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Abstract
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1 Introduction

Let G be the group of F-points of an algebraic group, G, defined over F, where F is
a nonarchimedean local field of characteristic different from 2. Let H be the group of
F-points of an open F-subgroup of the fixed point group of a rational involution of G
defined over F.

We introduce the space Atemp(H\G) of smooth tempered functions on H\G. They
are the tempered functions which are generalized coefficients of an H-fixed linear form
ξ on an admissible G-module V , when V and ξ varies.

Using the theory of the constant term (cf. [L], [KT1]), we introduce the weak
constant term of elements of Atemp(H\G) as it was made in [W] for tempered functions
on the group.

Then, we introduce families of elements of Atemp(H\G) of type I, by conditions on
their exponents. Then the conditions are strengthened to introduce families of type I’,
and we add conditions on the weak constant term to define families of type II’. This is
the analogue of the families used in [BaCD] for the real case.

Important examples of such families are given (cf. Theorem 5.1) in terms of Eisen-
stein integrals, due to the main results of [CD].

Then, following [BaCD] for the real case, which was largely inspired by the work
of Harish-Chandra [H-C], and [W], we show that one can form wave packets in the
Schwartz space for such families (Theorem 4.6). Notice also that the intermediate
Proposition 3.12 is the analogue of the important Lemma 7.1 of [A].

∗P. Delorme is a member of the Institut Universitaire de France
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The recent work of Sakerallidis and Venkatesh [SaV] on spherical varieties includes
in particular the L2-Plancherel formula for H\G, when G is split and the characteristic
of F is equal to zero. It should be possible using our result to determine the Fourier
transform of the Schwartz space for these symmetric spaces. This should be entirely
analogous to the work [DO] for affine Hecke algebras.

Acknowledgments. We thank warmly the referee for his very pertinent mathematical
comments and his careful remarks on our presentation. We thank also Omer Offen
for his collaboration when this work was intended to be used for truncation on some
particular symmetric spaces.

2 The map HG and the real functions ΘG, ‖.‖ and Nd

on H\G
2.1. Notation.

If E is a vector space, E ′ will denote its dual. If E is real, EC will denote its complex-
ification.

If G is a group, g ∈ G and X is a subset of G, g.X will denote gXg−1. If J is a subgroup
of G, g ∈ G and (π, V ) is a representation of J , V J will denote the space of invariant
elements of V under J and (gπ, gV ) will denote the representation of g.J on gV := V
defined by:

(gπ)(gxg−1) := π(x), x ∈ J.
We will denote by (π′, V ′) the dual representation of G in the algebraic dual vector
space V ′ of V .
If V is a vector space of vector valued functions on G which are invariant by right
(resp., left ) translations, we will denote by ρ (resp., λ) the right (resp., left) regular
representation of G in V .
If G is locally compact, dlg will denote a left invariant Haar measure on G and δG will
denote the modulus function.
Let F be a non archimedean local field with finite residue field Fq. Unless specified we
assume:

The characteristic of F is different from 2. (2.1)

Let |.|F be the normalized absolute value of F.
We will use conventions like in [W]. One considers various algebraic groups defined over
F, and a sentence like:

” let A be a split torus ” will mean ” let A be the group of F-points of a
torus, A, defined and split over F ”.

(2.2)

With these conventions, let G be a connected reductive linear algebraic group. Let ÃG
be the maximal split torus of the center of G. The change to standard notation will
become clear later.

Let A be a split torus of G. Let X∗(A) be the group of one-parameter subgroups of
A. This is a free abelian group of finite type. Such a group will be called a lattice.
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One fixes a uniformizer $ of F. One denotes by Λ(A) the image of X∗(A) in A by the
morphism of groups λ 7→ λ($). By this morphism Λ(A) is isomorphic to X∗(A).

If J is an algebraic group, one denotes by Rat(J) the group of its rational characters
defined over F. Let us define:

ãG = HomZ(Rat(G),R).

The restriction of rational characters from G to ÃG induces an isomorphism:

Rat(G)⊗Z R ' Rat(ÃG)⊗Z R. (2.3)

Notice that Rat(ÃG) appears as a generating lattice in the dual space ã′G of ãG and:

ã′G ' Rat(G)⊗Z R. (2.4)

One has the canonical map H̃G : G→ ãG which is defined by:

e〈H̃G(x),χ〉 = |χ(x)|F, x ∈ G,χ ∈ Rat(G). (2.5)

The kernel of H̃G, which is denoted by G̃1, is the intersection of the kernels of |χ|F
for all character χ ∈ Rat(G) of G. One defines X(G) = Hom(G/G̃1,C∗), which is the
group of unramified characters of G. One will use similar notation for Levi subgroups
of G.

One denotes by ãG,F (resp., ˜̃aG,F) the image of G (resp., ÃG) by H̃G. Then G/G̃1 is
isomorphic to the lattice ãG,F.

There is a surjective map:
(ã′G)C → X(G)→ 1 (2.6)

denoted by ν 7→ χν which associates to χ ⊗ s, with χ ∈ Rat(G), s ∈ C, the character
g 7→ |χ(g)|sF (cf. [W], I.1.(1)). In other words:

χν(g) = e〈ν,H̃G(g)〉, g ∈ G, ν ∈ (ã′G)C. (2.7)

The kernel is a lattice and it defines a structure of a complex algebraic variety on
X(G) of dimension dimRãG. Moreover X(G) is an abelian complex Lie group whose
Lie algebra is equal to (ã′G)C.

If χ is an element of X(G), let ν be an element of ã′G,C such that χν = χ. The real
part Re ν ∈ ã′G is independent from the choice of ν. We will denote it by Re χ. If
χ ∈ Hom(G,C∗) is continuous, the character |χ| of G is an element of X(G). One sets
Re χ = Re |χ|. Similarly, if χ ∈ Hom(ÃG,C∗) is continuous, the character |χ| of ÃG
extends uniquely to an element of X(G) with values in R∗+, that we will denote again
by |χ| and one sets Re χ = Re |χ|.
If P is a parabolic subgroup of G with Levi subgroup M , we keep the same notation
with M instead of G.
The inclusions ÃG ⊂ ÃM ⊂ M ⊂ G determine a surjective morphism ãM,F → ãG,F
(resp., an injective morphism, ˜̃aG,F → ˜̃aM,F) which extends uniquely to a surjective
linear map between ãM and ãG, (resp., injective map between ãG and ãM). The second
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map allows to identify ãG with a subspace of ãM and the kernel of the first one, ãGM ,
satisfies:

ãM = ãGM ⊕ ãG. (2.8)

If an unramified character of G is trivial on M , it is trivial on any maximal compact
subgroup of G and on the unipotent radical of P , hence on G. It allows to identify
X(G) with a subgroup of X(M). Then X(G) is the analytic subgroup of X(M) with
Lie algebra (ã′G)C ⊂ (ã′M)C. This follows easily from (2.7) and (2.8).

One has (cf. [D2], (4.5)),

The map Λ(ÃG) → G/G̃1 is injective and allows to identify Λ(ÃG) with
the subgroup H̃G(ÃG) of ãG.

(2.9)

Let G be the algebraic group defined over F whose group of F-points is G. Let σ be
a rational involution of G defined over F. Let H be the group of F-points of an open
F-subgroup of the fixed point set of σ. We will also denote by σ the restriction of σ to
G.
A split torus A of G is said to be σ-split if A is contained in the set of elements of G
which are antiinvariant by σ. Now we explain the change to standard notation: AG will
denote the maximal σ-split torus of the center of G.
Let Ã be a σ-stable split torus of G. The involution σ induces an involution, denoted
in the same way, on ã := ãÃ. Let Ãσ (resp., Ãσ) be the maximal split torus in the
group of elements of Ã which are invariant (resp., antiinvariant) by σ. Then ãσ (resp.,
ãσ) is identified with the set of invariant (resp., antiinvariant) of ã by σ and Ãσ is the
maximal σ-split torus of Ã.
In particular, one has AG = (ÃG)σ and ãG = ãσG ⊕ aG where ãσG (resp., aG) is the space
of invariant (resp., antiinvariant) elements of ãG by σ.

We define a morphism of groups HG : G→ aG which is the composition of H̃G with
the projection on aG parallel to ãσG. We remark that, as is seen easily, H̃G commutes
with σ. Hence HG is trivial on H.
We denote by G1 the kernel of HG, which contains H. It contains also G̃1, hence it is
open in G. We denote by aG,F the image of HG. Let X(G)σ be the connected component
of the group of antiinvariant elements of X(G). Then X(G)σ is the analytic subgroup
of X(G) with Lie algebra (a′G)C ⊂ (ã′G)C. The elements of X(G)σ are precisely the
characters of G of the form

χν(g) = e〈ν,HG(g)〉, ν ∈ (a′G)C, g ∈ G.

