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1 Motivation

In any homology theory, the homology groups take the form H(X,A) where
X is typically a space and A is typically a coefficient set. The main tech-
nique to compute these groups is to understand their behavior under the
change of X and of A. In this notation, A is call the abelian variable and
X is called the non-abelian variable. We will be concerned with the depen-
dence on the abelian variable in this lecture.
The first step will be to study the most general type of objects that can be
used as the abelian variable, leading to the notion of abelian category.
Since most constructions in homology originate at the complex level, the
second step will be to study complexes modulo quasi-isomorphisms, leading
to the notion of derived category.
The third step will be to extend operations on the abelian variable to de-
rived categories so that these have the best possible homological properties,
leading to the notion of derived functor.

2 Categories

We start by recalling the first important notion for this lecture.

Definition 2.1. A category C consists of the following data:

(i) a class Ob(C), whose elements are called objects of C,

(ii) for all pairs (X,Y ) of objects in Ob(C), a set Hom(X,Y ), whose ele-
ments are called morphisms from X to Y and denoted by f : X → Y ,

(iii) for any triple (X,Y, Z) of objects in Ob(C), a map Hom(X,Y ) ×
Hom(Y, Z) → Hom(X,Z), called the composition map and denoted
(f, g) 7→ g ◦ f .
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These data satisfy:

(i) the composition of morphisms is associative,

(ii) for any X ∈ Ob(C), there exists the identity morphism idX ∈ Hom(X,X);
it is uniquely determined by the conditions f ◦ idX = f for any f ∈
Hom(X,Y ) and idX ◦ g = g for any g ∈ Hom(Y,X).

A morphism f ∈ Hom(X,Y ) is called an isomorphism if there exists
g ∈ Hom(Y,X) such that f ◦ g = idY and g ◦ f = idX .

Examples 2.2. The following categories will be useful in this working group.

1. The category Sets of sets, consisting of all sets, all maps between them
and their natural composition law.

2. The category Top of topological spaces, with continuous maps between
them.

3. The category Diff of smooth manifolds, with smooth maps between
them.

4. The category Ab of abelian groups, with group homomorphisms be-
tween them.

5. The category k-Mod of (left) modules over a fixed ring k, with module
maps between them.

6. The category Sh(M) of sheaves on a manifold M , consisting of all
sheaves of abelian groups on M , all sheaf morphisms between them
and their natural composition law. This category will be studied in
more details during the next lecture.

Definition 2.3. Let C be a category. The opposite category C◦ is defined by
Ob(C◦) = Ob(C) and HomC◦(X,Y ) = HomC(Y,X) for all X,Y ∈ Ob(C◦),
with the obvious composition maps.

We now recall the second important notion for this lecture.

Definition 2.4. Let C and C′ be two categories. A functor F from C to C′
consists of the following data:

(i) a map F : Ob(C)→ Ob(C′),

(ii) for all pairs (X,Y ) of objects in Ob(C), a map F : HomC(X,Y ) →
HomC′(F (X), F (Y )).
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These data satisfy the condition F (f ◦g) = F (f)◦F (g) whenever the compo-
sition f◦g is defined in C. In particular, F (idX) = idF (X) for all X ∈ Ob(C).

Examples 2.5. The following functors will be useful in this working group.

1. The forgetful functors from Top, Diff, Ab, . . . to Sets associating to
each object the underlying set, or from Diff to Top associating to each
smooth manifold the underlying topological space.

2. Let C be a category and X ∈ Ob(C). The functor Hom(X, ·) from C
to Sets is defined by Y 7→ Hom(X,Y ) for all Y ∈ Ob(C) and f 7→ f ◦ ·
for all f ∈ Hom(Y, Z).

3. The functor Hom(·, X) is defined analogously. It can also be seen as
the functor Hom(X, ·) from C◦ to Sets.

4. Let M be a k-bimodule. The functor ⊗kM from k-Mod to itself is
defined by N 7→ N ⊗k M .

5. With M as above, the functors Homk(M, ·) and Homk(·,M) from k-
Mod to itself is defined by N 7→ Homk(M,N) and N 7→ Homk(N,M)
respectively.

6. Let M be a smooth manifold and U ⊂M an open subset. The functor
Γ(U, ·) from Sh(M) to Ab is defined by F 7→ Γ(U,F) = F(U).

There is also a notion of morphism between functors.

Definition 2.6. Let F1 and F2 be two functors from C to C′. A morphism
or natural transformation θ from F1 to F2 consists of the following data:

for any X ∈ Ob(C), a morphism θ(X) ∈ HomC′(F1(X), F2(X)).

