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Abstract

We introduce a N -particle system which approaches, in the mean-field
limit, the solutions of the Landau equation with Coulomb singularity.
This model plays the same role as the Kac’s model for the homogeneous
Boltzmann equation. We use compactness arguments following [11].

1 Introduction

In 1954 M. Kac [6], in the attempt of clarifying some aspects of the transition
from particle systems to the Boltzmann equation, introduced a toy model which
has been succesively investigated. See for instance [9] and references quoted
therein.

Roughly speaking the Kac’s model consists in a N -particle system. The
particles have no position but only velocities denoted by VN = (v1, . . . , vN ) ∈
R3N . The dynamics is the following stochastic process. At a random time, pick
a pair of particles, say i and j, and perform the transition

vi, vj → v′i, v
′
j

preserving total momentum and energy.
More precisely, if WN = WN (VN , t) is a symmetric probability distribution

describing a statistical state of the system, the time evolution is given by the
following master equation

∂tW
N = LNWN (1)

where

LNWN =
1

2N

∑
i 6=j

∫
dv′i dv

′
j K(vi, vj |v′i, v′j)δ(vi + vj − v′i − v′j)δ(v2

i + v2
j − v′2i − v′2j )

{WN (v1, . . . , v′i, . . . , v
′
j , . . . , vN )−WN (v1, . . . , vN )},

(2)

and K is a suitable kernel.
Introducing the exchanged momentum p = v′i − vi = vj − v′j in the collision

process and assuming that

K(vi, vj |v′i, v′j) = w(p) (3)
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for some smooth and radially symmetric w, we readily arrive to

LNWN =
1

2N

∑
i6=j

∫
dpw(p)δ

(
p2 − p · (vi − vj)

)
{WN (v1, . . . , vi + p, . . . , vj − p, . . . , vN )−WN (v1, . . . , vN )}.

(4)

In [6] it was shown that the first marginal of WN converges, in the limit N →∞,
to the solution to the (homogeneous) Boltzmann equation if the initial datum
is chaotic, i. e. if WN (0) = f⊗N0 for some probability distribution f0. Moreover,
the j-particle marginals converge to the j-fold product of such solution, i.e.,
propagation of chaos holds (see (15) below).

The main purpose of the present paper is to introduce an analogous model for
the Landau equation with Coulomb interaction. A straightforward way to derive
this model is to perform the so-called grazing collision limit on eq.n (1) as we
shall do in a moment. In fact in 1936 Landau [8], starting from the Boltzmann
collision operator, derived a new kinetic equation for the time evolution of a
dense charged plasma, exploiting the fact that, in this physical context, only
the grazing collisions (p ≈ 0) are relevant. According to such a prescription, we
introduce ε > 0 a small parameter and scale the kernel of LN in eq.n (4) as

w(p)→ 1
ε3
w
(p
ε

)
so that

LεNWN =
1

2Nε4
∑
i 6=j

∫
dpw

(p
ε

)
δ
(
p2 − p · (vi − vj)

)
{WN (v1, . . . , vi + p, . . . , vj − p, . . . , vN )−WN (v1, . . . , vN )}.

(5)

Note that we inserted another factor 1/ε in front of the collision operator, to
take into account the large density of the plasma.

Now, for fixed N , we perform the limit ε→ 0. By a straightforward formal
computation (change of variables and Taylor expansion), we readily detect the
limiting generator which is the following diffusion operator:

L̃N = divVN
(B · ∇VN

). (6)

Here
B : R3N → R3N×3N

is a matrix defined in the following way. For VN = (v1, . . . , vN ) ∈ R3N ,
Bi,j(VN ) = −a(vi − vj)

N
if i 6= j,

Bi,i(VN ) =
1
N

∑
j

a(vi − vj),

where the 3× 3 matrix a is given by

a(w) =
1
|w|

(I− ŵ ⊗ ŵ) =
1
|w|

P (w), w ∈ R3, and ŵ =
w

|w|
, (7)
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with P (w) the orthogonal projection on the plane orthogonal to w.
Unfortunately the elliptic operator L̃N has two main disadvantages. First it

is not uniformly elliptic (see Lemma 2.1 below), second it is not smooth due to
the divergence for |vi − vj | ≈ 0.

