
LIE ALGEBROID

Lie algebroids were first introduced and studied by
J. Pradines [11], following work by C. Ehresmann
and P. Libermann on differentiable groupoids (later
called Lie groupoids). Just as Lie algebras are the
infinitesimal objects of Lie groups, Lie algebroids are
the infinitesimal objects of Lie groupoids. They
are generalizations of both Lie algebras and tan-

gent vector bundles. For a comprehensive treat-
ment and lists of references, see [8], [9]. See also [1],
[4], [6], [13], [14].

A real Lie algebroid (A, [ , ]A, qA), is a smooth real
vector bundle A over base M , with a real Lie alge-
bra structure [ , ]A on the vector space Γ(A) of the
smooth global sections of A, and a morphism of vec-
tor bundles qA : A → TM , where TM is the tangent
bundle of M , called the anchor, such that

• [X, fY ]A = f [X, Y ]A + (qA(X).f) Y , for all
X, Y ∈ Γ(A) and f ∈ C∞(M),

• qA defines a Lie algebra homomorphism from the
Lie algebra of sections of A, with Lie bracket
[ , ]A, into the Lie algebra of vector fields on M .

Complex Lie algebroid structures [1] on complex vec-
tor bundles over real bases can be defined similarly,
replacing the tangent bundle of the base by the com-
plexified tangent bundle.

The space of sections of a Lie algebroid is a Lie-

Rinehart algebra, also called a Lie d-ring or a Lie
pseudoalgebra. (See [4], [6], [9].) More precisely, it
is an (R,A)-Lie algebra, where R is the field of real
(or complex) numbers, and A is the algebra of func-
tions on the base manifold. In fact, the Lie-Rinehart
algebras are the algebraic counterparts of the Lie al-
gebroids, just as the modules over a ring are the al-
gebraic counterparts of the vector bundles.

Examples

1. A Lie algebroid over a one-point set, with the
zero anchor, is a Lie algebra.

2. The tangent bundle, TM , of a manifold M ,
with bracket the Lie bracket of vector fields and with
anchor the identity of TM , is a Lie algebroid over M .
Any integrable sub-bundle of TM , in particular the

tangent bundle along the leaves of a foliation, is also
a Lie algebroid.

3. A vector bundle with a smoothly varying Lie
algebra structure on the fibers (in particular, a Lie-
algebra bundle [8]) is a Lie algebroid, with pointwise
bracket of sections and zero anchor.

4. If M is a Poisson manifold then the cotangent
bundle T ∗M of M is, in a natural way, a Lie algebroid
over M . The anchor is the map P ] : T ∗M → TM
defined by the Poisson bivector P . The Lie bracket
[ , ]P of differential 1-forms satisifes [df, dg]P =
d{f, g}P , for any functions f, g ∈ C∞(M), where
{f, g}P = P (df, dg) is the Poisson bracket of func-
tions, defined by P . When P is nondegenerate, M is
a symplectic manifold and this Lie algebra structure
of Γ(T ∗M) is isomorphic to that of Γ(TM). For refer-
ences to the early occurrences of this bracket, which
seems to have first appeared in [3], see [4], [6] and
[13]. It was shown in [2] that [ , ]P is a Lie algebroid
bracket on T ∗M .

5. The Lie algebroid of a Lie groupoid (G, α, β),
where α is the source map and β is the target map [11]
[8] [13]. It is defined as the normal bundle along the
base of the groupoid, whose sections can be identified
with the right-invariant, α-vertical vector fields. The
bracket is induced by the Lie bracket of vector fields
on the groupoid, and the anchor is Tβ.

6. Atiyah sequence. If P is a principal bundle
with structure group G, base M and projection p,
the G-invariant vector fields on P are the sections of
a vector bundle with base M , denoted TP/G, and
sometimes called the Atiyah bundle of the principal
bundle P . This vector bundle is a Lie algebroid, with
bracket induced by the Lie bracket of vector fields on
P , and with surjective anchor induced by Tp. The
kernel of the anchor is the adjoint bundle, (P ×g)/G.
Splittings of the anchor are connections on P . The
Atiyah bundle of P is the Lie algebroid of the Ehres-
mann gauge groupoid (P × P )/G . If P is the frame
bundle of a vector bundle E, then the sections of the
Atiyah bundle of P are the covariant differential op-
erators on E, in the sense of [8].

7. Other examples are the trivial Lie algebroids
TM × g, the transformation Lie algebroids M × g →
M , where Lie algebra g acts on manifold M , the de-
formation Lie algebroid A × R of a Lie algebroid A,
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where A × {~}, for ~ 6= 0, is isomorphic to A, and
A × {0} is isomorphic to vector bundle A with the
abelian Lie algebroid structure (zero bracket and zero
anchor), the prolongation Lie algebroids of a Lie al-
gebroid, etc.

de Rham differential. Given any Lie algebroid A, a
differential dA is defined on the graded algebra of sec-
tions of the exterior algebra of the dual vector bundle,
Γ(

∧
A∗), called the de Rham differential of A. Then

Γ(
∧

A∗) can be considered as the algebra of functions
on a supermanifold, dA being an odd vector field
with square zero [12].

If A is a Lie algebra g, then dA is the Chevalley-
Eilenberg cohomology operator on

∧
(g∗).

If A = TM , then dA is the usual de Rham differ-
ential on forms.

If A = T ∗M is the cotangent bundle of a Poisson
manifold, then dA is the Lichnerowicz-Poisson differ-
ential [P, . ]A on fields of multivectors on M .

Schouten algebra. Given any Lie algebroid A, on
the graded algebra of sections of the exterior algebra
of vector bundle A, Γ(

∧
A), there is a Gerstenhaber

algebra structure (see Poisson algebra), denoted by
[ , ]A. With this graded Lie bracket, Γ(

∧
A) is called

the Schouten algebra of A.
If A is a Lie algebra g, then [ , ]A is the algebraic

Schouten bracket on
∧

g.
If A = TM , then [ , ]A is the usual Schouten

bracket of fields of multivectors on M .
If A = T ∗M is the cotangent bundle of a Poisson

manifold, then [ , ]A is the Koszul bracket [7] [13] [5]
of differential forms.

Morphims of Lie algebroids and the linear Poisson

structure on the dual. A base-preserving morphism
from Lie algebroid A1 to Lie algebroid A2, over the
same base M , is a base-preserving vector-bundle mor-
phism, µ : A1 → A2, such that qA2

◦µ = qA1
, inducing

a Lie-algebra morphism from Γ(A1) to Γ(A2).
If A is a Lie algebroid, the dual vector bundle A∗

is a Poisson vector bundle. This means that the total
space of A∗ has a Poisson structure such that the
Poisson bracket of two functions which are linear on
the fibers is linear on the fibers. A base-preserving
morphism from vector bundle A1 to vector bundle
A2 is a morphism of Lie algebroids if and only if its
transpose is a Poisson morphism.

Lie bialgebroids [10] [5] are pairs of Lie algebroids
(A, A∗) in duality satisfying the compatibility condi-
tion that dA∗ be a derivation of the graded Lie bracket
[ , ]A. They generalize the Lie bialgebras in the
sense of V. G. Drinfel’d (see quantum groups and
Poisson Lie groups) and also the pair (TM, T ∗M),
where M is a Poisson manifold.

There is no analogue to Lie’s third theorem in the
case of Lie algebroids, since not every Lie algebroid
can be integrated to a global Lie groupoid, although
there are local versions of this result. (See [8], [1].)
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