α(X), X ∈ r,

This embedding is then extended naturally to a morphism of (super)algebras :

(9.7) ∆ : U(r)→ U(g)⊗ Cl(s).

The Z-graduation on the tensor algebra of s induces a Z2-graduation on the Clifford
algebra. This gives Cl(s) the structure of a super-algebra. The trivial graduation on U(g)
gives a Z2-graduation on U(g)⊗ Cl(s). With this in place, we can state :

Lemma 9.1. The cubic Dirac operator D(g, r) is r-invariant, i.e. it (super)commutes
with the image of U(r) by ∆. We write D(g, r) ∈ (U(g)⊗ Cl(s))r.

12



We now state the two main general results about cubic Dirac operators. The first one
is the computation of their square in [15], Theorem 2.16 :

Theorem 9.2. In the setting as above,

D(g, r)2 = −Ωg ⊗ 1 + ∆(Ωr) + (||ρr||2 − ||ρ||2)1⊗ 1,

where Ωg (resp. Ωr) denotes the Casimir element in Z(g) (resp. Z(r)).

We give some ingredients of a simple proof due to N. Prudhon [26]. It is based a
relation between Dirac operators in a situation where we have two subalgebras r and l of
g with

g ⊃ r ⊃ l

such that the restriction of the invariant form B on both r and l is non degenerate. Let
us write the orthogonal decompositions

g = r⊕ s, g = r⊕m, m = s⊕mr, r = l⊕mr.

Via the natural inclusion, all these operators can be seen as living in U(g)⊗ C(m).
In that case, denoting by ⊗̄ the graded tensor product, we have an isomorphism

Cl(m) = Cl(s)⊗̄Cl(mr)

which allows us to identify Cl(s) and Cl(mr) as subalgebras of Cl(m). Furthermore, we
may consider the following Dirac operators

D(g, l) ∈ U(g)⊗ Cl(m), D(g, r) ∈ U(g)⊗ Cl(s), D(r, l) ∈ U(r)⊗ Cl(mr).

The diagonal embedding ∆ of U(r) in U(g)⊗ Cl(s) in (9.7) gives a diagonal embedding
still denoted by ∆

(9.8) ∆ : U(r)⊗ Cl(mr)→ U(g)⊗ Cl(s)⊗̄Cl(mr) ' U(g)⊗ Cl(m).

Proposition 9.3. In the setting above,
(i) D(g, l) = D(g, r) + ∆(D(r, l)
(ii) The components D(g, r) et ∆(D(r, l) (super)commute.

Now Theorem 3.6 in general will be a consequence the proposition with l = 0 and the
computation of the square of D(g, 0) and D(r, 0).

The second result was proved by Huang and Pandzic in the setting of section 3 in [8],
and Kostant noticed that the statement and the proof are still valid in the general case
[17]. To state it, we need to introduce some material. Recall that the Clifford algebra
Cl(s) is Z2-graded, Cl(s) = Cl(s)0̄⊕Cl(s)1̄. Thus the algebra U(g)⊗Cl(s) is a Z2-graded
algebra. The diagonal embedding ∆ : U(r) → U(g) ⊗ Cl(s) gives the right-hand side a
structure of r-module through the adjoint action, and this action respects the Z2-grading.
Thus the algebra of r-invariants (U(g)⊗ Cl(s))r is still endowed with a Z2-grading. It is
easy to see that D(g, r) is r-invariant.

Let us introduce the operator

d = adD : a 7→ [D, a]

on the superalgebra U(g)⊗Cl(s), where the bracket is the superbracket. Then, using the
super-Jacobi identity, we get d2 = (adD)2 = ad(D2). The result in theorem 9.2 shows
that D2 supercommutes with all elements in (U(g) ⊗ Cl(s))r. Furthermore, D being
r-invariant, adD is r-equivariant and thus induces

d : (U(g)⊗ Cl(s))r → (U(g)⊗ Cl(s))r

with d2 = 0.
13



Define the cohomology of d to be ker d/Im d on (U(g)⊗C(s))r. The theorem of Huang
and Pandzic computes this cohomology. Let us remark first that ∆(Z(r)) is in the kernel
of D.

Theorem 9.4. (Huang-Pandzic [8]) On (U(g)⊗ Cl(s))r, we have

ker d = ∆(Z(r))⊕ Im d.

The proof reduces to the exactness of the Koszul complex S(s) ⊗
∧• s for s. It uses

the filtration on U(g) and the corresponding graduation Gr(U(g)) ' S(g), which gives

Gr(U(g)⊗ Cl(s)) ' S(g)⊗
∧

s ' S(r)⊗ S(s)⊗
∧

s.

Corollary 9.5. Let us apply this to an element of the form z⊗ 1, where z ∈ Z(g), which
is obviously r-invariant and in the kernel of d. We get that z ⊗ 1 can be written as

z ⊗ 1 = ∆(z1) +Da+ aD

for some a ∈ (U(g)⊗ C(s))r (in the odd part of the superalgebra), and some z1 ∈ Z(r).

