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Abstract. Several progresses have been done very recently on models for the

dynamics of one or more vortex filaments in 3-D fluids. In this article we survey
the recent and previous results in this topic. We finally present a collection of

new situations of filaments collapse.
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1. Introduction

The purpose of this work is to describe some aspects of the dynamics of ho-
mogeneous three-dimensional incompressible fluids. The evolution of such fluids is
governed by the Euler equations

∂tω + v · ∇ω = ω · ∇v, div v = 0, (1.1)

where v : R×R3 → R3 and ω = curl(v) : R×R3 → R3 denote the velocity and the
vorticity of the fluid.

We shall focus on fluids in which remarkable structures, called vortex filaments,
are present. A vortex filament is a very thin tube in which the vorticity is sharply
concentrated. It can be asymptotically assimilated to a curve χ(t, s) in R3, where
t ∈ R denotes the time and s ∈ R the arc-length parameter. According to a suit-
able formal derivation, which will be described in the next section, the asymptotic
motion law of the curve is the binormal flow

χt = ∂sχ ∧ ∂2
sχ. (BF)

Equation (BF) exhibits a rich variety of motions, which will be presented in Section
2 below. Particular attention will be payed to motions generating a singularity in
finite time.
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On the other hand, special solutions of the binormal flow are given by the infi-
nite straight filaments. Up to a rotation, we can assume that they are parallel to
the e3–axis so that they can be parametrized as χ(t, σ) = (X0, σ) for some fixed
X0 ∈ R2, where σ ∈ R can be also seen as an arc-length parameter. Of interest is
the evolution of perturbations of such straight filaments, namely the nearly paral-
lel vortex filaments, which are parametrized by χ(t, σ) = (X0 + Ψ(t, σ), σ) where
Ψ(t, σ) ∈ R2 ' C is small. It turns out that linearization about (BF) leads to the
linear one-dimensional Schrödinger equation for Ψ

i∂tΨ + ∂2
σΨ = 0. (1.2)

Next, we wish to investigate the dynamics of several vortex filaments that are all
nearly parallel to the same e3–axis. We consider a collection of N ≥ 2 filaments,
which are represented by the complex-valued functions Ψj(t, σ) ∈ C, with t ∈ R
and σ ∈ R. In 1995, Klein, Majda and Damodaran [39] derived, in a suitable
asymptotic regime, a system of coupled equations for the filament positions Ψj

i∂tΨj + αjΓj∂
2
σΨj +

∑
k 6=j

Γk
Ψj −Ψk

|Ψj −Ψk|2
= 0, 1 ≤ j ≤ N. (1.3)

Here Γj ∈ R corresponds to the circulation of the j–th filament, and the parameter
αj ∈ R is related to the core structure of the filament. In particular, in the case
where the vortex filaments are all exactly parallel, i.e. if Ψj(t, σ) = Xj(t) does not
depend on σ, the previous system reduces to a two-dimensional system of ordinary
differential equations for the positions Xj(t)

i
dXj

dt
+
∑
k 6=j

Γk
Xj −Xk

|Xj −Xk|2
= 0, 1 ≤ j ≤ N. (1.4)

This system is called point vortex system or Kirchhoff law, and it has been inten-
sively studied in the literature.

We observe that the system (1.3) combines two different aspects of the dynam-
ics. On the one hand, the linearized self-induced motion of each filament –already
expressed in the equation (1.2)– is represented through the Schrödinger operator.
On the other hand, the interaction of the j–th filament with the other filaments is
represented by the potential field

∑
k 6=j Γk(Ψj−Ψk)/|Ψj−Ψk|2, which corresponds

to the velocity generated by the other filaments1. For straight filaments there is no
self-induced motion, which means that each filament moves only with the velocity
induced by the other filaments according to (1.4) – exactly as for planar vortices,
see Section 3 hereafter. The fact that both effects are taken into account in (1.3) is
really due to the asymptotic conditions chosen for the derivation, which relate the
wavelength of perturbations, the core sizes and the separation distances between
the vortex tubes in a particular way.

Since the system (1.3) is thought to be a simplified model for the dynamics of
filaments, a first natural issue is the existence and uniqueness of solutions. The
potential fields are not well-defined at points when two or more filaments collide
in finite time. One possibility is to consider weak distributional solutions, allowing
possibly for exceptional collisions, and for which the potential is well-defined almost-
everywhere (see Section 4). But then uniqueness is not achieved in this class.
Therefore, we will focus on a class of stronger solutions, for which the filaments
are well-separated up to the largest time of existence of the system. Hence the
largest time of existence corresponds to the first collision time in this framework.
It should be mentioned that, even for the simpler situation of straight filaments (the
point vortex system), collisions in finite time are known to occur for some initial

1According to the Biot-Savart law, see Section 2.
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configurations (see Section 3). Therefore we cannot hope for global existence in
general. We shall determine sufficient conditions on the initial collection of vortex
filaments that lead to large time or global existence, and we shall also study the
case of finite-time collapses.

The remainder of this work is organized as follows. In Section 2 we present the
formal derivation of the binormal flow (BF) for the motion of one single filament and
we describe some of its remarkable properties. In particular we review the recent
results on singularities for self-similar and almost self-similar solutions of (BF), as
well as for their perturbations. Section 3 contains a brief state-of-the-art concerning
the point vortex system (1.4), as an introduction to the more complicated dynamics
of almost parallel vortex filaments. Then, Section 4 gives an overview of existence
and uniqueness results concerning the system (1.3). In particular, we present some
recent results from [6] on symmetric configurations of vortex filaments. We conclude
by providing several and simple examples of finite-time collapses of vortex filaments.
The collapses are of different nature, and some of them are new.

Notations. In the following we will systematically identify complex numbers and

real vectors. In particular, introducing the matrix J =

(
0 −1
1 0

)
we shall identify

the R2-vector JX and the complex iX.

Acknowledgements. The first author is partially supported by the ANR project
“R.A.S.”. Both authors are grateful to Vincent Torri for his support in using Scilab.

2. One filament

In this section we briefly present classical facts about the local induction ap-
proximation and about the binormal flow, as well as recent results of singularity
formation in finite time. For parts of this description the reader may also consult
the book [52] and the surveys [62] and [11].

2.1. The Local Induction Approximation. We shall start with a short descrip-
tion of the way the binormal flow equation was find as a model for vortex filaments
dynamics in a three-dimensional ideal incompressible fluid. A fluid with a vortex
filament is a fluid where the vorticity ω(t) is a singular measure supported along
a curve χ(t), which is parametrized by arc-length parameter s, and with density
Γ∂sχ(t). Here Γ denotes the constant circulation along the filament. As a conse-
quence of Kelvin’s circulation law vortex filaments move with the flow, so in order
to get the dynamics of the vortex curve χ(t) we have to compute the velocity of
the fluid near the curve. The three-dimensional Biot-Savart kernel is 1

4π|x| so the

velocity of the fluid is

v(t, x) = −∇ ∧
(

1

4π| · |
∗ ω(t, ·)

)
(x) = − Γ

4π

∫ ∞
−∞

x− χ(t, s)

|x− χ(t, s)|3
∧ ∂sχ(t, s)ds.

We fix t, we suppose without loss of generality that χ(t, 0) = (0, 0, 0), ∂sχ(t, 0) =
(0, 0, 1) and we get focused on what is happening for the velocity of the fluid near
(0, 0, 0). For this purpose, two localizations are done, one is that χ(t, s) will be
approximated by a Taylor development of order 2 near s = 0 and the other is that
the integral has to be considered only locally around s = 0, on a segment [−L,L].
We obtain that v(t, (ε, 0, 0)) is approximated by

− Γ

4π

(ε, 0, 0) ∧ (0, 0, 1)

ε2

∫ L
ε

−Lε

ds

|1 + s2| 32
+

Γ

4π

∂sχ(t, 0) ∧ ∂2
sχ(t, 0)

2

∫ L
ε

−Lε

s2ds

|1 + s2| 32
.

