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Abstract. We present the mathematical work of Yahya Ould Hamidoune, emphasizing

his main achievements, notably in graph theory and additive combinatorics.

1. Introduction

This paper aims to provide a brief account of the contributions to mathematics of Yahya

Ould Hamidoune, and to give them perspective. The reader interested in his personal

biography and other aspects of his otherwise profoundly humane personality is referred to

[B, C, D].

This presentation of Yahya’s mathematical work is structured into four sections which

roughly reflect his evolution from his early interests in graph theory to the development of

what became his favorite topic, the application of the isoperimetric method to problems

in additive combinatorics.

His early works, covering the years 1977–1983, were mainly devoted to graph theory,

particularly in the area of graph connectivity, which sets the basis of his later evolution.

They are described in Section 2.

Yahya loved playing games. First of all, he had been a national champion of Srand

(or Dhamet, the Mauritanian draughts), for which he was famous as the first modern

theoretician (see the paper [A] which contains some problems and combinations created

by Yahya). Moreover, he was a keen chess player and played bridge and backgammon

honorably as well. It is therefore not very surprising that abstract game theory, to which

Yahya was introduced by Las Vergnas, motivated some of his early work. Even when

his attention focused increasingly on additive theory, his early pursuits never lost their

appeal and he occasionally came back to problems in matroid theory, game theory and

algorithmics. Section 3 describes his main contributions to these areas.

Yahya came to realize that many classical results in additive number theory could be

rephrased in terms of connectivity of Cayley graphs. Inspired by this connection, he

started to develop what he called the isoperimetric method in additive theory. Section 4

describes the evolution of the method and its direct applications to the estimation of
1
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the cardinality of sumsets. The isoperimetric method is of combinatorial nature and it

is expressed in the language of graphs. Yahya occasionally wrote papers on applications

of the isoperimetric method to graph theory, and some of his results in this area are also

mentioned in this section. We may say that Yahya considered the isoperimetric method and

its applications to additive number theory one of his more personal creations. His frequent

meditations (a word he was very fond of and which he used frequently when mentioning

mathematical thought processes) on this method was for him a way to achieve a better

and deeper understanding of the classical addition theorems. He was happy to make subtle

observations which made the whole scene fresher and brighter. This silent and discreet

activity underlying an abundant scientific production was a prominent characteristic of

Yahya’s personality.

During his mathematical journey, Yahya became increasingly interested in problems in

additive theory, a topic which he eventually identified with his main area of research.

Section 5 presents his many results in the field known today as additive combinatorics.

They contain what we think are his more substantial contributions, including, among many

others, his proof with Dias da Silva of the Erdős–Heilbronn conjecture on the cardinality

of restricted addition of sets or his proof with Gao of the Diderrich conjecture on the Olson

constant of an abelian group.

The present paper includes a complete – to the best of our knowledge – bibliography of

Yahya’s works, including some of his last preprints published on arxiv (and not published

in any other form) whose process of publication was interrupted by his sudden passing.

When looking up Yahya’s written material, one finds his name to sometimes take different

forms. This is due to Mauritanian culture, for which people’s names can be varying entities,

and also to transliteration problems. In the present bibliography we uniformized it to the

form “Y. O. Hamidoune”, as he himself did most of time (but typically not in his theses),

abbreviating the “Ould” (which means ‘son of’ and can also be written in lowercase) as if it

were a second given name. References are listed in chronological order. We only included

papers by Yahya, all scientific references by other authors are to be found in the reference

lists of Yahya’s papers. In the body of our text below, we do not mention systematically

the coauthors of Yahya’s papers but since we refer to published material, they can be easily

identified by looking them up in the bibliography. We have also included a few additional

references (referred [A] to [D]) which contains papers on (or partly on) Yahya.

Yahya was in full mathematical activity when he left us. With his numerous collabora-

tors, he harboured many promising projects, some of which are reflected in the contribu-

tions to this volume. To those of us privileged to have worked with him, the memory of his

friendly and generous nature lives on. His mathematical legacy, which we have done our
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best to summarize in this article, will no doubt continue to inspire many mathematicians

in the future.

2. Beginning with graph theory (1977–1987)

In 1975, Yahya started his doctoral studies in combinatorics with Michel Las Vergnas at

the University Pierre-et-Marie-Curie (also known as “Paris 6”). Yahya’s first paper [1], an

article in french entitled “Sur les atomes d’un graphe orienté” (“On the atoms of a directed

graph”) appeared in the Comptes Rendus de l’Académie des Sciences (Paris) in 1977. This

first achievement was one of the main inspirations of Yahya throughout his mathematical

career, and he quoted this paper in many of his later works throughout his life.

Mader had introduced the notion of an atom of a graph as the smallest set of vertices

whose neighbourhood has minimum cardinality. The main property of such extremal sets

is the fact that two distinct atoms are disjoint, a property which explains the terminology.

Watkins had also used the same notion independently.

It was known by that time that the notion does not extend straightforwardly to the

case of directed graphs, in the sense that disjointness of atoms may fail to hold. Yahya’s

observation was that the notion can be translated to directed graphs as long as one is

allowed to move from a directed graph G to its inverse G−1, obtained from G by reversing

the orientations of all arcs. Atoms of a directed graph G and of its inverse graph G−1 do

not necessarily have the same size (actually the value of the connectivity can even differ

in infinite graphs.) The disjointness property, however, always holds in G or its inverse

G−1, whichever has the smaller atoms. This is one of the main theorems in [1]. Figure 1

illustrates this fact.