As a matter of fact, since we want a handier N-particle model to start with,
we slightly modify L̃N to obtain a smooth and non-degenerate operator. More
precisely, we define

LN = divVN
(BN∇VN

) (8)

where BN is obtained by making the matrix B smooth and bounded from below:
BNi,j(VN ) = −a

N (vi − vj)
N

if i 6= j,

BNi,i(VN ) =
1
N

∑
j

aN (vi − vj) +
1
N
.

(9)

Here the 3 × 3 matrix aN is obtained by replacing 1
|w| by χ̄ 1

N
(|w|) 1

|w| in (7),
defining

χ 1
N
∈ C∞(R+), χ 1

N
(r) = 1 if r <

1
N
, χ 1

N
(r) = 0 if r >

2
N
, (10)

and χ̄N = (1− χN ). Now the evolution equation assumes the form

∂tW
N = divVN

(BN∇VN
WN ) (11)

and the well-known theory of linear parabolic equations assures the existence of
a unique classical solution for L1 initial data.

To simplify the notations we define
1
|w|N

:= χ̄ 1
N

(|w|) 1
|w|

so that aN (w) = 1
|w|N P (w).

In the limit N → ∞, the number of variables in the definition of WN

diverges, hence we will actually prefer to look at the asymptotic behavior of the
marginal distributions

fNj (v1, . . . , vj , t) =
∫

dvj+1 . . . dvN W
N (v1, . . . , vN , t), j = 1, . . . , N.

Note that fNN = WN and the j-th marginal distribution is a function of j
variables. Moreover, using (11) we can express the evolution of each fNj in
terms of fNj+1. Straightforward computations lead to the following system of
equations, called the N -particle hierarchy

∂tf
N
j = LNj f

N
j +

N − j
N

CNj+1f
N
j+1, j = 1, . . . , N − 1 (12)

where LNj and CNj+1 are operators defined by:

LNj f
N
j =

1
N

j∑
k 6=l
k,l=1

∇vk
·
[
aNk,l · (∇vk

fNj −∇vl
fNj )

]
+

1
N

j∑
k=1

∆vk
fNj ,

CNj+1f
N
j+1 =

j∑
k=1

∇vk
·
∫
dvj+1 a

N
k,j+1 ·

(
∇vk

fNj+1 −∇vj+1f
N
j+1

)
.

(13)
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In particular we have LNN = LN .
Since Cj = O(1), while LNj f

N
j = O( jN ), the formal limit of (12) as N →∞

yields an infinite system of equations called Landau hierarchy

∂tfj = Cj+1fj+1, j = 1, . . . ,+∞, (14)

where the operators Cj+1 write

Cj+1g =
j∑

k=1

∇vk
·
∫
dvj+1 ak,j+1 ·

(
∇vk

g −∇vj+1g
)
.

Due to the structure of the collision operator Cj+1, we realize that special
solutions to eq.n (14) are given by factorized states

fj(v1 . . . vj , t) =
j∏
i=1

f(vi, t) = f(t)⊗j (15)

where the one particle distribution f(t) solves the Landau equation

∂tf = Q(f, f), (16)

with
Q(f, f)(v) =

∫
R3
dw a(v − w) · (f(w)∇f(v)− f(v)∇f(w)). (17)

It should be mentionned that, conversely, if f is a solution to eq.n (16), then
the products fj = f⊗j solve the hierarchy (14).

Following the general paradigm of the kinetic theory, we expect that prop-
agation of chaos holds, namely that (15) holds for all time provided that the
initial state is chaotic, i.e. (15) is initially verified.