They are exactly the characters of the lattice G1\G. The group X(G)σ has a natural
structure of complex algebraic group. We denote by X(G)σ,u the group of unitary
elements of X(G)σ.
One has

The group Λ(AG) is identified by HG with HG(AG). (2.10)
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Let Ã be a maximal split torus of G. Let M be the centralizer of Ã in G. Let us show
the following assertion.

H̃M(Ã) contains a multiple by k ∈ R+∗ of the coweight lattice of the root
system Σ ⊂ (ãGM)′ of Ã in the Lie algebra of G. Here the coweight lattice
is the dual lattice in ãGM of the root lattice.

(2.11)

It is clear that it suffices to prove the assertion for one maximal split torus. Let Ã′ be a
maximal split torus of the derived group Gder of G. Let Ã = Ã′ÃG. This is a maximal

F-split torus of G for reasons of dimension. The intersection F of Ã′ and ÃG is finite.
Hence one has the exact sequence

1→ F → Ã′ × ÃG → Ã→ 1.

Going to F-points, the long exact sequence in cohomology implies that ÃÃ′G is of finite
index in Ã. Hence the image of Ã′ÃG by H̃M is of finite index in the image of Ã. The
image of Ã′ (resp., ÃG) in ãM by H̃M is contained in ãGM (resp., ãG) and is a lattice
Λ1 (resp., ΛG) generating ãGM because Λ1 + ΛG is of finite index in Λ = H̃M(Ã) which
generates ãM . Hence the rank of Λ1 is equal to the dimension of ãGM . The values of the
normalized absolute value of F are of the form qn, n ∈ Z. From the definition of H̃M ,
one sees that Λ1 is included in (log q)Λ2 where Λ2 ⊂ ãGM is the coweight lattice of Σ.
Both are lattices of the same rank, for reasons of dimension. Our claim follows from
the following assertion:

Let Λ1 ⊂ Λ2 be two lattices of the same rank. Then there exists n ∈ N∗
such that nΛ2 ⊂ Λ1,

(2.12)

which follows by inverting the matrix, with integral entries, expressing a basis of Λ1 in
a basis of Λ2.
Let A be a maximal σ-split torus of G and let Ã be a σ-stable maximal split torus of
G which contains A. The roots of A in the Lie algebra of G form a root system (cf.
[HW], Proposition 5.9). Let M be the centralizer in G of A, which is σ-invariant. One
has A = AM . One deduces like (2.11) that:

Λ(A) ⊂ a contains a multiple by k ∈ R+∗ of the coweight lattice of the
root system of A in the Lie algebra of G.

(2.13)

A parabolic subgroup P of G is called a σ-parabolic subgroup if P and σ(P ) are opposite
parabolic subgroups. Then M := P ∩ σ(P ) is the σ-stable Levi subgroup of P . If P is
such a parabolic subgroup, P− will denote σ(P ).
The sentence : ”Let P = MU be a parabolic subgroup of G” will mean that U is the
unipotent radical of P and M a Levi subgroup of G. If moreover P is a σ-parabolic
subgroup of G, M will denote its σ-stable Levi subgroup.
Let P = MU be a σ-parabolic subgroup of G. Recall that AM is the maximal σ-split
torus of the center of M .
Let A−P , be the set of P -antidominant elements in AM . More precisely, if Σ(P ) is the
set of roots of AM in the Lie algebra of P , and ∆(P ) is the set of simple roots, one has:

A−P = {a ∈ AM ||α(a)|F ≤ 1, α ∈ ∆(P ) }.
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One defines also for ε > 0:

A−P (ε) = {a ∈ AM ||α(a)|F ≤ ε, α ∈ ∆(P )}.

2.2. Some functions on H\G.

Let Ã0 be a σ-stable maximal split torus of G, which contains a maximal σ-split torus
A0 of G. Let P0 be a minimal parabolic subgroup of G which contains Ã0. Let K0 be
the fixator of a special point in the apartment of Ã0 in the Bruhat-Tits building of G.
We fix an algebraic embedding

τ : G→ GLn(F). (2.14)

We may and we will assume that τ(K0) ⊂ GLn(O) where O is the ring of integers of F
([W] I.1)). For g ∈ G, we write:

τ(g) = (ai,j)i,j=1,..,n, τ(g−1) = (bi,j)i,j=1,..,n.

We set
‖g‖ = supi,jsup(|ai,j|F, |bi,j|F). (2.15)

We have (cf. [W] I.1) :

‖g‖ ≥ 1 for g ∈ G, ‖g1g2‖ ≤ ‖g1‖‖g2‖ for g1, g2 ∈ G and
‖k1gk2‖ = ‖g‖ for k1, k2 ∈ K0, g ∈ G.

(2.16)

We denote by (εM0 ,C) the trivial representation of the centralizer M0 of Ã0 in G and
(π0, V0) = (iGP0

εM0 , i
G
P0
C) the normalized induced representation. Let e0 be the unique

element of V0 invariant by K0 and such that e0(1) = 1.

We remark that the contragredient representation (π̌0, V̌0) is isomorphic to (π0, V0). For
g ∈ G, we set :

ΞG(g) = 〈π0(g)e0, e0〉.

The function ΞG is biinvariant by K0.
We will say that two functions f1 and f2 defined on a set E with values in
R+ are equivalent on a subset E ′ of E (we write f1(x) � f2(x), x ∈ E ′),
if there exist C,C ′ > 0 such that:

C ′f2(x) ≤ f1(x) ≤ Cf2(x), x ∈ E ′.

(2.17)

We recall (cf. [W], Lemma II.1.2):

There exist d ∈ N and for all g1, g2 ∈ G, a constant c > 0 such that

ΞG(g1gg2) ≤ cΞG(g)(1 + log‖g‖)d, g ∈ G.
(2.18)

We set :
‖Hg‖ := ‖σ(g−1)g)‖, g ∈ G. (2.19)

For a compact subset Ω′ of G, we deduce from (2.16):

‖Hgω‖ � ‖Hg‖, ω ∈ Ω′, g ∈ G. (2.20)

6



Let us define the functions ΘG and Nd, d ∈ Z by

ΘG(Hg) = (ΞG(σ(g−1)g))1/2, g ∈ G. (2.21)

and
Nd(Hg) = (1 + log‖Hg‖)d, g ∈ G. (2.22)

(2.20 ) implies (with N = N1):

N(Hgω) � N(Hg), g ∈ G,ω ∈ Ω′. (2.23)

The next assertion follows from the definitions and (2.18).

There exists d ∈ N, and for all g1 ∈ G there exists c > 0 such that:

ΘG(Hgg1) ≤ cΘG(g)Nd(Hg), g ∈ G.
(2.24)

It follows from the Cartan decomposition for H\G (cf. [BeOh] Theorem 1.1) that there
exist a compact subset Ω of G and a finite set P of minimal σ-parabolic subgroups of
G such that:

H\G = ∪P∈PHA−PΩ. (2.25)

Let P = MU be a minimal σ-parabolic subgroup of G and let Ω′ be a
compact subset of G. We choose a norm on aM . By ([L], Lemma 7 and
Proposition 6), we have:
(i) There exist c, c′, C, C ′ > 0 such that:

Cec‖HM (a)‖ ≤ ‖Haω‖ ≤ C ′ec
′‖HM (a)‖, ω ∈ Ω′, a ∈ A−P ,

(ii)
N(Haω) � (1 + ‖HM(a)‖), a ∈ AM , ω ∈ Ω.

(2.26)

(iii) The function ΘG is right invariant by K0 ∩ σ(K0).

(iv) There exist C,C ′ > 0 and d, d′ ∈ N such that for g = aω with
ω ∈ Ω′, a ∈ A−P , one has

Cδ
1/2
P (a)N−d(Ha) ≤ ΘG(Hg) ≤ C ′δ

1/2
P (a)Nd′(Ha) .

(2.27)

Lemma 2.1 Let dx be a non zero G-invariant measure on H\G. There exists d ∈ N
such that: ∫

H\G
Θ2
G(x)N−d(x)dx <∞.