A

B

A

B

Figure 1. The graphs in the picture, one inverse of the other one, have

both connectivity 1. Thick gray nodes represent cliques of size m > 1, and

arrows mean ‘from all vertices to all vertices’. The graph on the left has two

atoms A,B which intersect nontrivially, whereas the ones on the right are

disjoint.
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Yahya obtained his PhD [3] in 1978 and was admitted as a C.N.R.S. full–time researcher

in 1979 ; his thèse d’État [9] was defended in 1980. He belonged to the Paris 6 combinatorics

group, to which he stayed faithfull throughout his career. This group was directed by

Claude Berge, whose influence was quite strong, and graph theory was naturally at the

forefront of their preoccupations. Yahya followed this trend and soon started to specialize

in connectivity issues in graphs, becoming the group’s expert on the topic. During his

first decade as a researcher, he published about 30 papers in three main areas: studies on

connectivity, its applications to graph theory and works with his former PhD advisor and

then colleague and friend Michel Las Vergnas on game theory and matroid theory (see the

following section).

Among his early papers on connectivity he proved results on the minimum degree of

critically k–connected graphs [2, 7, 10, 11, 14]. A graph is critically k–connected if its

number of vertices is minimal with respect to the property of being k–connected. The

minimum degree δ(G) of a k–connected graph G is at least k, and these papers are devoted

to showing that criticality implies that indeed δ(G) = k and that this minimum degree is

attained in a number of vertices. In his elegant highly concise style, he derived new proofs of

several theorems, solved several conjectures and extended several previous works of Mader

[5], Chartrand [6], Jolivet [6], Lesniak [6], Chartrand, Kaugars and Lick [7], Maurer and

Slater [11], or Entringer and Slater [14], and his papers always include a generalization or

an extension of these known results. In [10] there is a section on vertex–transitive graphs

which contain two key results: the arc–connectivity of a connected vertex–transitive graph

equals the degree and its vertex–connectivity is at least half the degree, and the bound is

tight. The former result was given by Mader for undirected graphs and the latter was an

extension of results by Watkins for antisymmetric graphs and by Olson for Cayley graphs.

This was one of the results which opened the way to later applications to additive theory.

This trend is also reflected in his papers on connectivity problems related to groups and

Cayley graphs [8, 12, 17, 18, 29] which was to become one of the central topics of his

research. One of the key results in [17] states that the atom containing 1 of a Cayley graph

Cay(G,S) or its inverse Cay(G,S−1) is a subgroup. In [17] there are some applications to

the connectivity of circulant graphs (Cayley graphs on cyclic groups), Cayley graphs on

minimal generating sets and of the assignment polytope, extending results of Boesch and

Felzer, Godsil and Imrich respectively. Yahya also gave a version of the main result in [17]

for abelian Cayley graphs [18] and a generalization to infinite Cayley graphs [29].

The papers [8, 12] deal with cycles in graphs, a topic that Yahya addressed several times

from his early papers. He had obtained a tight bound on the length of a cycle passing

through all vertices in a k–connected graph of order n ≥ 8k3 + k [4] and started a series
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of papers on a version by Behzad, Chartrand and Wall of a longstanding conjecture of

Cacceta and Häggkvist still wide open today. The conjecture states that a graph with

minimum degree δ(G) = min{δ+(G), δ−(G)} and girth g(G) has at least

n ≥ δ(G)(g(G)− 1) + 1

vertices. Actually the conjecture of Behzad, Chartrand and Wall assumes the graph to

be regular, and Cacceta and Häggkvist conjecture the same conclusion with the minimum

out–degree δ+(G) in place of δ(G). Yahya proved the conjecture for the class of vertex–

transitive graphs [12], for graphs with minimum degree δ(G) = min{δ−(G), δ+(G)} ≤ 4

(see [13]) and for graphs with minimum out–degree δ+(G) ≥ 3 (see [22]), three results

which are still central in this field. He also gave a formulation for groups [8, 12, 30] which

states that every element in a group G of order n admits a factorization of length at most

dn/se by elements of a set S ⊂ G with cardinality |S| = s. Again, this result established

a connection with classical addition theorems.

3. Games

During the early years of Yahya’s career, Parisian combinatorics were under the influence

of Berge, himself very interested in the graph theory problems posed by Shannon. Berge

being besides a notorious amateur of the game of Hex, it was natural for those around

him to become exposed to the related and more general Shannon switching game. The

Shannon switching game is played on a graph, on which two vertices, a and b say, have

been singled out. Two players, called Short and Cut, play alternately. Cut, when it is

his turn, chooses an edge and deletes it from the graph. On Short’s turn, he marks an

edge so that it can’t be deleted by Cut anymore. Short wins if he manages to mark a

path joining a to b, otherwise he loses. The respective roles of Short and Cut are more

similar than they may at first appear to be. If one imagines a fixed edge linking a to b,

then Short is trying to mark a cycle passing through a and b, while Cut is trying to mark

a cocycle (or cutset) separating a from b. When one generalizes the game from graphs to

matroids, then both players are trying to mark circuits of matroids that are dual to each

other. Matroid duality helps analysis and in 1964 Lehman gave a complete solution to the

general Shannon switching game on graphs by solving the more general matroid problem.

We see that Short wins when a and b are connected in a very strong sense. Having become

an expert on graph connectivity, Yahya must have seen a suitable terrain for him to attempt

again generalizations to digraphs. Given the matroid connection to the problem it was also

natural for him to pair up with his early mentor Las Vergnas who was keen to develop

the theory of oriented matroids. Together they considered two variants of the Shannon
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switching game. The players, now called White and Black, start with an undirected graph.

On White’s turn he chooses a non–played edge and directs it. Black chooses a unplayed

edge and marks it, so it can not be directed anymore. White wins if a directed path from

a to b eventually appears. This version is called the directed switching game. In the other

version, called the One way game, Black also directs edges instead of marking them. Again,

White wins if a directed path (possibly with both white–directed and black–directed edges)

appears. After having annonced their results in [16, 19] Hamidoune and Las Vergnas gave

a comprehensive account of their study in [20] characterizing the winning positions for the

directed variants on graphs by putting them in an oriented matroid context.