Actually, we are not able to show propagation of chaos. We will be able to
prove only the (weak) convergence fNj (t) → fj(t) (for suitable subsequences),
being fj(t) a weak solution of the Landau hierarchy (14), without knowing
whether fj(t) factorizes even though it does at time zero. The reason is that we
have a poor control on the limiting hierarchy as well as on the Landau equation
(16). In fact, we will obtain a solution to eq.n (14) by adapting, to the present
N -particle context, a strategy, based on compactness arguments, introduced by
C. Villani [11] for the Landau equation. As a matter of fact we do not have
uniqueness, which is a necessary condition to get propagation of chaos. Indeed,
assume that f(t) and g(t) are two weak solutions to eq.n (16), with the same
initial datum f0. It follows that

fj(t) = λf(t)⊗j + (1− λ)g(t)⊗j , λ ∈ (0, 1)

solves the Landau hierarchy with the chaotic initial datum f⊗j0 , but does not
factorize.

Before stating our main result, we make some assumptions on the initial a.c.
measures WN (0):

1. WN (0) ≥ 0;

4



2. WN (0) is symmetric in the variables v1, . . . , vN ;

3. The following uniform bounds hold∫
dVN W

N (0) = 1,

1
N

∫
dVN W

N (0) log(WN (0)) ≤ C,

1
N

∫
dVN W

N (0)|VN |2 ≤ C.

These properties still hold true at positive times. Actually∫
dVN W

N (t)|VN |2 =
∫

dVN W
N (0)|VN |2 +

C

N
t

expresses the energy dissipation and follows easily by an integration by parts in
eq.n (11). Moreover∫

dVN W
N (t) log(WN (t)) ≤

∫
dVN W

N (0) log(WN (0))

expresses the entropy dissipation and will be discussed in the next section.
We now explain what is the sense we give to eq.n (14). The main difficulty

related to the Landau equation is due to the divergence of the matrix a(w) when
|w| is small. Indeed if fj+1 (some weak limit of fNj+1) is only in L1(R3(j+1)), the
integral ∫

fj+1(v1, . . . , vj+1)
1

|vi − vj+1|
makes no sense; therefore Cj+1fj+1 is not defined in general. Thus, as we did
before in (10) to regularize the operator L̃N , we introduce a small parameter
δ > 0 and the cut-off function χδ ≥ 0, not increasing and such that

χδ ∈ C∞(R+), χδ(r) = 1 if r < δ, χδ(r) = 0 if r > 2δ. (18)

Then we define Cδj+1 replacing a(w) in definition (13) by a(w)(1 − χδ(|w|),
thus removing the singularity. Clearly, if ϕ ∈ C2

c then
∫
ϕCδj+1fj+1 makes sense

for any fj+1 ∈ M(j + 1), where M(k), k ≥ 0, denotes the space of probability
measures on R3k equipped with the topology given by the weak convergence of
probability measures.

Our result can be stated as follows

Theorem 1.1. There exists a subsequence Nk → ∞ such that, for all j, there
exists fj ∈ L∞([0, T ];L1) ∩ C0([0, T ];M(j)), with finite mass, energy and en-
tropy, such that

fNk
j → fj when k →∞,

where the convergence holds in the sense of weak convergence of probability mea-
sures. For any t > 0 and for any test function ϕ ∈ C2

c (R3j), the limit

lim
δ→0

∫ t

0

ds

∫
dv1 . . . dvj ϕ(v1, . . . , vj)Cδj+1fj+1(v1, . . . , vj , s), j = 1, . . . ,+∞
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exists, and we have∫
ϕfj(t)−

∫
ϕfj(0) =

∫ t

0

ds

∫
ϕCj+1fj+1(s), j = 1, . . . ,∞.

Remark 1. Following [11], as we shall see in the proof of Theorem 1.1 we have
more regularity on fj (see (33)). This allows us to give a direct sense to Cj+1

without using a cut-off function.

We conclude this section with some additional remarks.
Another kind of Landau equations can also be considered replacing the ma-

trix a by

aα(w) =
1
|w|α

(I− ŵ ⊗ ŵ),

with α < 1. In case of α < 0 a unique smooth solution can be constructed (see
[3], [4]). It would be interesting to consider a N -particle diffusion process with
generator given by (17), in which a is replaced by aα. Of course now we expect
a much better control on the limit N →∞ and, in particular, the propagation
of chaos.

The Landau equation can also be obtained as a grazing collision limit from
the homogeneous Boltzmann equation, for a sufficiently small α (see [1], [5], [3]
and [4]). The case α = 1 has been considered in [11].

