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Abstract. We prove uniqueness for the Vlasov-Poisson system in two
and three dimensions under the condition that the Lp norms of the
macroscopic density growth at most linearly with respect to p. This
allows for solutions with logarithmic singularities. We provide explicit
examples of initial data that fulfill the uniqueness condition and that ex-
hibit a logarithmic blow-up. In the gravitational two-dimensional case,
such states are intimately related to radially symmetric steady solutions
of the system. Our method relies on the Lagrangian formulation for
the solutions, exploiting the second-order structure of the correspond-
ing ODE.

1. Introduction

The purpose of this article is to establish a uniqueness result for the
Vlasov-Poisson system in dimension n = 2 or n = 3

(1.1)


∂tf + v · ∇xf + E · ∇vf = 0, (t, x, v) ∈ R+ × Rn × Rn

E(t, x) = γ

∫
Rn

x− y
|x− y|n

ρ(t, y) dy

ρ(t, x) =

∫
Rn

f(t, x, v) dv,

where γ = ±1. The system (1.1) is a physical model for the evolution
of a system of particles interacting via a self-induced force field E. The
interaction is gravitational if γ = −1 or Coulombian if γ = 1. The unknown
f = f(t, x, v) ≥ 0 denotes the microscopic density of the particles at time
t, position x and velocity v, and ρ = ρ(t, x) ≥ 0 denotes their macroscopic
density.

A wide literature has been devoted to the Cauchy theory for the Vlasov-
Poisson system. Ukai and Okabe [15] established global existence and unique-
ness of smooth solutions in two dimensions. In any dimension, global ex-
istence of weak solutions with finite energy is a result due to Arsenev [2],
where the energy of f , defined by E(f) = 1

2

∫∫
|v|2f dx dv + γ

2

∫
|E|2 dx, is

formally preserved by the flow of (1.1). In three dimensions, global existence
and uniqueness of compactly supported classical solutions where obtained
by Pfaffelmoser [18] by Lagrangian techniques. Simultaneously, Lions and
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Perthame [11] constructed global weak solutions with finite velocity mo-
ments. More precisely, they proved that if

f0 ∈ L1 ∩ L∞(R3 × R3) and

∫∫
R3×R3

|v|mf0 <∞ for some m > 3,

then there exists a corresponding solution f ∈ L∞(R+, L
1 ∩ L∞(R3 × R3))

such that

∀T > 0, sup
t∈[0,T ]

∫∫
R3×R3

|v|mf(t, x, v) dx dv <∞.

If m > 6 such a solution generates a uniformly bounded force field. We also
refer to the works by Gasser, Jabin and Perthame [8], Salort [20] and Pallard
[16, 17] for further results concerning global existence and propagation of
the moments. Another issue in the setting of weak solutions consists in
determining sufficient conditions for uniqueness. Robert [19] established
uniqueness among weak solutions that are compactly supported. This result
was extended by Loeper [12], who proved uniqueness on [0, T ] in the class of
weak measure-valued solutions with bounded macroscopic density, namely

(1.2) f ∈ C([0, T ],M+(Rn × Rn)− w∗) and ρ ∈ L∞([0, T ], L∞(Rn)),

where M+(Rn × Rn) denotes the space of bounded positive measures. The
main result of this paper generalizes Loeper’s uniqueness condition (1.2) as
follows:

Theorem 1.1. Let f0 ∈M+(Rn × Rn) be a nonnegative bounded measure.
Let T > 0. There exists at most one weak solution f ∈ C([0, T ],M+(Rn ×
Rn)− w∗) of the Vlasov-Poisson system on [0, T ] with f(0) = f0 such that

(1.3) sup
[0,T ]

sup
p≥1

‖ρ(t)‖Lp

p
< +∞.

We refer to [12, Definition 1.1] for a precise definition of weak measure-
valued solutions. Note in particular that the assumption ρ ∈ L∞([0, T ], Lp(Rn))
for any p > 1 ensures that such a definition makes sense.

Our next task is to determine sufficient conditions on the initial data for
which any corresponding weak solution satisfies the uniqueness criterion of
Theorem 1.1. We observe that (1.3) is fulfilled if for example1

(1.4) ∀t ∈ [0, T ], ρ(t, x) ≤ C(1 + ln− |x− ξ(t)|)

for some ξ(t) ∈ Rn (see (4.3)). Such densities where constructed by Caprino,
Marchioro, Miot and Pulvirenti [4] as solutions of a related equation to (1.1).
On the other hand, there exist solutions of (1.1) that satisfy (1.4) initially,
as will be shown in Theorems 1.3 and 4.2. However, in general, it is not
clear whether a logarithmic divergence like (1.4) persists at positive times.
In fact, in order to propagate a control on the Lp norms of the macroscopic
density we also need a description of the initial data at the microscopic level.