These data satisfy the condition:

for any f ∈ Hom(X,Y ), the diagram below is commutative.

F1(X)
θ(X) //

F1(f)

��

F2(X)

F2(f)

��
F1(Y )

θ(Y )
// F2(Y )
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Note that the collection of all functors between two categories C to C′,
with morphisms between them and their natural compositions, defines a
category Fun(C, C′).
In particular, the notion of isomorphism of functors is defined.

Definition 2.7. A functor F : C → Sets is representable if there exists
X ∈ Ob(C) such that F is isomorphic to the functor Hom(X, ·).

3 Additive categories

Definition 3.1. A category C is additive if:

(i) for all pairs (X,Y ) of objects in Ob(C), the set Hom(X,Y ) has the
structure of an additive (i.e. abelian) group, and the composition law
is bilinear,

(ii) there exists an object 0 ∈ Ob(C) such that Hom(0, 0) = 0,

(iii) for any X1, X2 ∈ Ob(C), there exists Y ∈ Ob(C) and i1 ∈ Hom(X1, Y ),
i2 ∈ Hom(X2, Y ) such that, for any f1 ∈ Hom(X1, Z) and f2 ∈
Hom(X2, Z), there exists h ∈ Hom(Y, Z) making the diagram below
commutative,

X1

i1   A
AA

AA
AA

A
f1

''PP
PPP

PPP
PPP

PPP

Y
h //___ Z

X2

i2

>>}}}}}}}} f2

77nnnnnnnnnnnnnn

(iv) for any X1, X2 ∈ Ob(C), there exists Y ∈ Ob(C) and p1 ∈ Hom(Y,X1),
p2 ∈ Hom(Y,X2) such that, for any f1 ∈ Hom(Z,X1) and f2 ∈
Hom(Z,X2), there exists h ∈ Hom(Z, Y ) making the diagram below
commutative.

X1

Z

f1

77nnnnnnnnnnnnnn

f2 ''PP
PPP

PPP
PPP

PPP
h //___ Y

p1

>>}}}}}}}}

p2

  A
AA

AA
AA

A

X2
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Remark 3.2. The last two conditions can be better understood using some
reformulations.

1. Under conditions (i) and (ii), the conditions (iii) and (iv) are equiva-
lent, and the objects Y provided by these conditions are isomorphic.

2. Condition (iii) is equivalent to the property that the functor from C
to Sets

Z 7→ Hom(X1, Z)×Hom(X2, Z)

is representable. The representing object Y in condition (iii) is called
the direct sum of X1 and X2, and the maps i1 and i2 are inclusion
maps. The pair (i1, i2) corresponds to idY via the isomorphism

Hom(X1, Y )×Hom(X2, Y ) ' Hom(Y, Y ).

3. Condition (iv) is equivalent to the property that the functor from C◦
to Sets

Z 7→ Hom(Z,X1)×Hom(Z,X2)

is representable. The representing object Y in condition (iv) is called
the direct product of X1 and X2, and the maps p1 and p2 are projection
maps. The pair (p1, p2) corresponds to idY via the isomorphism

Hom(Y,X1)×Hom(Y,X2) ' Hom(Y, Y ).

4. Conditions (iii) and (iv) can therefore be summarized by saying that
direct sums and products exist and coincide.

Examples 3.3. Let us revisit our favorite categories.

1. The category Sets, as well as the categories Top and Diff, are not
additive categories. This is not surprising, since the latter typically
play the role of the non-abelian variable.

2. The category Ab is an additive category. Note that it is essential that
the groups are abelian.

3. The category k-Mod is additive, even if the ring k is not commutata-
tive and the category consists of left modules only.

4. The category Sh(M) of sheaves of abelian groups on M is an additive
category. This will be explained in the next lecture.
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Definition 3.4. A functor F from C to C′, two additive categories, is said to
be additive if the maps F : HomC(X,Y ) → HomC′(F (X), F (Y )) are group
morphisms.

In this lecture, the main feature of additive categories is that one can
define the notion of (cochain) complex in such a category.

Definition 3.5. A (cochain) complex X in an additive category C consists
of the data {Xn, dn}n∈Z such that

Xn ∈ Ob(C), dn ∈ Hom(Xn, Xn+1) and dn+1 ◦ dn = 0,

for all n ∈ Z.
A morphism between complexes X and Y in C consists of the data {fn}n∈Z
such that

fn ∈ Hom(Xn, Y n), and dnY ◦ fn = fn ◦ dnX ,
for all n ∈ Z.