When ε → 0, the first term is diverging but in the same way the velocity does
around one straight vortex filament. One straight vortex filament remains still in
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a fluid, so this first contribution should not influence the dynamics of one single
vortex filament χ(t). Finally, even after localization, the integral in the last term is
still diverging as | ln ε|. A time rescaling allow to resorb this growth and then the
binormal flow

∂tχ = ∂sχ ∧ ∂2
sχ (2.1)

appears as an approximation for the dynamics of vortex filaments, called Local In-
duction Approximation. It was discovered by Da Rios [21] in 1906 and re-lightened
by Arms and Hama [5] in 1965. However the rigorous derivation of (2.1) from the
Euler equations (1.1), and in fact even the question of the stability of the vortex
filaments, are open.

Being a crude model, the binormal flow has advantages and disadvantages. The
positive points are the fact that special solutions as straight lines, translating circles,
helices are on the one hand solutions of the binormal flow and on the other hand
these dynamics are observed in fluid dynamics. This way other special solutions of
the binormal flow may give some intuition for particular type of vortex filaments
in fluids. A successful example in this direction are the traveling type solutions of
the binormal flow found in [32] and displayed in an fluid experiment [33]. Also,
the binormal flow is accessible for numerics. One of the main issues of the L.I.A. is
that closed curves conserve their lengths under the binormal flow which is not the
case for closed vortex filaments in fluids.

The binormal curvature flow also appears in the context of superfluids that are
governed by the Gross-Pitaevskii equation

i∂tΨ + ∆Ψ + Ψ(1− |Ψ|2) = 0. (GP)

More precisely, (BF) is conjectured to govern the asymptotic dynamics of codimension-
2 submanifolds around which the Jacobians of the solutions to (a rescaled version
of) (GP) concentrate. This was proved in any dimension N in the special case of the
N − 2-dimensional sphere [34]. In a parallel setting, mean curvature flow governs
the vortex dynamics for parabolic Ginzburg-Landau equation [14]. The fact that
vortex filaments exhibit a common asymptotic motion law in fluids and superfluids
results from a fundamental analogy between (GP) and the Euler equations in such
regimes. More precisely, the Madelung [55] transform Ψ =

√
ρ exp(iϕ), as long

as Ψ does not vanish, yields a compressible Euler type system for the variables ρ
and v = ∇ϕ. It is called hydrodynamical form of (GP) and it reduces formally
to the incompressible Euler equations for v in the above-mentioned singular limit
of (GP). Further details may be found in the recent survey [18] and in references
quoted therein.

2.2. The binormal flow. The binormal flow is a rich geometric equation. It is a
completely integrable system. In the following we shall denote curvature and torsion
of a solution of (2.1) by c(t, s) and τ(t, s). Some remarkable conserved quantities
of the binormal flow are the kinetic energy

∫
c2(t, s)ds, helicity

∫
c2τ(t, s)ds, linear

momentum
∫
χ ∧ ∂sχ(t, s)ds, angular momentum

∫
χ ∧ (χ ∧ ∂sχ)(t, s)ds. It is

a reversible in time equation, invariant with respect to translations and rotations.
The tangent vector T (t, s) of a solution of the binormal flow satisfies the Schrödinger
map equation

∂tT = T ∧ ∂2
sT (2.2)

which plays an important role in ferromagnetism as a simplification of the Landau-
Lifschitz equation.

Let us present now the link with the Schrödinger equation. As mentioned in
the introduction, the linear Schrödinger equation can be obtained easily as a rough
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approximation of the binormal flow. This can be seen by plugging in (2.1) the
ansatz

χ(t, s) = (εx(t, s), εy(t, s), s).

To leading order when ε → 0, we obtain that x + iy is a solution of the linear
Schrödinger equation. It was in 1972 that Hasimoto [32] has discovered the link
between the binormal flow and the cubic one-dimensional nonlinear Schrödinger
equation. The so-called filament function constructed from curvature and torsion
of a solution of (2.1),

ψ(t, s) = c(t, s)ei
∫ s
0
τ(t,r)dr,

satisfies the 1-D cubic NLS

i∂tψ + ∂2
sψ +

1

2

(
|ψ|2 −A(t)

)
ψ = 0,

with A(t) in terms of curvature and torsion (c, τ)(t, 0). More precisely,

A(t) =

(
2
∂sc

2 − cτ2

c
+ c2

)
(t, 0),

which might be seen as a compatibility condition. Let us notice that the Hasimoto
transform can be seen as an inverse of Madelung’s transform - actually curvature
and torsion satisfy an Euler with quantum pressure type of system. One can remark
that the non-vanishing of the curvature appears as a constraint. Nevertheless, Koiso
gave in [40] a way to avoid this issue by using, instead of Frenet frames, parallel
frames (T, e1, e2) that satisfy

∂s

 T
e1

e2

 =

 0 α β
−α 0 0
−β 0 0

 T
e1

e2

 .

Then α + iβ is a solution of 1-D cubic NLS. For details of this kind of Hasimoto
transform we refer to Appendix A of [62]. As a conclusion, up to a change of phase,
the filament function satisfies the 1-D cubic NLS.

By using the Hasimoto transform the first local well-posedness results were ob-
tained for the binormal flow - curvature and torsion were considered in high order
Sobolev spaces, see [32, 40, 23].

A recent result of local well-posedness for the binormal flow, for less regular
closed curves, was obtained by Jerrard and Smets [35, 36] by considering a weak
version of the binormal flow. Their method acts at the level of the tangent of the
curve and it does not use the Hasimoto transform. Also, they have derived this
way new results for the Schrödinger map equation (2.2).

As far as we have seen, there exists a number of intimate relations between the
evolution of filaments in fluids and dispersive equations. We end this subsection
by discussing other similar connections. In order to improve the validity of the
binormal flow as a model for vortex filaments dynamics, an extended version of
(2.1) was considered by Fukumoto and Miyazaki [23], which includes an axial flow
along the filament,

∂tχ = ∂sχ ∧ ∂2
sχ+ α

(
∂3
sχ+

3

2
∂2
sχ ∧ (∂sχ ∧ ∂2

sχ)

)
.

Here α denotes the magnitude of the axial flow. The Hasimoto transform leads
then to the so-called Hirota equation

i∂tψ + ∂2
sψ +

1

2
|ψ|2ψ − iα ∂3

sψ +
3

2
|ψ|2∂sψ = 0,

which is in link both with NLS and the modified KdV equation (see [46] for the
initial derivation of this equation). It actually turned out that the modified KdV
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equation appears as a model for the evolution of the curvature of a vortex patch in
a two-dimensional fluid [25, 26, 65], see also [60] for more details and for self-similar
solutions of this model.

2.3. Singularity formation scenarios for the binormal flow. An interesting
class of solutions that is not covered by the previous well-posedness results are the
self-similar solutions of the binormal flow and their small and smooth perturbations.
Since solutions of (2.1) are considered to be parametrized by arc-length, self-similar
solutions are of type

χ(t, s) =
√
tG

(
s√
t

)
.

It is then easy to compute that they form a family of solutions χa indexed by a

real parameter a > 0 and (ca, τa)(t, s) =
(
a√
t
, s2t

)
([46]). They have been studied

in the last decades as a frictionless model for the evolution after a line-line recon-
nection in the absence of counterflow for superfluid 4He and in ferromagnetism
[63, 16, 49, 45, 44]. They also appear, this time for finite length filaments with ap-
propriate boundary conditions, in some models for the fiber architecture of aortic
valve leaflets, see [61]. Their rigorous mathematical study was achieved by Gutier-
rez, Rivas and Vega, who gave in [29] a description of the profile and in particular
established that

χa(0, s) = sA+I[0,∞)(s)− sA−I(−∞,0](s),

with A± ∈ S2 distinct, non-opposite and sin ( ̂A+,−A−)
2 = e−

a2

2 . So self-similar
solutions of the binormal flow are smooth infinite curves that generate a corner in
finite time. In fluid mechanics, their dynamics is close to the one of the delta-wing
vortex. In [22] numerical simulations for self-similar solutions of the binormal flow
were shown to be in correlation with the physical experiment.

Another family of (2.1) generating a singularity in finite time at the level of the
Frenet frame are the almost self-similar solutions

χ(t, s) = eA log t
√
tG

(
s√
t

)
,

where A is a real 3× 3 antisymmetric matrix, see [49, 50]. Gutiérrez and Vega [30]
proved that

χa(0, s) = seA log |s|A+I[0,∞)(s)− seA log |s|A−I(−∞,0](s).