Shortly after, Yahya published a paper [21] giving a complete solution to the Box game,

a game first introduced by Chvátal and Erdős. This game can be thought of as yet another

variant of the Shannon switching game, where the graph is obtained from a single path

relating a to b, and every edge has been transformed into a set of parallel edges (called a

“box” in the original terminology). The game deviates from the standard switching game

in that Short and Cut are allowed to mark and delete up to q edges and p edges respectively.

The solution does not make use of matroid theory and is somewhat ad hoc. A little later,

Yahya went back to the more classical Shannon switching game and published a paper [26]

on its misère variant.

At about the same period of time, Yahya wrote two other papers on the topic of games

and graphs. In [23] the game under study is played on a graph: the Evader, when it is his

turn, moves from a vertex to a neighbouring one. The Catchers, there are p of them, simul-

taneously and in coordination move from the vertices they sit on to neighbouring vertices.

For a given graph G, one wishes to determine the number p(G) which is the minimum p

such that the Catchers can be always guaranteed to catch the Evader. Previous work was

mostly concerned with undirected graphs, and as often, Yahya tackled the directed case.

He proved that for the class of strongly connected abelian Cayley digraphs of out–degree

k, we have p(G) ≤ k+ 1, the best possible result. Results by Frankl (who called the game

Cops and robbers) on abelian Cayley graphs are also improved. The paper [24] does not

study games per se, but is devoted to the study of kernels, or in this case quasi–kernels,

in directed graphs, that are a key to winning strategies for many games: the influence of

Henri Meyniel, who spent a lot of time studying kernels, can be felt in this paper.

Ten years later, Yahya came back to the Shannon switching game with a follow–up [60]

to [20], even though by then most of his attention was focused on additive problems.
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4. The isoperimetric method

After reading Mann’s book “Addition Theorems”, dealing with the theory of Minkowski

sumsets defined as

A+B = {a+ b, a ∈ A, b ∈ B},

for A and B two subsets of an additive monoid (if A = B, then A + A is denoted 2A

and hA is defined recursively as (h − 1)A + A, for h a positive integer), Yahya realized

that some of his results on graph connectivity generalize, in a disguised form, some classi-

cal combinatorial results of additive number theory (at that time, this body of work was

not yet called additive combinatorics). The isoperimetric method was born. Yahya pro-

ceeded to investigate in a systematic way the classical theorems of the theory, those due

to Cauchy–Davenport, Chowla, Olson, Mann, Shepherdson, Shatrowsky, Vosper, Kneser,

Kemperman,. . .

Given two finite sets A,B of a group G, written additively, with 0 ∈ B one can write

the sumset A+B as

A+B = A ∪ ∂A,

where ∂A = (A + B) \ A is the boundary of A in the Cayley graph Cay(G,B). The

estimation of the minimum cardinality of a sumset A + B can be interpreted as the con-

nectivity of the graph. As we have already mentioned, in his paper on the connectivity

of Cayley graphs [17] from 1984 Yahya had already proved that the atom containing 0

of the Cayley graph Cay(G,S) is a subgroup, a result which corresponds to the classical

theorem of Mann that the smallest cardinality of a sumset for a fixed B is attained when

A is a subgroup. One advantage of the graph setting is that the result extends naturally

to nonabelian groups and to infinite groups: the only requirement is that the graph has a

regular transitive group of automorphisms.

The isoperimetric method deals with a generalization of connectivity, fragments and

atoms to the parametrized notions of k–connectivity, k–fragments and k–atoms. The k–

connectivity κk(G) of a graph G is

κk(G) = min{|∂X| : |X| ≥ k, V (G) \ (X ∪ ∂X)| ≥ k},

the smallest cardinality of the boundary of a set with cardinality at least k whose exterior,

the complement of the set and its boundary, has also cardinality at least k (as long as

such a set exists, namely, the graph is k–separable.) This explains the “isoperimetric”

terminology. A k–fragment is a set which attains the k–connectivity, and a k–atom is a

k–fragment with minimum cardinality.
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The general properties of atoms and fragments extend to the corresponding isoperimetric

analogues and the general theory became one of the main contributions of Yahya (see his

survey article [95] or [106] for instance). One of the key results is that, if the k–atom of G

is not larger than the k–atom of its inverse graph G−1, then a k–atom and a k–fragment

not containing it intersect in at most k− 1 points. He developed a number of applications

of the theory in a long series of papers to deal with the somewhat intricate structure

of sets with small sumset. This topic has become one of the central parts of additive

combinatorics, the Inverse theory of set addition which had been pioneered by Freiman.

Yahya was always sensitive to exact rather than asymptotic or approximate results, and

his contributions were focused in this direction. We next summarize some of his most

substantial contributions in the area.

The Cauchy–Davenport theorem, giving the inequality

|A+B| ≥ min
(
p, |A|+ |B| − 1

)
in a cyclic group of prime order p follows easily from the fact that an atom is a subgroup. Its

corresponding inverse result, the theorem of Vosper, which states that non-degenerate sets

achieving equality in the Cauchy–Davenport inequality are arithmetic progressions, found

a natural explanation in the setting of the isoperimetric method, explaining in particular

the nature of the degenerate cases of the theorem. The characterization of extremal sets

for the Cauchy–Davenport inequality in different settings is what Kemperman called the

critical pair problem. There are many extensions of these results which Yahya undertook

successfully with the isoperimetric approach.