Let us now identify z1 explicitely. It is always possible to find in g a Borel subalgebra
b and a Cartan subalgebra h such that

b = b ∩ r⊕ b ∩ s, h = h ∩ r⊕ h ∩ s

Let us write these decompositions simply as

b = br ⊕ bs, h = hr ⊕ hs

Let us denote by Wg the Weyl group of the root system R(h, g) and Wr the Weyl group of
the root system R(hr, r). Seeing the symmetric algebra S(h) (resp. S(hr)) as the algebra
of polynomial functions on h∗ (resp. on h∗r ), we notice that restriction of functions from
h∗ to hr induces a morphism

res : S(h)Wg → S(hr)
Wr

Let us denote by γg and γr respectively the Harish-Chandra isomorphisms

Z(g)
γg−→ S(h)Wg , Z(r)

γr−→ S(hr)
Wr .

Proposition 9.6. There is a unique algebra morphism ηr : Z(g)→ Z(r) such that

Z(g)
ηr //

γg
��

Z(r)

γr
��

S(h)Wg
res // S(hr)

Wr

commutes.

Proposition 9.7. In the setting of the corollary above,

z ⊗ 1 = ∆(ηr(z)) +Da+ aD

for some a ∈ (U(g)⊗ Cl(s))r (in the odd part of the superalgebra).

Let us now define, following Vogan, the Dirac cohomology of a g-module V . Notice
that U(g)⊗ Cl(s) acts on V ⊗ S.

Definition 9.8. The Dirac cohomology HD(g, r;V ) is the quotient of the kernel of D
acting on V ⊗ S by kerD ∩ ImD. Since D is r-invariant, kerD, ImD and HD(g, r;V )
are naturally r-modules.

14



Remark 9.9. Notice that D2 doesn’t act by 0 on V ⊗ S. So D is not a differential on
V ⊗ S, and ImD is not included in kerD.

The center of the envelopping algebra Z(g) acts naturally on HD(g, r;V ), since it com-
mutes with D in U(g)⊗Cl(s). The following result is an analog of the Casselman-Osborne
Lemma.

Proposition 9.10. The action of an element z ⊗ 1 in Z(g)⊗ 1 on HD(g, r;V ) coincide
with the action of ηr(z) ∈ U(r) (ie. with the action of ∆(ηr(z))).

This is a consequence of proposition 9.7.

We have already seen one of the main instances of these general definitions, namely
the case r = k and s = p of section 3. Notice that if X, Y, Z are in p, [X, Y ] is in k, so
B([X, Y ], Z) = 0. Thus the second sum in (9.4) (the cubic part) vanishes. In the next
section, we consider another important particular choice of /frr and /frs.

10. Cubic Dirac operators for Levi subalgebras

The second kind of cubic Dirac operator we consider arises in the following setting.
Suppose that q = l ⊕ u is a parabolic subalgebra of g, that q− = l ⊕ u− is the opposite
parabolic subalgebra, and set s = u⊕ u−. Then

(10.1) g = l⊕ s.

Furthermore, the restrictions of the Killing form B to l and s are non-degenerate, and
the above decomposition is orthogonal. Thus we can form the cubic Dirac operator
D(g, l) as above. It will be convenient to use a different kind of basis of s to express this
operator. Indeed, since u and u− are isotropic subspaces in perfect duality under B, we
can identify u∗ with u−; this identification is l-invariant. Let u1, . . . , un be a basis of u,
and let u−1 , . . . , u

−
n be the dual basis of u−. Consider the following dual bases of s :

b1 = u1, . . . , bn = un, bn+1 = u−1 , . . . , b2n = u−n ;

d1 = u−1 , . . . , dn = u−n , dn+1 = u1, . . . , d2n = un.

We can now write Kostant’s cubic Dirac operator D = D(g, l) as

D =
2n∑
i=1

di ⊗ bi + 1⊗ ν.

It is clear that the first sum in the expression for D breaks up into two pieces:

n∑
i=1

u−i ⊗ ui +
n∑
i=1

ui ⊗ u−i = A+ A−,

where A respectively A− denote the two summands. Moreover, since for any i, j, k,

B([ui, uj], uk) = B([u−i , u
−
j ], u−k ) = 0,

the cubic element v also splits into two parts, as

ν = −1

2

∑
i<j

∑
k

B([u−i , u
−
j ], uk)ui∧uj∧u−k −

1

2

∑
i<j

∑
k

B([ui, uj], u
−
k )u−i ∧u−j ∧uk = a+a−,

15



where a respectively a− denote the two summands. One can pass from exterior multipli-
cation to Clifford multiplication and get

a = −1

4

∑
i,j

[u−i , u
−
j ]uiuj = −1

4

∑
i,j

uiuj[u
−
i , u

−
j ].

Similarly,

a− = −1

4

∑
i,j

[ui, uj]u
−
i u
−
j = −1

4

∑
i,j

u−i u
−
j [ui, uj].

In performing the calculation, one has to deal with expressions like
∑

i,j B([u−i , u
−
j ], ui)uj.

This expression is however zero, since it is an l-invariant element of u, and there are no
nonzero l-invariants in u. For future reference, let us write the decomposition of D we
obtained as

(10.2) D = A+ A− + 1⊗ ν = A+ A− + 1⊗ a+ 1⊗ a− = C + C−,

where C, C− are the following elements of U(g)⊗ Cl(s) :

C = A+ 1⊗ a and C− = A− + 1⊗ a−.