1Here and in the sequel, we set ln− |x| = max(0,− ln |x|).
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In the above-mentioned previous works [11, 16, 17, 20], the condition (1.2)
is met by assuming that the initial data satisfy

∀R > 0, ∀T > 0, sup
t∈[0,T ]

sup
x∈Rn

∫
Rn

sup
|y−x|≤RT,|v−w|≤RT 2

f0(y + vt, w) dv < +∞.

In the present paper we shall require instead a suitable control on the velocity
moments, having in mind the well-known property that velocity moments
control the norms of the density, see (3.1):

Theorem 1.2. Let f0 ∈ L1 ∩ L∞(Rn × Rn) be nonnegative and such that∫∫
Rn×Rn

|v|mf0(x, v) dx dv < +∞

for some m > n2−n. Let T > 0 and let f ∈ C([0, T ],M+(Rn×Rn)−w∗)∩
L∞([0, T ], L1 ∩L∞(Rn×Rn)) be a weak solution provided by [11, Theo. 1]2.
If f0 satisfies

∀k ≥ 1,

∫∫
Rn×Rn

|v|kf0(x, v) dx dv ≤ (C0k)
k
n ,

for some constant C0, then f satisfies the uniqueness condition (1.3).

Typically, Theorem 1.2 allows to consider initial densities with compact
support in velocity as well as Maxwell-Boltzmann distributions of the type

f0(x, v) = e−|v|
n |v|ph0(x, v), p ≥ 0, h0 ∈ L1 ∩ L∞ ∩ L∞v (L1

x).

Indeed, denoting by Γ(z) =
∫ +∞
0 tz−1e−t dt the Gamma function we have∫∫

Rn×Rn

|v|kf0(x, v) dx dv ≤ C‖h0‖L∞v (L1
x)

Γ

(
k + p

n
+ 1

)
≤ (C0k)

k
n

(see also (4.4)-(4.6) below). Theorem 1.2 also does include some initial
data with unbounded macroscopic density:

Theorem 1.3. There exists a nonnegative f0 ∈ L1∩L∞(Rn×Rn) satisfying
the assumptions of Theorem 1.2 and such that3

ρ0(x) = ωn ln− |x|, ∀x ∈ Rn.

Let us next explain the main idea for proving Theorem 1.1. The argument
of Loeper [12] in the context of uniformly bounded macroscopic densities (see
also [13, Theo. 3.1, Chapter 2]) uses loglipschitz regularity for the force field

|E(t, x)− E(t, y)| ≤ (‖ρ(t)‖L1 + ‖ρ(t)‖L∞) |x− y|(1 + | ln |x− y||),
which enables to perform a Gronwall estimate involving the distance between
the Lagrangian flows associated to the solutions.

The loglipschitz regularity fails in the setting of unbounded densities.
However, for Lp solutions, Sobolev embeddings imply that E is Hölder con-
tinuous with exponent and semi-norm estimated explicitely in terms of p
and ‖ρ(t)‖Lp , see Lemma 2.2 below. This estimate turns out to be sufficient

2The result of [11] is stated for n = 3. The case n = 2 can be obtained by a straight-
forward adaptation.

3Here ωn denotes the volume of the unit ball of Rn.



4 EVELYNE MIOT

to close the Gronwall estimate as p → +∞ provided the Lp norms satisfy
the condition in Theorem 1.1.

The Vlasov-Poisson system presents lots of analogies with the Euler equa-
tions for two-dimensional incompressible fluids

(1.5)

{
∂tω + u · ∇ω = 0 on R× R2,

ω = curlu, div u = 0,

where u : R × R2 → R2 is the velocity and ω = curlu is the vorticity.
Because of their analogous transport structure, both equations (1.1) and
(1.5) are often handled similarly, especially for the uniqueness issue. In [12],
Loeper extends his uniqueness proof for (1.1) to (1.5). Also the proof of
uniqueness in [19] applies to both equations. We emphasize that this is
not the case in the present paper, as is explained in Remarks 2.4 and 2.5.
This is due to the fact that for the Vlasov-Poisson system the Lagrangian
trajectories satisfy a second-order ODE, while for the Euler equations they
satisfy a first-order ODE. This crucial observation was already exploited in
[4], where it was proved that a logarithmic divergence on the macroscopic
density still yields enough regularity for the force field to get well-posedness
for the corresponding ODE.