Proof :

Let P = MU ∈ P and Ω as in (2.25). From (2.27) one deduces that there exist C ′ > 0
and d′ ∈ N such that :

ΘG(Haω) ≤ C ′δ
1/2
P (a)Nd′(Ha), a ∈ A−P , ω ∈ Ω.

7



We can choose Ω large enough in order to have

A−PΩ ⊂ Λ−PΩ,

where Λ−P is the set of P -antidominant elements in Λ(AM). It follows from [KT2],
Proposition 2.6, that

There exist constants C1, C2 > 0 such that:

C1δ
−1
P (λ) ≤ vol(H\HλΩ) ≤ C2δ

−1
P (λ), λ ∈ Λ−P ,

where vol(H\HλΩ) is the volume of the subset H\HλΩ of H\G.

(2.28)

From (2.26) (ii) one deduces that for d′′ ∈ N large enough:∑
λ∈Λ(AM )

N−d′′(Hλ) <∞.

This implies easily the Lemma.

3 Tempered functions on H\G
3.1. On the Cartan decomposition and lattices.

Let P = MU be a σ-parabolic subgroup of G. Let Σ(P ) be the set of roots of AM in
the Lie algebra of U and let ∆(P ) be the set of simple roots. It will be viewed as a
subset of a′M . Let us denote by +aP

′ (resp., +a′P ) the set of χ ∈ a′M of the form:

χ =
∑

α∈∆(P )

xαα,

where xα ≥ 0 (resp., xα > 0) for all α ∈ ∆(P ).
Let us assume that P is a minimal σ-parabolic subgroup of G. If Q = LV is a σ-
parabolic subgroup of G such that P ⊂ Q, let ∆L be the set of elements of ∆ := ∆(P )
which are roots of AM in the Lie algebra of L. We remark that A−Q is equal to the

intersection AL ∩ A−P . For ε > 0, we define

A−P (Q, ε) := {a ∈ A−P ||α(a)|F ≥ ε, α ∈ ∆L and |α(a)|F < ε, α ∈ ∆ \∆L}.

Let P(P ) be the set of σ-parabolic subgroups of G which contain P . For ε > 0, one
has a partition of A−P :

A−P = ∪Q∈P(P )A
−
P (Q, ε). (3.1)

Moreover for any Q ∈ P(P ) there exists a compact subset ωε,Q of AM such that:

A−P (Q, ε) ⊂ A−Qωε,Q, (3.2)

8



and further, introducing Λ−Q the set of the Q-antidominant elements of Λ(AL), there
exists a compact set ω′ε,Q of AM such that :

A−P (Q, ε) ⊂ Λ−Qω
′
ε,Q. (3.3)

One uses (2.13) and one introduces a multiple by k ∈ R+∗ of the coweight lattice.
Let δα ∈ aM , α ∈ ∆(P ), the fundamental coweights.
Then Λ(AL) contains a sublattice Λ′L of finite index in Λ(AL), which is generated by
δ′α := −kδα ∈ Λ−Q, α ∈ ∆ \ ∆L and by Λ(AG). Let ω1, . . . , ωp be a basis of Λ(AG)

and ω′1, . . . , ω
′
p be the dual basis in a′G. Let Λ′−Q be the semigroup generated by the

δ′α, α ∈ ∆ \∆L and Λ(AG), i.e. :

Λ′−Q = {
∏

α∈∆\∆L

(δ′α)nα |nα ∈ N}Λ(AG).

Then we will see that there exists a finite set FQ in Λ′L such that

Λ−Q ⊂ Λ′−Q FQ. (3.4)

In fact if λ ∈ Λ−Q, for each α ∈ ∆\∆L (resp., j = 1, . . . , p), one defines nα (resp., nj) the
largest integer such that 〈λ, α〉 (resp., 〈λ, ω′j〉) is less than or equal to −knα (resp., nj).
Then λ′ =

∏
α∈∆\∆L(δ′α)nα

∏
j=1,...p ω

nj
j is in Λ′−Q . Moreover λ(λ′)−1 lies in a bounded

subset of Λ(AQ), as λ varies in Λ−Q, hence it lies in a finite set FQ.
Summarizing, one sees that there exists a compact subset ω′′ε,Q of AM such that :

A−P (Q, ε) ⊂ Λ′−Q ω
′′
ε,Q. (3.5)

3.2. A(H\G), Atemp(H\G), A2(H\G).

The proof of the following Lemma is analogous to the proof of [D1], Lemma 3.

Lemma 3.1 Let f be a function on H\G which is right invariant by a compact open
subgroup. The following conditions are equivalent:
(i) The G-module Vf , generated by the right translates ρ(g)f, g ∈ G, is admissible.
(ii) There exist an admissible representation (π, V ) of G, an element v of V and an
H-fixed linear form ξ on V such that f = cξ,v where:

cξ,v(Hg) = 〈ξ, π(g)v〉, g ∈ G.

(iii) The function f is ZB(G)-finite, where ZB(G) is the Bernstein’s center of G.

We denote by A(H\G) the vector space of such functions. An element of this space is
AG-finite, hence there exists a finite set Exp(f) of smooth characters of AG such that

f =
∑

χ∈Exp(f)

fχ,

where the fχ are non zero and satisfy for some n ∈ N∗:

(ρ(a)− χ(a))nfχ = 0, a ∈ AG.

9



The elements of Exp(f) are called the exponents of f .
Let (π, V ) be a smooth representation of G of finite length. Then it is a finite direct sum
of generalized eigenspaces under AG. If ν is a character of AG, let us denote by V (ν) the
corresponding generalized eigenspace of V and by ξ(ν) the restriction to V (ν) of any
element ξ of V ′, which can be extended to an element of V ′, denoted also ξ(ν), which
is zero on the other generalized eigenspaces. If ξ ∈ V ′H , Exp(ξ) will denote the subset
of ν such that ξ(ν) is non zero. The elements of Exp(ξ) are called the AG-exponents or
exponents of ξ.

For any σ-parabolic subgroup P , the constant term fP of f along P has been defined
in [L], Proposition 2. For an H-invariant linear form ξ on V , j∗P (ξ) has been defined in
[L], Theorem 1. It is an M ∩H-invariant linear form on the normalized Jacquet module
jP (V ). One denotes by jP the canonical projection from V to jP (V ). If f = cξ,v, one
has the equality:

fP = cj∗P (ξ),jP (v). (3.6)

Let us recall a property of the constant term (cf. [D2] Proposition 3.7), in which one has
to change right H-invariance to left invariance by changing g 7→ f(g) into g 7→ f(g−1).

Let P = MU be a minimal σ-parabolic subgroup of G and let Q = LV
be a σ-parabolic subgroup of G which contains P . Let K be an open
compact subgroup of G. Then there exists ε > 0 such that, for any right
K-invariant element f of A(H\G), one has

f(a) = δ
1/2
Q (a)fQ(a), a ∈ A−M(Q < ε),

where A−M(Q < ε) := {a ∈ A−P ||α(a)|F < ε, α ∈ ∆(P ) \∆L(P )}.

(3.7)

One defines
f indP (g) := (ρ(g)f)P , g ∈ G.

As the Jacquet module of an admissible representation is admissible, one deduces from
(3.6) that the constant term fP is an element of A(M ∩H\M). The union ExpP (f) of
the set of exponents of f indP (g), g ∈ G is finite, as the Jacquet module of the G-module
generated by f is of finite length. This set is called the set of exponents of f along P . If
ξ is an H-fixed linear form on a smooth G-module of finite length, one defines similarly
ExpP (ξ) = Exp(j∗P (ξ)).

One says that an element f of A(H\G) is tempered (resp., square integrable) if
for every σ-parabolic subgroup P of G, the real part of the elements of ExpP (f) are
contained in +aP

′ (resp., +a′P ).
We denote by Atemp(H\G) (resp., A2(H\G)) the subspace of tempered elements

(resp., square integrable) of A(H\G). Obviously one has:

The spaces A2(H\G) ⊂ Atemp(H\G) are G-invariant subspaces of
A(H\G).

(3.8)

Moreover, from [KT2], Theorem 4.7, one deduces:

If AG = {1}, an element f of A(H\G) is element of A2(H\G) if and only
if it is an element of L2(H\G).

(3.9)
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Let V be a smooth G-module of finite length. Similarly, one says that an H-
fixed linear form ξ on V is tempered (resp., square integrable) if for every σ-parabolic
subgroup P of G the real part of the elements of ExpP (ξ) are contained in +aP

′ (resp.,
+a′P ). We denote by V ′Htemp (resp., V ′H2 ) the set of tempered (resp., square-integrable)
H-invariant linear forms on V .