We are interested in the action of these elements on the U(g) ⊗ Cl(s) - module V ⊗ S,
where V is a g-module, and S is the spin module for the Clifford algebra Cl(s). As
mentioned above, we use the identification of S with

∧· u, given explicitly in [15] and
[17]. Namely, one can construct S as the left ideal in C(s) generated by the element
u−> = u−1 . . . u

−
n . One then has S = (

∧· u)u−>, which is isomorphic to
∧· u as a vector

space, and the action of Cl(s) is given by left Clifford multiplication. Explicitly, u ∈ u
and u− ∈ u− act on Y = Y1 ∧ · · · ∧ Yp ∈

∧p u by

u · Y = u ∧ Y ;

u− · Y = 2

p∑
i=1

(−1)i+1B(u−, Yi)Y1 ∧ . . . Ŷi · · · ∧ Yp.

Namely, since u and u− are isotropic, the Clifford and wedge products coincide on each
of them; in particular, u−u−> = 0.

It is quite clear that the action of C− on V ⊗ S = V ⊗
∧
u is 2 times the action of the

u-homology differential ∂, which is given by

∂(v ⊗ Y1 ∧ . . . ∧ Yp) =

p∑
i=1

(−1)iYi · v ⊗ Y1 ∧ . . . Ŷi ∧ . . . ∧ Yp+∑
1≤i<j≤p

(−1)i+jv ⊗ [Yi, Yj] ∧ Y1 ∧ . . . ∧ Ŷi ∧ . . . ∧ Ŷj ∧ . . . Yp

on V⊗
∧p u. Namely, acting on a typical basis element v⊗ui1∧· · ·∧uik , ui⊗u−i will produce

zero if i is different from all ij, and it will produce 2(−1)j+1uijv ⊗ ui1 ∧ . . . ûij · · · ∧ uik
if i = ij. Moreover, [ui, uj]u

−
i u
−
j will act as zero unless both i and j appear among

i1, . . . , ik, and if i and j do appear, then ui and uj get contracted while the commutator
gets inserted, exactly as in the formula for ∂.

To understand the action of C, we first make the following identifications:

V ⊗
∧pu ∼= Hom((

∧pu)∗, V ) ∼= Hom(
∧p(u∗), V ) ∼= Hom(

∧pu−, V ).
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The last space is the space of p-cochains for the u−-cohomology differential d, given by
the usual formula

(dω)(X0 ∧ . . . ∧Xp) =

p∑
i=0

(−1)i Xi · ω(X0 ∧ . . . ∧ X̂i ∧ . . . ∧Xp)+∑
0≤i<j≤p

(−1)i+j ω([Xi, Xj] ∧X0 ∧ . . . ∧ X̂i ∧ . . . ∧ X̂j ∧ . . . ∧Xp)

The following lemma will help us understand the action of C. The proof is a straightfor-
ward calculation, starting from the fact that the identification

∧p(u∗) = (
∧p u)∗ is given

via (f1 ∧ · · · ∧ fp)(X1 ∧ · · · ∧Xp) = det fi(Xj).

Lemma 10.1. Through the above identifications, the differential d : V⊗
∧pu→ V⊗

∧p+1u
is given by

d(v ⊗ Y1 ∧ . . . ∧ Yp) =
n∑
i=1

u−i · v ⊗ ui ∧ Y1 ∧ . . . ∧ Yp

+
1

2

n∑
i=1

p∑
j=1

v ⊗ ui ∧ Y1 ∧ . . . ∧ [u−i , Yj]u ∧ . . . ∧ Yp,

where [u−i , Yj]u denotes the projection of [u−i , Yj] on u.

It is now clear that the action of A gives the first (single) sum in the expression for d.
On the other hand, the element 1⊗a = −1

4
⊗
∑

i,j uiuj[u
−
i , u

−
j ] transforms v⊗Y1∧· · ·∧Yp ∈

V ⊗
∧p u into

−1

4
v ⊗

∑
i,j

uiuj 2

p∑
k=1

(−1)k+1B([u−i , u
−
j ], Yk)Y1 ∧ . . . Ŷk · · · ∧ Yp

=
1

2
v ⊗

∑
i,j,k

(−1)k+1B([u−i , Yk], u
−
j )ui ∧ uj ∧ Y1 ∧ . . . Ŷk · · · ∧ Yp.

Now we sum
∑

j B([u−i , Yk], u
−
j )uj = [u−i , Yk]u, and after commuting [u−i , Yk]u into its

proper place, we get the second (double) sum in the expression for d.
So we see that D = C + C−, where C (resp. C−) acts on V ⊗ S = V ⊗

∧
u as the

u−-cohomology differential d (resp. up to a factor -2, as the u-homology differential ∂).
To compare the l-actions under this identification, note that the natural action of l on
V ⊗S is the tensor product of the restriction of the g-action on V and the spin action on
S. On the other hand, the usual l action on u−-cohomology and u-homology is given by
the adjoint action on

∧· u− and
∧· u. Thus, our identification of V ⊗

∧· u with V ⊗ S is
not an l-isomorphism. However, as was proved in [16], Proposition 3.6, the two actions
differ only by a twist with the one dimensional l-module Z−ρ(u) of weight −ρ(u).

