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1 Introduction

Definition 1. A torus T is a 3–manifold M and an open-book (K, θ) on M are
transverse to each other if the binding K does not intersect T and the projection
θ induces a submersion on T .

Remark that if (K, θ) is transverse to some torus T then the intersection
of T with any page is a system of embeded circles whose isotopy classes are
permuted by the monodromy (which is well defined up to isotopy).

Recall a surface S in a contact manifold (M, ξ) is prelagrangian if there is
a contact form defining ξ which induces a non-singular closed form on S. The
goal of this note is to explain why the following statement is trivial.

Observation. If ξ is a contact structure supported by (K, θ) on M then any
torus transverse to (K, θ) is isotopic to a ξ–prelagrangian torus.

Note that the isotopy in the proposition does not preserve ξ.

Corollary 2. If τ is a Dehn twist along T then τ∗ξ is isotopic to ξ.

2 Open books and relative suspensions

This is a background section on the relation between open book decomposi-
tions and relative suspensions of surfaces diffeomorphisms. We explain Giroux’s
construction of contact structures on relative suspensions using his notion of
ideal Liouville domains. In dimension 2 this notion, and symplectic geometry
in general, is somehow degenerate but it stills cleans the construction, avoiding
in particular any tweaking near the binding.

Definition 3. Let P be a compact surface with non empty boundary and ω a
symplectic form defined on the interior of P . The pair (P, ω) is an ideal Liouville
surface if there is an auxilliary 1–form β on the interior of P such that

• β is a primitive of ω

• for any non-negative function f having ∂P as its regular zero level, the
1–form fβ extends to a positive contact form on ∂P .
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This 1–form is then called a Liouville form for (P, ω).

Remark 4. In the above definition, the space of possible auxiliary Liouville
forms β is contractible. First remark that the second condition does not depend
of the choice of f . Indeed, if f1 and f2 are as in the definition then one can
check there exists a positive function g such that f2 = gf1. It follows that, for a
fixed β, f1 β extends to a positive contact form if and only if f2 β does. So we
can fix an equation f for ∂P and then the condition on β is convex.

If β is a Liouville form for (P, ω) then there is a collar neighborhood of ∂P
identified by (−ε, 0] × S1 with coordinates (s, z) in which β = − 1

sdz. One can
then use f = −s as a regular equation of the boundary in this collar. Remark
that the ω–dual to β is X = −s∂s which is complete on (−ε, 0]×S1 so (IntP, β)
is a complete Liouville manifold, in particular its ω-area is infinite. The name
ideal Liouville domain refers to ∂P seen as the ideal boundary (at infinity) of
IntP .

The contactization of (P, ω) is P × R equiped with the contact structure
ker(β + dt) where t is the coordinate in R. This definition makes sense along
∂P ×R because the alternate contact form f(β + dt) on the interior extends to
fβ on the boundary. This contact structure is independant of the choice of β
up to isotopy relative to the boundary. In the collar defined above, one can use
the contact form fβ + fdt = dz − sdt.

Let ϕ be an exact symplectomorphism of the interior of P . Exactness means
there is a function h on P such that ϕ∗β − β = dh. Note that h is constant
away from the support of ϕ. After adding a constant to h, we can assume that
it is positive (because P is compact). The suspension of ϕ is:

Σ(P,ϕ) :=
(
P × R

)
/Φ where Φ(p, t) = (ϕ(p), t− h(p))

The contact form β + dt is invariant under this transformation in the interior
and Φ is a translation near the boundary so the contact structure defined on
the contactization P × R descends to a contact structure ξϕ on Σ(P,ϕ). One
also has a submersion θΣ from Σ(P,ϕ) to S1 induced by (p, t) 7→ 2πt

h .
Let D be the open disk of radius

√
ε, the same ε as in the collar neighborhood

above which we now choose so small that h is locally constant in this collar.
Also denote by Ḋ the punctured disk D \ {0}. The relative suspension Σ̄(P,ϕ)
is obtained from Σ(P,ϕ) by gluing ∂Σ×D through the diffeomorphism induced
by Ψ : ∂Σ × Ḋ → (−ε, 0] × S1 × R with Ψ(z, r, θ) = (−r2, z, θh2π ). Note that

Ψ∗(dt + β) = h
2πdθ + r2dθ (recall h is locally constant in the collar) so ξϕ has

a smooth extension by continuity. Also the fibration of Σ(P,ϕ) over the circle
smoothly glues to (z, r, θ) 7→ θ in ∂P × Ḋ. So one gets an open book with
binding KΣ = ∂P × {0} and fibration θΣ.