Lemma 3.2 The following conditions are equivalent:
(i) The function f is an element of Atemp(H\G) (resp., A2(H\G)).
(ii) There exist an admissible representation (π, V ) of G, an element v of V and an
element ξ in V ′Htemp (resp., V ′H2 ) such that:

f(Hg) = 〈ξ, π(g)v〉, g ∈ G.

Proof :

One uses Lemma 3.1 and (3.6).

Definition 3.3 Let f ∈ Atemp(H\G) and let P be a σ-parabolic subgroup of G. Let
Expw

P (f) (resp., Exp+
P (f)) be the set of elements χ of ExpP (f) such that Reχ = 0 (resp.,

is different from zero). The weak constant term fw
P of f along P is the sum of the (fP )χ

where χ varies in Expw
P (f). We set f+

P = fP − fw
P and fw,ind

P (g) = (ρ(g)f)w
P for g ∈ G.

Lemma 3.4 With the notation of the definition, let P = MU , Q = LV be two σ-
parabolic subgroups of G such that P ⊂ Q. Let R = P ∩ L. Then one has:
(i) fw

Q ∈ Atemp(L ∩H\L).
(ii)

fw
P = (fw

Q)w
R.

Proof :

(i) From the definition of fw
Q and the fact that fQ ∈ A(L ∩H\L), one sees that fw

Q is
also an element of A(L∩H\L). The set of exponents ExpR(fQ) is the disjoint union of
ExpR(fw

Q) and ExpR(f+
Q ). From the transitivity of the constant term (cf. [L], Corollary

1 of Theorem 3), one has ExpR(fQ) ⊂ ExpP (f). Hence if χ ∈ ExpR(fw
Q), one has

Re(χ) ∈+ aP
′ and Re(χ) restricted to aL is equal to zero. This implies Re(χ) ∈+ aR

′.
One deduces (i).
Let us prove (ii). We have

fQ = fw
Q + f+

Q .

Then by the transitivity of the constant term, one has:

fP = (fw
Q)R + (f+

Q )R = (fw
Q)w

R + (fw
Q)+

R + (f+
Q )R.

Looking to exponents, one concludes that

fw
P = (fw

Q)w
R, f+

P = (fw
Q)+

R + (f+
Q )R.
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3.3. Families of type I of tempered functions.

Definition 3.5 Let X(C) be a complex algebraic torus. We denote by B the algebra
of polynomial functions on X(C). We denote by X the maximal compact subgroup of
X(C). A family (Fx), parametrized by X, of elements of Atemp(H\G) is called a family
of type I of tempered functions on H\G if:
a) There exists a compact open subgroup J of G such that for all x ∈ X, Fx is right
invariant by J .
b) For all g ∈ G, the map x 7→ Fx(Hg) is C∞ on X.
c) For all constant coefficient differential operator D on X and x ∈ X, the map Hg 7→
D(Fx(Hg)) is an element of A(H\G).
d) For every σ-parabolic subgroup Q = LV of G, there exists a finite family ΞQ =
{ξ1, . . . ξn}, with possible repetitions, of characters of AL with values in the group of
invertible elements B× of B, such that:
(d-i)

(ρ(a)− (ξ1(a))(x)) . . . (ρ(a)− (ξn(a))(x)).F ind
x,Q(g) = 0, a ∈ AL, g ∈ G, x ∈ X, (3.10)

(d-ii) for i = 1, . . . , n, the real part of ξi(·)(x) is independent of x ∈ X and is an element
of +aQ

′.
In the following, we will denote ξi,x(a) instead of (ξi(a))(x).
The family E of ΞQ will be called a set of exponents of the family F .

We will see later (cf. Theorem 5.1) examples of such families related to Eisenstein
integrals.
The following properties are easy consequences of the definitions.

If F is a family of type I, parametrized by X, of tempered functions on
H\G, the same is true for the family ρ(g)F , for every g ∈ G, with the
same set of exponents.

(3.11)

Lemma 3.6 Let F be a family of type I, parametrized by X, of tempered functions on
H\G and Q = LV be a σ-parabolic subgroup.
(i) For all l ∈ L, the map x 7→ (Fx)Q((H ∩ L)l) is C∞ on X.
(ii) If D is a differential operator with constant coefficients on X of degree d, one has:

[(ρ(a)− (ξ1,x(a)) . . . (ρ(a)− (ξn,x(a))]2
d

D(Fx)Q = 0, a ∈ AL, g ∈ G, x ∈ X,

(iii) One has the equality:

(DFx)Q = D(Fx)Q, x ∈ X.

In particular D(Fx)Q ∈ A((H ∩ L)\L)
(iv) The family (DFx) is a family of type I with a set of exponents given by the
2dΞQ,where 2dΞQ means ΞQ repeated 2d times.

Proof :

12



(i) Using translations, it is enough to prove that (Fx)Q(a), a ∈ AL is C∞ on X. Let
P = MU be a σ-parabolic subgroup contained in Q. By (3.7), there exists ε > 0 such
that

(Fx)Q((H ∩ L)a) = δQ(a)−1/2Fx(Ha), a ∈ A−M(Q < ε).

Hence the assertion of the Lemma is true for a ∈ A−M(Q < ε). But the relation (3.10)
applied to a0 strictly P -dominant instead of a implies a linear recursion relation for the
sequence ((Fx)Q(aa−p0 )) which allows to compute (Fx)Q on (H ∩ L)AL from its values
on A−M(Q < ε) (cf. [D2] proof of Proposition 3.11 for details). Then (i) follows.
(ii) By using induction, it suffices to prove the assertion for d = 1. In that case, we
apply D to (3.10) and then we apply the product of operators (ρ(a)−(ξ1,x(a)) . . . (ρ(a)−
(ξn,x(a)) to the equality obtained. This gives the result.
(iii) We fix x ∈ X. Let V be the linear span of the set {D(ρ(g)Fx)|g ∈ G}. As D
and ρ(g) commute, this space is invariant by right translation by elements of G. The
elements of V are of the form DF ′x with a family F ′ of type I satisfying (3.10).

We first show that the map DF ′x 7→ D(F ′x)Q is well defined. For this it is enough
to prove that if DF ′x = 0 then D(F ′x)Q = 0. From (3.7), with the notation of (ii), one
has (F ′y)Q((H ∩ L)a) = F ′y((H ∩ L)a)δQ(a)−1/2 on A−M(Q < ε) for some ε > 0. Hence
by derivation D(F ′x)Q = 0 on A−M(Q < ε). Using recursion relations as in (ii), one gets
that D(F ′x)Q = 0 on AL. Then using translations, one sees that D(F ′x)Q = 0 on L.

Hence the map DF ′x 7→ D(F ′x)Q is well defined on V . From the properties of the
constant term of the F ′x (cf. [D2], Proposition 3.14), it is easily seen that this map has
the characteristic properties of the constant term map on V (cf. l.c.). This proves (iii).
Then (iv) follows from (ii) applied to right translates of F by elements of G and from
(iii).

Lemma 3.7 Let F be a family of type I, parametrized by X, of tempered functions on
H\G. Let Q = LV a σ-parabolic subgroup. Then, one has
(i) The family (Fx)

w
Q, x ∈ X is a family of tempered functions on (L ∩H)\L of type I.

(ii) Let D be a differential operator on X with constant coefficients. Then, one has
D(Fx)

w
Q = (DFx)

w
Q, x ∈ X.

Proof :

(i) Let a′ ∈ AL be such that |α(a′)|F < 1 for all α in ∆(Q). Let Ξw
Q be the set of

elements ξ of ΞQ such that ξx is a unitary character of AL for all x ∈ X. We set
Ξ+
Q = ΞQ \ Ξw

Q. We recall that there might be repetitions in these families. From the
theory of the resultant there exist elements R, S of B[T ] such that:

R(T )
∏
ξ∈Ξw

Q

(T − ξ(a′)) + S(T )
∏
ξ′∈Ξ+

Q

(T − ξ′(a′)) = b,

where
b =

∏
ξ∈Ξw

Q,ξ
′∈Ξ+

Q

(ξ(a′)− ξ′(a′)).

13



We define
Γx = Sx(ρ(a′))

∏
ξ′∈Ξ+

Q

(ρ(a′)− ξ′x(a′)).

where ρ denotes the right regular representation on the space of functions on (L∩H)\L.
One sees easily that, from the definition of R, S, the definition of the constant term and
of Ξw

Q:
Γx(Fx)Q = b(x)(Fx)

w
Q, x ∈ X. (3.12)

From the properties of a′ and the definition of Ξ+
Q, one sees that b(x) does not vanish

for x ∈ X and is C∞ on X. Hence

(Fx)
w
Q = b(x)−1Γx(Fx)Q, x ∈ X.