The curves at times t = 0 are spirals, some of them with a singularity point, see
[68] for some numerical simulations. Both similar and almost self-similar solutions
have self-similar curvature and torsion, so the filament function is also of type

ψ(t, s) = 1√
t
G
(
s√
t

)
and has to solve

i∂tψ + ∂2
sψ +

1

2

(
|ψ|2 − a

t

)
ψ = 0. (2.3)

Therefore the data has to be homogeneous of degree −1. The case of Dirac distribu-
tion leads to the self-similar solutions of (2.1), and the principal value distribution
to the almost self-similar solutions respectively.

The study of small and smooth perturbations of self-similar solutions was initi-
ated by Banica and Vega [7, 8, 9, 10] from the point of view of the stability of the for-
mation of the singularity. The starting point of the analysis is the Hasimoto trans-

form: the filament function of the self-similar solutions χa is ψa(t, x) = a√
t
ei
x2

4t ,

solution of (2.3). By the pseudo-conformal transformation

ψ(t, x) = T (u+ a)(t, x) =
1√
t
ei
x2

4t u+ a

(
1

t
,
x

t

)
,
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understanding the behavior at time 0 for perturbations of ψa, solutions of (2.3), is
equivalent to understanding the large time behavior for the equation

i∂tu+ ∂2
su+

1

2t

(
|u+ a|2 − a2

)
(u+ a) = 0. (2.4)

A scattering theory has been developed in [8, 9] for this problem, by strongly relying
on Fourier analysis. The informations on (2.4) have been transported at the level
of the binormal flow by treating differently the regions ts2 . 1 and 1 . ts2. In
order to discard the linear non-oscillating term, the asymptotic profile for u(t) has
to be modified into the long-range one

ei
a2

2 log t eit∂
2
x u+(x).

In [8] it has been shown that wave operators exist, with a strong Hs decay,

for asymptotic profiles u+ ∈ Ḣ−2 ∩ Hs ∩ W s,1. By adding the extra-conditions
x2u+ ∈ L2 and s ≥ 3 the existence of solutions of (2.1) that develop a corner-type
singularity at t = 0 has been derived. This insures that the formation of singularity
in finite time appearing in the self-similar case is not an isolated phenomenon. A
similar result for the almost self-similar solutions of (2.1) has been proved in [31].

Asymptotic completeness with loss of regularity was then proved in [9], in spaces
defined in terms of the behavior of the low Fourier modes. At the level of the
binormal flow, this information has been translated into the fact that all small and
regular perturbations at time t0 6= 0 of a self-similar solution χa still yield, after
evolving by the binormal flow, a singularity at time t = 0.

Finally, in [10] we give a geometrical description of the curves at the singularity
time by getting a control of the evolution of weighted norms for equation (2.4).
We prove the stability of the selfsimilar dynamics of small pertubations of a given
selfsimilar solution, and in particular the fact that the angle of χa is recovered at
time t = 0.

3. The point vortex system

This section is devoted to a short presentation of the point vortex system (1.4).
The reader may find the subsequent results as well as many additional details in
the surveys [2, 56, 4] and in references quoted therein.

The point vortex system arises as an asymptotic motion law for point singu-
larities in two-dimensional incompressible fluids, which are governed by the incom-
pressible Euler equations, or superfluids, governed by the Gross-Pitaevskii equation
(GP). In contrast with the three-dimensional case, the persistence of point vortices
and the validity of the point vortex model have been established rigorously for
well-prepared data, at least up to the first collision time between the vortices (see
[64, 54] for the Euler equations and, e.g., [20, 13] for the Gross-Pitaevskii equation).

System (1.4) possesses an Hamiltonian structure, since it has the form

Γj
d

dt
Xj(t) + J∇XjH(X1, . . . , XN ) = 0, 1 ≤ j ≤ N,

with the Hamiltonian H defined by

H(X1, . . . , XN ) = −1

2

∑
j 6=k

ΓjΓk ln |Xj −Xk|.

As a consequence, we have the conservation of H

H(X1(t), . . . , XN (t)) = H(X1(0), . . . , XN (0)).
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Moreover, the point

C =

N∑
j=1

ΓjXj(t) =

N∑
j=1

ΓjXj(0)

and the angular momentum

N∑
j=1

Γj |Xj(t)|2 =

N∑
j=1

Γj |Xj(0)|2

are preserved in time. If
∑
j Γj 6= 0, we define the constant center of vorticity

c = (

N∑
j=1

Γj)
−1C.

It follows that the quantity

T =
∑
j,k

ΓjΓk|Xj(t)−Xk(t)|2 =
∑
j,k

ΓjΓk|Xj(0)−Xk(0)|2

is constant as well. A direct consequence of the previous conservation laws is that, in
case of circulations Γj all having the same sign, no collision between the vortices can
occur in finite time and the N -vortex system admits a unique and global solution.

It is well-known that the point vortex system admits particular solutions that
keep the geometric shape of the polygon formed by the vortex positions. To describe
these solutions we shall adopt the following definitions from, e.g., [56]: we say that
the configuration (Xj(t))j is
• a fixed equilibrium if Xj(t) = Xj(0), ∀j = 1, . . . , N ;

• rigidly translating if, for all t, there exists V ∈ C∗ such that Ẋj(t) = V ,
∀j = 1, . . . , N ;
• a relative equilibrium if there exists some X0 ∈ C and for all t, there exists

ω ∈ R∗ such that Ẋj(t) = iω(t)(Xj(t)−X0), ∀j = 1, . . . , N ;
• a self-similar (or homographic) motion if there exists some X0 ∈ C and for

all t, there exists ω ∈ C, with =m(ω) 6= 0, such that Ẋj(t) = iω(Xj(t) − X0),
∀j = 1, . . . , N .

Note that in the first three cases both the shape and the size of the polygon
formed by the points are preserved, since the motion is a translation in the second
case and a rotation– with angular velocity ω(t)– in the second case. In the case
of homographic motion the configuration at time t is obtained from the initial
one by a rotation and a dilation. More precisely, it must satisfy Xj(t) − X0 =

(Xj(0)−X0)
√

1− t/t0 exp(iλ ln |1− t/t0|), where the reals t0 and λ are determined
in terms of ω. When t0 > 0, which actually corresponds to the case =m(ω(t)) > 0,
the configuration shrinks and collapses into the center of vorticity X0 at time t0.
Otherwise we have t0 < 0, i.e. =m(ω(t)) < 0 and the configuration expands in
time.

For N = 2 the distance |X1(t)−X2(t)| remains constant therefore the solution is
global. The motion is a uniform rotation about the center of vorticity if Γ1+Γ2 6= 0,
and a rigid uniform translation otherwise.

For N = 3 the motion is integrable and has been widely investigated, see e.g.
[28, 1, 4, 3]. An important part of the analysis was initiated in 1877 by Gröbli
[28] in his PhD thesis. In particular Gröbli noticed that the 3-vortex system can
be entirely formulated in terms of the three distances between the vortices. The
motion can then be analyzed qualitatively through the use of trilinear coordinates
and phase diagrams, see the work of Aref [1]. There exists a large variety of regimes:
fixed equilibria (if Γ1Γ2 +Γ1Γ3 +Γ2Γ3 = 0), rigidly translating equilateral triangles
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(if Γ1 + Γ2 + Γ3 = 0 and T 6= 0), uniformly rotating equilateral triangles (if Γ1 +
Γ2 +Γ3 6= 0 and T 6= 0), collinear rotating or fixed configurations. Also, self-similar
(shrinking or expanding) collapsing configurations exist [28, 1, 53, 3]. It turns out
that the conditions T = 0 and Γ1Γ2 + Γ1Γ3 + Γ2Γ3 = 0 are both necessary and
sufficient to obtain a self-similar expanding or shrinking motion2, and this provides
an effective and simple way to construct them explicitly. On the other hand, the
linear stability of such motions has been investigated in, e.g., [38, 3].

We shall come back to these collapses in Section 4.3, where we will use them to
construct collapsing filament solutions.