In this paper we focus our attention on the Coulomb divergence α = 1, which
we think is the most physically relevant case. Indeed the Landau equation for
α = 1 is believed to hold in the so called weak-coupling limit, for Hamiltonian
particle systems interacting by means of a smooth, short-range potential. See
[2] and [10] for a formal derivation. Unfortunately up to now no rigorous result
is known, even for short times.

Acknowlegments. One of the authors (MP) thanks L. Desvilletes for useful
and illuminating discussions.

2 Proof of Theorem 1.1

2.1 Preliminaries

In this section, we collect some preliminary properties satisfied by theN marginal
distributions fNj , j = 1, . . . , N . In all this section N is fixed. We start by intro-
ducing some
Notations. In the following, we will write

Vj = (v1, . . . , vj), VN
j = (vj+1, . . . , vN ), j = 1, . . . , N,

so that
fNj = fNj (Vj , t) =

∫
dV Nj WN (Vj , V

N
j , t).

Moreover,

ai,j = ai,j(VN ) = a(vi − vj), Pi,j = P (vi − vj), i, j = 1, . . . , N.
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′′·′′ will denote the usual scalar product on R3, R3j or R3N . For VN , ξ ∈ R3N ,

B(VN ) · ξ =


B1(VN ) · ξ

·
·
·

BN (VN ) · ξ


where Bk(VN ) ∈ R3N is the k-th line of B(VN ).

On the other hand, for 1 ≤ k ≤ N we will denote by

∇vk
· ξ =

3∑
i=1

∂vi
k
ξi,

where ξ = (ξ1, ξ2, ξ3) and vk = (v1
k, v

2
k, v

3
k).

Finally, for every fixed j such that 1 ≤ j ≤ N , for 1 ≤ k,m ≤ j we denote
by

V k,mj = (v1, . . . , vk−1, vm, vk+1, . . . , vm−1, vk, vm+1, . . . , vj)

the vector obtained by exchanging the components vk and vm.
We start with an elementary property on the matrix B.

Lemma 2.1. B is positive semi-definite, i. e. for all ξ

(B · ξ) · ξ ≥ 0.

More precisely, we have

(B · ξ) · ξ =
1
N

N∑
i,j=1

|Pi,j · (ξi − ξj)|2

|vi − vj |
, where ξ = (ξi)1≤i≤N .

Proof. Fix ξ ∈ R3N , setting conventionally ai,i = 0 for all i we get

(B · ξ) · ξ =
N∑
i=1

− 1
N

∑
j 6=i

ai,j · ξj +
1
N

∑
j

ai,j · ξi

 · ξi
=

1
N

N∑
i,j=1

Pi,j · (ξi − ξj)
|vi − vj |

· ξi.

Exchanging i and j in the sum we get, using that Pi,j is a projector :

(B · ξ) · ξ =
1
N

N∑
i,j=1

Pi,j · (ξi − ξj)
|vi − vj |

· (ξi − ξj)

=
1
N

N∑
i,j=1

|Pi,j · (ξi − ξj)|2

|vi − vj |
≥ 0.
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Lemma 2.2. Let WN (t) be the solution to eq.n (11). Then for any convex
function Φ ∈ C2(R+; R),

∫
dVN Φ(WN ) is decreasing in time; more precisely,

we have

d

dt

∫
dVN Φ(WN (t)) = −

∫
dVN Φ′′(WN (t))∇VN

WN · (BN · ∇V NWN ) ≤ 0.

(19)

Proof. Look at
∂tW

N = LNWN .

Let us consider a convex function Φ, then

d

dt

∫
Φ(WN ) =

∫
dVN Φ′(WN ) divVN

(BN · ∇VN
WN )

= −
∫
dVN Φ′′(WN )∇VN

WN · (BN · ∇VN
WN ).

(20)

Taking into account the convexity of Φ and using Lemma 2.1 the r.h.s. of (20)
is non positive and the statement of the Lemma holds.