By Lemma 3.6 (i), for l ∈ L, the map x 7→ (Fx)Q((H ∩ L)l) is C∞ on X.
One has to prove that for a differential operator D with constant coefficients on X and
x ∈ X, D(Fx)

w
Q ∈ A((L ∩H)\L). First, from Lemma 3.6, second part of (iii), D(Fx)Q

is an element of A((L∩H)\L). Then our claim follows by applying D to the preceeding
equality.
Separating the exponents of (Fx)

w
Q and (Fx)

+
Q, one deduces from (3.10) that:∏

ξ∈Ξw
Q

(ρ(a)− ξx(a))(Fx)
w
Q = 0, a ∈ AL, x ∈ X.

Similarly, if R is a σ-parabolic subgroup of L, one gets a relation like (3.10) for ((Fx)
w
Q)R.

Altogether this shows that (Fx)
w
Q is a family of type I of tempered functions on (L ∩

H)\L. This proves (i).
From Lemma 3.6 (iii), (DFx)Q = D(Fx)Q. By (i), (Fx)

w
Q is C∞ in x ∈ X. As this is

also true for (Fx)Q this implies that (Fx)
+
Q = (Fx)Q− (Fx)

w
Q is also C∞ in x ∈ X. Hence

(DFx)Q = D(Fx)
w
Q +D(Fx)

+
Q.

But the exponents of D(Fx)
+
Q are (up to multiplicities ) the exponents of (Fx)

+
Q and

similarly for D(Fx)
w
Q (cf. Lemma 3.6 (ii)). From the definition of the weak constant

term one deduces (ii).

Proposition 3.8 Let F be a family of type I, parametrized by X, of tempered functions
on H\G. Then, there exist d ∈ N and C > 0 such that :

|Fx(Hg)| ≤ CΘG(Hg)Nd(Hg), g ∈ G, x ∈ X.

Proof :

By using the Cartan decomposition (cf. (2.25)) and a finite number of right translates
of F , one sees, using (3.11), (2.23) and (2.24), that it is enough to prove for each element
P = MU of P , and each family of type I, parametrized by X, of tempered functions on
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H\G, an inequality of this type for a ∈ A−P . Now, it follows from (3.7) and Definition
3.5 a) that there exists ε > 0 such that for all Q ∈ P(P ) and for all x ∈ X:

Fx|A−P (Q,ε) = (δQ)1/2(Fx)Q|A−P (Q,ε). (3.13)

By (3.1),(3.5), we have A−P ⊂ ∪Q∈P(P )Λ
−
Qω
′′
ε,Q. Using a finite number of right translates,

(2.23) again and the estimate (2.27) of ΘG, it is enough to prove that there exist C > 0
and d ∈ N such that:

|(Fx)Q(λ)| ≤ CNd(Hλ), λ ∈ Λ′−Q . (3.14)

By assumption on the real part of ξi,x, the eigenvalues ξi,x(λ), λ ∈ Λ′−Q ⊂ Λ′L have a
modulus less or equal to 1 which does not depend on x ∈ X. We will see that (3.14)
follows from the following Lemma applied to the lattice Λ′L.

Lemma 3.9 Let Λ be a lattice with basis λ1, . . . , λq. If λ = i1λ1 + · · · + iqλq, we
set |λ| = |i1| + · · · + |iq|. Denote by Λ+ the set of λ such that the ij are in N. Let
ξ1,x, . . . ξn,x, x ∈ X be a C∞ family of characters of Λ such that:

|ξi,x(λj)| ≤ 1, x ∈ X.

Let (fx), x ∈ X be a C∞ family of functions on Λ such that

(ρ(λ)− ξ1,x(λ)) . . . (ρ(λ)− ξn,x(λ))fx = 0, x ∈ X,λ ∈ Λ.

Then there exist C > 0, d ∈ N such that:

|fx(λ)| ≤ C(1 + |λ|)d, x ∈ X,λ ∈ Λ.

Proof :

If i = (i1, . . . , iq) ∈ Zq we define

λi = i1λ1 + . . . iqλq.

Let En,q be the space of maps from {0, . . . , n− 1}q to C. We fix a norm on this vector
space. To x ∈ X, we associate the element gx of En,q defined by gx(i) = fx(λ

i), i ∈
{0, . . . , n− 1}q. Then (cf. [D1] before Lemma 14) there exists a representation ξx of Λ
on En,q, depending only on the family characters ξ1,x, . . . ξn,x of Λ and which depends
smoothly on x ∈ X, such that for λ ∈ Λ, the eigenvalues of ξx(λ) are ξ1,x(λ), . . . ξn,x(λ)
and

fx(λ) = ((ξx(λ)gx)(0, . . . , 0), λ ∈ Λ.

The eigenvalues of ξx(λ1), . . . , ξx(λl) are of modulus less than or equal to 1. Moreover,
from the smoothness of ξx in x ∈ X, one sees that the norms of the endomorphisms
ξx(λi) are bounded by a constant independent from x ∈ X, as well as their inverse.
From [DOp] Lemma 8.1, one sees that, for some d′ ∈ N, the norm of ξx(λ

i) is bounded
by the product of a constant, independent of x ∈ X, with (1 + |i1|)d

′
. . . (1 + |iq|)d

′
for

i ∈ Zq. But the latter is bounded by (1 + |i1|+ · · ·+ |iq|)d, with d = d′q ∈ N.
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End of the proof of the Proposition. From (2.26), we have:

N(Ha) � (1 + ‖HM(a)‖), a ∈ AM . (3.15)

From the equivalence of norms for finite dimensional vector spaces, one sees that:

1 + |i1|+ · · ·+ |il| � N(Hλi), i ∈ Zl, (3.16)

where l is the rank of Λ′L. Then the Lemma 3.9 implies easily (3.14). This finishes the
proof of the Proposition.

We have the following Proposition.

Proposition 3.10 Let f ∈ A(H\G). The following conditions are equivalent:
(i) The function f is an element of Atemp(H\G).
(ii) There exist C > 0 and d ∈ N such that:

|f(x)| ≤ CΘG(x)Nd(x), x ∈ H\G.

Proof :

(i) implies (ii) follows from the Proposition applied to X reduced to one point.
One sees that (ii) implies (i) is the analogue of (i) implies (ii) in [W], Proposition III.2.2.
Let us give a detailed proof.
Let f as in (ii). Let P be a σ-parabolic subgroup of G. Let us denote by Vf the linear
span of the set {ρ(g)f |g ∈ G}.
From (2.24) and (2.23), one sees that, for any element f ′ of Vf , there exist C ′ > 0 and
d′ ∈ N such that:

|f ′(x)| ≤ C ′ΘG(x)Nd′(x), x ∈ H\G. (3.17)

Let Ef := {(f ′P )|AM |f ′ ∈ Vf}. It is AM -invariant and each element of Ef is AM -finite as
Vf ⊂ A(H\G). One sees easily that the set ExpP (f) is exactly the set of characters of
AM which appear as a subrepresentation of Ef . Let χ ∈ ExpP (f) and let f ′ ∈ Vf such
that (f ′P )|AM transforms under AM by χ. From (3.7), one sees that there exists ε > 0
such that:

f ′(a) = δ
1/2
P (a)f ′P (a), a ∈ A−M(P < ε)

From this, (3.17) and(2.27), one deduces that there exists d′′ ∈ N, C ′′ > 0 such that:

|χ(a)| ≤ C ′′Nd′′(a), a ∈ A−M(P < ε).

Let
a−M(P < ε) = {X ∈ aM | |α(X)| < ε, α ∈ ∆(P )}

Writing |χ| = χν for ν ∈ a′M , one deduces from this and (2.26) (ii), the existence of
C ′′′ > 0 such that:

eν(X) ≤ C ′′′(1 + ‖X‖)d′′ , X ∈ a−M(P < ε).

This implies that ν(X) ≤ 0 for X ∈ a−M(P < ε). Hence by applying homotheties, one
sees that ν is an element of +aP

′. This proves that (ii) implies (i).
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We want to define some kind of seminorms on the space of families of type I with
good properties of comparison when looking to Levi subgroups. For this, we introduce
suitable sets of σ-parabolic subgroups.