In the case of cyclic groups of prime order, the Hamidoune–Rødseth theorem [74] gives

the precise structure of pairs of sets {A,B} of cardinality at least 3 with

7 ≤ |A+B| = |A|+ |B| ≤ p− 4

and subsequent extensions can be found in [84]. For general cyclic groups, Chowla had

extended the Cauchy–Davenport inequality by requiring that the elements of one set are

invertible, and such extensions were considered by Yahya [43, 86]. He realized that Chowla’s

condition could be relaxed to the fact that every element of a set S has order at least |S|+1,

and that this condition can be extended from cyclic groups to general groups.

For general abelian groups, the extension of the Cauchy–Davenport theorem is Kneser’s

theorem, which states that a pair of sets violating the inequality has a periodic sumset,

meaning a union of cosets modulo some non-trivial subgroup. By revisiting the isoperi-

metric theory, Balandraud obtained in his thesis a new proof and a refinement of Kneser’s

theorem: the key observation is that the period of the sumset of such a pair of sets can
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be made to depend essentially on only one of the two sets, a result which was reobtained

and generalized by Yahya [89] who managed also to give an isoperimetric proof of Kneser’s

theorem in [91].

The exact structural description of pairs of sets satisfying an inequality beyond Cauchy–

Davenport is provided by the rather intricate description of the Kemperman structure

theorem. Yahya had the view that the recursive description of Kemperman was not com-

pletely satisfactory, and he came back to the result on several occasions [39, 59, 73, 76, 81]

until he was satisfied with his formulation in [105]. The formulations in the latter refer-

ences are similar in spirit, and Yahya called them Vosper theorems for abelian groups. The

most compact one can be found in [81] and reads as follows: for every generating set A

containing 0 of a finite abelian group G such that 2 ≤ |A| ≤ |G|/2, there is a subgroup

H < G satisfying

|A+H| < min
(
|G|, |A|+ |H|

)
and either

(i) A/H is an arithmetic progression, or

(ii) |A/H + B/H| ≥ min
(
|G/H| − 1, |A/H| + |B/H|

)
for every subset B ⊂ G with

|B/H| ≥ 2.

Here X/H stands for the image of the set X ⊂ G under the canonical homomorphism

G → G/H. The versions above are simple and useful but miss the joint structure of a

critical pair provided by the Kemperman structure theorem. To avoid degenerate cases, a

critical pair in a group written additively is defined to be a pair of finite sets {A,B} with

|A|, |B| ≥ 2 and |A + B| = |A| + |B| − 1 < |G| − 1. Yahya persisted in his search of a

compact description of critical pairs. Some simplified versions of Kemperman’s theorem

had been given by Lev and by Grynkiewicz and Yahya was searching for a different one.

In one of his last preprints [105] he proposes the following formulation. Consider {A,B} a

critical pair in an abelian group G. For the structural characterization of the pair {A,B},
one may assume that A ∪ B generates G , 0 ∈ A ∩ B, A + B is aperiodic, and A is not

an arithmetic progression. Then there is a subgroup H < G such that both A and B are

almost H–periodic, that is, each set is a union of H–cosets but for one coset which is only

partially filled, say A0 = A ∩ (H + a) * H + a and B0 = B ∩ (H + b) * H + b, which

satisfy |A0 +B0| = |A0|+ |B0| − 1. Moreover one of the following conditions hold:

(i) A/H = {0}, or

(ii) A/H + B/H = G/H and A0/H + B0/H has a unique expression in A/H + B/H,

or
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(iii) both A/H and B/H are arithmetic progressions with the same difference; moreover

A0/H and B0/H are initial elements of the progressions A/H and B/H respectively.

One may want to check the Kemperman structure theorem to appreciate the simplicity

of the above formulation. Moreover, one of the drawbacks of Kemperman’s theorem is

that the characterization is recursive in the pair {A0, B0} and in the pair {A/H,B/H}.
The latter dependency, which leads to some technical difficulties, disappears in Yahya’s

formulation. Finally, the nature of the period H in his version is identified within the

isoperimetric method. In [102], Yahya went one step further by characterizing the pairs

{A,B} in an abelian group such that |A+B| = |A|+ |B|, by recovering a structural result

of Grynkiewicz.

The inverse sumset problem has been the object of special attention in the case of the

integers. This part of the theory was initiated by Freiman who gave the general structure

of sets A ⊂ Z with |2A| ≤ c|A| for a positive number c. Freiman himself had developed

more precise results for c = 3. The (3k−4)–theorem of Freiman (the name of this theorem

comes from the historical notation of Freiman |A| = k) states that a set A of integers with

|2A| ≤ 3|A|−4 is a dense subset of an arithmetic progression. The value 3|A|−4 is critical

for this result and Freiman went a step further by establishing a (3k − 3)–theorem giving

the structure of sets A satisfying |2A| = 3|A|−3 which, except for some sporadic examples,

are dense subsets of at most two arithmetic progressions. Yahya noticed that structural

results on small sumsets in cyclic groups provide the means to prove inverse theorems in

the integers, and he exploited this approach several times. He obtained [51] the extension

to the sum of two distinct sets of Freiman’s (3k−4)–theorem, a result independently given

by Lev and Smeliansky that Yahya did not eventually publish. Yahya further made more

precise and generalized the (3k− 3)–theorem [78] by extending the result to cover also the

case where |A+ λ ·A| = 3|A| − 3 (λ an integer) and by giving the precise structure of the

corresponding sets. Here, we use the notation

λ · A = {λa, a ∈ A}

for the λ–dilate of the set A (this paper contains in particular the first occurrence of the sum

of dilates problem), a subject to which Yahya returned later (see Subsection 5.9 below).

He also came back to the problem [81] by characterizing the extremal sets for a multiple

addition version of the (3k − 3)–theorem which had been formulated by Lev.