For N ≥ 4 the N -vortex problem is not integrable in general, but it still exhibits
some remarkable solutions. First well-known relative equilibria are given by the
uniformly rotating configuration of N identical vortices placed on the same line in
a particular way, or, when N is odd, by N−1 identical vortices and a central vortex
of arbitrary circulation. Other relative equilibria are obtained by setting one vortex
with same circulation Γj = Γ at each vertex of a regular N - polygon. The motion
is then a uniform rotation with constant angular velocity ω = Γ(N − 1)/(2R2),
where R denotes the size of the polygon. The problem of stability of these N -
polygons was raised by Thomson (Lord Kelvin) in the nineteenth century and has
attracted much attention since then. The full answer to Thomson’s question – that
the regular N -polygon is stable if and only if N ≤ 7 – was finally recently provided
by Kurakin and Yudovitch [42, 43]. One can get other uniformly rotating relative
equilibria by adding to a regular N -polygon configuration one point of arbitrary
circulation Γ0 at the center of the polygon, in which case the angular velocity is
ω = (Γ(N − 1) + 2Γ0)(2R2). In particular, choosing Γ0 = −Γ(N − 1)/2 one obtains
a fixed equilibrium solution. The stability of centered N -polygons has been proved
to hold by Cabral and Schmidt [17] for all N provided the circulation Γ0 lies in
a suitable interval depending on N . In particular, the range of stability includes
negative values of Γ0 for N < 7.

Finally, we mention that other relative equilibria can be constructed in the form
of concentric rings of polygons with identical vortices. The polygons may be not
regular, and the rings may have different circulations (heterogeneous rings). Rel-
ative equilibria of identical two-vortex or three-vortex rings have been determined
by Aref, Newton, Stremler, Tokieda and Vainchtein [4], and O’Neil [58] constructed
relative equilibria of heterogeneous three-vortex rings.

The existence of collapsing solutions for N ≥ 4 is a difficult issue. Given a
set of circulations such that

∑
J Γj 6= 0 for all J ⊂ {1, . . . , N}, the set of initial

configurations leading to a collapse in finite time has zero Lebesgue measure in R2N

[53]. On the other hand, in general it is not known whether self-similar collapses
exist. Necessary conditions for such motions are T = 0 and Γ1Γ2+Γ2Γ3+Γ3Γ1 = 0,
but, in contrast with the case N = 3, they are not sufficient. Nevertheless, some
specific cases have been explored: four and five-vortex collapses were studied by
Novikov and Sedov [59] and collapses of two-vortex rings were constructed in [41].
Collapsing configurations for infinite point vortex lattices are constructed by O’Neil
in [57]. Finally, [58] exhibits self-similar collapses of heterogeneous three-vortex
rings.

4. Several filaments

4.1. The interaction of several filaments. The objective of this paragraph is
to review known existence results concerning the system (1.3), which have been
established by Klein, Majda and Damodaran [39] and Kenig, Ponce and Vega [37].

2If the initial configuration is not a fixed equilibrium.
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We also mention the work by Zhakarov [66, 67]. We recall the system (1.3) supple-
mented by initial data Ψj,0:

i∂tΨj + αjΓj∂
2
σΨj +

∑
k 6=j

Γk
Ψj −Ψk

|Ψj −Ψk|2
= 0, 1 ≤ j ≤ N,

Ψj(0, σ) = Ψj,0(σ).

4.1.1. Some formal properties. For anyN ≥ 1 and any choice of circulations Γj ∈ R,
the dynamics formally preserves the following quantities:

The Hamiltonian

1

2

N∑
j=1

αjΓ
2
j

∫
|∂σΨj |2 dσ −

1

2

∑
j 6=k

∫
ΓjΓk ln |Ψj −Ψk|2 dσ;

The mean angular momentum ∫ N∑
j=1

Γj |Ψj |2 dσ,

and the mean center of vorticity ∫ N∑
j=1

ΓjΨj dσ.

They are the three-dimensional analogs of the notions of Hamiltonian, angular
momentum and center of vorticity for point vortices, which have been defined in
Section 3. There is also conservation of the quantity∫ N∑

j=1

Γj=m(Ψj∂σΨj) dσ,

which can be interpreted as a mean momentum.
Finally, in the case where the vortex core parameters and the circulations satisfy

αjΓj = κ0 ∀1 ≤ j ≤ N
we also have conservation of the quantity∑

j 6=k

ΓjΓk

∫
|Ψj −Ψk|2 dσ.

Nevertheless, the previous quantities may be not well-defined, not even formally.
Actually, for general configurations of exactly parallel vortex filaments they are
infinite. In the next section we will bypass this difficulty by the use of renormalized
quantities.

4.1.2. Some existence results. First rigorous results on vortex filaments were ob-
tained by Klein, Majda and Damodaran [39] for pairs of filaments

i∂tΨ1 + α1Γ1∂
2
σΨ1 + Γ2

Ψ1 −Ψ2

|Ψ1 −Ψ2|2
= 0

i∂tΨ2 + α2Γ2∂
2
σΨ2 − Γ1

Ψ1 −Ψ2

|Ψ1 −Ψ2|2
= 0.

(4.1)

It may be convenient to introduce the new variables Ψ = Ψ1 − Ψ2, Φ = Ψ1 + Ψ2

and κ1 = (α1Γ1 + α2Γ2)/2, κ2 = (α1Γ1 − α2Γ2)/2. Then
i∂tΦ + κ1∂

2
σΦ + κ2∂

2
σΨ + (Γ2 − Γ1)

Ψ

|Ψ|2
= 0

i∂tΨ + κ1∂
2
σΨ + κ2∂

2
σΦ + (Γ1 + Γ2)

Ψ

|Ψ|2
= 0.

(4.2)
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In [39] (see also [66, 67]) only the case of identical vortex core parameters α1 = α2

is considered. Then for identical circulations Γ1 = Γ2 we get κ2 = 0 so (4.2) can be
decoupled into two equations for Φ and Ψ. The solutions have the general wave-like
form

Ψ1(t, σ) = Φ(t, σ) +Aei(kσ+ωt), Ψ2(t, σ) = Φ(t, σ)−Aei(kσ+ωt)

where Φ is any solution to the linear Schrödinger equation, and where the param-
eters A, k and ω satisfy a consistency equality. On the other hand, for opposite
circulations we have κ1 = 0. By Section 3, the exactly parallel solution is given
by a uniformly translating vortex pair. For nearly parallel filaments one looks for
solutions with the same symmetry features, i.e. Ψ2(t, σ) = −Ψ1(t, σ) for all (t, σ).
The equations (4.2) then yield a coupled system of equations for the real variables
<e(Ψ1) = Ψ/2 and =m(Ψ1) = −iΦ/2.

From a mathematical point of view, one can also consider the case when α1Γ1 =
α2Γ2 = κ0. It follows that κ2 = 0 so the equations (4.2) are decoupled

i∂tΦ + κ0∂
2
σΦ + (Γ2 − Γ1)

Ψ

|Ψ|2
= 0

i∂tΨ + κ0∂
2
σΨ + (Γ1 + Γ2)

Ψ

|Ψ|2
= 0.

(4.3)

For identical circulations one retrieves the previous co-rotating filament pair. In
the case of opposite circulations, Ψ satisfies the linear Schrödinger equation.

The linear stability of system (4.1), with α1 = α2, around the exactly parallel
solution to the point vortex system (1.4) is analyzed in [39]. Linear instability occurs
when Γ1Γ2 < 0, while linear stability holds for Γ1Γ2 > 0. Moreover, numerical
computations predict global existence in the first case, and self-similar collapse
in finite time in the second case. So, in contrast with the 2-dimensional setting
(pairs of vortex points), finite time collapses of two nearly parallel filaments might
happen. Following Zhakarov [66], Klein, Majda and Damodaran suggested that
such collapses should be well described by a class of self-similar solutions to the
system (4.2). Also the equations (4.3) could maybe provide a class of self-similar
collapses. To our knowledge, such constructions have not been rigorously achieved
yet.