The paper is organized as follows. In the next Section 2 we recall a Hölder
estimate for a field that controls the force field. As a consequence we derive
a second-order Gronwall estimate on a distance between the Lagrangian
flows of two solutions, which leads to the proof of Theorem 1.1. Section
3 is devoted to the proof of Theorem 1.2. Finally in Section 4 we prove
Theorem 1.3 and we display in Proposition 4.1 a large class of initial densities
for which uniqueness holds. We conclude by commenting on the link with
radially symmetric steady states in the two-dimensional gravitational case.

Notation. In the remainder of the paper, the notation C will denote a
constant that can change from one line to another, depending only on T , n,
‖f‖L∞([0,T ],L1∩L∞(Rn×Rn)), and

∫∫
|v|mf0 (this latter quantity only for the

proof of Theorem 1.2) but independent on p and k as p, k → +∞.Finally,
for a function F , we set will F+ = max(F, 0) and F− = max(−F, 0).

2. Proof of Theorem 1.1

2.1. Lagrangian formulation for weak solutions. We consider a weak
solution f ∈ C([0, T ],M+(Rn × Rn) − w∗) of (1.1) on [0, T ]. We assume
that, moreover, ρ ∈ L∞([0, T ], L1 ∩ Lp(Rn)) for some p > n. By potential
estimates we have E = c(n)∇∆−1ρ ∈ L∞([0, T ]× Rn), and

(2.1) ‖E‖L∞([0,T ],L∞) ≤ Cp‖ρ‖L∞([0,T ],L1∩Lp).

Moreover, ∇E ∈ L∞([0, T ], Lp(Rn)) by virtue of the Caldéron-Zygmund
inequality, see [7, Theo. 4.12]. Therefore it follows from DiPerna and Lions
theory on transport equations [5, Theo. III2] that there exists a map Φ =
(X,V ) ∈ L1

loc([0, T ]×Rn×Rn;Rn×Rn) such that for a.e. (x, v) ∈ Rn×Rn,
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t 7→ (X,V )(t, x, v) is an absolutely continuous integral solution of the ODE

(2.2)

{
Ẋ(t, x, v) = V (t, x, v), X(0, x, v) = x

V̇ (t, x, v) = E(t,X(t, x, v)), V (0, x, v) = v.

Moreover,

(2.3) ∀t ∈ [0, T ], f(t) = Φ(t)#f0

which means that f(t)(B) = f0
(
(Φ(t, ·, ·)−1(B)

)
for all Borel set B ⊂ Rn.

Such a map is unique and is called Lagrangian flow associated to E. We
refer also to [1, Theo. 5.7] for a more recent statement and for further
developments on the theory.

We note that (2.1) implies that t 7→ Φ(t, x, v) ∈ W 1,∞([0, T ]) for a.e.
(x, v) ∈ Rn × Rn.

As a byproduct of our analysis we shall see in Paragraph 2.4 that under
the assumptions of Theorem 1.1 the Lagrangian flow actually corresponds
to the classical notion of flow.

2.2. Estimate on the Lagrangian trajectories. We consider two solu-
tions f1 and f2 ∈ C([0, T ],M+(Rn × Rn)− w∗) such that ρ1 and ρ2 belong
to L∞([0, T ], Lp(Rn)) for some p > n. Denoting by Φ1 = (X1, V1) and
Φ2 = (X2, V2) the corresponding Lagrangian flows, we introduce the dis-
tance

D(t) =

∫∫
Rn×Rn

|X1(t, x, v)−X2(t, x, v)|f0(x, v) dx dv.

We infer from (2.2) that

|X1(t, x, v)−X2(t, x, v)| ≤
∫ t

0

∫ s

0
|E1(τ,X1(τ, x, v))− E2(τ,X2(τ, x, v))| dτ ds.

(2.4)

In particular, sup(x,v) |X1(t, x, v) − X2(t, x, v)| ≤ CT 2(‖E1‖L∞ + ‖E2‖L∞),

which shows that D defines a continuous function on [0, T ]. The purpose of
this paragraph is to establish the estimate

Proposition 2.1. For all t ∈ [0, T ] and for all p > n,

D(t) ≤ C pmax
(
1 + ‖ρ1‖L∞([0,T ],Lp), ‖ρ2‖L∞([0,T ],Lp)

) ∫ t

0

∫ s

0
D1−n

p (τ) dτ ds.

