Theorem 1 ([Gay06, Wen]). Any strong symplectic filling of a contact 3-manifold with positive Giroux torsion could be enlarged to a weak filling of an overtwisted manifold.

On $\mathbb{T}^2 \times \mathbb{R}$ with coordinate (θ, φ, s) , let ξ_G be the contact structure defined by $\lambda_G := \sin(s)d\theta + \cos(s)d\varphi$. Let $G_{2\pi} := \mathbb{T}^2 \times [-\pi, \pi]$. By definition [Gir00], a contact manifold (V, ξ) has positive Giroux torsion if there is a contact embedding of $(G_{2\pi}, \xi_G)$ in the interior of V. Using that characteristic foliations determine the germ of a contact structure near a surface, such an embedding can be extended to a contact embedding of $G_{2\pi+\varepsilon} := \mathbb{T}^2 \times [-\pi - \varepsilon, \pi + \varepsilon]$ for some positive ε . This ε is fixed throughout the paper.

We now describe a surgery turning (V,ξ) into the overtwisted contact manifold mentionned in the theorem. Let η be a positive number smaller than $\sqrt{\varepsilon}$. We denote by D the open disk with radius η around the origin in \mathbb{R}^2 . We denote by \dot{D} the punctured disk $D \setminus \{0\}$. We use polar coordinates (r,θ) on \mathbb{R}^2 . We also consider $\Sigma := \mathbb{S}^1 \times [0,\pi]$ so that $G_\pi := \mathbb{S}^1 \times \Sigma$ is half of $G_{2\pi}$. Let Ψ from $\dot{D} \times \partial \Sigma$ to $G_{2\pi+\varepsilon} \setminus G_\pi$ be the diffeomorphism defined by $\Psi(r,\theta,\varphi,s) = (\theta,\varphi,s\pm r^2)$ where the sign is positive when $s = \pi$ and negative when s = 0. All \pm in this paper refer to this convention. The surgered manifold is $V' := (V \setminus G_\pi) \cup_{\Psi} (D \times \partial \Sigma)$. The contact structure $\Psi^* \lambda_G = \sin(s\pm r^2) d\theta + \cos(s\pm r^2) d\varphi$ is equivalent, when r goes to zero, to $\mp d\varphi \pm r^2 d\theta$ so that it extends smoothly to a contact form on the whole V'. Note that neither V' nor its contact structure ξ' depend on the choice of η . The contact structure ξ' is overtwisted because $G_{2\pi} \setminus G_{\pi}$ gets compactified to a Lutz tube.

In the following, it will be convenient to view the standard Giroux domain from a slightly more flexible perspective, rescaling the contact form and reparametrizing the interval $[-\pi - \varepsilon, \pi + \varepsilon]$. This leads to contact forms $u(s)d\theta + f(s)d\varphi$ where $s \mapsto [f, u]$ is a path in $\mathbb{R}^2/\mathbb{R}^*_+$ homotopic to the standard one [cos, sin] with fixed end-points and satisfying the contact condition $\delta := fu' - f'u > 0$. We impose that the restriction of this path to $[-\varepsilon, \pi + \varepsilon]$ has the same end-points that [cos, sin] and still has f' < 0 wherever u is positive but f' = 0 and $u' = \pm 1$ elsewhere.

Any strong filling would have a collar $(0, 1] \times V$ with symplectic form $\omega = d(t\lambda)$ where t is the coordinate in (0, 1]. In $(0, 1] \times G_{\pi} \subset (0, 1] \times V$ we consider the hypersurface $\mathcal{H} = \{t = h(s)\}$ where $h = 1 - \frac{\sin(s)}{2}$.

Let X be the vector field on $(0,1] \times G_{2\pi+\varepsilon}$ which is ω -dual to $-d\theta$. One has $X = X^t \partial_t + X^s \partial_s$ with $X^t = f'/\delta$ and $X^s = -f/(t\delta)$. Our constraints on (f, u) imply that X is transverse to \mathcal{H} and coincides with $\pm \frac{1}{t} \partial_s$ near its boundary.

We now discard the epigraph $\{t \ge h\}$ and glue in $\Sigma \times \dot{D}$ using the flow φ^X of X starting along \mathcal{H} —naturally identified with Σ — at time r^2 .