The next decisive results regarding (1.3) were accomplished by Kenig, Ponce and
Vega [37] in 2003. The article [37] is presented in the survey [62]. In [37], existence
of vortex filaments in the form of H1-perturbations of the exactly parallel solution
Xj(t) is investigated with the ansatz

Ψj(t, σ) = Xj(t) + uj(t, σ), with uj ∈ C(R, H1(R)). (4.4)

Note that, thanks to the Sobolev embedding H1(R) ⊂ L∞(R), the ansatz (4.4)
guarantees that the filaments are well-separated as long as the quantity ‖uj‖H1

is sufficiently small with respect to the distance between the point vortices Xj(t).
As long as this remains true, the uj solve a system of Schrödinger equations with
potentials that are Lipschitz functions in the uj :

i∂tuj + αjΓj∂
2
σuj +

∑
k 6=j

Γk

(
Xj −Xk + uj − uk
|Xj −Xk + uj − uk|2

− Xj −Xk

|Xj −Xk|2

)
= 0

uj(0) = uj,0, 1 ≤ j ≤ N.
(4.5)

This makes it possible in [37] to obtain local well-posedness for (4.5) for any N ,
for any set of circulations Γj , and for sufficiently small ‖uj(0)‖H1 , and at least up
to times of order min(T ∗, | ln

∑
j ‖uj(0)‖H1 |), where T ∗ is the first collision time

between the point vortices.



12

On the other hand, Kenig, Ponce and Vega [37] obtained global existence for
sufficiently small ‖uj(0)‖H1 in the two following special cases: N = 2 and Γ1Γ2 > 0,
or N = 3 and (X1(t), X2(t), X3(t)) is the uniformly rotating equilateral triangle
solution (see Section 3). The proof of [37] is based on the use of a suitable notion of
energy. We recall that for filaments given by the ansatz (4.4) the quantities defined
in §4.1.1 do not make sense. This is the reason why [37] introduces the renormalized
quantities

H =
1

2

∑
j

αjΓ
2
j

∫
|∂σΨj |2 dσ −

1

2

∫ ∑
j 6=k

ΓjΓk ln

(
|Ψj −Ψk|2

|Xj −Xk|2

)
dσ

A =

∫ ∑
j

Γj
(
|Ψj |2 − |Xj |2

)
dσ

T =

∫ ∑
j 6=k

ΓjΓk
(
|Ψj −Ψk|2 − |Xj −Xk|2

)
dσ.

Note that in the framework of (4.4) we have |Ψj(t, σ)−Ψk(t, σ)| → |Xj(t)−Xk(t)|
when σ → ±∞. Moreover, in view of the properties of the point vortex system, the
previous quantities are still formally preserved in time provided αjΓj = κ0 for all
1 ≤ j ≤ N .

Finally, we also introduce the quantity

I(t) =
1

2

∫ ∑
j 6=k

ΓjΓk

(
|Ψj −Ψk|(t)2

|Xj −Xk|(t)2
− 1

)
dσ,

which is not necessarily constant, and we define the energy

E((Ψj(t))j) = H+ I(t)

=
1

2

∑
j

αjΓ
2
j

∫
|∂σΨj(σ)|2 dσ

+
1

2

∫ ∑
j 6=k

ΓjΓk

(
− ln

(
|Ψj(σ)−Ψk(σ)|2

|Xj −Xk|2

)
+
|Ψj −Ψk|(t)2

|Xj −Xk|(t)2
− 1

)
dσ.

(4.6)

From now on we will sometimes write

E(t) = E((Ψj(t))j)

when not misleading.
We insist on the fact that, in general, the energy is not constant in time.
Now, in the cases under consideration in [37] the distances |Xj(t) −Xk(t)| = d

are constant in time and all the same. Therefore it turns out that

E(t) = H+
1

d2
T = E(0)

is constant. On the other hand, for circulations having all the same sign it was
noticed in [37] that the Sobolev embedding combined with the convexity inequality
(x − 1)2/2 ≤ x − 1 − lnx ≤ 10(x − 1)2 for x ∈ [3/4, 5/4] imply coercivity for the
energy: ∥∥∥∥ |Ψj −Ψk|2

|Xj −Xk|2
− 1

∥∥∥∥
∞
≤ CE((Ψj)j) (4.7)

as long as the vortex filaments Ψj are not too far from the straight filaments Xj .
Finally, it can be easily seen that

E((Xj + uj)j) ≤ C
∑
j

‖uj‖2H1 . (4.8)



13

Therefore in the cases of small H1-perturbations considered in [37] the energy is and
remains small for all time, hence the vortex filaments remain well-separated for all
time and global existence follows. We stress that the vortex filaments constructed
in this way remain uniformly close to the straight filaments for all time.

4.1.3. A class of weak solutions. To conclude this section, we mention that Lions
and Majda [47] introduced and proved the global existence of ”very weak” solutions
to (1.3) for any N ≥ 1, identical circulations and identical vortex core parameters.
Such solutions satisfy a weak formulation of (1.3) with suitable test functions, they
are L-periodic with respect to σ, they belong to C(R, H1(0, L)) and they have finite

energy: supt≥0

∑
j 6=k

∫ L
0
| ln |Ψj(t)−Ψk(t)| dσ <∞. Actually, such a definition does

not exclude the possibility of collisions, since the only information is that

∀t ∈ R, Ψj(t, σ) 6= Ψk(t, σ) for a.e. σ.

Moreover, uniqueness in this class is not known.

4.2. Symmetric configurations. We present now the results obtained recently
in [6]. In all the following we will take identical vortex core parameters

αj = 1 ∀1 ≤ j ≤ N.

We start with a natural remark that should in part motivate the kind of perturba-
tions we shall consider then. As we have seen in the previous sections, the dynamics
of both systems (1.3) and (1.4) is complicated when N becomes large, and in fact
additional symmetry conditions are needed. In this paragraph, we shall first de-
scribe a local in time result that extends the one in [37] to energy-type spaces.
We will turn then to the case of four filaments for which global results can be
obtained without requiring too many symmetries on the perturbations. Finally,
for any N ≥ 2 we will present a global existence result for dilation-rotation-type
perturbations of the regular N-polygon exactly parallel configuration. In this latter
case the perturbations, at any height σ, have a regular N-polygon shape. Moreover,
traveling waves will be displayed in this setting. We shall complete this subsection
with another class of simple perturbations.

For a positive ω we define the energy

E(f) =
1

2

∫
|∂σf |2 dσ +

ω

2

∫ (
|f |2 − 1− ln |f |2

)
dσ. (4.9)

The motivation for this definition will become clear in the next paragraphs. Re-
current tools in [6], which are partially inspired by [37] (in particular see (4.7) and
(4.8)), are the following facts (see Lemmas 2.1-.2.3 in [6]).

• If f has small energy E(f), then f is close to 1,

‖|f |2 − 1‖L∞ ≤
1

4
.

• If f is small in Ḣ1 norm and if t small enough,

‖eit∂
2
σf − f‖L∞ ≤

1

4
.

• If ‖|f |2 − 1‖L∞ ≤ 1/4 then we can compare the energies:

EGP (f) ≡ 1

2
‖∂σf‖2L2 +

ω

4
‖|f |2 − 1‖2L2 ≤ E(f) ≤ 5 EGP (f).

• If f has small energy E(f) and h is small in H1, then the energy E(f + h)
is finite. More precisely we have, for absolute numerical constants C,C ′,

E(f + h) ≤ CEGP (f + h) ≤ C ′ (1 + E(f))
(
1 + ‖h‖2H1

)
,
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and
‖|f + h| − 1‖L∞ < 1.

4.2.1. N ≥ 2, a local existence result in the energy space. As recalled in §4.1.2, local
existence was proved in [37] for (1.3) for any N ≥ 1 and small H1-perturbations
uj,0 = Ψj,0 −Xj,0. The relevant energy functional in that setting is

E0 = E((Ψj,0)j)

which has been defined in (4.6). We assume next that all the circulations have
the same sign, for example Γj > 0 for all 1 ≤ j ≤ N . Then the energy E((Ψj)j)
satisfies the properties listed above for each function f = |Ψj −Ψk|/|Xj −Xk|. It
is then natural to consider the problem of perturbations with small energy as a
single assumption. On the one hand for small initial energy we obtain that Ψ0,j

is not too far from Xj,0 and that E0 ≤ C
∑
j ‖uj,0‖2H1 . On the other hand for

uj,0 small in H1 it is easy to see that E0 ≤ C
∑
j ‖uj,0‖2H1 . Therefore the energy

smallness assumption is weaker than the H1 smallness assumption in general. For
example, it allows for a larger geometric class of perturbations, namely the small
rotations. Indeed, take a rotation and translation type perturbation of the square
configuration,

Ψε
j,0(σ) = ei

√
εϕ0(εσ)Xj,0 + T ε(σ),

with ϕ0 ∈ H1 and ‖T ε‖H1 = O(ε). It follows that E0 = O(ε2) while
∑
j ‖uj,0‖2H1 ≥

O(1). The idea to use the energy space rather than H1 is also reinforced by the
fact that in the setting of (1.3), that we shall see later to be related in some cases
to the Gross-Pitaevskii equation, the L2-norm of the solutions might grow in time
while the energy remains controllable.

