Two remarks on the support genus question

Patrick Massot

October 2012

Abstract

I first recall the mostly undocumented link between convex contact structures and open book decompositions. Then I use this to explain why, for any surface of genus $g \ge 1$, the canonical contact structure on the bundle of cooriented lines ("unit cotangent bundle") has support genus one. Then I explain why I think the canonical contact structure on a circle bundle with Euler number -1 over a genus g surface is a better candidate for support genus g.

1 Convex contact structures and open books

Recall from [EG91] that a contact structure ξ is called convex if it is invariant under the flow of a gradient X of a Morse function f. We will call (f, X)a ξ -convex Morse function for brevity. Giroux proved that a ξ -convex Morse function can always be ordered without loosing the relation to the contact structure. Also recall from [Gir91] that the characteristic hypersurface of a contact vector field X is the set Σ_X where X belongs to the contact structure. If X has non-degenerate singularities, e.g. it is a gradient of a Morse function, then Σ_X is a smooth hypersurface tangent to X [Gir91, Proposition 2.5 and Exemple 2.6].

If (f, X) is a ξ -convex Morse function, the critical points of f are exactly critical points of $f_{|\Sigma_X}$ and an index i critical point of f gives a critical point of $f_{|\Sigma_X}$ whose index is i if $i \leq n$ or i - 1 otherwise [Gir91, Proposition 4.5].

Proposition 1 (Giroux). Let ξ be a coorientable contact structure on a closed 2n+1-manifold M. Suppose (f, X) is an ordered ξ -convex function. Let Σ be a regular level set of f above critical values of index n and below critical values of index n+1. Then Σ is transverse to Σ_X and their intersection K is the binding of an open book on M. This binding cuts Σ and Σ_X into four pages of the open book, see Figure 1. This open book supports ξ (maybe only after a perturbation near the binding).

Conversely, any supporting open book comes from this construction.

2 Open books on bundles of contact elements

2.1 General discussion

Let B be a closed (n + 1)-manifold. Let V be the bundle of cooriented hyperplanes tangent to B and ξ its canonical contact structure. We now follow

Figure 1: The four pages picture

[Gir91, Exemple 4.8] to construct ξ -convex functions on V (Giroux works on non-cooriented hyperplanes bundles but this is the same up to a two-fold cover).

Any diffeomorphism φ of B lifts to a contactomorphism $\hat{\varphi}$ of V defined by $\hat{\varphi}(x,H) = (\varphi(x), D_x \varphi(H))$. Any vector field X on B lifts to a contact vector field on V. Indeed, if φ_t is the flow of X then one can define $\hat{X} = \frac{d}{dt}|_{t=0}\hat{\varphi}_t$.

Suppose now that $f_0: B \to \mathbb{R}$ is a Morse function on B. One can choose a gradient vector field X for f_0 such that, for any critical point p of f_0 , the eigenvalues of D_pX are real and simple. Let \hat{X} be the lifted contact vector field. We want to prove that it is a pseudo-gradient for some Morse function fon V.

First note that \hat{X} projects to X so singularities of X are above critical points of f_0 . Let p be such a critical point. Since the flow $\hat{\varphi}_t$ of \hat{X} projects to the flow φ_t of X and $\varphi_t(p) = p$, we get that \hat{X} is vertical above p, ie belongs to $\operatorname{Ver}_p V := \ker \pi_*$ where π is the projection from V to B. The fact that eigenvalues of X are real and simple prove that the restriction of \hat{X} to the sphere V_p is the gradient of some self-indexed Morse function $g_p : V_p \to \mathbb{R}$ having exactly 2n + 2 critical points corresponding to eigendirections of $D_p X$. The function we want on V is then $f = f_0 + \sum_{p \in \operatorname{Crit}(f)} \chi_p g_p$ where χ_p is a cut-off function. This is all explained in [Gir91, Exemple 4.8]. We now want to check explicitly that everything works, compute the indices of critical points and explain why f can be made self-indexed for free if f_0 is and dim V = 3.