The proof of Proposition 2.1 relies on the following potential estimate,
the proof of which is postponed at the end of this paragraph.

Lemma 2.2. There exists C > 0 such that for all p > n and g ∈ L1∩Lp(Rn),∫
Rn

∣∣∣∣ x− z|x− z|n
− y − z
|y − z|n

∣∣∣∣ |g(z)| dz ≤ Cp(‖g‖Lp + ‖g‖L1)|x− y|1−
n
p .

Remark 2.3. Setting E[g] = x/|x|n∗g = c(n)∇∆−1g we observe that Lemma
2.2 implies the estimate

(2.5) |E[g](x)− E[g](y)| ≤ Cp(‖g‖Lp + ‖g‖L1)|x− y|1−n/p.
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This latter inequality can be obtained by combining Morrey’s inequality,

which implies that |E[g](x)−E[g](y)| ≤ C‖∇E[g]‖Lp |x−y|1−
n
p , and Calderón-

Zygmund inequality, see [7, Theo. 4.12], which implies that ‖∇E[g]‖Lp ≤
Cp‖g‖Lp .

Proof of Proposition 2.1.

By (2.4), we have

D(t) ≤
∫ t

0

∫ s

0

(∫∫
Rn×Rn

|E1(τ,X1(τ, x, v))− E2(τ,X2(τ, x, v))|f0(x, v) dx dv

)
dτ ds

≤
∫ t

0

∫ s

0

(∫∫
Rn×Rn

|E1(τ,X1(τ, x, v))− E1(τ,X2(τ, x, v))|f0(x, v) dx dv

)
dτ ds

+

∫ t

0

∫ s

0

(∫∫
Rn×Rn

|E1(τ,X2(τ, x, v))− E2(τ,X2(τ, x, v))|f0(x, v) dx dv

)
dτ ds

≤ I + J.

First, applying (2.5) to E1 and using that ρ1 ∈ L∞([0, T ], L1(Rn)) we
obtain∫∫

Rn×Rn

|E1(τ,X1(τ, x, v))− E1(τ,X2(τ, x, v))|f0(x, v) dx dv

≤ Cp
(
1 + ‖ρ1‖L∞(Lp)

) ∫∫
Rn×Rn

|X1(τ, x, v)−X2(τ, x, v)|1−
n
p f0(x, v) dx dv.

Therefore by Jensen’s inequality we find

(2.6) I ≤ Cp
(
1 + ‖ρ1‖L∞(Lp)

) ∫ t

0

∫ s

0
D(τ)

1−n
p dτ ds.

Next, inserting that f2(τ) = Φ2(τ)#f0, we obtain∫∫
Rn×Rn

|E1(τ,X2(τ, x, v))− E2(τ,X2(τ, x, v))|f0(x, v) dx dv

=

∫∫
Rn×Rn

|E1(τ, x)− E2(τ, x)|f2(τ, x, v) dx dv.

On the other hand, since f1(τ) = Φ1(τ)#f0 and f2(τ) = Φ2(τ)#f0,

E1(τ, x)− E2(τ, x) = γ

∫∫
Rn×Rn

(
x−X1(τ, y, w)

|x−X1(τ, y, w)|n
− x−X2(τ, y, w)

|x−X2(τ, y, w)|n

)
f0(y, w) dy dw.

(2.7)

Therefore, we obtain by Fubini’s theorem∫∫
Rn×Rn

|E1(τ,X2(τ, x, v))− E2(τ,X2(τ, x, v))|f0(x, v) dx dv

≤
∫
Rn

∣∣∣∣∫∫
Rn×Rn

(
x−X1(τ, y, w)

|x−X1(τ, y, w)|n
− x−X2(τ, y, w)

|x−X2(τ, y, w)|n

)
f0(y, w) dy dw

∣∣∣∣ ρ2(τ, x) dx

≤
∫∫

Rn×Rn

(∫
Rn

∣∣∣∣ x−X1(τ, y, w)

|x−X1(τ, y, w)|n
− x−X2(τ, y, w)

|x−X2(τ, y, w)|n

∣∣∣∣ ρ2(τ, x) dx

)
f0(y, w) dy dw

≤
∫∫

Rn×Rn

Cp (‖ρ2(τ)‖L1 + ‖ρ2(τ)‖Lp) |X1(τ, y, w)−X2(τ, y, w)|1−
n
p f0(y, w) dy dw,
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where we have applied Lemma 2.2 in the last inequality. Hence Jensen’s
inequality yields

(2.8) J ≤ C p
(
1 + ‖ρ2‖L∞(Lp)

) ∫ t

0

∫ s

0
D(τ)

1−n
p dτ ds.