Let G1 be the group of F-points of an algebraic group defined over F. Let σ1 be
a rational involution of this group defined over F and let H1 be the F-points of the
neutral component of the group of fixed points of σ1. If G1 = (G1)der, we choose a
set Pmin(G1, σ1) of minimal σ1-parabolic subgroups of G1 which gives a Cartan decom-
position for H1\G1 (cf. 2.25). In general, using (6.12), let Pmin(G1, σ1) be the set of
minimal σ1-parabolic subgroups of G1 whose intersection with (G1)der is an element of
Pmin((G1)der, σ1). Then from (6.13), this set of minimal σ1-parabolic subgroups of G1

leads to a Cartan decomposition for H1\G1. Let P(G1, σ1) be the set of σ1-parabolic
subgroups of G1 containing an element of Pmin(G1, σ1) and L(G1, σ1) be the set of
the σ1-stable Levi subgroups of elements of P(G1, σ1). If there is no ambiguity on the
involution σ1, we drop it from the notation.

We return to G and σ, which induces an involution on each σ-stable subgroups of
G. If L is the σ-stable Levi subgroup of a σ-parabolic subgroup of G, we set:

L1(L) = L(L),Li+1(L) = ∪L1∈Li(L)L(L1).

If L1 ∈ L(L) is different from L then dim(AL1) > dimAL. Hence, there exists i0 such
that Li0(L) = Lj(L) for j ≥ i0. We set L∞(L) = Li0(L). If L ∈ L∞(G) = Lp0(G)
for some p0, then L(L) ⊂ Lp0+1(G) = L∞(G). Let us assume that Li(L) ⊂ Lp0(G) for
some i ≥ 1. Then Li+1(L) = ∪L1∈Li(L)L(L1) ⊂ ∪L1∈Lp0 (G)L(L1) = Lp0+1(G) = L∞(G).
This implies:

For L ∈ L∞(G), one has L∞(L) ⊂ L∞(G). (3.18)

For L ∈ L∞(G), we denote by P∞(L) the set of σ-parabolic subgroups of L whose
σ-stable Levi component belongs to L∞(L). Similarly, we define L∞(Lder). Then

The map M 7→M ∩ Lder is a bijection between L∞(L) and L∞(Lder).
We say that L∞(L) is adapted to Lder.

(3.19)

We introduce the following ”seminorms” on the space of families of type I. Notice
that these seminorms might be infinite. Let D be a finite set of differential operator on
X with constant coefficients and n ∈ N. If F is a family of type I parametrized by X,
we set

νX(G,D, n, F ) = sup
x∈X

sup
d∈D

sup
g∈G

Nn(Hg)−1ΘG(Hg)−1|(d · Fx)(g)|, (3.20)

and
µX(G,D, n, F ) = sup

Q=LV ∈P∞(G)

νX(L,D, n, (F )w
Q). (3.21)

Remark 3.11 Notice that in considering the right hand side of (3.21), we have chosen
the function N on L defined by:

N((H ∩ L)l) := N(Hl), l ∈ L.

Another choice simply produces functions equivalent to this one, from (2.26).
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The following Proposition is the analogue of [W] Lemmas VI.2.1, VI.2.3. The proof
is essentially similar but takes into account the dependence on the family F .

Proposition 3.12 We fix a set of exponents E and a compact open subgroup J of G.
Let Q = LV ∈ P(G) and P = MU ∈ Pmin(G) such that P ⊂ Q. Let ∆ = ∆(P ),
∆L = ∆(P ∩ L) ⊂ ∆ and for δ > 0, let

DL(δ) = {a ∈ A−P |〈α,HM(a)〉 ≤ −δ‖HM(a)‖, α ∈ ∆ \∆L}.

There exists a compact subset CL(δ) of A−P and for all n ∈ N, there exist ε > 0, Cn > 0
such that, for all families F of type I, parametrized by X, of tempered functions on
H\G, with the given set of exponents, and right invariant by J , one has

|(Fx)+
Q((H ∩ L)a)| ≤ Cnµ

X(G, 1, n, F )ΘL((H ∩ L)a)e−ε‖HM (a)‖

for a ∈ DL(δ) \ CL(δ) and x ∈ X.

Proof :

One can assume that Q is proper otherwise (Fx)
+
Q = 0. We fix n ∈ N.

Let us prove that there exist t > 0, C1 > 0 and d ∈ N such that, if a ∈ A−P satisfies
〈α,HM(a)〉 ≤ −t for α ∈ ∆ \∆L, one has for all families of the Proposition:

|(Fx)+
Q((H ∩ L)a)| ≤ C1µ

X(G, 1, n, F )ΘL((L ∩H)a)Nn+d(Ha), x ∈ X. (3.22)

By (3.7), there exists t > 0 (independent of F ) such that for a satisfying the above
hypothesis, one has the equality:

(Fx)Q((H ∩ L)a) = δQ(a)−1/2Fx(a).

By definition of the seminorms, one has

|(Fx)Q((H ∩ L)a)| ≤ µX(G, 1, n, F )δQ(a)−1/2ΘG(Ha)Nn(Ha).

Applying the right inequality of (2.27) to G and the left inequality to L, and the equality
δQ(a)−1δP (a) = δP∩L(a), one gets that there exist C2 > 0 and d ∈ N such that:

δQ(a)−1/2ΘG(Ha)Nn(Ha) ≤ C2ΘL((L ∩H)a)Nn+d(Ha).

One deduces from this an inequality like (3.22) for (Fx)Q.
A similar inequality for (Fx)

w
Q follows from the definition of the seminorms. Hence

(3.22) follows by difference.

With the notations of the proof of lemma 3.7, let us define:

rx(T ) :=
∏
ξ∈Ξ+

Q

(T − ξx(a′)), x ∈ X.

By expanding these polynomials, one gets:

rx(T ) =
∑

i=0,...,N

ri,xT
N−i.
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For all ξ ∈ Ξ+
Q, |ξx(a′)| is independent of x ∈ X and belongs to the interval ]0, 1[.

Changing a′ to a suitable power, one can assume that:

|ri,x| ≤ 2−iN−1, i = 1, . . . , N − 1. (3.23)

Let us show the following property.

There exists C3 > 0 such that, for all k ∈ N and all a ∈ A−P satisfying
〈α,HM(a)〉 ≤ −t for α ∈ ∆ \∆L, one has:

|(Fx)+
Q(a(a′)k)| ≤ C3µ

X(G, 1, n, F )2−kΘL((L ∩H)a)Nn+d(Ha).

(3.24)

If N = 0, this implies that Ξ+
Q is empty, hence (Fx)

+
Q = 0. So one can assume that

N ∈ N∗. Let
C3 = C1Sup{2k(Nn+d(H(a′)k)|k = 0, . . . , N − 1}.

If k < N , (3.24) follows from (3.22) applied to a(a′)k, from the definition of C3, from
the equality

ΘL((L ∩H)la′) = ΘL((L ∩H)l), l ∈ L,

as a′ ∈ AL, and from the inequality

N(Haa′) ≤ N(Ha)N(Ha′),

which follows easily from the definitions (2.19 ) and (2.22).
Let k ≥ N and let us assume that the inequality (3.24) is true for k′ < k. It follows
from the definitions that rx(ρ(a′))(Fx)

+
Q = 0 for all x ∈ X, hence one gets:

(Fx)
+
Q(a(a′)k) = −

∑
i=1,...,N

ri,x(Fx)
+
Q(a(a′)k−i).

The inequality (3.24) for the left side of this equality follows from the induction hy-
pothesis and (3.23).
Let CL(δ) := {a ∈ DL(δ)| ‖HM(a)‖ ≤ tδ−1}. It is compact. Let D = DL(δ) \ CL(δ).
Hence one has:

D = {a ∈ DL(δ)| ‖HM(a)‖ > tδ−1}.

For a ∈ D, let k be the largest integer which is less or equal to

(δ‖HM(a)‖ − t)(−〈α,HM(a′)〉)−1,

when α varies in ∆ \∆L. From the definition of D and the choice of a′, k is an element
of N. From the definition of DL(δ), a(a′)−k is in A−P and satisfies:

〈α,HM(a(a′)−k)〉 ≤ −t, α ∈ ∆ \∆L. (3.25)

By applying (3.24) to a(a′)−k instead of a and to the integer k, one gets :

(Fx)
+
Q((L ∩H)a) ≤ C3µ

X(G, 1, n, F )2−kΘL((L ∩H)a(a′)−k)Nd+n(Ha(a′)−k).
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As it was already observed ΘL((L ∩ H)a(a′)−k) = ΘL((L ∩ H)a). From (3.25), one
deduces:

|〈α,HM(a′k)〉| ≤ t+ |〈, α,HM(a)〉|.
From this and (2.23), one sees that there exists C4 > 0

Nd+n(Ha(a′)−k) ≤ C4(1 + ‖HM(a)‖)d+n.