Remark 10.2. The fact that C and C− act on V ⊗ S as differentials is by no means an
accident, as they in fact square to zero in U(g) ⊗ Cl(s). A simple direct way of seeing
this uses Kostant’s formula [15], Theorem 2.16 for the square of D:

D2 = −Ωg ⊗ 1 + ∆(Ωl) + (‖ρl‖ − ‖ρ‖)1⊗ 1.

It follows from this expression for D2 that D2 commutes with all l-invariant elements of
U(g) ⊗ Cl(s). In particular, D2 commutes with E = −1

2

∑
i 1 ⊗ u∗iui. An easy direct

calculation shows that

[E,C] = C; [E,C−] = −C−.
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Thus

0 = [E,D2] = [E,C2 + CC− + C−C + (C−)2] = 2C2 − 2(C−)2,

hence C2 = (C−)2. Combined with [E,C2] = 2C2 and [E, (C−)2] = −2(C−)2 this implies
C2 = (C−)2 = 0.

To finish this section, let us note that D is independent not only of the choice of basis
(ui) but also of the choice of u ⊂ s. On the other hand, E, C and C− do depend on the
choice of u.

The results of this section suggest there may be a relation between Dirac cohomology
for the pair (g, l), u-homology and u−-cohomology. We get results in some particular
cases studied in the next sections.

11. Hodge decomposition for p−-cohomology (Hermitian symmetric case)

In this section, we study the following special case : suppose we are in the setting of
Section 3, but also that the pair (g, k) is hermitian symmetric. Then k is also a Levi
subalgebra of g, p decomposes as p+ ⊕ p− and we are also in the setting of the previous
section with l = k, u = p+ and u− = p−.

Suppose furthermore that V is a unitary (g, K)-module. In this case, d and δ are minus
adjoints of each other with respect to a positive definite form on V ⊗ S, and we can use
a variant of standard Hodge decomposition to conclude that the Dirac cohomology, p−-
cohomology and p+-homology are all isomorphic to the space of ”harmonics”.

More precisely, suppose that V posseses a positive definite hermitian form invariant
with respect to the real form g0. We denote by ¯ the conjugation with respect to g0.

Note that our parabolic k⊕ p+ = l⊕ u is θ-stable, and that p− = u− = ū is indeed the
complex conjugate of u. Furthermore, we can choose the basis ui so that after suitable
normalization, we can take u∗i = ūi.

We consider the positive definite form on S ∼=
∧· u, given by 〈X, Y 〉pos := 2B(X, Ȳ )

on u, and extended to all of S in the usual way, using the determinant. Notice that we
have 〈ui, uj〉pos = 2δij. This form is k-invariant.

Lemma 11.1. With respect to the form 〈X, Y 〉pos on S, the adjoint of the operator
ui ∈ C(s) is −u∗i .

The adjoint of the operator ui on V is −ūi. So the adjoint of ui⊗u∗i on V ⊗S is u∗i ⊗ui.
Here we consider the tensor product hermitian form on V ⊗ S; this form will again be
denoted by 〈., .〉pos.

Corollary 11.2. With respect to the form 〈., .〉pos on V ⊗ S, the adjoint of C is C−.
Therefore D is self-adjoint on V ⊗ S.

Of course, we knew already from Section 3 that D is self-adjoint with respect to the
positive definite form 〈., .〉pos on V ⊗ S, and that in particular in this case the operators
D and D2 have the same kernel on V ⊗S, which is also the Dirac cohomology of V . The
new ingredient is the assertion about C and C−. Recall that these induce, up to a scalar
factor, the differentials d and δ of u−-cohomology and u-homology.

It is now easy to obtain a variant of the usual Hodge decomposition. The following
arguments are well known; see e.g. [31], Scholium 9.4.4. We first have

Lemma 11.3. (a) kerD = ker d ∩ ker δ;
(b) Im δ is orthogonal to ker d and Im d is orthogonal to ker δ.
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Proof. (a) Since D = d + δ, it is clear that ker d ∩ ker δ is contained in kerD. On
the other hand, if Dx = 0, then dx = −δx, hence δdx = −δ2x = 0. So 〈dx, dx〉pos =
〈−δdx, x〉pos = 0, hence dx = 0. Now Dx = 0 implies that also δx = 0.

(b) is obvious since d and δ are minus adjoint to each other.
Combining Corollary 4.6, Lemma 4.7 and the fact kerD = kerD2, we get

Theorem 11.4. Let (g, k) be a hermitian symmetric pair and set l = k and u = p+. Let
V be an irreducible unitary (g, K)-module. Then:

(a) V ⊗ S = kerD ⊕ Im d⊕ Im δ;
(b) ker d = kerD ⊕ Im d;
(c) ker δ = kerD ⊕ Im δ.
In particular, The Dirac cohomology of V is equal to p−-cohomology and to p+-homology,

up to modular twists:

kerD ∼= H ·(p−, V )⊗ Zρ(p−)
∼= H·(p

+, V )⊗ Zρ(p−).

More precisely, (up to modular twists) the Dirac cohomology kerD is the space of har-
monic representatives for both p−-cohomology and p+-homology.

12. Dirac cohomology of finite dimensional modules

Let g be a complex finite dimensional semi-simple Lie algebra, h a Cartan subalgebra,
b = h⊕n a Borel subalgebra containing h, and b− = h⊕n− the opposite Borel subalgebra.
Set s = n ⊕ n−. Thus g = h ⊕ s. This is a special case of the situation considered in
(10.1). Recall that the spin module S for the Clifford algebra Cl(s) has been identified
as a vector space with

∧
n.