In particular, we will use Lemma 2.2 with Φ(x) = x log(x). We denote by

S(WN (t)) =
1
N

∫
dVN W

N (t) log(WN (t)) (21)

the entropy per particle. In view of Lemma 2.2, S(WN (t)) is decreasing in time

d

dt
S(WN (t)) = − 1

N

∫
dVN

1
WN
∇VN

WN · (BN · ∇VN
WN ) ≤ 0 (22)

since Φ′′(x) = 1/x ≥ 0. In what follows we will use the explicit formula for the
entropy production:

− d

dt
S(WN (t)) =

1
N2

N∑
k,l=1

∫
dVN

|Pk,l ·
[
∇vk

WN −∇vl
WN

]
|2

WN |vk − vl|N

+
1
N2

∫
dVN

1
WN
|∇VN

WN |2.

(23)

Remark 2. Although the entropy S(WN (t)) decreases,

S(fNj (t)) ≡ 1
j

∫
fj(t) log(fj(t))

is not decreasing in general. However by subadditivity of the entropy we know
(see e.g. [7]) that

S(fNj (t)) ≤ S(WN (t)) (24)

so that
S(fNj (t)) ≤ C (25)

since we have S(WN (0)) ≤ C.

Remark 3. In case of factorization, i. e. fj = f⊗j , we have the equality

S(fj) = S(f). (26)
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Eqn. (23) provides a useful estimate given by the following

Corollary 2.3. Let 0 ≤ s1 ≤ s2. Then

N∑
k,l=1

∫ s2

s1

ds

∫
dVN

|Pk,l ·
[
∇vk

WN −∇vl
WN

]
|2

WN |vk − vl|N
≤ CN2.

Remark 4. Due to the symmetry of WN , all terms of the above sum are equal
and hence each term is bounded uniformly in N , namely for all 1 ≤ k, l ≤ N∫

ds

∫
dVN

|Pk,l ·
[
∇vk

WN −∇vl
WN

]
|2

WN |vk − vl|N
≤ C. (27)

2.2 Basic estimates

Proposition 2.4. Let 1 ≤ j ≤ N − 1 and ϕ ∈ C2
c (R3j ,R) be a test function.

Let 0 ≤ s1 ≤ s2. Then∫ s2

s1

ds

∣∣∣∣∫ dVj L
N
j f

N
j (Vj)ϕ(Vj)

∣∣∣∣ ≤ C(ϕ)j2

N
|s1 − s2|1/2

and ∫ s2

s1

ds

∣∣∣∣∫ dVj C
N
j+1 f

N
j+1(Vj)ϕ(Vj)

∣∣∣∣ ≤ C(ϕ)j|s1 − s2|1/2,

where C(ϕ) depends only on ϕ and on the initial data, but not on N .

Proof. We begin by estimating CNj+1. Recall (13). By integrating by parts, we
have∫
dVj C

N
j+1 f

N
j+1(Vj)ϕ(Vj)

= −
j∑

k=1

∫
dVj dV

N
j aN (vk − vj+1) · (∇vk

WN −∇vj+1W
N )(Vj ,VN

j ) · ∇vk
ϕ(Vj)

=
1
2

j∑
k=1

∫
dVN a

N (vk − vj+1) · (∇vk
WN −∇vj+1W

N )(VN )·

(∇vk
ϕ(Vj)−∇vk

ϕ(V k,j+1
j )),

where
V k,j+ij = (v1, . . . , vk−1, vj+1, vk+1, . . . , vj)

and we exchanged variables vk and vj+1 in the second line and used the sym-
metry of WN .

Therefore∫ s2

s1

ds
∣∣∣ ∫ dVj C

N
j+1 f

N
j+1(Vj)ϕ(Vj)

∣∣∣
≤ 1

2

∫ s2

s1

ds

j∑
k=1

∫
dVN

√
WN

√
WN

|∇vk
ϕ(Vj)−∇vk

ϕ(V k,j+1
j )|√

|vk − vj+1|N
|Pk,j+1 · (∇vk

WN −∇vj+1W
N )(VN )|√

|vk − vj+1|N
;
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(by using the Cauchy-Schwarz inequality)

≤ 1
2

j∑
k=1

(∫ s2

s1

ds

∫
dVN W

N (VN )
|∇vk

ϕ(Vj)−∇vk
ϕ(V k,j+1

j )|2

|vk − vj+1|N

)1/2

·

(∫ s2

s1

ds

∫
dVN

|Pk,j+1(∇vk
WN (VN )−∇vj+1W

N (VN ))|2

WN (VN )|vk − vj+1|N

)1/2

.