Writing that
(δ‖HM(a)‖ − t)(−〈α,HM(a′)〉)−1 ≤ k + 1,

for some α ∈ ∆ \∆L, one sees that there exist r > 0 and l ∈ N, independent of a ∈ D,
such that:

r‖HM(a)‖ ≤ l + k.

From this it follows that for a ∈ D:

(Fx)
+
Q(Ha) ≤ C3C4µ

X(G, 1, n, F )ΘL((L ∩H)a)2−r‖HM (a)‖+l(1 + ‖HM(a)‖)d+n.

In order to finish the proof of (ii), it is enough to remark that there exist C5 > 0 and
ε > 0 such that for all x > 0,

2−rx+l(1 + x)d+n ≤ C5e
−εx.

4 Wave packets in the Schwartz space

Definition 4.1 The Schwartz space C(H\G) is the space of functions f on H\G, which
are right invariant by a compact open subgroup of G and such that for any d ∈ N, there
exists a constant Cd > 0 such that:

|f(x)| ≤ CdΘG(x)(Nd(x))−1, x ∈ H\G.

The smallest constant Cd is denoted by pd(f). It defines a seminorm on C(H\G).

Lemma 4.2 One has
A2(H\G) ⊂ C(H\G).

Proof :

One proceeds as in the proof of Proposition 3.8 with X reduces to a single point. One
has to replace Lemma 3.9 by the following property, which follows from [DOp], Corollary
8.2 (ii).

Let A be an endomorpism of a finite dimensional normed vector space
whose eigenvalues are of modulus strictly less than 1. Then for any d in
N, there exists a constant C > 0 such that:

‖An‖ ≤ C(1 + n)−d, n ∈ N.

(4.26)

This achieves to prove the Lemma.
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Lemma 4.3 If f ∈ Atemp(H\G) and f ′ ∈ C(H\G) the integral∫
H\G

f(x)f ′(x)dx

converges absolutely.

Proof :

The lemma follows from Proposition 3.10 and Lemma 2.1.

Let M (resp., L) be the σ-stable Levi subgroup of a σ-parabolic subgroup P (resp.,
Q) of G. Let Ã (resp., Ã′) be a maximal split torus of M (resp., L) such that the set A
(resp., A′) of its antiinvariant elements is a maximal σ-split torus of M (resp., L) . By
([CD] (4.9)), we can choose a set of representatives W (Q\G/P ) of Q\G/P such that
its elements satisfy w.Ã = Ã′.

Let (Q\G/P )σ be the set of (Q,P )-double cosets in G having a representative w
such that w.A = A′ and w.Ã = Ã′. We denote by W (L\G/M)σ a set of representatives
of (Q\G/P )σ with this property and we assume that W (L\G/M)σ ⊂ W (Q\G/P ).

Let (Q|G|P )σ be the set of elements of (Q\G/P )σ having a representative w such
that w.Ã = Ã′, w.A = A′ and AL ⊂ w.AM . Let W (L|G|M)σ be a set of representatives
of (Q|G|P )σ with these properties and we assume W (L|G|M)σ ⊂ W (L\G/M)σ. We
want to identify W (L|G|M)σ with a set independent of choices.

First we prove the following property.

Let s, s′ ∈ W (L|G|M)σ such that

(s.χ)|AL = (s′.χ)|AL , χ ∈ X(M)σ,u.

Then s = s′.

(4.1)

As conjugacy by s defines an isomorphism from A to A′, it determines a linear
isomorphism s : a→ a′. One has a similar map for s′. As AL is contained in s.AM and
in s′.AM , one has s−1aL ⊂ aM and s′−1aL ⊂ aM . The condition (4.1) implies that for
all λ in a′M , (sλ)|aL = (s′λ)|aL . Evaluating in X ∈ aL, one deduces

〈λ, s−1X〉 = 〈λ, s′−1X〉, X ∈ aL.

This implies, by varying λ in a′M , the equality

s−1X = s′−1X,X ∈ aL.

In other words, one has:
s′s−1X = X,X ∈ aL.

This gives s′s−1 ∈ L and s, s′ are representatives of the same (Q,P )-double coset. Hence
one has s = s′. This achieves to prove (4.1).

Let us remark that one has the following immediate corollary of the proof of (4.1).

Let s, s′ be distinct elements of W (L|G|M)σ and µ, µ′ two characters of
AL. For χ in an open subset of X(M)σ,u, one has :

µ(s.χ)|AL 6= µ′(s′.χ)|AL .

(4.2)

21



Now, we will identify W (L|G|M)σ with a set which does not depends on choices.
Let N(A,A′)σ be the set of g ∈ G such that g.A = A′, g.Ã = Ã′. Let M0 (resp., L0) be
the centralizer of Ã (resp., Ã′). Let W (A,A′)σ be the quotient N(A,A′)σ/M0 which is
identified with L0\N(A,A′)σ/M0. It appears as a set of isomorphisms between Ã and
Ã′.
Let us prove the following result:

Let (WL)σ be the subgroup of the Weyl group WL of L for Ã′ whose
elements preserve A′. Let

W (L|G|M)σ := (WL)σ\{s ∈ W (A,A′)σ|AL ⊂ s.AM}.

The natural map from W (L|G|M)σ to W (L|G|M)σ is bijective.

(4.3)

Let us prove that this map is surjective. Let s ∈ W (L|G|M)σ and let s1 be a
representative of s in N(A,A′)σ. In the (Q,P )-double coset Qs1P , there is an element
s′ in W (L|G|M)σ by definition of the latter set. Then one has two elements s′, s1 ∈
N(A,A′)σ such that QsP = Qs1P . We want to show that s′ = ls1m for some l ∈ L
and m ∈ M . Using conjugacy by an element of N(A,A′)σ, one can reduce to the case
Ã = Ã′. But, by the Bruhat decomposition, s′ and s1 represent elements of the Weyl
group which have the same (WL,WM)-double coset. This proves the existence of l and
m. As s1.M ⊂ L one can omit the m and write s′ = ls1 for some l ∈ L. From the
properties of s′, s1, one deduces that l normalize Ã′ and A′. Hence the image of s′ by
our map is s. Hence this map is surjective.
Let us prove the injectivity. If s, s′ ∈ W (L|G|M)σ have the same image by our map,
they satisfy the condition (4.1). Hence they are equal. This achieves to prove (4.3).

We recall that X(G)σ,u has been identified with a subgroup of X(M)σ,u. Let X(M)Gσ
(resp., X(M)Gσ,u) be the neutral connected component of the group of elements χ of
X(M)σ (resp., X(M)σ,u) whose restriction to AG is trivial. The group X(M)Gσ,u is the
maximal compact subgroup of the algebraic complex torus X(M)Gσ and its Lie algebra
is equal to (iaGM)′. Hence one has X(M)σ,u = X(G)σ,uX(M)Gσ,u and X(M)Gσ,u ∩X(G)σ,u
is finite.

Let X be the maximal compact subgroup of a complex algebraic torus X(C). We
assume that X(C) is a finite covering of X(M)σ i.e. there exists a surjective morphism
of algebraic groups p : X(C) → X(M)σ whose kernel is finite. Let XG be the neutral
connected component of p−1(X(G)σ,u) and X ′ be the neutral connected component of
p−1(X(M)Gσ,u). Then XG (resp., X ′) is the maximal compact subgroup of the complex
algebraic torus equal to the connected component of p−1(X(G)σ) (resp., p−1(X(M)Gσ ).
One has X = XGX

′ and XG ∩X ′ is finite. For x ∈ X, we set χx = p(x) ∈ X(M)σ,u.

Definition 4.4 Let F be a family of type I of tempered functions on H\G parametrized
by X.
(1) The family F is called an M-family of type I’ if

(i) there exists a unitary character µG of AG such that

Fx(Hga) = µG(a)χx(a)Fx(Hg), a ∈ AG, g ∈ G, x ∈ X, (4.4)
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(ii) Let Q = LV be a σ-parabolic subgroup. There exists a finite set ΞQ, independent
of x ∈ X, of characters of AL with Re(ξ) ∈+ aL

′ such that all exponents of Fx along Q
are of the form

µ(w.χx)|AL , µ ∈ ΞQ, w ∈ W (Q\G/P ).