Let u be a compact form of g, and let U be the corresponding compact adjoint group.
Let us denote by X 7→ X̄ the complex conjugation in g with respect to the real form u.
Then

〈X, Y 〉 = −2B(X, Ȳ ), (X, Y ∈ g)

defines a definite positive U -invariant hermitian form on g. This hermitian form restricts
to n, and can be extended to

∧
n in the usual way, using the determinant.

Lemma 12.1. The adjoint of the operator X ∈ s ⊂ Cl(s) acting on S '
∧
n with respect

to the hermitian form defined above is X̄.

This is easily checked by an explicit calculation.
Assume that h is the complexification of a Cartan subalgebra of u, ie.

h = h ∩ u⊕ h ∩ iu.
In this case, all the roots in R(h, g) are imaginary, or equivalently

n− = n̄.

We have then

Lemma 12.2. The cubic part v = a+a− of the Dirac operator D(g, h) is anti-self adjoint
with respect to the form 〈., .〉 on S. More precisely a is adjoint to −a−.

This follows from the previous lemma and the formulas for a and a−.
Let V be a finite dimensional g-module. Then V can be endowed with a definite

positive U -invariant hermitian form. Let us call such a form admissible. For such a form,
consider the tensor product form on V ⊗ S obtained by tensoring with the form on S
introduced above, that we still denote by 〈. , .〉.
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Lemma 12.3. The adjoint of X ∈ g acting on V with respect to an admissible form is
−X̄. The adjoint of the operator A acting on V ⊗ S is −A−. Thus the Dirac operator

D = D(g, h) = A+ A− + 1⊗ a+ 1⊗ a−

is anti-self-adjoint with respect to 〈., .〉.

Corollary 12.4. Let V be a finite dimensional representation of g. The operator D =
D(g, h) acting on V ⊗S is semi-simple. In particular kerD = kerD2 and ImD∩kerD =
0. Thus

HD(g, h;V ) = kerD = kerD2.

The following result is an analog of Kostant theorem [14]. It computes Dirac cohomol-
ogy of an irreducible finite dimensional representation.

Theorem 12.5. Let V be the irreducible finite dimensional representation of V with
highest weight µ. Then, as a h-module

HD(g, h;V ) =
⊕
w∈W

Cw·(µ+ρ)

As for Kostant’s theorem [14], the proof is in two steps : first the weights Cw·(µ+ρ) occur
in V ⊗ S with multiplicity one and the corresponding weight spaces are in the kernel of
D2 (this can be checked directly from the formula for D2). Secondly, no other weights
can occur in the Dirac cohomology because of proposition 9.10.

This result can be sharpened. As a representation of h, the spinor module S can be
splitted in

S = S+ ⊕ S−

where, in the identification S '
∧

n, S+ (resp. S−) corresponds to the even (resp. odd)
part in

∧
n.

Since D is an odd element in U(g) ⊗ Cl(s) its action on V ⊗ S, for any g-module V
exchanges V ⊗ S+ and V ⊗ S− :

D : V ⊗ S+ ↔ V ⊗ S−

The index of the Dirac operator acting on V ⊗ S is the virtual representation

V ⊗ S+ − V ⊗ S−

of h.

Theorem 12.6. Let V be the irreducible finite dimensional representation of V with
highest weight µ. Then, as virtual representations of h

V ⊗ S+ − V ⊗ S− =
∑
w∈W

(−1)l(w)Cw·(µ+ρ).

This is easily obtained from the previous theorem and some knowledge of the weight
structure of S = S+ ⊕ S−.

Corollary 12.7. (Weyl character formula) The character of the finite dimensional rep-
resentation of V with highest weight µ is given by

ch(V ) =

∑
w∈W (−1)l(w)Cw·(µ+ρ)

ch(S+ − S−)
.

The character ch(S+ − S−) =
∑

w∈W (−1)l(w)Cw·ρ is the usual Weyl denominator.
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All these results are proved in much more generality in [17]. Namely, Kostant considers
there the general situation

g = r⊕ s

of the begining of section 9. We have restricted here our attention to the case r = h.

13. Realization of finite dimensional modules

Let us now consider the problem of realizing irreducible finite dimensional representa-
tions of g. As above, with assume that u is a compact real form of g and that U is a
connected, simply-connected compact semi-simple group with Lie algebra u. Let T be a
maximal torus of U and let h be the complexification of t = Lie(T ). Let us start with
the one dimensional representation Cλ of T , λ ∈ it∗. Let Lλ (resp. L±λ ) be the vector
bundle on U/T corresponding to the representation Cλ ⊗ S of T (resp. Cλ ⊗ S±) and
C∞c (U/T,Lλ) (resp. C∞c (U/T,L±λ )) the space of smooth compactly supported sections of
these vector bundles . Writing

C∞c (U/T,Lλ) ' C∞(U)⊗T (Cλ ⊗ S)

one see that C∞c (U/T,Lλ) becomes a g-module, X ∈ g acting by (right) differentiation
on the first factor. Thus C∞c (U/T,Lλ) is a U(g)⊗Cl(s)-module. In particular, the Dirac
operator D = D(g, h) acts on this space. Extend this to

 L2(U/T,Lλ) ' L2(U)⊗T (Cλ ⊗ S)

Let us rewrite

L2(U/T,Lλ) ' L2(U)⊗T (Cλ ⊗ S) ' HomT (C−λ, L2(U)⊗ S).