The collection of all complexes in an additive category C, with their
morphisms and their natural composition, defines a category C(C). This is
also an additive category.

We say that a complex X is bounded (resp. bounded above, resp.
bounded below) if Xn = 0 for |n| (resp. n, resp. −n) large enough. We
denote by Cb(C) (resp. C+(C), resp. C−(C)) the full subcategories of C(C)
consisting of bounded (resp. bounded above, resp. bounded below) com-
plexes.

The translation functor Tn is defined on all these categories (to them-
selves). The complex Tn(X) = X[n] is defined by Tn(X)i = Xn+i and
diX[n] = (−1)ndiX .

Definition 3.6. Two morphisms f, g : X → Y in C(C) are homotopic if
there exist morphisms sn : Xn → Y n−1 in C such that

fn − gn = sn+1 ◦ dnX + dn+1
Y ◦ sn,

for all n ∈ Z.

Let K(C) be the category consisting of all complexes in C, with their
morphisms modulo homotopy and their induced composition law. There
are similar definitions for Kb(C), K+(C) and K−(C). These are also additive
categories.

Note, however, that the homology of a complex in an additive category
cannot always be defined. This motivates the introduction of an even more
particular class of categories.
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4 Abelian categories

The notion of kernel is essential for the definition of homology. It can be
generalized to morphisms of a category via the representation of a functor.

Definition 4.1. Let f ∈ Hom(X,Y ). Consider the functor ker f from C◦
to Sets defined by (ker f)(Z) = {g ∈ Hom(Z,X) : f ◦ g = 0}. The kernel of
f , denoted by Kerf , is the object of C representing this functor ker f , if it
exists.

If it exists, the kernel of f comes naturally with a morphism k ∈ Hom(Kerf,X)
satisfying the following universal property: if g ∈ (ker f)(Z), there is a
unique morphism in Hom(Z,Kerf) making the diagram below commuta-
tive:

Z
g //

""D
D

D
D X

f // Y

Kerf

k

OO

Similarly, after dualizing twice, we obtain the definition of cokernel.

Definition 4.2. Let f ∈ Hom(X,Y ). Consider the functor cokerf from C
to Sets defined by (cokerf)(Z) = {g ∈ Hom(Y, Z) : g ◦f = 0}. The cokernel
of f , denoted by Cokerf , is the object of C representing this functor cokerf ,
if it exists.

If it exists, the cokernel of f comes naturally with a morphism c ∈
Hom(Y,Cokerf) satisfying the following universal property: if g ∈ (cokerf)(Z),
there is a unique morphism in Hom(Cokerf, Z) making the diagram below
commutative:

X
f // Y

g //

c
��

Z

Cokerf

;;v
v

v
v

v

Remark 4.3. Note that the functor Z 7→ {g ∈ Hom(Z, Y )}/f ◦ Hom(Z,X)
does not lead to the correct definition of cokernel. In Ab, if f : Z → Z is
multiplication by n and Z = Zn, then Z 7→ 0 while Hom(Z,Cokerf = Zn) 6=
0.

Definition 4.4. An additive category C is abelian if any morphism f ∈
Hom(X,Y ) admits a canonical decomposition

Kerf
k // X

i // I
j // Y

c // Cokerf
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where j ◦ i = f and I = Coker k = Ker c.

Remark 4.5. This is equivalent to the following two conditions:

(i) for any f ∈ Hom(X,Y ), Kerf and Cokerf exist,

(ii) the canonical morphism Coker k → Ker c is an isomorphism.

Examples 4.6. The additive categories Ab, k-Mod and Sh(M) from the pre-
vious section are all abelian. These (as well as local systems of coefficients)
are the ones playing the role of the abelian variable in classical homology
theories.

We are now in position to define the homology of a complex in an abelian
category.

Definition 4.7. Let C be an abelian category and X ∈ Ob(C(C)). The
homology of X is the object H(X) ∈ Ob(C(C)) the complex with trivial dif-
ferentials defined by Hn(X) = Coker(an) = Ker(bn+1) and the commutative
diagram

Coker dn

bn+1

&&L
LLLL

Xn dn //

an

%%J
J

J
J

J Xn+1

OO

dn+1
// Xn+2

Ker dn+1

OO

Note in addition that this abstract definition of homology induces a
functor H from C(C) to itself.

Definition 4.8. A morphism f ∈ HomC(C)(X,Y ) is a quasi-isomorphism
if H(f) is an isomorphism.