Around each $p \in \operatorname{Crit}_i(f_0)$, we choose a Morse chart where

$$f_0(x) = i - \sum_{k=0}^{i-1} x_k^2 + \sum_{l=i}^n x_l^2.$$

Suppose we have a sequence of real eigenvalues $\lambda_0 < \cdots < \lambda_{i-1} < 0 < \lambda_i < \cdots < \lambda_n$ and set

$$X = \sum_{q=0}^{n} \lambda_q x_q \frac{\partial}{\partial x_q}.$$

The vector field X is a gradient for f whose linearisation at p has eigenvalues λ_q . In this chart, the bundle V becomes trivial with fiber $\mathbb{R}^{n+1}/\mathbb{R}_{>0}$ where \mathbb{R}^{n+1} with coordinate (y_0, \ldots, y_n) is the dual of the base \mathbb{R}^{n+1} . The flow of X is $\varphi_t : (x_q) \mapsto (e^{\lambda_q t} x_q)$. The lifts to V maps (y_q) to $(e^{-\lambda_q t} y_q)$. So \hat{X} is the sum of X and the projection X' to $\mathbb{R}^{n+1}/\mathbb{R}_{>0}$ of

$$\tilde{X}' := -\sum_{q=0}^n \lambda_q y_q \frac{\partial}{\partial y_q}.$$

Note that X' is indeed invariant under homothety $y \mapsto \mu y$, $\mu \in \mathbb{R}_{>0}$. We can now define \tilde{g} on \mathbb{R}^{n+1} which will project to g (we forget the subscript p since p is fixed in this discussion).

$$\tilde{g} = -\frac{1}{\|y\|^2} \sum_q \lambda_q y_q^2$$

We need to check that X' is a pseudo-gradient for g. We consider the unit sphere $S = \{\sum y_q^2 = 1\}$, the orthogonal projection $\pi : T\mathbb{R}^{n+1}_{|S|} \to TS$ and the restriction g_S of \tilde{g} to S. We can now compute

$$dg(X') = dg_S(\pi(X'))$$

$$= -2\sum_q \lambda_q y_q^2 \left(\sum_r (\lambda_r y_r^2) - \lambda_q\right)$$

$$= -2\sum_{q,r} \lambda_q y_q^2 y_r^2 (\lambda_r - \lambda_q)$$

$$= -2\sum_{q < r} (\lambda_q - \lambda_r) y_q^2 y_r^2 (\lambda_r - \lambda_q)$$

$$= 2\sum_{q < r} y_q^2 y_r^2 (\lambda_r - \lambda_q)^2$$

Now we can use that $\lambda_r \neq \lambda_q$ when $r \neq q$ to see that the above is positive unless exactly one y_q is non-zero (remember y = 0 is not considered here). It's easy to see that critical points of g are indeed the projections of the points of $v_q^{\pm} := (0, \ldots, 0, \pm 1, 0, \ldots, 0)$ (intersections of S with coordinate axes) and they are non-degenerate. In order to understand the index of v_q^{\pm} , we remark that $T_{v_q^{\pm}}S$ is spanned by lines coming from planes in \mathbb{R}^{n+1} where all coordinates are zero except y_q and one other y_r . In this direction, v_q^{\pm} is attractive (resp. repulsive) if and only if $-\lambda_q > -\lambda_r$ (resp. $-\lambda_q < -\lambda_r$). So the number of repulsive directions is $\#\{r ; \lambda_r < \lambda_q\} = q$. So the index of v_q^{\pm} is n-q (remember the index is the dimension of the unstable manifold of the *descending* gradient so here we count attractive directions).

We now come to the cut-off functions. Suppose our Morse chart has radius $2\sqrt{\varepsilon}$. Let ρ be a cut-off function on \mathbb{R}_+ with value 1 on a neighborhood of the origin, support in the interior of $[0, 4\varepsilon]$ and derivative $\rho'(t) \geq -1/\varepsilon$. We will use the cut-off function $\chi(x) = \rho(||x||^2)$. The required Morse function on V is defined near p by

$$f(x,y) = f_0(x) + \eta \chi(x)g(x).$$

By construction, we have 2(n + 1)-critical points in the fiber over p. We need to check that χ does not introduce any extra critical point. The danger comes from

$$\frac{\partial f}{\partial x_k} = -2x_k \left(1 + \eta \rho'(\|x\|^2) g(y) \right)$$

(where k < i as above) so that this derivative could accidentally vanish outside p. But

$$1 + \eta \rho'(\|x\|^2)g(y) \ge 1 - \frac{\eta}{\varepsilon} \max g$$

so we can choose η small enough to avoid this problem. Note however that this trick would prevent us from getting a self-indexed function in high dimensions without first tweaking f_0 . In dimension 3, a miracle will help anyway.