We next denote by d > 0 the minimal distance between the vortices Xj(t) for
all time (recall that Γj > 0 ∀j). In [6] it has been shown the following local well-
posedness result:

For an initial configuration (uj,0)j with small energy, there exists T > 0 and a
unique solution u = (uj)j ∈ C([0, T ], H1(R))N to the system (4.5) with

sup
0≤t≤T

‖uj(t)‖H1 ≤ ‖uj,0‖H1 +
d

4
, 1 ≤ j ≤ N,

and for T sufficiently small such that

T
(
1 + E0 +

∑
j

‖uj,0‖H1

)
≥ C(d, (Γj)j).

The proof is based on finding a find a fixed point in the Banach space

BT =

{
w = (w1, . . . , wN ) ∈ C

(
[0, T ], H1

)N
, sup

0≤t≤T
‖w(t)‖H1 ≤ d

4

}
for the operator A(w) = (Aj(w))j defined by

iω

∫ t

0

∑
k 6=j

Γk

(
Xj + eiτΓj∂

2
σuj,0 + wj −Xk − eiτΓk∂

2
σuk,0 − wk

|Xj + eiτΓj∂2
σuj,0 + wj −Xk − eiτΓk∂2

σuk,0 − wk|2
− Xj −Xk

|Xj −Xk|2

)
dτ.

Then the solution is given by

uj(t) = eitΓj∂
2
σuj,0 + wj(t).

Notice here that we extend uj locally from a time t0 not by a fixed point for
perturbations of the initial data directly, but by a fixed point argument for small
H1 perturbations wj of the linear evolutions of the initial data. We must use

crucially the fact that the deviation eit∂
2
σuj,0−uj,0 can be upper-bounded in L∞ in
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terms of the energy at the initial time E0. This is insured from the previous study of
the Gross-Pitaevskii equation (see Lemma 3 in [24]). We recall the short proof: the

Fourier transform of eit∂
2
σuj,0 − uj,0 can be written as e−itξ

2
−1

ξ ξûj,0(ξ), so the L2

norm is bounded by C
√
t‖∂σuj,0‖L2 and the Ḣ1 norm is bounded by C‖∂σuj,0‖L2 ,

i.e.

‖eitΓj∂
2
σuj,0 − uj,0‖H1 ≤ C(1 +

√
t)‖∂σuj,0‖L2 ≤ C(1 +

√
t)E0.

As a consequence of the local in time result we obtain that the solution (uj)j
to (4.5) exists as long as the energy E(t) remains small. Indeed note that on the
one hand the norm

∑
j ‖uj(t)‖H1 can grow exponentially, but it cannot blow up as

long as the energy is sufficiently small. On the other hand, as long as the energy
remains small, the filaments Ψj(t, σ) remain close the the straight ones Xj(t), so
no collapse occurs for (1.3).

4.2.2. N = 4, local and global results around the square configuration. In this part
we are dealing with (Xj)j the square configuration with equal circulations Γj = 1.
Let (uj,0)j ∈ H1(R)4 and set Ψj,0 = Xj,0 + uj,0. We introduce the quantity

Ẽ0 = max

{
E0;
‖u1,0 + u3,0‖2L2

2
+
‖u2,0 + u4,0‖2L2

2

}
.

In Theorem 1.2. of [6] it is proved that

If Ẽ0 is small enough, there exists an absolute constant C > 0, and there exists
a time T , with

T ≥ C min

 1

Ẽ0
1/4

maxj 6=k ‖uj,0 − uk,0‖1/2L2

,
1

Ẽ0
1/3

 ,

such that there exists a unique corresponding solution (Ψj)j to (1.3) on [0, T ], sat-
isfying Ψj = Xj + uj, with uj ∈ C

(
[0, T ], H1(R)

)
, and such that

3

4
≤ |Ψj(t, σ)−Ψk(t, σ)|

|Xj(t)−Xk(t)|
≤ 5

4
, t ∈ [0, T ], σ ∈ R.

Moreover, if the initial perturbation is parallelogram-shaped, namely

‖u1,0 + u3,0‖L2 = ‖u2,0 + u4,0‖L2 = 0,

then the solution (Ψj)j is globally defined.

The proof goes as follows. In view of the local existence argument exposed in
the previous subsection, the extension of a solution is ensured by the control of the
energy. In this particular setting of the square, direct computations lead to the
formula

E(t) = H+
1

2
T − A+

‖(u1 + u3)(t)‖2 + ‖(u2 + u4)(t)‖2

2
.

If (Ψ1,Ψ2,Ψ3,Ψ4) is a solution of (1.3) then (−Ψ3,−Ψ4,−Ψ1,−Ψ2) is also a so-
lution. So if the initial perturbation is a parallelogram like the one presented in
Figure 1, it will remain so at later times, hence

‖(u1 + u3)(t)‖2L2 = ‖(u2 + u4)(t)‖2L2 = 0

and global existence follows. On the other hand, for a perturbation without sym-
metry conditions the growth of ‖(u1 + u3)(t)‖2 + ‖(u2 + u4)(t)‖2 up to time T is
controlled by a lengthy computation based crucially on the particular properties of
the underlying square configuration (Xj)j .
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Figure 1. N = 4, Parallelogram-shaped perturbation around the
rotating square configuration.

Finally, let us notice that one could try the same approach for other configura-
tions (Xj)j . Explicit computations give for instance

E(t) = −H+ I − 3

2
A+

3

4

(
‖u1(t)‖2L2 + ‖(u2 + u3)(t)‖2L2

)
,

for N = 3 and (Xj)j at the ends and the middle of the segment, and

E(t) = −H+ I − 7

2
A+

2

3

2∑
j=1

‖(uj + uj+2 + uj+4)(t)‖2L2 +
3

4

3∑
j=1

‖(uj + uj+3)(t)‖2L2

for N = 6 and (Xj)j a regular hexagon. Nevertheless, these quantities have no
reason to be conserved, unless the perturbations retain the same shape as (Xj)j ,
which enters precisely the framework of the next paragraph.

4.2.3. N ≥ 2, global results for regular polygon-type configurations. In order to get
global results for a large number N of filaments, in [6] symmetry conditions are im-
posed both on the straight filaments configuration and on the perturbations. More
precisely, we let (Xj)j be the regular N -polygon configuration, with or without its
center, rotating with constant velocity ω and centered at the origin. We consider
filaments (Ψj)j with equal circulations Γj = 1 and of the type

Ψj(t, σ) = Xj(t)Φ(t, σ). (4.10)

So in particular for any time t and any height σ, the points (Ψj(t, σ))j form the
same polygon as (Xj(t))j up to a rotation or/and dilation, see Figure 2.

A straightforward computation shows that if (Ψj)j is a solution of (1.3) then Φ
is a solution of

i∂tΦ + ∂2
σΦ + ω

Φ

|Φ|2
(1− |Φ|2) = 0. (4.11)

Eq. (4.11) is an Hamiltonian equation, with Hamiltonian given by

E(Φ) =
1

2

∫
|∂σΦ|2 dσ +

ω

2

∫ (
|Φ|2 − 1− ln |Φ|2

)
dσ.

In our context, as we expect that (Ψj)j are small nearly parallel perturbations of
(Xj)j , we have |Φ| ' 1, so that (4.11) is formally similar to the already mentioned
Gross-Pitaevskii equation

i∂tΦ + ∂2
σΦ + ωΦ(1− |Φ|2) = 0, (4.12)
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Figure 2. N = 6, Rotation and dilation of the polygon rotating
configuration without center: Ψj(t, σ) = Xj(t)Φ(t, σ) for all j.

with corresponding Hamiltonian given by

EGP (Φ) =
1

2

∫
|∂σΦ|2 +

ω

4

∫ (
|Φ|2 − 1

)2
.