The conclusion follows from (2.6) and (2.8).

Remark 2.4. A similar function can be introduced to establish uniqueness
for (1.5) with bounded vorticity, see e.g. [13, Theo. 3.1, Chapter 2],

D̃(t) =

∫
R2

|X1(t, x)−X2(t, x)||ω0(x)| dx,

where X1 and X2 denote the Lagrangian flows

Ẋi(t, x) = ui(t,Xi(t, x)), X(0, x) = x.

By the same arguments as in the proof of Proposition 2.1, it satisfies

D̃(t) ≤ C pmax
(
‖ω1‖L∞(L1∩Lp), ‖ω2‖L∞(L1∩Lp)

) ∫ t

0
D̃1− 2

p (s) ds

therefore, by conservation of the Lp norms of the vorticity,

D̃(t) ≤ C p‖ω0‖L1∩Lp

∫ t

0
D̃1− 2

p (s) ds.

Proof of Lemma 2.2.
The proof for p = ∞ is well-known, see e.g. [14, Chapter 8] for the case

n = 2. When p < +∞ it is obtained by very similar arguments, but we
provide the full details because we are not aware of any reference in the
literature. Let p0 > n. By Hölder inequality, we have

sup
x∈Rn

∫
Rn

∣∣∣∣ x− z|x− z|n

∣∣∣∣ |g(z)| dz ≤ sup
x∈Rn

(∫
|x−z|≤1

|g(z)|
|x− z|n−1

dz +

∫
|x−z|≥1

|g(z)|
|x− z|n−1

dz

)
≤ ‖g‖Lp0‖|z|−n+1‖

Lp′0 (B(0,1))
+ ‖g‖L1

≤ Cp0(‖g‖L1 + ‖g‖Lp0 ),

with Cp0 depending only on p0. Hence it suffices to establish Lemma 2.2 for
|x − y| < 1. Let us introduce d = |x − y| and A = (x + y)/2. We split the
integral as∫
Rn

∣∣∣∣ x− z|x− z|n
− y − z
|y − z|n

∣∣∣∣ |g(z)| dz =

∫
Rn\B(A,1)

∣∣∣∣ x− z|x− z|n
− y − z
|y − z|n

∣∣∣∣ |g(z)| dz

+

∫
B(A,1)\B(A,d)

∣∣∣∣ x− z|x− z|n
− y − z
|y − z|n

∣∣∣∣ |g(z)| dz +

∫
B(A,d)

∣∣∣∣ x− z|x− z|n
− y − z
|y − z|n

∣∣∣∣ |g(z)| dz

= I + J +K.

For |z −A| ≥ 1 we have |u− z| ≥ 1− d/2 ≥ 1/2 for any u ∈ [x, y], hence
by the mean-value theorem we find

I ≤ Cd
∫
Rn\B(A,1)

sup
u∈[x,y]

|g(z)|
|u− z|n

≤ Cd ‖g‖L1 .
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Next, applying first Hölder inequality, then the mean-value theorem, we
obtain

J ≤ ‖g‖Lp

(∫
B(A,1)\B(A,d)

∣∣∣∣ x− z|x− z|n
− y − z
|y − z|n

∣∣∣∣p′ dz
)1/p′

≤ ‖g‖Lp d

(∫
B(A,1)\B(A,d)

sup
u∈[x,y]

1

|u− z|np′
dz

)1/p′

.

Now, for |z−A| ≥ d we have |u− z| ≥ |z−A| − |u−A| ≥ |z−A|/2 for any
u ∈ [x, y]. Therefore

J ≤ Cd‖g‖Lp

(∫
B(A,1)\B(A,d)

1

|z −A|np′
dz

)1/p′

≤ Cd ‖g‖Lpd
n( 1

p′−1)(p′ − 1)
− 1

p′

hence

J ≤ Cp ‖g‖Lpd
1−n

p .

Applying again Hölder inequality, we obtain

K ≤ ‖g‖Lp

(∫
B(A,d)

1

|x− z|p′(n−1)
dz

)1/p′

+ ‖g‖Lp

(∫
B(A,d)

1

|y − z|p′(n−1)
dz

)1/p′

.

Since for |z −A| ≤ d we have max(|x− z|, |y− z|) ≤ 3d/2, we finally obtain

K ≤ 2‖g‖Lp

(∫
B(0,3d/2)

1

|u|p′(n−1)

)1/p′

≤ C‖g‖Lp d
1−n

p .

