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Abstract

I first recall the mostly undocumented link between convex contact
structures and open book decompositions. Then I use this to explain
why, for any surface of genus g ≥ 1, the canonical contact structure on
the bundle of cooriented lines (“unit cotangent bundle”) has support genus
one. Then I explain why I think the canonical contact structure on a circle
bundle with Euler number −1 over a genus g surface is a better candidate
for support genus g.

1 Convex contact structures and open books

Recall from [EG91] that a contact structure ξ is called convex if it is invari-
ant under the flow of a gradient X of a Morse function f . We will call (f,X)
a ξ-convex Morse function for brevity. Giroux proved that a ξ-convex Morse
function can always be ordered without loosing the relation to the contact struc-
ture. Also recall from [Gir91] that the characteristic hypersurface of a contact
vector field X is the set ΣX where X belongs to the contact structure. If X
has non-degenerate singularities, e.g. it is a gradient of a Morse function, then
ΣX is a smooth hypersurface tangent to X [Gir91, Proposition 2.5 and Exemple
2.6].

If (f,X) is a ξ-convex Morse function, the critical points of f are exactly
critical points of f|ΣX

and an index i critical point of f gives a critical point of
f|ΣX

whose index is i if i ≤ n or i− 1 otherwise [Gir91, Proposition 4.5].

Proposition 1 (Giroux). Let ξ be a coorientable contact structure on a closed
2n+1–manifold M . Suppose (f,X) is an ordered ξ-convex function. Let Σ be a
regular level set of f above critical values of index n and below critical values of
index n+1. Then Σ is transverse to ΣX and their intersection K is the binding
of an open book on M . This binding cuts Σ and ΣX into four pages of the open
book, see Figure 1. This open book supports ξ (maybe only after a perturbation
near the binding).

Conversely, any supporting open book comes from this construction.

2 Open books on bundles of contact elements

2.1 General discussion

Let B be a closed (n + 1)-manifold. Let V be the bundle of cooriented hy-
perplanes tangent to B and ξ its canonical contact structure. We now follow
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Figure 1: The four pages picture

[Gir91, Exemple 4.8] to construct ξ-convex functions on V (Giroux works on
non-cooriented hyperplanes bundles but this is the same up to a two-fold cover).

Any diffeomorphism ϕ of B lifts to a contactomorphism ϕ̂ of V defined by
ϕ̂(x,H) = (ϕ(x), Dxϕ(H)). Any vector field X on B lifts to a contact vector
field on V . Indeed, if ϕt is the flow of X then one can define X̂ = d

dt |t=0
ϕ̂t.

Suppose now that f0 : B → R is a Morse function on B. One can choose
a gradient vector field X for f0 such that, for any critical point p of f0, the
eigenvalues of DpX are real and simple. Let X̂ be the lifted contact vector
field. We want to prove that it is a pseudo-gradient for some Morse function f
on V .

First note that X̂ projects to X so singularities of X are above critical points
of f0. Let p be such a critical point. Since the flow ϕ̂t of X̂ projects to the
flow ϕt of X and ϕt(p) = p, we get that X̂ is vertical above p, ie belongs
to Verp V := kerπ∗ where π is the projection from V to B. The fact that

eigenvalues of X are real and simple prove that the restriction of X̂ to the
sphere Vp is the gradient of some self-indexed Morse function gp : Vp → R
having exactly 2n + 2 critical points corresponding to eigendirections of DpX.
The function we want on V is then f = f0 +

∑
p∈Crit(f) χpgp where χp is a

cut-off function. This is all explained in [Gir91, Exemple 4.8]. We now want to
check explicitely that everything works, compute the indices of critical points
and explain why f can be made self-indexed for free if f0 is and dimV = 3.

Around each p ∈ Criti(f0), we choose a Morse chart where

f0(x) = i−
i−1∑
k=0

x2
k +

n∑
l=i

x2
l .

Suppose we have a sequence of real eigenvalues λ0 < · · · < λi−1 < 0 < λi <
· · · < λn and set

X =

n∑
q=0

λqxq
∂

∂xq
.