As has been already mentioned, the isoperimetric method is applicable to the sumset

problem in nonabelian groups (in this case, people speak rather, multiplicatively, of product

set). Yahya’s 1977 paper [1] already contains a proof of a theorem by Olson, also from

1977, that the connectivity of a Cayley graph Cay(G,S) is at least |S|/2. This first result
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prompted Yahya to explore further the generalization of “additive” problems to nonabelian

groups: he started with a sufficient condition for an extension of Olson’s theorem [39, 45].

In [52] he formulated a Vosper–like theorem for nonabelian groups. The conclusion, that a

critical {A,B} pair consists of two progressions, is showed to hold under the condition that

every element in G\{1} has order at least |B|. This condition clearly holds in cyclic groups

of prime order, giving the original theorem of Vosper, or in torsion–free groups, providing

a theorem by Brailovsky and Freiman. In torsion–free groups, Yahya [66] obtained also a

proof of the Hamidoune–Rødseth theorem, namely, that pairs of sets with |AB| = |A|+ |B|
are arithmetic progressions with one missing element.

There has been recently an increasing interest for sets with small doubling in nonabelian

groups, objects called approximate groups, culminating in recent work by Breuillard, Green

and Tao (their common paper in the present volume deals with this notion again). Olson

had given an example which shows that the natural extension of Kneser’s theorem does

not hold in nonabelian groups: there are nonabelian groups containing pairs of sets {A,B}
with |AB| < |A| + |B| − 1 for which AB is not a union of left–cosets, right–cosets nor

left–right–cosets xHy of a subgroup H. In 2009, Tao discussed in his blog a theorem of

Freiman concerning the structure of a set A in a nonabelian group such that |A2| ≤ c|A|.
The theorem of Freiman can be seen as a nonabelian analogue of Kneser’s theorem in that,

for c ≤ 1.6, such a set A must be the union of right–cosets of a subgroup. Tao gave a simple

proof of this structural result for sets with |AA−1|, |A−1A| ≤ (1 +
√

5)/2 and he asked if

this result could be extended to c < 2− ε, a question which was immediately answered by

Yahya [111] in the affirmative by an application of the isoperimetric method. He showed

that the condition |A−1A| ≤ 2|A| − 2 < |G|, where G is the group generated by A−1A,

implies that

A−1HA \ a−1Ha ⊂ A−1A,

for some proper subgroup H and some element a ∈ A, or the same conclusion by exchanging

A by A−1. In fact, the subgroup H is an atom of some right–translate of A. This can be

seen as a nonabelian version of Kneser’s theorem. If one insists on concluding that A−1A

is a periodic set, Yahya [111] showed that if |A−1A| ≤ min{|G|, 5/A|/3} then A is a union

of at most 6 cosets of a normal subgroup, which again is closely related to an atom of a

translate of A. The paper by Tao in this volume suggests a subtly different approach to

the same question based on the ideas of Yahya for reaching the constant c = 2− ε.
The framework for the above applications of the isoperimetric method to the small

sumset problem was progressively refined in several papers of Yahya [68, 73, 76, 102]

where the method was presented in an increasingly compact form. Like a patient and
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conscientious craftsman, he came back again and again to polish and shine this tool till the

very end of his life. The paper “Some additive applications of the isoperimetric approach”

[90] and his preprint “On Minkowski product size: The Vosper’s property” from 2011 [100]

have become his last accounts of the method. The paper by Serra and Zémor included in

this volume somewhat completes this last preprint.

The isoperimetric method is of combinatorial nature and it finds a natural expression

in the language of graphs. Actually, Yahya never lost contact with his early works on

graph connectivity. In parallel to his papers on applications of the isoperimetric method

to additive problems, he used to publish closely related ones applied to networks, where

the addition theorems are used to answer questions on connectivity of graphs. Examples

of such works are an estimation of bisection cuts in abelian Cayley graphs by using the

Plünnecke–Ruzsa inequalities [54], the characterization of undirected Cayley graphs for

which the minimum cuts isolate a single vertex, in the abelian case [38] by using the

Kemperman theorem, for quasiminimal Cayley graphs [55, 69], in vertex–transitive graphs

[103], or in arc–transitive graphs [108]. The isoperimetric method applies to submodular

functions other than the vertex–boundary of a set in a graph, particularly for the edge–

boundary, leading to results on edge–connectivity. In [37], a characterization of vertex–

transitive graphs in which the minimum edge–cuts isolate a single vertex is given. A

stronger statement is given in [72] which shows that, in a vertex–transitive graph G with

degree d and order n, the edge–boundary of a set X with d/3 ≤ |X| ≤ n/2 has at least

2d2/9 edges unless G has a strong structure.

5. Additive Theory

The development of the isoperimetric method placed Yahya in the area of additive num-

ber theory, where he studied many different problems, often treating them with his favorite

tool. In this section we briefly describe his main contributions in the area. The reference

[53] contains many related results (see also [48]).

5.1. A theorem by Shepherdson. In one of his early papers Yahya [12] proved the

Cacceta–Häggkvist conjecture on the smallest order of a directed graph with given out–

degree and girth, for the class of vertex–transitive graphs. He later uncovered a theorem

of Shepherdson from 1947 which states the same result when restricted to Cayley graphs

on cyclic groups. The result by Shepherdson states that, for a given set S ⊂ Z/nZ with

cardinality s = |S|, there are elements s1, . . . , sk ∈ S, possibly with repetitions, with

k ≤ bn/sc such that

s1 + · · ·+ sk = 0.
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The bound on k is best possible as shown by taking S the arithmetic progression {1, 2, . . . , s}.
This is actually the example which shows that the Cacceta–Häggkvist conjecture is tight.