If f, g ∈ HomC(C)(X,Y ) are homotopic, then H(f) = H(g). In partic-
ular, the functor H naturally induces a functor, still denoted by H, from
K(C) to itself.

It is then routine (but a useful exercise) to check that the definition
of exact sequence naturally extends to this context and that a short exact
sequence of complexes induces a long exact sequence in homology.
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5 Derived categories

To go one step further in the systematic study of complexes (but having
their homology in mind as the real object of interest), we would like to
consider quasi-isomorphisms as isomorphisms of a new category. In other
words, we would like to define a new category by formally inverting some
class of morphisms, via some kind of localization procedure.

The following example shows that there exist quasi-isomorphisms that
are not homotopic to an isomorphism (and hence the above localization
procedure is indeed necessary).

Examples 5.1. Consider the two complexes in C(Z-Mod) and the morphism
between them given in the commutative diagram

. . . // 0 //

��

Z ×2 //

��

Z //

mod 2
��

0 //

��

. . .

. . . // 0 // 0 // Z2
// 0 // . . .

The complex morphism is a quasi-isomorphism, but is not homotopic to
an isomorphism, since there is no nontrivial morphism from the bottom
complex to the top complex.

Definition 5.2. The derived category D(C) of an abelian category C is
unique category such that there exists a functor Q from K(C) to D(C) sat-
isfying:

(i) Q(f) is an isomorphism for any quasi-isomorphism f ,

(ii) any functor F from K(C) to some category D transforming quasi-
isomorphisms into isomorphisms uniquely factorizes through Q (i.e.
there exists a functor G from D(C) to D such that F = G ◦Q).

There are analogous definitions for Db(C), D+(C) and D−(C) starting
from Kb(C), K+(C) and K−(C) respectively.

Here is an explicit construction of the derived category D(C). We denote
by S the class of quasi-isomorphisms in K(C).

Definition 5.3. The derived category D(C) of an abelian category C is
defined by

Ob(D(C)) = Ob(K(C))

and

HomD(C)(X,Y ) = {(s, f) | s ∈ HomC(Z,X) ∩ S, f ∈ HomC(Z, Y )}/ ∼
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where (s, f) ∼ (t, g) iff there exists a commutative diagram

Z ′′

u

~~}}
}}
}}
}} h

  B
BB

BB
BB

B

Z
s

��~~
~~
~~
~~

f
**UUU

UUUU
UUUU

UUUU
UUUU

UUUU Z ′

t
ttiiii

iiii
iiii

iiii
iiii

iii
g

  A
AA

AA
AA

A

X Y

with u, h ∈ S.

The functor Q from the first definition is then defined by Q(X) = X for
all X ∈ Ob(K(C)) and Q(f) = [idX , f ] for all f ∈ HomC(X,Y ).

In order to check that this definition gives indeed rise to a category, it is
sufficient for S to satisfy the following definition.

Definition 5.4. A family S of morphisms in a category C′ is a localizing
system if:

(i) for any X ∈ Ob(C′), idX ∈ S,

(ii) for any f, g ∈ S, f ◦ g ∈ S whenever it is defined,

(iii) for any f ∈ Hom(X,Y ), g ∈ Hom(Z, Y ) ∩ S, there exists a commuta-
tive diagram

W //

h
��

Z

g

��
X

f // Y

with h ∈ S, and similarly with all arrows reversed,

(iv) for any f, g ∈ Hom(X,Y ), there exists t ∈ S such that t ◦ f = t ◦ g iff
there exists s ∈ S such that f ◦ s = g ◦ s.

Proposition 5.5. The class S of quasi-isomorphisms in K(C) is a localizing
system.

The proof uses the notion of mapping cone. Given f ∈ HomC(C)(X,Y ),
the mapping cone M(f) ∈ Ob(C(C)) is defined by M(f) = X[1]⊕ Y and

dM(f) =

(
dX[1] 0

f dY

)
.

10



Then we have a sequence of morphisms X → Y → M(f) → X[1] in C(C)
transformed by the functor H into the long exact sequence in homology of
this mapping cone.

A remarkable property of mapping cone sequences is that they can be
considered, modulo an isomorphism in K(C), as a mapping cone sequence
with respect to any of the three morphisms in them.

Proof. Properties (i) and (ii) are obvious.
The commutative diagram in (iii) is the first square in the diagram

M(j)[−1]
h //

��

X
j //

f

��

M(g) //M(j)

��
Z

g // Y //M(g) // Z[1]

Since g ∈ S, M(g) is acyclic and hence h ∈ S as well. Note that this diagram
commutes only up to homotopy, i.e. commutes in K(C) but not in C(C).