2.3. Proof of Theorem 1.1. Given two solutions f1 and f2 of (1.1) satis-
fying the assumptions of Theorem 1.1, let D be the corresponding distance
function. Since max(‖ρ1‖L∞(Lp), ‖ρ2‖L∞(Lp)) ≤ Cp by assumption, Propo-
sition 2.1 implies that

D(t) ≤ C p2
∫ t

0

∫ s

0
D1−n

p (τ) dτ ds.

Let Fp(t) =
∫ t
0

∫ s
0 D

1−n
p (τ) dτ ds→ F(t) =

∫ t
0

∫ s
0 D(τ) dτ ds for all t ∈ [0, T ]

as p → +∞ by Lebesgue’s dominated convergence theorem. Since D ∈
C([0, T ]) we have Fp ∈ C2([0, T ]), with

∀t ∈ [0, T ], F ′′p (t) ≤ C p2F
1−n

p
p (t).

We next argue similarly as in the proof of Lemma 4 in [4]. We multiply the
previous inequality by F ′p(t) ≥ 0 and integrate on [0, t]. We obtain

∀t ∈ [0, T ], (F ′p(t))2 ≤ C p2Fp(t)
2−n

p

therefore
∀t ∈ [0, T ], F ′p(t) ≤ C pFp(t)

1− n
2p .

We now conclude as in the proof of the uniqueness of bounded solutions of
the 2D Euler equations, see e.g. [23, 14]: integrating the above inequality
yields

∀p > n, ∀t ∈ [0, T ], Fp(t) ≤ (Ct)
2p
n .
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Letting p → +∞ we obtain that F(t) = 0 for t ∈ [0, 1/C]. Repeating
the argument of intervals of length 1/C we finally prove that F , therefore
also D, vanishes on [0, T ]. This implies that for all t ∈ [0, T ] we have
X1(t, ·, ·) = X2(t, ·, ·) f0 dx dv - a.e. We infer from (2.7) that for all t ∈ [0, T ],
E1(t, ·) = E2(t, ·) on Rn. By (2.2), it follows that V1(t, ·, ·) = V2(t, ·, ·) on
Rn×Rn. We conclude that for all t ∈ [0, T ] we have f1(t, ·, ·) = f2(t, ·, ·) a.e.
on Rn × Rn.

Remark 2.5. In the setting of (1.5), the estimate obtained for D̃ in Remark
2.4 yields

∀p > 2, D̃(t) ≤ (C‖ω0‖Lp t)p,

which does not enable to conclude that D = 0 as above unless ω0 ∈ L∞.

2.4. The Lagrangian flow is the classical flow. We conclude this section
with the following remark: let f be a weak solution of (1.1) satisfying the
assumptions of Theorem 1.1. In view of Remark 2.3 we have

∀p > n, sup
t∈[0,T ]

|E(t, x)− E(t, y)| ≤ Cp2|x− y|1−
n
p .

By space continuity of E, Ascoli-Arzela’s theorem implies that for all (x, v) ∈
Rn × Rn there exists a curve γ ∈ W 1,∞([0, T ];Rn × Rn) which is a solution
to the ODE (2.2). Moreover, if γ1 and γ2 are two such integral curves then

d(t) =
∫ t
0

∫ s
0 |γ1 − γ2|(τ) dτ ds satisfies d′′ ≤ Cp2d1−n/p. So by exactly the

same arguments as in the proof of Theorem 1.1 above, d = 0 on [0, T ]. This
means that the ODE (2.2) is well-posed for all (x, v) ∈ Rn × Rn and that
the Lagrangian flow actually is a classical flow.

3. Proof of Theorem 1.2

We start by recalling an elementary inequality, which can be found in [11,
(14)] for the case n = 3, and which can be easily adapted to the case n = 2.
Let f ∈ L1 ∩ L∞(Rn × Rn) be nonnegative and ρf (x) =

∫
f(x, v) dv. Then

∀k ≥ 1, ‖ρf‖
L

k+n
n (Rn)

≤ C‖f‖
k

k+n

L∞

(∫∫
Rn×Rn

|v|kf(x, v) dx dv

) n
k+n

,

(3.1)

where C is a constant independent on k.

Now, let f0 satisfy the assumptions of Theorem 1.2 and let f be any
weak solution on [0, T ] with this initial data given by [11, Theo. 1]. By
construction we have

(3.2) sup
t∈[0,T ]

∫∫
Rn×Rn

|v|mf(t, x, v) dx dv < +∞.