By virtue of mean-value Theorem applied to ∇vk
ϕ and (27) we get the bound

on CNj+1: ∫ s2

s1

ds

∫
CNj+1f

N
j+1ϕ(Vj) dVj ≤ j C(ϕ)|s1 − s2|1/2. (28)

By performing exactly the same computations we are led to∫ s2

s1

ds
∣∣∣ ∫ dVj L

N
j f

N
j (Vj)ϕ(Vj)

∣∣∣
≤ C(ϕ)

N

j∑
k 6=l
k,l=1

(∫ s2

s1

ds

∫
dVN
|Pk,l ·

[
∇vk

WN (VN )−∇vl
WN (VN )

]
|2

WN |vk − vl|N

)1/2

≤ C(ϕ)j2

N
|s1 − s2|1/2.

The proof is now complete.

2.3 Convergence

In this subsection, we establish the weak compactness for the fNj by making use
of the uniform estimates established in the previous subsection.

Proposition 2.5. Let fNj satisfy the hierarchy (12). There exists a subse-
quence Nk → +∞ such that for any fixed j, there exists fj = fj(Vj , t) ∈
C([0, T ];M(j)), with finite energy and entropy, such that fNk

j converges to fj
weakly in the sense of measures, locally uniformly in time.

Proof. We fix j. For ϕ ∈ Cc(R3j), we set

t 7→ gNϕ (t) =
∫

dVj f
N
j (Vj , t)ϕ(Vj).

We obtain a uniformly bounded sequence of functions on R+. Moreover, when
ϕ ∈ C2

c (R3j), by virtue of the proof of Proposition 2.4 the function gNϕ is uni-
formly equicontinuous. Hence, by Ascoli’s theorem and density of C2

c (R3j) in
Cc(R3j), there exists a subsequence Nk such that for all ϕ ∈ Cc(R3j), gNk

ϕ con-
verges locally uniformly in time to some function gϕ(t). Now, for each fixed t,
the map

ϕ 7→ gϕ(t)

is a positive linear form on Cc(R3j). Thus the Riesz representation theorem
ensures the existence of a measure dfj(t) such that gϕ(t) =

∫
ϕdfj(t). On the
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other hand, (fNj )(t) has uniformly bounded entropy and energy; therefore it is
weakly relatively compact in L1. This shows that in fact dfj(t) = fj(t) dVj is
an absolutely continuous probability measure and has finite entropy and energy.
This concludes the proof of the proposition.

2.4 End of the proof

We are now in position to complete the proof of Theorem 1.1. We fix j ≥ 0.
For any g ∈ C2

c (R3(j+1)) we set

Cδj+1g(Vj) =
j∑

k=1

∇vk
·
∫

[(1− χδ)a](vk − vj+1) · (∇vk
g −∇vj+1g)(Vj , vj+1) dvj+1,

C
δ

j+1g(Vj) =
j∑

k=1

∇vk
·
∫

[χδa](vk − vj+1) · (∇vk
g −∇vj+1g)(Vj , vj+1) dvj+1,

so that
Cj+1(g) = Cδj+1(g) + C

δ

j+1(g). (29)

The analogous decomposition holds for CNj+1:

CNj+1 = CN,δj+1 + C̄N,δj+1

where aN replaces a in (29). Note that CN,δj+1 = Cδj+1 whenever N is sufficiently
large.