Now, the action of D on the right-hand side of the above equality is only on the range
L2(U)⊗ S. By Peter-Weyl theorem, one has

L2(U) =
⊕
ν∈P+

Vν ⊗ V ∗ν

Again, D is anti-self-adjoint. It follows that

kerD =
⊕
ν∈P+

Vν ⊗ ker{D on HomT (C−λ, V ∗ν ⊗ S).}

The contragredient representation V ∗ν has lowest weight −ν. Thus theorem 12.5 implies
that kerD 6= 0 if and only if −ν − ρ is conjugate to −λ, ie. ν + ρ is conjugate to λ. In
fact, we obtain :

Theorem 13.1. ([19]) One has kerD = Vw·λ+ρ if there exists w ∈ W such that w · λ− ρ
is dominant, and kerD = 0 otherwise.

There is a more precise version of this result involving the index of the Dirac operator,
as in theorem 12.6 above. In this case, the action of D on C∞c (U/T,Lλ) exchanges the
two factors C∞c (U/T,L±λ ) (and thus, with obvious notation L2(U/T,L±λ ).

Theorem 13.2. ([19]) One has Index(D) = (−1)l(w)Vw·λ−ρ if there exists w ∈ W such
that w · λ+ ρ is dominant, and Index(D) = 0 otherwise.

This result provides an explicit realization of irreducible finite dimensional represen-
tation of g. It is essentially equivalent to the Borel-Weil-Bott theorem, Dirac operators
and Dirac cohomology playing the role of n-cohomology. In fact, Dirac cohomology and
n-cohomology (or n-homology) coincide up to a shift for finite dimensional modules. In-
deed we have seen that the differential for the Lie algebra cohomology with respect to
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n− is given by the action of C on V ⊗ S, and differential for the Lie algebra homology
with respect to n is given by the action of C−. Furthermore, V ⊗ S admits a hermitian
product and C, C− are adjoint to each other for the Hilbert space structure. Thus Dirac
cohomology, as we have already noticed, is simply the kernel of D, and also the kernel of
D2. Since

CC− + C−C = D2

A Hogde theorem type of argument shows that kerC = ImC ⊕ kerD2 and kerC− =
ImC− ⊕ kerD2.

Isimeqn some cases, similar arguments work for unitary Harish-Chandra modules. One
needs self-adjointness of the Dirac oparator in order to apply the same kind of techniques,
and this limits the range of applicability ([11]).

14. Realization of discrete series

The setting is the one of section 3.1. Assume that G is semi-simple and that G and K
have equal rank. We know from Harish-Chandra that the latter condition is necessary
for G to have discrete series.

The realization of discrete series in [24] and [1] is somehow similar to the one above
for finite dimensional representations. One start with G/K rather than U/T and with
an irreducible finite dimensional representation of K. Tensoring with the spin module S,
we form the corresponding vector bundle over G/K. In the argument, we replace the use
of Peter-Weyl theorem by the L2-index theorem. (We have reverted the historical order
: the construction of finite dimensional representation is technically much simplier, but
requires the cubic Dirac operator which was introduced by Kostant much later.)

15. Main properties of Dirac cohomology and alternate definitions

Suppose that we are again in the most general setting of Section 9 but with g semisimple
and r of equal rank. Then the spin mudule splits

S = S+ ⊕ S−

and accordingly, we have odd and even part in the Dirac cohomology of a g-module V

HD(V ) = H+
D(V )⊕ = H−D(V )

Proposition 15.1. Suppose that

0 −→ U −→ V −→ W −→ 0

is an exact sequence of g-modules having infinitesimal character. Then there is a natural
six-terms exact sequence

H+
D(U) // H+

D(V ) // H+
D(W )

��
H−D(W )

OO

H−D(V )oo H−D(U)oo

The fact that this holds only for modules with infinitesimal character have led Pandzic
and Somberg (preprint) to propose an alternate definition of Dirac cohomology where
this property holds without restriction. By an alternate definition of Dirac cohomology,
we mean a new cohomology Hnew

D (V ) wich coincide with the previous one in the most
interesting cases (for instance unitary (g, K)-modules, or finite dimensional representa-
tions, ie. when the Dirac operator acts semisimply), and for which the Hunag-Pandzic
theorem still holds. The goal being that this new theory has better fnctorial properties.
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Another altenate definition is given in [23], the goal there being that Dirac cohomology
becomes a functor with a left (or right) adjoint, which will then deserves the name of
Dirac induction. It is close to the induction functor defined in Lemma 3.5.