In view of (3.1), in order to control the norms ‖ρ(t)‖Lp for large p it suffices
to prove that

∀k > 0, sup
t∈[0,T ]

‖f(t)‖
k

k+n

L∞ Mk(t)
n

k+n ≤ Ck,

where

Mk(t) =

∫∫
Rn×Rn

|v|kf(t, x, v) dx dv =

∫∫
Rn×Rn

|V (t, x, v)|kf0(x, v) dx dv.
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Since f ∈ L∞([0, T ], L∞(Rn × Rn)) this amounts to showing that

(3.3) ∀k > 0, sup
t∈[0,T ]

Mk(t)
n

k+n ≤ Ck.

At this stage it is not known whether all the Mk(t) remain finite for t > 0.
We prove next that this is indeed the case and that (3.3) can be achieved
thanks to (3.2) in a much easier way as for the propagation (3.2) itself,
which is the heart of the matter of [11]. As a matter of fact, since m >
n2 − n we infer from (3.1) and (3.2) that ρ ∈ L∞([0, T ], Lp0(Rn)) with
p0 = (m + n)/n > n depending only on n and m. It follows that E ∈
L∞([0, T ], L∞(Rn)) by (2.1).

For k > m, we have by (2.2)

|V (t, x, v)|k ≤ |v|k + k

∫ t

0
|V (s, x, v)|k−1|E(s,X(s, x, v)| ds

≤ |v|k + k‖E‖L∞([0,T ]×Rn)

∫ t

0
|V (s, x, v)|k−1 ds.

Integrating with respect to f0(x, v) dx dv we get

Mk(t) ≤Mk(0) + k‖E‖L∞([0,T ]×Rn)

∫ t

0
Mk−1(s) ds.

By induction, we first infer that supt∈[0,T ]Mk(t) is finite for any k > m. On
the other hand, we obtain by Hölder inequality

Mk−1(s) ≤ ‖f(s)‖
1
k

L1Mk(s)
1− 1

k ,

therefore, since ‖f(s)‖L1 = ‖f0‖L1 by (2.3) we get

Mk(t) ≤Mk(0) + Ck

∫ t

0
Mk(s)

1− 1
k ds.

Integrating this Gronwall inequality leads to

sup
t∈[0,T ]

Mk(t)
1
k ≤Mk(0)

1
k + C.

By assumption on Mk(0) we find

sup
t∈[0,T ]

Mk(t)
1
k ≤ (C0k)

1
n + C ≤ (Ck)

1
n

therefore, finally,

sup
t∈[0,T ]

Mk(t)
n

n+k ≤ Ck,

and the conclusion follows.

4. Proof of Theorem 1.3

4.1. Seeking for initial data. In this section we construct a collection of
initial densities that satisfy the assumptions of Theorem 1.2 and that do not
necessarily enter in the framework of Loeper’s uniqueness condition. We will
consider nonnegative measurable functions ϕ on R such that

(4.1) supp(ϕ) ⊂]−∞,M ] for some M ∈ R.
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Proposition 4.1. Let ϕ ∈ L∞(R,R+) satisfy (4.1). Let Φ : Rn → R and
a : Rn × Rn → R+ be two measurable functions. We set

(4.2) f0(x, v) = ϕ
(
|v|2 + Φ(x) + a(x, v)

)
.

We assume that ρ0 =
∫
f0 dv has compact support in B ⊂ Rn, and that

∀p ≥ 1,

∫
B

(M − Φ(x))p+ dx ≤ (C0p)
2p
n ,

for some constant C0. Then any initial density given by

f0 h0, where h0 ∈ L∞(Rn × Rn),

satisfies the assumptions of Theorem 1.2.

Proof. Since for (x, v) ∈ suppf0 we have |v|2 ≤M − Φ(x), we obtain∫∫
Rn×Rn

|v|kf0(x, v)h0(x, v) dx dv

≤ ωn‖h0‖L∞
∫
B

(M − Φ(x))
k
2
+ ρ0(x) dx

≤ ωn‖h0‖L∞‖ϕ‖L∞
∫
B

(M − Φ(x))
k+n
2

+ dx

≤ ωn‖h0‖L∞‖ϕ‖L∞(C0(k + n))
k+n
n .