This formal comparison turns out to be valid: as we have reminded at the beginning
of this subsection, when |Φ| ' 1 the energies E(Φ) and EGP (Φ) are comparable. So
our objective is now to solve globally the Cauchy problem for the equation (4.11)
in the energy space, in the same spirit as previous works on (4.12), see [24].

We next assume that ω > 0, which is the case as soon as the circulation Γ0 of
the central vortex satisfies N − 1 + 2Γ0 > 0 (see Section 3). Theorem 1.1 of [6]
asserts that

For an initial data

Ψj,0(σ) = Xj(0)Φ0(σ),

with (Xj)j a regular polygon configuration, with or without its center, rotating with
constant positive speed ω, and E(Φ0) small, (1.3) has a unique global solution of
type (4.10) such that E(Φ(t)) = E(Φ0) and Φ−Φ0 ∈ C(R, H1(R)). In particular, if

Φ0(σ)
|σ|→∞−→ 1 then for all time Ψj(t, σ)

|σ|→∞−→ Xj(t), so the filaments (Ψj)j remain
nearly parallel.

The proof is based on the transposition of the arguments presented in §4.2.1 to
the setting of (4.11). We notice that

E = NE(Φ).

Since E(Φ) is conserved it follows that the corresponding local existence result for
(4.11) can be iterated and global existence is achieved.

In the third part of [6] subsonic traveling waves for (1.3) are constructed, still

under the condition ω > 0. More precisely, for c <
√

2ω sufficiently close to
√

2ω
there exist solutions of (1.3) of the shape

Ψj(t, σ) = Xj(t)v(σ + ct),

with v(σ) a smooth function of small energy, of even increasing modulus, exponen-
tially increasing to 1 as σ tends to ∞. Moreover,

v(σ)
σ→±∞−→ eiθ± , |θ+ − θ−| ≤ C

√
2ω − c2.
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These traveling waves are the equivalents objects of the grey solitons for the 1-D
Gross-Pitaevskii equation. The proof of the existence follows the approach in [55]
and [27]. The equation for the profile η = 1− |v|2

η′ =
(
− (c2 − 4ω)η2 + 4ω

(
(η − 1) ln(1− η)− η

))1/2

,

is a little more complicated than the one for the Gross-Pitaevskii equation which
can be solved explicitly. It is integrated in [6] using the smallness assumption on

c−
√

2ω.
As long as the energy is small, the modulus of Φ(t, σ) stays close to 1 and the

nonlinearity in (4.11) enters the frameworks of [48] (see also [12]), so these traveling
waves are orbitally stable. Also, the results in [55] are valid and insure that there
are no non-trivial supersonic traveling waves.

Finally, by reusing an argument from [37], we can transform these traveling waves
in the following way. System (1.3) is Galilean invariant, which means that for any

real ν and any solution (Ψj)j , the family Ψj,ν(t, σ) = e−itν
2+iνσ Ψj(t, σ − 2tν) is

also a solution. By choosing ν =
√
ω we get as another solution of (1.3)

Ψ̃j(t, σ) = ei
√
ωσ+i 2πjN v(σ + t(c− 2

√
ω)),

which represents a stationary (θ+−θ−)-twisted N -helix filament configuration with
some localized perturbation traveling in time on each of its filaments.

4.2.4. N ≥ 2, shifted perturbations. As noticed in [6], if the perturbations are
considered of the shifted form

Ψj(t, σ) = Xj(t) + u(t, σ),

for any (Xj)j with Γj all the same, it follows that u must solve the linear Schrödiger
equation. For an initial data in L1, by using the dispersion inequality for the linear
Schrödinger equation it follows that the filaments remains separate globaly in time
and the perturbations spread along the straight configuration (Xj)j . By considering
less regular initial data one can get examples of perturbations u decaying at infinity
that lead to a L∞ dispersive blow-up for the linear Schrödinger equation. For
instance the homogeneous data |x|−p with 0 < p < 1 yields a self-similar linear
Schrödinger solution, smooth for positive times ([19]). So this solution leads to
solutions of (1.3) blowing-up in L∞ in finite time at height σ = 0. Recently an
example of initial data in L2 but not in L1 that provides dispersive blow-up was

given in [15]. More precisely, the solution with initial data ei|x|
2

/(1 + |x|2)m with
1/2 < m ≤ 1 blows-up in finite time at one point. This makes a second example of
solutions of (1.3) that blow up in finite time at a certain height but for which no
collision occur.

4.3. Collapses of filaments. In the last part of this paper we describe configura-
tions of nearly parallel filaments evolving towards collision in finite time. Most of
them are new results. They are based on perturbations of type (4.10) of exactly par-
allel filament configurations (Xj)j . Therefore the collapse for the filaments (Ψj)j
solutions of (1.3) is linked to solutions of (4.11), with modulus initially close to one,
that vanish at least at one point in finite time. So a pointwise control of solutions
of (4.11) is needed, which is quite unusual in the study of the Schrödinger equation.

Let us first notice that if (Ψj,0)j leads to a collision in finite time, the shifted
perturbations introduced in §4.2.4,

Ψ̃j,0(σ) = Ψj,0 + u0(σ),

with u0 in H1 for instance, yield a collapse of the same kind. So collapses are not
isolated phenomena.
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Figure 3. N = 2, Gaussian perturbation around the fixed equi-
librium solution (X1, X0 = 0, X2 = −X1), leading to collision in
finite time.

4.3.1. Gaussian collapses about a stationary regular polygon configuration. We start
by recalling the single collapse situation described in [6]. We let (Xj)j be the sta-
tionary regular N -polygon configuration, with circulation Γj = 1 in the N vertices
of the polygon and circulation −(N − 1)/2 in its center (see §3). Note that this
implies N ≥ 2. Since the angular velocity is ω = 0, it follows that Φ is a solution

of the linear Schrödinger equation. The evolution of a real Gaussian e−σ
2

by the
linear Schrödinger equation can be computed explicitly

e−
σ2

1+4it

√
1 + 4it

.

Therefore we are insured that the non-vanishing initial condition

Ψj,0(σ) = Xj(0)

(
1− e−

σ2

1−4i

√
1− 4i

)
yields a solution (Ψj)j for the system (1.3),

Ψj(t, σ) = Xj(t)

1− e−
σ2

1−4i(1−t)√
1− 4i(1− t)

 ,

with Ψj−Xj ∈ C
(
R, H1(R)

)
, such that all filament collide together at time t = 1 at

σ = 0. Figure 3 displays such initial perturbations for N = 2 around the stationary
configuration (X1, X2 = −X1) with center at X0 = 0.

As a new observation, we can exhibit a similar scenario of collision for special
perturbations of the previous data, namely for all initial data of type

Ψj,0(σ) = Xj(0)

(
1− e−

σ2

1−4i

√
1− 4i

+ ei∂
2
σu0(σ)

)
,

with u0 small enough in L1 and such that∫
ei
y2

8 u0(y)dy = 0.
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This is due to the fact that

Ψj(t, σ) = Xj(t)

1− e−
σ2

1−4i(1−t)√
1− 4i(1− t)

+ ei(t+1)∂2
σu0(σ)


is then a solution of the system (1.3). In view of the dispersion inequality and the
explicit formula for a linear Schrödinger solution, we have∥∥∥ei(t+1)∂2

σu0

∥∥∥
L∞
≤ C√

t+ 1
‖u0‖L1 , ei2∂

2
σu0(0) = C

∫
ei
y2

8 u0(y)dy.

Therefore we are insured that at initial time the filaments (Ψj)j are separated and
they collide at time t = 1 at σ = 0.