The vector field X is a gradient for f whose linearisation at p has eigenvalues
λq. In this chart, the bundle V becomes trivial with fiber Rn+1/R>0 where
Rn+1 with coordinate (y0, . . . , yn) is the dual of the base Rn+1. The flow of X
is ϕt : (xq) 7→ (eλqtxq). The lifts to V maps (yq) to (e−λqtyq). So X̂ is the sum
of X and the projection X ′ to Rn+1/R>0 of

X̃ ′ := −
n∑
q=0

λqyq
∂

∂yq
.
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Note that X ′ is indeed invariant under homothety y 7→ µy, µ ∈ R>0. We can
now define g̃ on Rn+1 which will project to g (we forget the subscript p since p
is fixed in this discussion).

g̃ = − 1

‖y‖2
∑
q

λqy
2
q

We need to check that X ′ is a pseudo-gradient for g. We consider the unit
sphere S = {

∑
y2
q = 1}, the orthogonal projection π : TRn+1

|S → TS and the

restriction gS of g̃ to S. We can now compute

dg(X ′) = dgS(π(X̃ ′))

= −2
∑
q

λqy
2
q

(∑
r

(λry
2
r)− λq

)
= −2

∑
q,r

λqy
2
qy

2
r(λr − λq)

= −2
∑
q<r

(λq − λr)y2
qy

2
r(λr − λq)

= 2
∑
q<r

y2
qy

2
r(λr − λq)2

Now we can use that λr 6= λq when r 6= q to see that the above is positive
unless exactly one yq is non-zero (remember y = 0 is not considered here). It’s
easy to see that critical points of g are indeed the projections of the points of
v±q := (0, . . . , 0,±1, 0, . . . , 0) (intersections of S with coordinate axes) and they
are non-degenerate. In order to understand the index of v±q , we remark that
Tv±q S is spanned by lines coming from planes in Rn+1 where all coordinates

are zero except yq and one other yr. In this direction, v±q is attractive (resp.
repulsive) if and only if −λq > −λr (resp. −λq < −λr). So the number of
repulsive directions is #{r ;λr < λq} = q. So the index of v±q is n−q (remember
the index is the dimension of the unstable manifold of the descending gradient
so here we count attractive directions).

We now come to the cut-off functions. Suppose our Morse chart has radius
2
√
ε. Let ρ be a cut-off function on R+ with value 1 on a neighborhood of the

origin, support in the interior of [0, 4ε] and derivative ρ′(t) ≥ −1/ε. We will
use the cut-off function χ(x) = ρ(‖x‖2). The requiered Morse function on V is
defined near p by

f(x, y) = f0(x) + ηχ(x)g(x).

By construction, we have 2(n + 1)-critical points in the fiber over p. We need
to check that χ does not introduce any extra critical point. The danger comes
from

∂f

∂xk
= −2xk

(
1 + ηρ′(‖x‖2)g(y)

)
(where k < i as above) so that this derivative could accidentaly vanish outside
p. But

1 + ηρ′(‖x‖2)g(y) ≥ 1− η

ε
max g

so we can choose η small enough to avoid this problem. Note however that this
trick would prevent us from getting a self-indexed function in high dimensions
without first tweaking f0. In dimension 3, a miracle will help anyway.
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2.2 Hyperbolic surfaces

We now restrict the general discussion to the base where the base B is a genus
g surface. Let f0 be a self-indexed Morse on B having ci(f0) critical points of
index i, i ∈ {0, 1, 2}. The lifted function f described above has ci(f) critical
points of index i where

c0(f) = 2c0(f0) c1(f) = 2c0(f0) + 2c1(f0)

c2(f) = 2c1(f0) + 2c2(f0) c3(f) = 2c2(f0)

The restriction fΣ of f to ΣX̂ has

c0(fΣ) = c0(f) = 2c0(f0)

c1(fΣ) = c1(f) + c2(f) = 2c0(f0) + 4c1(f0) + 2c2(f0)

c2(fΣ) = c3(f0) = 2c2(f0)

So the Euler characteristic of ΣX̂ is χ(ΣX̂) = −4c1(f0). In addition the Morse
function f is ordered if η is chosen small enough in absolute value. Indeed,
critical points of index 0 will have slightly negative values, index 1 will have
values either slightly positive or slightly less than 1 (depending whether they live
above index 0 or 1 critical points of f0), index 2 will have values either slightly
more than 1 or slightly less than 2 and index 3 will have values slightly more
than 2. So ΣX̂ is the double of a page P whose boundary K is ΣX̂∩f−1(1). This
boundary is the binding of open book supporting the canonical contact structure
on V so we now want to understand its number of connected component. This
will give the genus of P since we know χ(P ) = χ(ΣX̂)/2.