By extending previous results by Diderrich and Kemperman, Yahya [41] gave the following

nice generalization of the above results. Let G be a finite group (multiplicatively written)

of order n and S ⊂ G \ {1} with cardinality s = |S|. Then, for k = bn/sc, there is a

subgroup H < G contained in

H ⊂ S ∪ S2 ∪ · · · ∪ Sk.

The extremal examples for Shepherdson’s theorem were characterized in [49]. The bound

for k can be rewritten as n ≥ (k−1)|S|+1 and it is improved to n ≥ (k−1)(|S|+1)−1 with

the extremal exceptions, a bound which is again tight. The Cacceta–Häggkvist conjecture

was rephrased by Seymour in the following way: given a graph G with girth g(G) and

out–degree r, there is a vertex x of G such that

|Bg−2
G (x)| ≥ r(g − 2),

where Bk
G(x) = {y ∈ G : d(x, y) ≤ k} denotes the ball centered on x with radius k in

G. Yahya [85] proved Seymour’s conjecture for locally finite vertex–transitive graphs, thus

including Cayley graphs Cay(G,S) with S finite.

The paper by Lladó in this volume addresses Seymour’s conjecture by using the isoperi-

metric method.

5.2. Bases for finite and σ-finite groups. If A is a subset of a group G which it

generates, it is called a basis of order h if hA = G (in additive notation). Hamidoune’s

paper [12] implies that if G is a finite abelian group and A is a subset of G, then A is a

basis of the subgroup it generates, say H, of order at most

max

(
2,

2|H|
|A|
− 1

)
.

Rødseth obtained independently the same result. Yahya and Rødseth joined forces to

extend this result to the more general situation of σ-finite groups. A group G is σ-finite if

it is the increasing union of finite groups : G = ∪+∞
i=1Gi. The upper density of a subset A

of G is then defined as the limit superior of the ratio |Ai|/|Gi| when i tends to infinity. In

[56], the extension of the previous theorem was finally obtained : if G is a σ-finite abelian

group and A is a subset of G with a positive upper density δ, then A is a basis of the

subgroup it generates, say H, of order at most

max
(
2, 2δ−1 − 1

)
.
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5.3. Distinct sums. Yahya’s most famous result is certainly his 1991 proof with Dias da

Silva of a conjecture due to Erdős and Heilbronn on restricted addition of sets modulo

a prime p (see [61]). The paper [46] appears in the Bulletin of the London Mathematical

Society (1994) under the slightly cryptic title “Cyclic spaces for Grassmann derivatives and

additive theory”. The main theorem states that

|h∧A| ≥ min
(
h|A| − h2 + 1, p

)
where h∧A = {a1 + · · · + ah, a1, . . . , ah ∈ A, ai 6= aj for all 1 ≤ i 6= j ≤ h} is the

h–fold restricted sumset, the set of sums of h distinct elements of A. Here the method

relies on exterior algebra, as the notation for distinct sums suggests, the set of distinct

sums appearing as the spectra of a linear operator. The paper by Károlyi and Pauli

in this volume gives a neat description of the method. Shortly after the publication of

Yahya’s paper, another proof of the same result was given by Alon, Nathanson and Ruzsa,

using what has become known as the polynomial method, a fruitful methodology that is

still attracting a lot of attention in the area of additive combinatorics. Yahya’s method,

however, has found other applications in the field and is also expected to yield exciting

developments.

In [75], the same problem is studied in the framework of more general abelian groups

like those of odd order, or cyclic groups.

This is the place to mention another, earlier, paper by Yahya [34] relating linear algebra

to addition theorems. In this paper, a connection is made between the degree of the

minimal polynomial of a sum of linear mappings and the ones of each of these mappings.

This result is shown to imply the Cauchy–Davenport theorem.

5.4. Subset sums. Erdős and Heilbronn made additional conjectures that also aroused

Yahya’s interest. The distinct sums problem is connected to subset sum problems. Notably

one may consider the minimum size of a set in the cyclic group of prime order p which

guarantees that the set of subset sums

Σ(S) =

{∑
x∈T

x : ∅ 6= T ⊂ S

}
covers the whole group. The bound on |h∧A| obtained in [46] gives essentially the best

answer: a set S ⊂ Z/pZ with cardinality |S| ≥
√

4p− 7 satisfies Σ(S) = Z/pZ. The

problem is also related to the minimum size of a set which guarantees that Σ(S) contains 0.

Erdős and Heilbronn first showed this quantity to be not larger than c
√
p and asked for

the optimal constant c. Olson gave a proof with the constant c = 2, and Yahya came close
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to the optimal solution [57] by obtaining that

|S| ≥
√

2p+ 5 log p implies 0 ∈ Σ(S).

The logarithmic term has been recently removed by Nguyen, Szemerédi and Vu for suffi-

ciently large primes, the whole conjecture being eventually settled by Balandraud.

Both conjectures, the complete sets conjecture (sets for which Σ(S) = G) and the zero–

subset sum conjecture (sets for which 0 ∈ Σ(S)) naturally extend to general abelian groups

in different directions. The minimum size for which every set contains 0 in its set of subset

sums in an abelian group of order n, a number called nowadays the Olson constant of the

group, is again of order c
√
n, as was first proved by Szemerédi. Olson proved an upper

bound of 3 for the constant c and again Yahya [57] gave the exact value of c =
√

2 up to

an error term of order O(n1/3 log n).

The corresponding minimum size for complete sets, also called the critical number c(G)

of an abelian group G, was established for groups of order the product of one or two primes

and gave rise to another conjecture by Diderrich in the case when the order of G has at

least three prime factors, namely:

c(G) =
n

p
+ p− 1,

where p is the smallest prime divisor of n. Yahya had an isoperimetric view of the problem

which he developed in [47, 62, 70, 71]. When Gao announced his proof of the Diderrich

conjecture for large primes, Yahya was prompted to join efforts with him to settle the

complete conjecture [67], and extended the result by characterizing the extremal sets of

the problem [79] well beyond the critical number.