2.2 Hyperbolic surfaces

We now restrict the general discussion to the base where the base B is a genus g surface. Let f_0 be a self-indexed Morse on B having $c_i(f_0)$ critical points of index $i, i \in \{0, 1, 2\}$. The lifted function f described above has $c_i(f)$ critical points of index i where

$$c_0(f) = 2c_0(f_0) \qquad c_1(f) = 2c_0(f_0) + 2c_1(f_0) c_2(f) = 2c_1(f_0) + 2c_2(f_0) \qquad c_3(f) = 2c_2(f_0)$$

The restriction f_{Σ} of f to $\Sigma_{\hat{X}}$ has

$$c_0(f_{\Sigma}) = c_0(f) = 2c_0(f_0)$$

$$c_1(f_{\Sigma}) = c_1(f) + c_2(f) = 2c_0(f_0) + 4c_1(f_0) + 2c_2(f_0)$$

$$c_2(f_{\Sigma}) = c_3(f_0) = 2c_2(f_0)$$

So the Euler characteristic of $\Sigma_{\hat{X}}$ is $\chi(\Sigma_{\hat{X}}) = -4c_1(f_0)$. In addition the Morse function f is ordered if η is chosen small enough in absolute value. Indeed, critical points of index 0 will have slightly negative values, index 1 will have values either slightly positive or slightly less than 1 (depending whether they live above index 0 or 1 critical points of f_0), index 2 will have values either slightly more than 1 or slightly less than 2 and index 3 will have values slightly more than 2. So $\Sigma_{\hat{X}}$ is the double of a page P whose boundary K is $\Sigma_{\hat{X}} \cap f^{-1}(1)$. This boundary is the binding of open book supporting the canonical contact structure on V so we now want to understand its number of connected component. This will give the genus of P since we know $\chi(P) = \chi(\Sigma_{\hat{X}})/2$.

Note that $\Sigma_{\hat{X}}$ is the conormal of X_0 , the set of cooriented lines containing X_0 . We now check that the binding K is a trivial 2-fold cover of the critical level $f_0^{-1}(1)$. This critical level is a union of smooth circles C_1, \ldots, C_n intersecting transversely at critical points. Away from critical points, $f^{-1}(1)$ is the inverse image of f_0^{-1} and $\Sigma_{\hat{X}}$ corresponds to lines containing X_0 , which does not vanish, hence we have two points in each fiber over a non-critical point of f_0^{-1} . In addition, the projection of $f^{-1}(1)$ clearly doesn't intersect Morse charts of critical points of index 0 or 2 of f_0 . So we only need to understand what happens above a Morse chart centered around a critical point of index 1 for f_0 . Say we have chosen eigenvalues $\lambda_0 = -1$ and $\lambda_1 = 1$. So

$$f(x,y) = 1 - x_0^2 + x_1^2 + \eta \chi(x)(y_0^2 - y_1^2).$$

We can parametrize the fiber by an angle θ so that $y_0 = \cos(\theta)$ and $y_1 = \sin(\theta)$.

$$f(x,y) = 1 - x_0^2 + x_1^2 + \eta \chi(x) \cos(2\theta)$$
$$\hat{X} = -x_0 \frac{\partial}{\partial x_0} + x_1 \frac{\partial}{\partial x_1} - \sin(2\theta) \frac{\partial}{\partial \theta}$$
$$\xi = \ker \big(\cos(\theta) dx_0 - \sin(\theta) dx_1 \big).$$