In formulas, we define the gluing map Ψ from $\Sigma \times D$ to $(0,1] \times V$ by

$$\Psi(s,\varphi,re^{i\theta}) = \varphi_{r^2}^X(s,\varphi,\theta,h(s))$$

In order for this to make sense we choose η small enough to ensure that the flow does not run out of $(0, 1] \times G_{2\pi+\varepsilon}$ before time η^2 . Because of the form of X near $\partial \mathcal{H}$, this map extends the gluing map Ψ used to define the surgery. In particular we expressed the surgery as resulting from the attachment of the "handle" $\Sigma \times D$ to $(0, 1] \times V$. We now want to equip this handle with a symplectic form.

Lemma 2. The gluing map Ψ from $\Sigma \times \dot{D}$ to $(0,1] \times V$ pulls ω back to

 $\Psi^*\omega = \omega_D + d(hu) \wedge d\theta + \Omega_0$

where $\omega_D := -2r \, dr \wedge d\theta$ and Ω_0 is a symplectic form on Σ .

Proof. One has $\Psi = \Phi \circ P$ where P from $\Sigma \times \dot{D}$ to $\Sigma \times [0, \eta^2] \times \mathbb{S}^1$ is defined by $P(\sigma, re^{i\theta}) = (\sigma, r^2, \theta)$ and $\Phi(\sigma, \tau, \theta) := \varphi_{\tau}^X(\sigma, \theta, h(\sigma))$. The identification of Σ with \mathcal{H} pulls ω back to $d(h\lambda)$. Since $\iota_X \omega = -d\theta$ and the flow of $\varphi_{\tau}^X \partial_{\tau} = X$ preserves ω , we have $\Phi^* \omega = -d\tau \wedge d\theta + d(h\lambda)$. So we can set $\Omega_0 = d(hfd\varphi)$ which is symplectic on Σ .

We now modify $\Psi^* \omega$ away from $\Sigma \times \partial D$ to extend it to a symplectic form on $\Sigma \times D$. Let ρ_1 and ρ_2 be non-negative functions on $[0, \eta]$. We set:

$$\tilde{\omega} := \rho_1 \omega_D + d(\rho_2 h u) \wedge d\theta + \Omega_0 = g \omega_D + \rho_2 d(h u) \wedge d\theta + \Omega_0 \text{ with } g := \rho_1 - \frac{h u \rho_2'}{2r}.$$

We choose $\rho_1(r) = \rho_2(r) = 1$ for r close to η so that $\tilde{\omega}$ extends $\Psi^*\omega$. Near 0, we choose ρ_1 to be constant and ρ_2 to be quadratic so that $\tilde{\omega}$ makes sense near the center of D. One has $\tilde{\omega}^2 = 2g \omega_D \wedge \Omega_0$. Since Ω_0 is symplectic on Σ , the extension $\tilde{\omega}$ is symplectic as soon as g is positive. This condition is easily arranged by choosing ρ_1 sufficiently large away from $r = \eta$.

Because hu is constant on $\partial \Sigma$, $\tilde{\omega}$ restricts as $g\omega_D$ on the part $\partial \Sigma \times D$ of V' which does not come from V. The kernel of ω_D is spanned by ∂_{φ} so the contact structure described above on V' is weakly filled by $\tilde{\omega}$.

References

- [Gay06] D. Gay, Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006), 1749–1759 (electronic). MR MR2284049 (2008i:57031)
- [Gir00] Emmanuel Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000), no. 3, 615–689. MR MR1779622 (2001i:53147)
- [Wen] Chris Wendl, Non-exact symplectic cobordisms between contact 3-manifolds. E-mail address, P. Massot: patrick.massot@math.u-psud.fr

(P. Massot) Département de mathématiques, Université Paris Sud 11, Bat 425, 91430 ORSAY Cedex, FRANCE

E-mail address, K. Niederkrüger: niederkr@math.univ-toulouse.fr

(K. Niederkrüger) Institut de mathématiques de Toulouse, Université Paul Sabatier – Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, FRANCE

E-mail address, C. Wendl: wendl@mathematik.hu-berlin.de

(C. Wendl) Institut für Mathematik, Humboldt-Universität zu Berlin, 10099 Berlin, GERMANY