16. Proofs

16.1. Proof of proposition 3.2. Here the g-action on HomC(p)(S,M) is on M only,

while the K action descends from the K̃-action given by

(k · f)(s) = k(f(k−1 · s)), k ∈ K̃, f ∈ HomC(p)(S,M), s ∈ S.
We claim that this is the inverse of X 7→ X ⊗S. In fact, since S is the only simple C(p)-
module and since the category of C(p)-modules is semisimple, for every C(p)-module M
there is an isomorphism of C(p)-modules

M ∼= HomC(p)(S,M)⊗ S,
given from right to left by the evaluation map. This isomorphism is easily seen to respect

the (A, K̃)-action.
Likewise, since HomC(p)(S, S) ∼= C by Schur’s Lemma, we have a (g, K)-isomorphism

HomC(p)(S,X ⊗ S) ∼= HomC(p)(S, S)⊗X ∼= X

for any (g, K)-module X.

16.2. Proof of proposition 3.9. We begin by proving a generalization of the well-known
Schur orthogonality relations. Let K be a compact Lie group. Let us fix a Haar measure
µK on K. If f is integrable on K, we will simply write

∫
K
f(k) dk for

∫
K
f(k) dµK(k).

Let (π1, V1), (π2, V2) be two irreducible finite dimensional representations of K. Let 〈. , .〉1
and 〈. , .〉2 be some invariant Hermitian products respectively on V1 and V2.

Proposition 16.1. Let f be a smooth function on K. Then

(16.1)

∫
K

f(k) 〈π(k) · v1, v
∗
1〉 〈π(k)−1 · v2, v

∗
2〉 dk =

∫
K
f(k) dk

dim(V )
〈v1, v

∗
2〉〈v2, v

∗
1〉,

for all v1, v2 in V and for all v∗1, v
∗
2 in V ∗.

To prove this, one uses the fact that V ⊗V ∗ is an irreducible representation of K ×K,
with contragredient V ∗ ⊗ V and the following lemma:

Lemma 16.2. Let G be a compact Lie group, and W be an irreducible finite dimensional
representation of G. If B : W ×W ∗ → C is a G-invariant bilinear form, then there exists
a constant c ∈ C such that

B(w,w∗) = c 〈w,w∗〉, (w ∈ W ), (w∗ ∈ W ∗).

In particular, if B is nonzero, then B is non-degenerate.

The proof is an easy consequence of Schur lemma (see [27], Prop II.1.9).
To prove Proposition 16.1, we apply Lemma 16.2 for G = K×K and W = V ⊗V ∗. The

left-hand side of (16.1) defines a K×K-invariant bilinear form B on (V ⊗V ∗)×(V ∗⊗V ).
Thus, Lemma 16.2 gives a constant c ∈ C such that for all v1, v2 ∈ V and v∗1, v

∗
2 ∈ V ∗,∫

K

f(k) 〈π(k) · v1, v
∗
1〉〈π(k)−1 · v2, v

∗
2〉 dk = c 〈v1, v

∗
2〉〈v2, v

∗
1〉.

It remains to evaluate the value of c. To do this, we fix a basis {zi}i of V , with dual
basis {z∗i }i. Then we write the above formula for v∗1 = z∗i , and v2 = zi, and add up the
results over i. The details are left to the reader. �
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Proof. For a ∈ A, T ∈ R(K), we have

(a⊗ T ) · (1⊗ χγ) = a⊗ T ∗ χγ.

But T ∗ χγ = χγ ∗ T is the projection of T on R(K)γ (see [13], Proposition I.24, I.30 and
Equation (1.37)). Furthermore ([13], Proposition I.39)

R(K)γ = R(K)l,γ = R(K)r,γ̃ ∼= Fγ ⊗C F
∗
γ
∼= End(Fγ),

the isomorphism between Fγ ⊗C F
∗
γ and R(K)γ being given by

v ⊗ v∗ 7→ 〈v, γ̃(.) · v∗〉µK = 〈γ(.)−1 · v, v∗〉µK .

Thus we see that

R(A, K) · (1⊗ χγ) ∼= A⊗U(k) (Fγ ⊗C F
∗
γ )

To compute (1⊗χγ) · (a⊗ T ) · (1⊗χγ), we may now assume that T = T ∗χγ = χγ ∗ T
is of the form

T = 〈v, γ̃(.) · v∗〉 = 〈γ(.)−1 · v, v∗〉µK ,

and we need to evaluate :

(1⊗ χγ) · (a⊗ T ).

According to [13], Proposition I.104, one may compute this product by introducing a
basis of the (finite-dimensional) space generated by a ∈ A as a representation of K. Let
{aj}j be such a basis, with dual basis {a∗j}j. Then

(1⊗ χγ) · (a⊗ T ) =
∑
j

aj ⊗ (〈Ad(.)a, a∗j〉χγ) ∗ T.

Let us give another expression for the element

(〈Ad(.)a, a∗i 〉χγ) ∗ T

of R(K). As a matter of notation, recall that 〈Ad(.)a, a∗j〉χγ is the result of the multi-
plication of the distribution χγ in R(K) by the smooth function 〈Ad(.)a, a∗i 〉 on K, an
element in R(K). For a test function φ ∈ C∞(K),
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〈 (〈Ad(.)a, a∗j〉χγ) ∗ T, φ〉 =

∫
K×K

φ(xy) 〈Ad(x)a, a∗j〉 dχγ(x)dT (y)

=

∫
K×K

φ(xy) 〈Ad(x)a, a∗j〉
dim(Vγ)

vol (K)
Θγ̃(x)〈γ̃(y) · v∗, v〉 dxdy

=

∫
K

∫
K

φ(y)〈Ad(x)a, a∗j〉
dim(Vγ)

vol (K)