One can see in this explicit model that

$$K = \begin{cases} x_0^2 - x_1^2 = 0\\ \cos(2\theta) = 0 \end{cases}$$

which glues smoothly with the previous description. The 2-fold cover is trivial because one can use the coorientation of a circle C_m to understand points of K living over it. Hence we get 2n binding components where n is the number of circles we have in $f_0^{-1}(1)$. So $\chi(P) = 2 - 2g(P) - 2n$ and the genus of the page we constructed is:

$$g(P) = 1 + c_1(f_0) - n.$$
(1)

It's time for a concrete example which, if I understand correctly, comes from [Bir17], see the discussion in [Deh12] to see how many people discussed this example. Embed B as usual in \mathbb{R}^3 so that it intersects the y-axis in 2g + 2 points, see Figure 2. The intersection with the plane $\{x = 0\}$ gives you g + 1 vertical circles. The intersection with the plane $\{z = 0\}$ gives you g+1 horizontal circles, one of them being much larger than the other. The complement of those

Figure 2: Morse function for genus 1 open books

2(g+1) circles has four connected components parametrized by the signs of x and z. There is a self-indexed Morse function f_0 on B whose critical level $f_0^{-1}(1)$ is the union of those 2(g+1) circles. It has

$$c_0(f_0) = 2$$
, $c_1(f_0) = 2(g+1)$, $c_2(f_0) = 2$.

Hence we get an open book supporting the canonical contact structure on the bundle of cooriented contact elements with 4(g + 1) binding components and Equation (1) proves that is has genus 1.

3 A candidate for high support genus

Let $\pi: V \to B$ be a circle bundle with Euler number -1 over a surface of genus g. Let ξ be a contact structure on V in the canonical isotopy class. It means ξ has a Reeb field R which generates a free circle action on V.

Since the Euler number is -1, there is a section of π over the complement of a single point k_0 whose closure has boundary $K_0 := \pi^{-1}(k_0)$. The S¹-action on this section gives a supporting open book (K_0, θ_0) . The monodromy is a right-handed Dehn twist τ along the boundary. Note that I used the general procedure to find supporting open books for Boothby-Wang contact structures: $\{k_0\}$ is the relevant Donaldson hypersurface in B and τ is the relevant fibered Dehn twist (sorry for being pedantic).

It is very easy to understand all open books compatible with R. Indeed the binding K is a collection of Reeb orbits hence a collection of fibers. Pages are transverse to R hence π restricts to pages as a covering map onto the complement in B of $\pi(K)$. Using multiplicativity of the Euler characteristic, it is very easy

to see that our favorite open book (K_0, θ_0) minimizes genus among open books compatible with R.

Now what about open books compatible with ξ ? My remark is that, the appendix of [BDT06] proves that the genus 2g Heegaard splitting associated to (K_0, θ_0) minimizes genus among all Heegaard splitting. Better, any genus 2g Heegaard splitting for V is isotopic to that one.

Does it help? Well, it certainly proves that (K_0, θ_0) is unstabilized. But you guys proved that it's not enough. Of course we also know that, if there is a better supporting open book then its Heegaard splitting could be stabilized as a Heegaard splitting. We also know from \mathbb{S}^3 that you can have non-isotopic contact Heegaard splittings which are isotopic as Heegaard splittings. So I really don't know but I would find it surprising if (K_0, θ_0) is not genus minimizing. Any idea?

References

- [EG91] Y. Eliashberg and M. Gromov, Convex symplectic manifolds, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 135–162. MR1128541 (93f:58073)
- [Gir91] E. Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991), no. 4, 637–677, DOI 10.1007/BF02566670 (French). MR1129802 (93b:57029)
- [BDT06] D. Bachman and R. Derby-Talbot, Non-isotopic Heegaard splittings of Seifert fibered spaces, Algebr. Geom. Topol. 6 (2006), 351–372 (electronic), DOI 10.2140/agt.2006.6.351. With an appendix by R. Weidmann. MR2220681 (2007a:57012)
- [Bir17] G. D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), no. 2, 199–300, DOI 10.2307/1988861. MR1501070
- [Deh12] P. Dehornoy, Genus one Birkhoff sections for geodesic flows (2012), available at arXiv:1208.6405.