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1 Hermitian line bundles

In this text, V is any smooth manifold. Recall that π : L→ V is a line bundle
if there exists an open cover U = (Ui) of V and commuting diagrams:

π−1(Ui) Ui × C

Ui

π

ϕi

pr1

such that, for all Uij = Ui ∩ Uj , the map ϕi ◦ ϕ−1
j : Uij × C → Uij × C can

be written as (x, v) 7→ (x, gij(x)v) for some function gij : Uij → C∗. Those
functions are called transition functions and satisfy the cocycle condition:

gij = g−1
ji on Uij = Ui ∩ Uj

gijgjk = gik on Uijk = Ui ∩ Uj ∩ Uk.
(1)

Conversely, any set of functions (gij) satisfying this condition defines a unique
line bundle over V . If they take value in U(1) ⊂ C∗ then the canonical hermitian
product on C gives rise to a well defined hermitian product on each fiber of π
and L is called a hermitian line bundle. For such bundles, we will always use
local trivialization ϕi which are unitary in fibers.

In each trivializing open set Ui, a section s is seen as si = pr2◦ϕi◦s : Ui → C.
For each Uij , one then has si = gijsj .

Example. On Ĉ = C ∪ {∞} one can use the covering U0 = C, U1 = C∗ ∪ {∞}.
The line bundle given by g01(z) = zn is denoted by O(n). Its holomorphic
sections corresponds to polynomials of degree at most n. The zero set of a
transverse section consists of n points.

2 Connections on hermitian line bundles

A connection on L is a map ∇ : Γ(L)→ Γ(T ∗V ⊗L) such that, for any section s
of L and any complex-valued function f , ∇(fs) = f∇s+df⊗s. It is a hermitian
connection if d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉.

In each trivializing open set Ui, ∇s becomes dsi + Aisi for some (complex-
valued) 1-form Ai. The connection is hermitian if and only if all Ai are purely
imaginary.
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A short computation shows, in Uij , Aj = Ai + g−1
ij dgij . From now on, we

will assume that U is a good cover: all finite intersections of open sets in this
cover are contractible. In particular gij has a logarithm in Uij so g−1

ij dgij is
exact hence closed and the local 2-forms dAi glue consistently to give a closed
2-form F on V . This form is called the curvature of (L,∇). It does not depend
on the choice of U, as can be seen by using cover refinements.

The curvature is the obstruction to constructing local non-vanishing sections
s which are “horizontal”: ∇s = 0. Indeed, if si is a non-vanishing function on
Ui representing some local section s then

∇s = 0 ⇐⇒ Ai = −s−1
i dsi =⇒ dAi = 0.

Conversely, if Ai is closed (hence exact) then one can foliate Ui × C by graphs
of horizontal sections so the plane field defined by ∇ on L is not “curved”.

3 From line bundles to cohomology

In the following theorem, we use smooth singular homology H∗(V ) whose chains
are formal linear combinations of smooth maps from simplices to V . In par-
ticular one can integrate differential forms on chains. A de Rham cohomology
class is called integral if it evaluates to an integer on any cycle with integer
coefficients.

If Zk is a submanifold of V then any n − k-cycle is homologous to a linear
combination Σ of simplicies meeting Z transversely in their interior. We then
have a well-defined intersection number Z · Σ ∈ Z.

Theorem 1. Let F = −iω be the curvature of a line bundle L with connection
∇. If s is a section of L transverse to the zero section and Z its vanishing locus
then the homology class of Z is Poincaré-dual to the de Rham class [ω/2π]:

for any 2-cycle Σ transverse to Z,
1

2π

∫
Σ

ω = Z · Σ.

In particular [ω/2π] is integral.

Proof. Given a positive number ε, we set Vε = {|s| ≥ ε}. and Σε = Σ ∩ Vε.
In Vε, s does not vanish and ∇s/s is a well defined complex valued 1-form. In
addition −iω = d(∇s/s). ∫

Σ

−iω = lim
ε→0

∫
Σε

−iω

= lim
ε→0

∫
Σε

d
∇s
s

= lim
ε→0

∫
∂Σε

∇s
s

When ε is small enough, each connected component of ∂Σε is a circle Cxε coming
from an intersection point x ∈ Z ∩ Σ and contained in some Ui. We have∫

Cx
ε

∇s
s

=

∫
Cx

ε

(s−1
i dsi +Ai)
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and Ai is bounded in Ui so it does not contribute to the limit when ε goes to
zero.

On the other hand, since s vanishes transversely along Z, one has polar
coordinates (r1, θ1, . . . , rn, θn) near x such that si = r1e

iθ1 . So we get∫
Cx

ε

s−1
i dsi =

∫
Cx

ε

d ln r1 + idθ1 = −2iπ(Z · Σ)x

where (Z ·Σ)x = ±1 is the contribution of x to the signed count of intersection
points. The minus sign arises because Cxε is oriented as the boundary of Σε
whereas (Z ·Σ)x is the linking number between Z and the boundary of a small
disk surrounding x in Σ.