To prove (iv), we can assume g = 0 since C is additive. If t ∈ Hom(Y,Z)∩
S satisfies t ◦ f = 0 in K(C), we have a homotopy h : X → Z[−1] from t ◦ f
to 0. Then we define k = f ⊕ h : X →M(t)[−1] and s is obtained from the
commutative diagram

M(t)[−1] // Y
t // Z

M(t)[−1] X
k
oo

f

OO

M(k)[−1]s
oo

Then f ◦ s = 0 because k ◦ s = 0 and the diagram commutes. Since t ∈ S,
M(t) is acyclic and hence s ∈ S as well.

These properties of S also suffice to verify that D(C) is an additive
category.

Examples 5.6. If C = Sh(M) the categories of sheaves over M , then D(C)
is called the derived category of M and is denoted by D(M). It will be the
most important (derived) category in the next lectures.

6 Derived functors

Let F be an additive functor from the abelian category C to the abelian
category D. Acting on complexes in C componentwise, F induces an additive
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functor C(F ) from C(C) to C(D). This functor preserves the notion of
homotopy, so that it induces in turn an additive functor K(F ) from K(C) to
K(D). But in general this functor does not transform a quasi-isomorphism
into a quasi-isomorphism, so that it does not induce a functor on the derived
categories.

Definition 6.1. An additive functor F is exact if it transforms a short
exact sequence into a short exact sequence.
It is left exact if it transforms a short exact sequence into a sequence that
is exact on the left side and in the middle.
It is right exact if it transforms a short exact sequence into a sequence that
is exact in the middle and on the right side.

Examples 6.2. The functors Homk(·,M), Homk(M, ·) and Γ(U, ·) are left
exact. The functor ⊗kM is right exact.

Proposition 6.3. If the additive functor F from C to D is exact, then
K(F ) transforms a quasi-isomorphism into a quasi-isomorphism, and hence
induces a functor D(F ) from D(C) to D(D).

Proof. Since a morphism of complexes is a quasi-isomorphism iff its mapping
cone is acyclic, it is sufficient to show that F transforms an acyclic complex
X into an acyclic complex F (X).

Writing Bi = Ker di = Im di−1, we have the commutative diagram

0

""E
EE

EE
EE

EE 0

Bi+1

;;vvvvvvvvv

##G
GG

GG
GG

GG

· · ·Xi−1

##H
HH

HH
HH

HH
di−1

// Xi di //

<<yyyyyyyy
Xi+1 di+1

//

##G
GG

GG
GG

GG
Xi+2 · · ·

Bi

>>||||||||

!!C
CC

CC
CC

C Bi+2

%%JJ
JJ

JJ
JJ

JJ

::ttttttttt

0

::vvvvvvvvvv
0 0

;;vvvvvvvvvv
0

The exact functor F transforms this diagram into a diagram with the same
properties, so that F (X) is acyclic as well.

Note that the functor D(F ) maps the sequence of morphisms X → Y →
M(f) → X[1] into a sequence morphisms that is isomorphic to a mapping
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cone sequence. A functor between derived categories with this property is
called exact (derived categories are additive but not abelian, so the usual
definition cannot be used).

Since this componentwise construction does not work in general for non-
exact functors, we need another definition for these.

Definition 6.4. The derived functor of an additive left exact functor F
from C to D is a pair consisting of an exact functor RF from D+(C) to
D+(D) and a morphism of functors εF from QD ◦K+(F ) to RF ◦QC

D+(C)
RF

%%JJ
JJ

JJ
JJ

J

K+(C)

QC
::ttttttttt

K+(F ) $$JJ
JJ

JJ
JJ

J
D+(D)

K+(D)

QD

99ttttttttt

such that for any exact functor G from D+(C) to D+(D) and any morphism
of functors ε from QD ◦K+(F ) to G ◦ QC there exists a unique morphism
of functors η from RF to G making the diagram

QD ◦K+(F )

εFwwooo
ooo

ooo
oo

ε

''NN
NNN

NNN
NNN

RF ◦QC
η◦QC // G ◦QC

commutative.

There is a similar definition for the derived functor LF of an additive
right exact functor, defined from D−(C) to D−(D), obtained by reversing
the arrows of the morphisms of functors.

The derived functor is constructed in the following way:

1. select a suitable subclass of objects of K(C),

2. if F acts nicely on this subclass, it induces componentwise a functor
on the corresponding localization,

3. if the chosen subclass is large enough, its localization will be equiv-
alent to the derived category, and hence the derived functor will be
completely determined.
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