We choose C1 > C0 sufficiently large such that

ωn‖h0‖L∞‖ϕ‖L∞(C0(k + n))
k+n
n ≤ (C1k)

k
n ,

and the condition of Theorem 1.2 is fulfilled. This concludes the proof. �

4.2. Proof of Theorem 1.3. We consider an initial density given by (4.2)
with the choice

ϕ = 1R− , Φ(x) = −(ln− |x|)
2
n , a = 0,

so that

ρ0(x) =
∣∣∣{v : |v|2 − (ln− |x|)

2
n ≤ 0

}∣∣∣ = ωn ln− |x|, ∀x ∈ Rn.

Besides, a straightforward computation yields

(4.3) ∀m ≥ 0,

∫
Rn

(ln− |x|)m dx = σnn
−(m+1)Γ(m+ 1),

where σn denotes the surface of ∂B(0, 1). Using the asymptotic behavior

(4.4) Γ(x+ 1) ∼ xx
√

2πxe−x, x→ +∞,

we obtain

(4.5) ∀p ≥ 0,

∫
Rn

(ln− |x|)
2p
n dx ≤ (C0p)

2p
n
+ 1

2 ,

therefore for a convenient choice of C1 > C0

(4.6) ∀p ≥ 0,

∫
Rn

(ln− |x|)
2p
n dx ≤ (C1p)

2p
n .

The conclusion follows by invoking Proposition 4.1.
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4.3. Steady states in the two-dimensional gravitational case. In this
last paragraph we focus on the Vlasov-Poisson equation (1.1) in the gravi-
tational case for n = 2, which can be rewritten as

(4.7)


∂tf + v · ∇xf −∇U · ∇vf = 0 on R+ × R2

U(t, x) =

∫
R2

ln |x− y|ρ(t, y) dy

ρ(t, x) =

∫
R2

f(t, x, v) dv.

Existence and stability of special steady solutions of (4.7) have been studied
intensively (see [3, 6, 9, 10] and references therein). By variational methods,
Dolbeault, Fernández and Sánchez [6, Theo. 1, Theo. 22] obtained the
existence of a steady solution f ∈ L1(Rn × Rn) having the form

(4.8) f(x, v) = ϕ

(
|v|2

2
+ U(x)

)
,

with U = 1
2π ln ∗(

∫
f dv) and where ϕ : R → R+ is nonincreasing and un-

bounded. Moreover, ϕ satisfies (4.1) for some M ∈ R and is continuously
differentiable on ]−∞,M [. Finally, ρ =

∫
f dv is radially symmetric, com-

pactly supported in B(0, 1), and U is continuously differentiable on R2\{0}.
In particular, U has the simple expression, see [6, Lemma 12]

U(x) = ln |x|
∫
|y|≤|x|

ρ(|y|) dy +

∫
|y|>|x|

ln |y|ρ(|y|) dy

= ln |x|
(∫

R2

ρ(|y|) dy
)

+

∫
|y|>|x|

ln

(
|y|
|x|

)
ρ(|y|) dy.

Note that U is well defined for all x 6= 0 in view of the assumption on the
support of ρ. We remark that f may be unbounded so it is not covered by
the assumptions of Theorem 1.2. However f belongs to M+(R2 × R2).

Theorem 4.2. Let f be given by (4.8), with ϕ and U as above. Then for
any K > 0, any initial density given by

f 1{f≤K} h0, where h0 ∈ L∞(R2 × R2),

satisfies the assumptions of Theorem 1.2.

Proof. Note that f 1{f≤K} h0 ∈ L1 ∩ L∞(R2 × R2). Since ρ is supported

in B(0, 1) we have U(x) = ln |x|(
∫
ρ) for |x| ≥ 1, from which we infer that

f(x, v) = 0 whenever |x| ≥ N = exp(M/(
∫
ρ)). In addition, we observe that

f takes the form (4.2), where we have set

Φ(x) = ln |x|
(∫

R2

ρ(|y|) dy
)
, a(x, v) =

∫
|y|>|x|

ln

(
|y|
|x|

)
ρ(|y|) dy ≥ 0,
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the only difference with the setting of Proposition 4.1 is that ϕ is unbounded
on R. Mimicking the proof of Proposition 4.1 we still obtain∫∫

R2×R2

|v|k (f 1{f≤K})(x, v)h0(x, v) dx dv

≤ ‖h0‖L∞K
∫
B(0,N)

(∫
B(0,C(M+(

∫
ρ)| ln |x||)1/2)

|v|k dv

)
dx

≤ C
∫
B(0,N)

(
M +

( ∫
ρ
)
| ln |x||

) k+2
2

dx

≤ (C1k)
k+2
2 ≤ (C2k)

k
2 ,

where we have used (4.6) in the last inequality, and where C2 > C1 is a
sufficiently large constant.

�
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