More recently Yahya came back to the complete sets problem prompted by a conjecture

by Vu. Vu had proved that every set S ⊂ (Z/nZ)∗ of invertible elements in a cyclic group

with cardinality |S| ≥ c
√
n is a complete set, and he conjectured that one can take c =

√
2.

This conjecture is proved in [88], a result particularly praised by Endre Szemerédi in the

talk he gave at the conference Combinatoire Additive à Paris 2012 (Additive Combinatorics

in Paris 2012) held in the Institut Henri Poincaré in July 2012 in Yahya’s memory.

Yahya also solved another problem of Diderrich on restricted addition by analyzing the

extremal case |h∧A| = |A|, h = 2, . . . , |A| − 2 (see [107]). One of his last papers [109],

which is concerned with the subset sum problem, is coauthored with Balandraud, Girard

and Griffiths and included in the present volume. It contains a generalization of [88] which

relies on the solution of Diderrich’s problem [107] and on the isoperimetric method.

The paper by Hamidoune, López and Plagne [110], also in the volume, addresses a more

general problem on restricted sums.
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5.5. Zero–sum sequences. The zero–subsetsum problem is connected to another prolific

area in additive theory through the Erdős–Ginzburg–Ziv theorem, the zero–subsequencesum.

Here the question concerns the minimum length of a sequence of elements in an abelian

group which guarantees the existence of a subsequence with sum zero. This minimum

length is called the Davenport constant of the group. Yahya wrote several papers on this

problem starting with the following weighted generalization [50] of a result by Olson. Let

G be an abelian group of order n, let x = (x1, . . . , x2n−1) be a sequence of elements in

G with length 2n − 1 and let w = (w1, . . . , wn−1) be a sequence of integer weights, each

coprime with n. There is a nonzero subgroup H < G and a permutation τ (depending on

x) of [1, 2n− 1] for each element x ∈ H such that

(1) x =
∑

1≤i≤n−1

wi(xτ(i) − xτ(n)).

This reduces to the theorem of Olson mentioned above when all weights are equal to 1.

Yahya came back to such weighted extensions [58] by proving that if the length of the

sequence is n + k (k an integer) then equality (1) holds for x = 0 and xτ(n) the most

repeated element in the sequence. This version proves a conjecture by Caro for weights

coprime with n, which had been proved by Alon and Dubiner for n prime. It also extends

a theorem by Gao on zero–sum sequences of length n + D(G) − 1, where D(G) is the

Davenport constant of G, a result that Yahya revisited in [92]. A version for weighted

subsequence products in a finite group is given in [82].

In [64] Yahya proved a conjecture of Bialostocki and Lotspeich on zero–sum sequences

of length 2n − k2/4 + k − 2 assuming k distinct values in an abelian group of order n ≥
k2−4k+8. A close conjecture by Bialostocki was proved in [65]. One of Yahya’s last papers

on the topic [96] contains a proof of a conjecture by Graham stating that a sequence of

length n in the cyclic group Z/nZ such that all nontrivial zero–sum subsequences have the

same length, contains at most two different elements. The conjecture had been proved by

Erdős and Szemerédi for sufficiently large primes and stated by Graham only for n prime.

In [77], Yahya studies zero–sum–free sequences in cyclic groups. These results are then

applied to questions coming from algebraic number theory. Some information on the

non-uniqueness of factorizations in a Krull monoid having a cyclic divisor class group is

obtained.

Three papers in the present volume are related to this subject. The paper by Fan, Gao,

Whang and Zhong addresses zero–sum sequence problems linked with Yahya’s work on

the subject. The paper by Ordaz, Plagne and Schmid is devoted to this topic through

the notion of barycentric sequences defined as sequences satisfying (1) with x = 0 and all
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weights equal to 1. Finally, the paper by Baginski, Geroldinger, Grynkiewicz and Philipp

deals with applications of zero-sum sequences to the non-uniqueness of factorizations in a

Krull monoid.

5.6. The range of diagonal forms. It was already noticed by Cauchy that every element

in a finite field of prime order p is the sum of k k–th powers. More generally, Chowla, Mann

and Strauss considered the range of the diagonal form f(x1, . . . , xn) = a1x
k
1 + · · · + anx

k
n

over the finite field Fp, where a1, . . . , an are nonzero elements of Fp. By an application of

Vosper’s theorem they proved that

|f(Fp, . . . ,Fp)| ≥ min
(
p, (2n− 2)((|Pk| − 1) + 1)

)
,

where Pk = {xk : x ∈ Fp} is the multiplicative subgroup of k–th powers in the field. In

particular, if k 6= (p− 1)/2 then every element in Fp is the sum of dk/2e+ 1 k–th powers.

The above estimation for the range of the diagonal form f was extended by Tietäväinen to

any finite field with odd characteristic when Pk generates the whole field. Yahya [59, 68]

used his version of Vosper’s theorem for general abelian groups to give a proof of the

Chowla–Mann–Strauss inequality which is valid for all finite fields.

5.7. The Frobenius problem. There are several problems in additive theory which are

clearly amenable to the isoperimetric method. One of them is connected to the Frobenius

problem: given a finite set A of positive integers with gcd(A) = 1, compute the largest

integer not lying in the semigroup of integers generated by A, the so–called Frobenius

number of A. Graham and Erdős formulated the extremal problem of finding the largest

Frobenius number f(n,m) of sets of integers in [1, n] with fixed cardinality m. They showed

that

n2

m− 1
− 5m ≤ f(n,m) <

2n2

m

and conjectured that f(n,m) is roughly n2/(m−1). The conjecture was proved by Dixmier

in 1990 by using Kneser’s theorem, and Lev reproved it in 1996 by using Freiman’s (3k−4)–

theorem.