Note that ΣX̂ is the conormal of X0, the set of cooriented lines containing
X0. We now check that the binding K is a trivial 2-fold cover of the critical
level f−1

0 (1). This critical level is a union of smooth circles C1, . . . , Cn inter-
secting transversely at critical points. Away from critical points, f−1(1) is the
inverse image of f−1

0 and ΣX̂ corresponds to lines containing X0, which does
not vanish, hence we have two points in each fiber over a non-critical point of
f−1

0 . In addition, the projection of f−1(1) clearly doesn’t intersect Morse charts
of critical points of index 0 or 2 of f0. So we only need to understand what
happens above a Morse chart centered around a critical point of index 1 for f0.
Say we have chosen eigenvalues λ0 = −1 and λ1 = 1. So

f(x, y) = 1− x2
0 + x2

1 + ηχ(x)(y2
0 − y2

1).

We can parametrize the fiber by an angle θ so that y0 = cos(θ) and y1 = sin(θ).

f(x, y) = 1− x2
0 + x2

1 + ηχ(x) cos(2θ)

X̂ = −x0
∂

∂x0
+ x1

∂

∂x1
− sin(2θ)

∂

∂θ

ξ = ker
(

cos(θ)dx0 − sin(θ)dx1

)
.

One can see in this explicit model that

K =

{
x2

0 − x2
1 = 0

cos(2θ) = 0
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which glues smoothly with the previous description. The 2-fold cover is trivial
because one can use the coorientation of a circle Cm to understand points of K
living over it. Hence we get 2n binding components where n is the number of
circles we have in f−1

0 (1). So χ(P ) = 2− 2g(P )− 2n and the genus of the page
we constructed is:

g(P ) = 1 + c1(f0)− n. (1)

It’s time for a concrete example which, if I understand correctly, comes from
[Bir17], see the discussion in [Deh12] to see how many people discussed this
example. Embed B as usual in R3 so that it intersects the y-axis in 2g + 2
points, see Figure 2. The intersection with the plane {x = 0} gives you g + 1
vertical circles. The intersection with the plane {z = 0} gives you g+1 horizontal
circles, one of them being much larger than the other. The complement of those

Figure 2: Morse function for genus 1 open books

2(g + 1) circles has four connected components parametrized by the signs of
x and z. There is a self-indexed Morse function f0 on B whose critical level
f−1

0 (1) is the union of those 2(g + 1) circles. It has

c0(f0) = 2, c1(f0) = 2(g + 1), c2(f0) = 2.

Hence we get an open book supporting the canonical contact structure on the
bundle of cooriented contact elements with 4(g + 1) binding components and
Equation (1) proves that is has genus 1.

3 A candidate for high support genus

Let π : V → B be a circle bundle with Euler number −1 over a surface of genus
g. Let ξ be a contact structure on V in the canonical isotopy class. It means ξ
has a Reeb field R which generates a free circle action on V .

Since the Euler number is −1, there is a section of π over the complement
of a single point k0 whose closure has boundary K0 := π−1(k0). The S1-action
on this section gives a supporting open book (K0, θ0). The monodromy is a
right-handed Dehn twist τ along the boundary. Note that I used the general
procedure to find supporting open books for Boothby-Wang contact structures:
{k0} is the relevant Donaldson hypersurface in B and τ is the relevant fibered
Dehn twist (sorry for being pedantic).

It is very easy to understand all open books compatible with R. Indeed the
binding K is a collection of Reeb orbits hence a collection of fibers. Pages are
transverse toR hence π restricts to pages as a covering map onto the complement
in B of π(K). Using multiplicativity of the Euler characteristic, it is very easy
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to see that our favorite open book (K0, θ0) minimizes genus among open books
compatible with R.

Now what about open books compatible with ξ? My remark is that, the
appendix of [BDT06] proves that the genus 2g Heegaard splitting associated to
(K0, θ0) minimizes genus among all Heegaard splitting. Better, any genus 2g
Heegaard splitting for V is isotopic to that one.

Does it help? Well, it certainly proves that (K0, θ0) is unstabilized. But
you guys proved that it’s not enough. Of course we also know that, if there is
a better supporting open book then its Heegaard splitting could be stabilized
as a Heegaard splitting. We also know from S3 that you can have non-isotopic
contact Heegaard splittings which are isotopic as Heegaard splittings. So I really
don’t know but I would find it surprising if (K0, θ0) is not genus minimizing.
Any idea?

References

[EG91] Y. Eliashberg and M. Gromov, Convex symplectic manifolds, Several complex vari-
ables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure
Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 135–162. MR1128541
(93f:58073)
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