4.3.2. Self-similar collapses about a stationary regular polygon configuration. Again
we consider (Xj)j to be the stationary regular polygon configuration, with circu-
lations Γj = 1 in the vertices of the polygon and circulation −(N − 1)/2 in its
center. This time we take advantage of the explicit self-similar solution of the lin-
ear Schrödinger equation exhibited by Cazenave and Weissler [19]. The initial data
considered there is ψ(x) = |x|−p with 0 < p < 1. By combining (3.2), Proposition
3.3. and Corollary 3.4. b) of [19] it follows that

(4it)
p
2 eit∂

2
σψ(0) ∈ R,

∥∥∥(4it)
p
2 eit∂

2
σψ
∥∥∥
L∞

= (4it)
p
2 eit∂

2
σψ(0) =

Γ
(

1−p
2

)
Γ
(

1
2

) .

In particular we obtain the existence of two times 0 < t2 < t1 such that∥∥∥i p2 eit1∂2
σψ
∥∥∥
L∞

<
1

2
, i

p
2 eit2∂

2
σψ(0) = 1.

Therefore we consider as initial data the non-vanishing function

Ψj,0(σ) = Xj(0)
(

1− i p2 eit1∂2
σψ(σ)

)
.

It yields as a solution for (1.3)

Ψj(t, σ) = Xj(0)
(

1− i p2 ei(t1−t)∂2
σψ(σ)

)
,

which vanishes at time t = t1 − t2 at σ = 0. Moreover, Proposition 3.7. in [19]

insures that eit∂
2
σψ belongs to some Lrσ space, so we have indeed Ψj(t, σ)

|σ|→∞−→
Xj(t).

4.3.3. Self-similar collapse around a three-vortex collapse. The purpose of this para-
graph is to investigate the behavior of vortex filaments around a self-similar col-
lapsing solution to the three-vortex problem. We consider the one constructed in,
e.g., [1] or [53]. The initial configuration is

Γ1 = Γ2 = 2, Γ3 = −1, X1(0) = −1, X2(0) = 1, X3(0) = 1 + i
√

2.

The sufficient collapse conditions Γ1Γ2 + Γ2Γ3 + Γ3Γ1 = 0 and T = 0 are both
satisfied. Then if we denote by c = − 1

3 (1 + i
√

2) the corresponding center of
vorticity, the configuration satisfies

Ẋj(t) = i (Xj(t)− c)ω(t), 1 ≤ j ≤ 3,

where

ω(t) =
ω

1− t
τ

, ω = a+ ib =
5

6
+ i

√
2

6
, τ =

1

2b
=

3√
2
.

The solution is explicitly given by

Xj(t)− c = (Xj(0)− c)
√

1− t

τ
exp

(
−iaτ ln

(
1− t

τ

))
, t ∈ [0, τ). (4.13)
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Figure 4. N = 3, Shifted perturbation around a self-similar col-
lapsing triangle configuration: Ψj,0(σ) = Xj(0) + u0(σ) for all j.

As already mentioned, since the exact parallel solution (X1(t), X2(t), X3(t)) col-
lapses in finite time then any shifted perturbations of the form Ψj,0(σ) = Xj(0) +
u0(σ), for all 1 ≤ j ≤ 3, with u0 ∈ H1, leads to collision at time τ (see Figure 4).

We next look for other kinds of less trivial perturbations around the triangle
collapse. As we did before in Section 4.2, we look for a filament solution under the
form

Ψj(t, σ)− c = (Xj(t)− c) Φ(t, σ), with |Φ(0, σ)| ' 1.

From now on we will assume that

αjΓj = κ0, 1 ≤ j ≤ 3.

Then the equation for Φ is

i∂tΦ + κ0∂
2
σΦ +

−iẊj

Xj − c
Φ

|Φ|2
(
1− |Φ|2

)
= 0,

so finally

i∂tΦ + κ0∂
2
σΦ + ω(t)

Φ

|Φ|2
(
1− |Φ|2

)
= 0. (4.14)

In the case of an equilateral uniformly rotating triangle we would have ω(t) ≡ ω ∈ R
real and constant and we would retrieve Eq. (4.11).

We next investigate the existence of self-similar solutions to (4.14). We seek for
a solution in the form

Φ(t, σ) = r(t) exp(iβ(t)) exp

(
i
σ2

γ(t)

)
, r(t) ≥ 0, γ(t) ∈ R, (4.15)

where r(0) = r0 ' 1 satisfies r0 < 1.

Plugging (4.15) into (4.14) we find the system (recall that τb = 1/2)
ṙ +

2κ0r

γ
+

1

r
(1− r2)

1

2(τ − t)
= 0

γ̇ − 4κ0 = 0

−rβ̇ +
1

r
(1− r2)

aτ

τ − t
= 0.

(4.16)

By setting

γ(t) = 4κ0(t− ατ),
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where α > 0 is a parameter, we can find an explicit formula for r:

r2(t) =
r2
0 − α

2

(1− t
τ )(1− t

ατ )
+
α

2

1− t
ατ

1− t
τ

, t ∈ I, (4.17)

where I is the largest interval such that I ⊂ [0,min(τ, ατ)) and r > 0 on I.

We rewrite (4.17) as

r2(t) =
1

2ατ2

1

(1− t
τ )(1− t

ατ )
(t2 − 2ατt+ 2ατ2r2

0) (4.18)

and observe that the discriminant in the numerator is negative for α < 2r2
0 and

positive for α > 2r2
0. We are led to the study of different cases which exhibit

different kinds of motion. From now on C will denote a positive constant depending
only on τ and α, which can possibly change from one line to another.

• We have 0 < α < 2r2
0. It follows that I = [0,min(τ, ατ)) and

1

C
√(

1− t
τ

) (
1− t

ατ

) ≤ r(t) ≤ C√(
1− t

τ

) (
1− t

ατ

) t ∈ [0,min(τ, ατ)).

After finding β in (4.16), and taking into account (4.13) we obtain that the filament
solution constructed this way satisfies:

1

C
√

1− t
ατ

≤ |(Ψj − c)(t, σ)| ≤ C√
1− t

ατ

,

1

C
√

1− t
ατ

≤ |(Ψj −Ψk)(t, σ)| ≤ C√
1− t

ατ

, σ ∈ R, t ∈ [0,min(τ, ατ)).

If α ≤ 1, this means that a blow-up of the filament solution at each level σ, without
collapse, takes place at time t = ατ (strictly before the occurrence of the three-
vortex collapse if α < 1 and exactly at the same time if α = 1). If α > 1, no
blow-up nor collapse occurs for the filaments at the time t = τ of the three-vortex
collapse. Actually the modulus of the filaments remain regular up to t = τ and
only the angular velocity becomes singular at time τ .

• We have 2r2
0 ≤ α < 1

2(1−r20)
. We formulate (4.18) as

r2(t) =
1

2ατ2

1

(1− t
τ )(1− t

ατ )
(t− t∗)(t− t∗), t ∈ I,

with t∗ = ατ

[
1 +

√
1− 2r20

α

]
and t∗ = ατ

[
1−

√
1− 2r20

α

]
. Since both t∗ > τ and

t∗ > τ we get the same behavior as for the case 1 < α < 2r2
0 for the filaments.

• We have 1
2(1−r20)

< α. Then t∗ > τ but 0 < t∗ < τ ; therefore, I = [0, t∗) is

strictly contained in [0, τ). We conclude that the filament solution evolves toward
the following self-similar collision in finite time: it exists up to time t∗ < τ , collapses
at each level σ at time t = t∗ and satisfies

|Ψj(t, σ)− c| ∼ C
√

1− t

t∗
, |(Ψj −Ψk)(t, σ)| ∼ C

√
1− t

t∗
, t→ t∗, σ ∈ R.

In particular the collision between the filaments takes place before the collision
between the point vortices.

Remark 1. When r0 > 1 the last argument does not apply and we are not able to
construct a collapse in that way.
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Remark 2. In the case of a uniformly rotating polygon (see §4.2) we have ω(t) ≡ ω
is constant in time, real, so that the analog of (4.16) isṙ +

r

2t
= 0

β̇ =
ω

r2
(1− r2)

Thus the corresponding filament solution is given by

Ψj(t, σ) = Xj(t)
u0√
1− t

τ

exp

(
i

(
ωτ2

2
(1− t

τ
)2 + ωτ(1− t

τ
)

))
exp

(
iσ2

4κ0(t− τ)

)

for some u0 ∈ S1 and τ ∈ R. It blows up at time t = τ but does not collide.
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