Yahya came back to the problem by using first the simpler theorem of Mann [63], ob-

tained later a simpler proof with the isoperimetric method [76] and, by establishing a

multiple set version of the (3k − 3)–Freiman theorem, he gave a third approach to the

problem [83]. The advantage of these proofs is that they provide the structure of the ex-

tremal sets for the conjecture and the asymptotic value of f(n,m) conjectured by Lewin.
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5.8. Sum–free sets. Recall that a set A in an abelian group is sum–free if 2A ∩ A = ∅.
The structure of maximal sum–free sets and the largest density of a sum–free set in an

abelian group have been topics largely studied in the literature. The version of Vosper’s

theorem for general abelian groups obtained by Yahya [76] was subsequently refined in [81]

to be applied to the study of extremal (k, l)–sum–free sets, where k > l and kA ∩ lA = ∅
(the standard sum–free sets correspond to k = 2 and l = 1). By extending previous

results of Plagne for the cyclic groups of prime order, general upper and lower bounds for

the cardinality of a maximal sum–free set in an abelian group are obtained in [81] which

provide the exact value for cyclic groups of order n whenever gcd(n, k − l) = 1. The

structure of sum–free sets with cardinality at least one third that of its ambient abelian

group is also specified, extending previous results by Yap.

5.9. Sums of dilates. Yahya entered the subject of sums of dilates twice. Basically, the

question is to estimate quantities of the form

|λ · A+ µ · A|

where A is a set of, say, integers and λ and µ are two coprime integers. In fact, Yahya

even introduced this problem in his paper [78], where the very first and simple estimates

of this type are obtained. Then the subject developed without him : motivated by the

study of sumset estimates for bilinear forms by Nathanson and, more generally, of the

distribution of planar sets by  Laba and Konyagin, Bukh obtained the general lower bound

for the cardinality of sums of dilates

|λ1 · A+ · · ·+ λk · A| ≥

(∑
i

|λi|

)
|A| − o(|A|),

where A is a finite set of integers and λ1, . . . , λk are integers with gcd(λ1, . . . , λk) = 1. The

error term in the above estimate is believed to be a function of the λi’s only. Reentering

the subject once again, Yahya obtained such an estimate in the case of A+ p ·A with p a

prime number [94],

|A+ p · A| ≥ (p+ 1)|A| −
⌈
p(p+ 2)

4

⌉
,

for sufficiently large sets A. The bound is tight and the extremal sets are characterized.

Yahya believed that an analogous approach could also provide the tight bound and the

characterization of extremal sets, conjectured to be arithmetic progressions, for the general

case. A first attempt with 2 · A + p · A when p is an odd prime was successfully solved

[101]. This certainly counts as one of Yahya’s unfinished projects.
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The paper by Breuillard and Green in this volume suggests another approach to the

estimation of sums of dilates.

5.10. A theorem of Pollard. Pollard gave a nice generalization of the Cauchy–Davenport

inequality. Let A +k B denote the set of elements in the sumset which can be written in

at least k different ways. Then, for min(|A|, |B|) ≥ t,

t∑
i=1

|A+k B| ≥ tmin
(
p, |A|+ |B| − t

)
.

A version for cyclic groups when (B − B) \ {0} consists only of invertible elements was

also proved by Pollard, and Grynkiewicz extended the result to general abelian groups.

Yahya became attracted to the problem when Dicks told him about the connection, for

nonabelian groups, with an old standing conjecture by Neumann. Yahya [93] started work

on the problem, but when he became acquainted with Grynkiewicz’s result he decided not

to publish it.

The paper by Dicks and Serra in this volume gives an account of Yahya’s ideas on the

problem.

5.11. The Scherk–Kemperman theorem. By extending a previous result by Scherk to

nonabelian groups, Kemperman obtained the following version of the Cauchy–Davenport

inequality. Let A,B be finite subsets of a group G. Then, for every c ∈ AB,

|AB| ≥ |A|+ |B| − |A ∩ (cB−1)|,

where |A ∩ (cB−1)| is the number of representations of c in AB. This result has been

widely used in the zero–sum problems mentioned before, particularly by Olson and Gao.

Yahya [97] considered an extension of the inequality to vertex–transitive graphs, which

provides as a corollary the Scherk–Kemperman theorem. In the same paper he applied

this extension to generalize to infinite locally finite vertex–transitive graphs a theorem by

Mader, on the existence of r cycles C1, . . . , Cr such that Ci ∩ Cj = {v}, i < j, where v is

a fixed vertex of the graph [97]. He also used this result in a weighted generalization of a

theorem by Gao on zero–sum sequences [92].

We mention a last application to the so–called Wakeford–Fan–Losonczy pairings. Let

A,B be finite subsets of a group G with |A| = |B|. A Wakeford–Fan–Losonczy pairing

from B to A is a bijection f : B → A such that bf(b) 6∈ A for each b ∈ B. In other words,

such a pairing is a rainbow matching between A and BA \ A in the (left) Cayley graph

Cay(G,B). By extending to nonabelian groups previous results by Losonczy, Eliahou and

Lecouvey proved that the only groups for which every pair {A,B} of sets with the same
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cardinality and 1 /∈ B admit a pairing from B to A, are either torsion–free or have prime

order. Yahya [104] gave a tight lower bound on the number of such pairings. This lower

bound provides in particular a characterization of the sets which admit a unique such

pairing, which are progressions. In passing, he gave a simple proof of the result by Eliahou

and Lecouvey. The existence of Wakeford–Fan–Losonczy pairings is also an ingredient of

Yahya’s proof of Kneser’s theorem [89] by using the isoperimetric method.
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