We will show that for all t ≥ 0 and for all test function ϕ in C2
c we have∫ t

0

ds

∫
dVj C

N,δ
j+1f

N
j+1ϕ

=
∫ t

0

ds

∫
dVj C

δ
j+1f

N
j+1ϕ −→

∫ t

0

ds

∫
dVj C

δ
j+1fj+1ϕ

(30)

when N →∞ and

sup
N≥j

∣∣∣∣∫ t

0

ds

∫
dVj C

N,δ

j+1f
N
j+1ϕ

∣∣∣∣ ≤ C(ϕ)δ1/2. (31)

First, (30) follows by the convergence established in Proposition 2.5 and by
two integrations by parts.

As regards (31), we need a symmetrized form as in the proof of Proposition
2.4. Mimicking the computations of Proposition 2.4 we find∣∣∣∣∫ t

0

ds

∫
dVj C

N,δ

j+1f
N
j+1ϕ

∣∣∣∣ =
∣∣∣∣∫ t

0

ds

∫
dVj C

δ

j+1f
N
j+1ϕ

∣∣∣∣
≤ C

j∑
k=1

(∫ t

0

ds

∫
dVN

|Pk,j+1 · (∇vk
WN −∇vj+1W

N )|2

WN |vk − vj+1|N

)1/2

(∫ t

0

ds

∫
dVN χ

2
δ(|vk − vj+1|)

|∇vk
ϕ(Vj)−∇vk

ϕ(V k,j+1
j )|2

|vk − vj+1|
WN

)1/2

.
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Applying once more inequality (27), the first term in the right-hand side is
bounded. Next, we observe that in view of the support properties of χδ, the
mean-value theorem yields

χ2
δ(|vk − vj+1|)|∇vk

ϕ(Vj)−∇vk
ϕ(V k,j+1

j )|2 ≤ Cδ|vk − vj+1|.

Finally we obtain ∣∣∣∣∫ t

0

ds

∫
dVj C

δ

j+1f
N
j+1ϕ

∣∣∣∣ ≤ Cδ1/2,
and (31) follows. Hence the proof of Theorem 1.1 is complete.

We conclude this section with some comments concerning additional regu-
larity for the marginals fNj . In fact, the control on the production of the total
entropy (see Corollary 2.3) yields a uniform control on the gradients of fNj .
More precisely, we have for all 1 ≤ k, l ≤ j∫

ds

∫
dVj
|Pk,l ·

(
∇vk

fNj −∇vl
fNj
)
|2

fNj |vk − vl|N
≤ C. (32)

Indeed, we have∫
ds

∫
dVj
|Pk,l ·

(
∇vk

fNj −∇vl
fNj
)
|2

fNj |vk − vl|N

=
∫
ds

∫
dVj

1
fNj |vk − vl|N

∣∣∣∣∫ Pk,l ·
(
∇vk

WN −∇vl
WN

)
dV Nj

∣∣∣∣2

=
∫
ds

∫
dVj

fNj
|vk − vl|N

∣∣∣∣∣
∫
Pk,l ·

(
∇vk

WN −∇vl
WN

) 1
WN

WN

fNj
dV Nj

∣∣∣∣∣
2

≤
∫
ds

∫
dVN

fNj
|vk − vl|N

∫
|Pk,l ·

(
∇vk

WN −∇vl
WN

)
|2 1

(WN )2
WN

fNj

=
∫
ds

∫
dVN

|Pk,l ·
(
∇vk

WN −∇vl
WN

)
|2

WN |vk − vl|N
,

where we have applied Jensen’s inequality in the last inequality. The conclusion
follows from (27).

In particular, (32) implies that

Pk,l
|vk − vl|N

· (∇vk

√
fNj −∇vl

√
fNj )

is bounded in L2(R+ ×R3j); hence, following the same arguments as in [11] we
can conclude that

Pk,l
|vk − vl|

· (∇vk

√
fj −∇vl

√
fj) ∈ L2(R+ × R3j), (33)

12



so that one can use the symmetrized form already used in the proof of Propo-
sition 2.4 to define Cj+1fj+1 as in [11]:∫

ds

∫
dVj Cj+1fj+1ϕ

= −1
2

j∑
k=1

∫
ds

∫
dVj ak,j+1 ·

(
∇vk

fj+1 −∇vj+1fj+1

)
·
(
∇vk

ϕ(Vj)−∇vk
ϕ(V k,j+1

j )
)
.
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