Théorie de Galois

Feuille d'exercices 5

Soient k un corps parfait et Ω une clôture algébrique de k. Soit $K \subset \Omega$ une extension de k. On rappelle que K/k est dite galoisienne si pour chaque $x \in K$, tous les k-conjugués de x dans Ω appartiennent à K. D'après un résultat du cours, il est équivalent de demander que l'inclusion naturelle $\operatorname{Hom}_k(K,K) \subset \operatorname{Hom}_k(K,\Omega)$ soit une égalité. Par exemple, si $P \in k[X]$ (non nécessairement irréductible) et si x_1, x_2, \ldots, x_n sont les racines de P dans Ω , alors $k(x_1, \ldots, x_n) \subset \Omega$ est une extension galoisienne de k.

- Exercice 1. (i) Montrer qu'une extension de degré 2 d'un corps de caractéristique 0 est galoisienne.
 - (ii) Donner un exemple d'une extension de Q de degré 3 qui ne soit pas galoisienne.

Exercice 2. Soit $x = \sqrt{1 + \sqrt{2}} \in \mathbf{R}$.

- (i) Montrer que $[\mathbf{Q}(x):\mathbf{Q}]=4$.
- (ii) Montrer que $\mathbf{Q}(x)/\mathbf{Q}$ n'est pas galoisienne, bien que $\mathbf{Q}(x)/\mathbf{Q}(\sqrt{2})$ et $\mathbf{Q}(\sqrt{2})/\mathbf{Q}$ le sont. (Pour le premier point, on pourra remarquer que $\pm \sqrt{1-\sqrt{2}}$ est un conjugué de x sur \mathbf{Q} .) Vérifier que $\mathbf{Q}(x,i)$ est galoisienne sur \mathbf{Q} de degré 8.
 - (iii) Montrer qu'en revanche, $\mathbf{Q}(\sqrt{2+\sqrt{2}})$ est galoisienne sur \mathbf{Q} , de degré 4.
- **Exercice 3.** (Une preuve par la théorie de Galois du théorème de d'Alembert-Gauss) Soit K une extension finie de \mathbb{R} , on veut montrer que $K = \mathbb{R}$ ou \mathbb{C} .
 - (i) Montrer que si K/\mathbf{R} est de degré 2, alors $K \simeq \mathbf{C}$.
 - (ii) Montrer que si K/\mathbf{R} est de degré impair, alors $K=\mathbf{R}$.
 - (iii) Montrer que C n'admet pas d'extension de degré 2.
 - (iv) Supposons K/\mathbf{R} galoisienne finie. Montrer l'existence d'une tour d'extensions

$$\mathbf{R} \subset K_1 \subset K_2 \subset \cdots \subset K_n = K$$

telle que $[K_1 : \mathbf{R}]$ est impair et, pour i = 1, ..., n-1, $[K_{i+1} : K_i] = 2$. (On pourra utiliser le théorème de Sylow, ainsi que le résultat de l'exercice suivant (ii).)

- (v) Conclure.
- **Exercice 4.** Soit p un nombre premier. On rappelle qu'un p-groupe est un groupe fini de cardinal une puissance de p. Cet exercice utilise des notations et des idées de l'exercice 6 du TD précédent.
 - (i) (Le centre d'un p-groupe est non trivial) Montrer que si G est un groupe fini alors

$$|G| = |Z| + \sum_{i=1}^{r} |\operatorname{conj}(x_i)|$$

pour certains éléments $x_1, \ldots, x_r \in G \setminus Z$ bien choisis. En déduire que le centre d'un p-groupe est non trivial, puis qu'il contient un élément d'ordre p.

¹On pourrait montrer que $\operatorname{Gal}(\mathbf{Q}(x,i)/\mathbf{Q})$ est isomorphe au groupe des isométries d'un carré.

- (ii) Montrer que si $|G| = p^n$, alors il existe une suite de sous-groupes $G_1 \subset G_2 \subset \cdots \subset G_n$, avec $|G_i| = p^i$ et G_i distingué dans G. (On pourra d'abord montrer l'existence de G_1 puis procéder par dévissage.)
- **Exercice 5.** * En utilisant la correspondance de Galois et l'exercice précédent (ii), montrer qu'un nombre algébrique $x \in \mathbf{C}$ est constructible à la règle et au compas si, et seulement si l'extension engendrée par x et ses conjugués est de degré une puissance de 2.
- **Exercice 6.** Soit G le sous-groupe de $\operatorname{Aut}_{\mathbf{C}}(\mathbf{C}(T))$ engendré par les automorphismes $F(T) \mapsto F(T)$ et $F(T) \mapsto F(jT)$ (où $j = e^{2i\pi/3}$).
 - (i) Vérifier que |G| = 6 (en fait, $G \simeq \mathfrak{S}_3$).
 - (ii) En déduire que $\mathbf{C}(T)^G = \mathbf{C}(T^3 + T^{-3})$. (On pourra commencer par remarquer que T est de degré au plus 6 sur $\mathbf{C}(T^3 + T^{-3})$.)