(∑
i

〈γ̃(x) · v∗i , vi〉

)
〈γ̃(x−1y) · v∗, v〉 dxdy

=

∫
K

φ(y)
∑
i

dim(Vγ)

vol (K)

(∫
K

〈Ad(x)a, a∗j〉〈γ̃(x)v∗i , vi〉〈γ̃(x)−1 · (γ̃(y) · v∗), v〉 dx
)
dy

=

∫
K

φ(y)
∑
i

(∫
K

〈Ad(x)a, a∗j〉 dx
)

1

vol (K)
〈v∗i , v〉〈γ̃(y) · v∗, vi〉dy

=

(∫
K

〈Ad(x)a, a∗j〉 dx
)

1

vol (K)

∫
K

φ(y)〈
∑
i

〈γ̃(y) · v∗, vi〉v∗i , v〉 dy

=

(∫
K

〈Ad(x)a, a∗j〉 dx
)

1

vol (K)

∫
K

φ(y)〈γ̃(y) · v∗, v〉dy

=

(∫
K

〈Ad(x)a, a∗j〉 dx
)

1

vol (K)
〈T, φ〉

In the third line, we have written Θγ̃ as a trace, choosing a basis {vi}i of Fγ with
dual basis {v∗i }i, and we also made a change of variable y 7→ x−1y. In the fourth line, we
arrange the terms so that an expression like the left-hand side of (16.1) becomes apparent.
Then, we simplify the expression using (16.1). The rest of the computation is clear.

Thus we obtain,

(〈Ad(.)a, a∗i 〉χγ)T =

(∫
K

〈Ad(x)a, a∗i 〉 dx
)

1

vol (K)
T

and

(1⊗ χγ) · (a⊗ T ) =
∑
i

ai ⊗
(∫

K

〈Ad(x)a, a∗i 〉 dx
)

1

vol (K)
T

=
1

vol (K)

(∫
K

∑
i

〈Ad(x)a, a∗i 〉aidx

)
⊗ T

=
1

vol (K)

(∫
K

Ad(x)a dx

)
⊗ T

But a 7→ 1

vol (K)

(∫
K

Ad(x)a dx

)
is the projection operator from A to AK . The

assertion in the theorem is now clear. �

16.3. Proof of Proposition 9.3. Let (Xi)i=1,...,s be an orthonormal basis of s, and
(Xj)j=s+1,...,s+r be an orthonormal basis of mr, so that (Xk)k=1,...s+r is an orthonormal
basis of m. The expression for D(g, l) is

D(g, l) =
∑

i=1,...,s+r

Xi ⊗Xi + 1⊗ νm
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where

νm =
1

2

∑
1≤i<j<k≤s+r

B([Xi, Xj], Xk) XiXjXk.

We can write this last term as the sum of the following terms :

(16.2) νs =
1

2

∑
1≤i<j<k≤s

B([Xi, Xj], Xk) XiXjXk.

(16.3)
1

2

∑
1≤i≤s<j<k≤s+r

B([Xi, Xj], Xk) XiXjXk,

(16.4)
1

2

∑
1≤i<j≤s<k≤s+r

B([Xi, Xj], Xk) XiXjXk,

(16.5) νmr =
1

2

∑
s+1≤i<j≤s<k≤s+r

B([Xi, Xj], Xk) XiXjXk,

Notice that (16.3) is zero because r is a subalgebra, so the terms appearing there are

B([Xi, Xj], Xk) = B(Xi, [Xj, Xk]) = 0

since [Xj, Xk] ∈ r and Xi ∈ s is orthogonal to r.
Thus, we may write D(g, l) as the sum of

D(g, r) =
∑

i=1,...,s

Xi ⊗Xi + 1⊗ νs

and ∑
i=s+1,...,s+r

Xi ⊗Xi + 1⊗ νmr + 1⊗ 1

2

∑
1≤i<j≤s<k≤s+r

B([Xi, Xj], Xk) XiXjXk.

Let us show now that this last term equals ∆(D(r, l)), ∆) being the diagonal embbeding
(9.8). Indeed, in U(g)⊗ (C(s)⊗̄C(mr) ' U(g)⊗ C(m) one has

∆(D(r, l)) =
∑

i=s+1,...,s+r

Xi ⊗ (1⊗̄Xi) + 1⊗ (α(Xi)⊗̄Xi) + 1⊗ (1⊗̄νmr)

=
∑

i=s+1,...,s+r

Xi ⊗ (1⊗̄Xi) +
∑

i=s+1,...,s+r

1⊗

(
1

4

∑
1≤j,k≤s

B([Xj, Xk], Xi) XjXk

)
⊗̄Xi

+ 1⊗ (1⊗̄νmr)

=
∑

i=s+1,...,s+r

Xi ⊗Xi + 1⊗ νmr + 1⊗ 1

2

∑
1≤i<j≤s<k≤s+r

B([Xi, Xj], Xk) XiXjXk.
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[2] D. Barbasch and P. Pandžić. Dirac cohomology and unipotent representations of complex groups. In
Noncommutative geometry and global analysis, volume 546 of Contemp. Math., pages 1–22. Amer.
Math. Soc., Providence, RI, 2011.
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