All this was the description of what is often called an abstract open book.
We want to use this as a model of open books supporting contact structures.

Proposition 5 (Giroux). If ξ is a contact structure supported by some open
book (K, θ) on a closed 3–manifold M then there is an ideal Liouville surface
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(P, ω), an exact symplectomorphism ϕ and a diffeomorphism Φ from Σ̄(P,ϕ) to
M such that:

• Φ maps the binding KΣ to the binding K

• θ ◦ Φ = θΣ

• Φ∗ξ = ξϕ.

3 Proof of the observation and its corollary

Let c be the intersection of T with some page of (K, θ). We can use Φ of the
previous proposition to identify c with a submanifold in an ideal Liouville surface
P . The torus T is isotopic to the image under Φ of the projection of c × R in
Σ(P,ϕ). So it suffices to prove that c×R is prelagrangian in the contactization
of P . But this is obvious since β induces a closed form on c (c has dimension
one!) so β + dt induces a closed form on c× R.

We will now prove the corollary but first recall how neighborhoods of prela-
grangian tori look like. We include the proof of the following lemma because we
cannot find a proper reference.

Lemma 6. If α is a closed non-singular 1–form on a torus T then (T, kerα) is
diffeomorphic to the suspension of a rotation in S1.

Proof. We choose a base point in T2. Integration of α on paths between this
point and other points gives a map from T2 to R/G for some subgroup G of R.

There are two cases. If the cohomology class of α spans a rationnal line
then this subgroup is discrete and R/G is a circle. Because α is non-singular,
the kernel of this map has dimension one so it is a submersion. By Ehresmann
fibration theorem, it is a locally trivial bundle map and the foliation defined by
α is smoothly conjugated to a foliation by circles.

If the cohomology class does not span a rational line then one can approxi-
mate α by α′ which defines a foliation by circles such that, in some coordinate
system (x, y), each circle has constant y coordinate and kerα is transverse to
the vector field ∂y. Up to rescaling y, α is cohomologous to dy + εdx for some
ε. There exists a function f such that α = dy + εdx + df and 1 + ∂yf never
vanishes (because of the transversality assumption). In this situation, each cir-
cle x = constant is transverse to kerα and the Poincar first return map is a
rotation of angle −ε. Indeed the orbits of kerα are directed by the vector field
(1 + ∂yf)∂x− (ε+ ∂xf)∂y so integrating the ∂y component gives −ε (using that
f is periodic). So T2 equiped with the foliation defined by kerα is diffeomorphic
to the suspension of a rotation.

Lemma 7. Any prelagrangian torus has a tubular neighborhood diffeomor-
phic to T2 × (−ε, ε) with coordinates (x, y, z) in which the contact structure
is ker

(
cos(θ0 + z)dx− sin(θ0 + z)dy

)
for some angle θ0.
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Proof. Using the previous lemma, we choose coordinates (x, y) on our torus T
such that there is a contact form α inducing cos(θ0)dx − sin(θ0)dy on T . Let
V be a vector field near T transverse to T and tangent to ξ. The flow of V
starting from T is a diffeomorphism on (−ε, ε) × T for some positive ε. We
denote by t the time parameter in (−ε, ε). The contact structure pulls back
to (−ε, ε) × T as ker

(
cos(θ(x, y, t))dx − sin(θ(x, y, t))dy

)
for some function θ

with θ(x, y, 0) = θ0. The contact condition is equivalent to ∂tθ 6= 0 so that the
implicit function theorem allows to use z = θ − θ0 as a coordinate instead of t
(shrinking ε if needed).

We can now prove the corollary from the introduction. First notice that the
conclusion depends only on the isotopy class of τ . This is indeed what allows this
pretty vague statement. Observe now that, in the conclusion of the preceding
lemma, the coordinates (x, y) can be changed using any linear transformation,
at the only price of changing the angle θ0. So we can assume that τ is supported
in this tubular neighborhood and given by: τ(x, y, z) = τ(x, y+ρ(z), z) for some
function ρ. Then

τ∗ξ = ker
(

cos(θ0 + z)dx− sin(θ0 + z)
(
dy + ρ′(z)dz

))
It only remains to remark that αf := cos(θ0 + z)dx− sin(θ0 + z)dy+ f(z)dz is a
contact form whatever the function f . So we can interpolate linearly and apply
Gray’s theorem.
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