Remark. A purely cohomological way of saying that [Z] is Poincaré dual to
[ω/2π] in the above theorem is to say that, for any closed form β,

1

2π

∫
V

ω ∧ β =

∫
Z

β.

This follows from general principles and the above theorem but one can also
prove it directly using the same kind of ideas as above.

4 From cohomology to line bundles

Theorem 2. Let ω be a closed 2-form on V . If [ω/2π] is integral then there is a
hermitian line bundle with connection (L,∇, |.|) such that −iω is the curvature
of ∇. One can enforce as connection 1-forms Ai = −iβi for any a priori given
primitives βi of ω.

Proof. It suffices to build transition functions gij : Uij → U(1) satisfying the
cocycle conditions (Equation (1)) and such that Aj = Ai + g−1

ij dgij .
On each Uij , d(βi− βj) = ω−ω = 0 and Uij is contractible so there is some

function fij : Uij → R such that dfij = βi − βj . On Uijk,

d(fjk − fik + fij) = (βj − βk)− (βi − βk) + (βi − βj) = 0

and Uijk is connected so fjk − fik + fij is a constant that we denote by aijk.

Claim. The hypothesis of integrality of [ω/2π] ensures that one can choose
functions fij above such that all aijk are in 2πZ.

Assuming the above claim for a while, we can then define gij = exp(ifij).
These functions satisfy the cocycle condition because all aijk are in 2πZ.

Regarding connection 1-forms, we have

Aj −Ai = iβi − iβj = idfij = g−1
ij dgij

so we proved the theorem modulo the above claim.
We now prove the claim. In order to get rid of irrelevant factors of 2π, we

rename ω/2π as ω and βi/2π as βi. The most naive way of defining functions
fij would be to choose a base point xij in each non-empty Uij and set fij(x) =∫ x
xij

(βi − βj) (which makes sense and gives the right derivative since βi − βj is
closed and Uij is contractible). However this choice leads to some aijk related
to integrals of βi, βj and βk along arcs which do not close up so we cannot even

3



use Stokes’s formula to relate aijk to the integral of ω on some 2-chain. We will
remedy this by adding to the naive choice of fij some constant integrals on arcs.

We denote by N the simplicial complex which as one vertex per open set Ui,
an edge for each non-empty Uij and a face for each non-empty Uijk, with the
obvious incidence relations. We denote by N ′ the first barycentric subdivision
of N . We now construct a map from N ′ to V which is smooth on each simplex.
We choose base points xi, xij and xijk in each Ui, Uij and Uijk then paths
between them and triangles as in Figure 1. We denote by γiji the path chosen

Figure 1: Embedding the complex N ′

between xi and xij . Stokes’s formula guaranties that if we set

fij(x) =

∫ x

xij

(βi − βj) +

∫
γij
i

βi −
∫
γij
j

βj

then the corresponding number aijk is the integral of ω on the hexagon of
Figure 1. This hexagon is not a cycle so we cannot yet apply the hypothesis on
ω. However, integration of ω defines a 2-cocycle ωN in C2(N,R), the simplicial
cochain complex of N with real coefficients. The hypothesis on [ω] guaranties
that ωN takes integral values on integral cycles of N . We then need some piece
of pure linear algebra.

Sub-claim. There exists a simplicial 1-cochain bN such that ωN + dbN has
integer coefficients.

Proof of the subclaim. The boundary operator ∂ from 2-chains to 1-chains in N
has integer coefficients in the canonical bases so the reduction theory for integer
matrices gives an automorphism A of C2(N,R) with integer coefficients which
sends {0}×Rd to ker ∂. We set E = A(Rn−d×{0}) so that C2(N,R) = ker ∂⊕E
and the projection to ker ∂ in this decomposition sends integral chains to integral
chains. Let p be any projection from C1(N,R) onto im ∂. Let ϕ : im ∂ → E be
the inverse of ∂ : E → im ∂. We set bN = −ωN ◦ ϕ ◦ p. For any σ in C2(N,Z),
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σ = σ0 + σE where σ0 is in ker ∂, σE in E and,

(ωN + dbN )(σ) = ωN (σ) + bN (∂σ)

= ωN (σ)− ωN ◦ ϕ ◦ p(∂σ)

= ωN (σ)− ωN (σE)

= ωN (σ0) + ωN (σE)− ωN (σE)

= ωN (σ0) ∈ Z

Finally we add to our previous choice of functions fij the value bij of bN on
the edge of N corresponding to Uij .
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