(2) An M-family of tempered functions on H\G of type I’ is said to be of type II’ if for
any Q as above

(Fx)
w,ind
Q (g) =

∑
s∈W (L|G|M)σ

(FQ,s(g))s.x, x ∈ X, g ∈ G, (4.5)

where for all s ∈ W (L|G|M)σ, FQ,s(g) is a s.M-family of type I’ of tempered functions
on (L∩H\L) parametrized by s.X := {(s, x)|x ∈ X} with the multiplication induced by
the multiplication on X and with a canonical projection on X(s.M)σ given by s.x :=
(s, x)→ s.χx.
From the definition it follows that if F is of type II’ and g ∈ G, ρ(g)F is also of type
II’.

We will give examples of such families, derived from Eisenstein integrals (cf. Theorem
5.1). Condition (4.5) is motivated by this example.
Let us remark that (4.2) implies the unicity of (FQ,s)s.x for x in an open dense subset
of X and then everywhere by continuity.
Let us prove the following assertion in which one sets FQ,s := FQ,s(e):

Let Q = LV be a σ-parabolic subgroup of G and s ∈ W (L|G|M)σ. Let
R = SN be a σ-parabolic subgroup of L and s′ ∈ W (S|L|s.M)σ. Let
QR = RV . Then s′s ∈ W (S|G|M)σ and(

(FQ,s)s.x
)w

R
=

∑
s′∈W (S|L|s.M)σ

[(FQ,s)R,s′ ]s′s.x

with
[(FQ,s)R,s′ ]s′sx = (FQR,s′s)s′s.x.

(4.6)

To prove this one uses (4.5) for QR to express directly Fw
QR

, involving the second
member of the equality to prove. Then, one uses (4.5) for Q and R and the transitivity
of the weak constant term (Lemma 3.4 (ii)) to compute in another way Fw

QR
. Then (4.6)

follows from the identification of the terms with the same action of AS using (4.2).
This implies easily that:

If F is a family, parametrized by X, of type II’ on H\G, then FQ,s is a
family, parametrized by s.X, of type II’ on H ∩ L\L. (4.7)

Let DX be the set of finite families of invariant differential operators with constant
coefficients on X. If D ∈ DX and ψ ∈ C∞(X), we define:

q(D,ψ) = Sup{|dψ(χ)||d ∈ D,χ ∈ X}.
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For D ∈ DX and n ∈ N, we introduce the following ”seminorms” on families of type
II’.

pX(G,D, n, F ) = sup
Q=LV ∈P∞(G)

sup
s∈W (L|G|M)σ

νs·X(L,Ds, n, FQ,s), (4.8)

where Ds is the family of differential operators on s ·X deduced from D by the action
of s and ν is defined in (3.20).
If Q = LV ∈ P∞(G) then

νX(L,D, n, (F )w
Q) ≤ |W (L|G|M)σ| sup

s∈W (L|G|M)σ

νs.X(L,Ds, n, FQ,s).

As P∞(G) is finite, there exists a constant C0 > 0 such that

µX(G,D, n, F ) ≤ C0p
X(G,D, n, F ). (4.9)

We keep the previous notation. Let dx be the Haar measure of X of volume 1. For
an M -family F , parametrized by X, of tempered functions on H\G of type II’ and a
C∞ function ψ on X, we define

Wψ,F (Hg) =

∫
X

ψ(x)Fx(Hg)dx, g ∈ G. (4.10)

Theorem 4.5 We fix a set E of exponents and a compact open subgroup J of G and
let k ∈ N. There exist D,D0 ∈ DX and, for all n ∈ N , there exists C > 0 such that,
for all M-family F of type II’ with the given set of exponents, and right invariant by J ,
one has

sup
g∈G
|Nk(Hg)ΘG(Hg)−1Wψ,F (Hg)| ≤ CpX(G,D, n, F )q(D0, ψ), ψ ∈ C∞(X). (4.11)

Proof :

Proceeding as in the proof of Proposition 3.8, using a finite number of right trans-
lations, one is reduced to prove a similar statement for g ∈ A−1 , where P1 = M1U1 ∈
Pmin(G) and A1 is the maximal σ-split torus of the center of M1. By an argument
similar to (2.11), there exists a split torus A′1 of Gder, the derived group of G, and a
finite set F1 such that A1 = A′1AGF1. Using a finite number of translations again, one
is reduced to prove the following assertion:

Let k ∈ N and E , J as in the Theorem. Then, there exist D,D0 ∈ DX , and
for all n ∈ N, there exists a constant C > 0, such that, for all M -family F
of type II’ with the given set of exponents, and right invariant by J , one
has, for g ∈ A′−1 AG and ψ ∈ C∞(X),

|Nk(Hg)ΘG(Hg)−1Wψ,F (Hg)| ≤ CpX(G,D, n, F )q(D0, ψ).

(4.12)

We first reduce the proof of the Theorem to the case where G is semisimple and then
we prove it by induction on the semisimple rank of H\G.
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Reduction to semi-simple case. Let us assume that the Theorem is true for the
derived group Gder of G.
As X = XGX

′ and X ′ ∩XG is a finite abelian group, there exists C1 > 0 such that

Wψ,F (Haa1) = C1

∫
XG

(

∫
X′
ψ(xGx

′)FxGx′(Haa1)dx′)dxG, a ∈ AG, a1 ∈ A
′−
1 .

By (4.4), one has

Wψ,F (Haa1) = C1µG(a)

∫
XG

xG(a)(

∫
X′
ψ(xGx

′)FxGx′(Ha1)dx′)dxG,

as χx′|AG = 1.
By properties of the classical Fourier transform on XG, for k ∈ N, there exists D1 ∈ DXG
such that

(1 + ‖HG(a)‖)k|Wψ,F (Haa1)| ≤ C1 sup
d∈D1

sup
xG∈XG

|
∫
X′
d
(
ψ(xGx

′)FxGx′(Ha1)
)
dx′|,

and by Leibnitz formula, there exist two families d′1, . . . , d
′
t and d′′1, . . . , d

′′
t in DXG such

that

(1 + ‖HG(a)‖)k|Wψ,F (Haa1)| ≤ C1 sup
i=1,...t

sup
xG∈XG

|
∫
X′
d′i · ψ(xGx

′)d′′i · FxGx′(Ha1)
)
dx′|.

(4.13)
We fix i ∈ {1, . . . , t}. For xG ∈ XG, we set

ψ′xG(x′) = d′i · ψ(xGx
′);x′ ∈ X ′

and
(F ′xG)x′(g) = d′′i · FxGx′(g), g ∈ Gder.

For any subgroup I of G, we set I ′ = I ∩Gder. We will use the notation G′ instead of
Gder. As X(M)Gσ is a finite covering of X(M ′)Gσ , X ′ is the maximal compact subgroup
of a finite covering of X(M ′)Gσ . Let us prove the following assertion :

The families (F ′xG)x′∈X′ are families of type II ′ on H ′\G′ with the same
set of exponents E ′ independent of xG. Moreover, they are right invariant
by J ′.

(4.14)

Let Q = LV be a σ-parabolic subgroup of G. It follows from Lemma 3.6 and (6.15)
that (F ′xG)x′ is of type I and its exponents along Q′ are the restrictions to AL ∩ G′
of the exponents of FxGx′ along Q (with different multiplicities). By definition of type
I ′, these exponents are of the form (µw.(χxGχx′))|AL∩G′ = (µw.χx′)|AL∩G′ . One deduces
that

(F ′xG)x′∈X′ is of type I ′ on H ′\G′ and has a set of exponents along Q′

independent of xG.
(4.15)

By (6.14) and Lemma 3.7 (ii), one has

((F ′xG)x′)
w
Q′ =

[
d′′i · (FxGx′)w

Q

]
|L∩G′ =

∑
s∈W (L|G|M)σ

[
d′′i .(FQ,s)s.xG s.x′

]
|L∩G′ .
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As (FQ,s)s.xG s.x′ is of type I’, the same argument as before proves that[
d′′i .(FQ,s)s.xG s.x′

]
|L∩G′ is of type I’. So we have proved (4.14).

We can apply our assumption. In the definition of the seminorms pX for G′, we
choose the function N on G′ defined by N(H ′g) = N(Hg) for g ∈ G′ (another choice
produces an equivalent function).

Let k1 ∈ N. There exists Di, D
′
i ∈ DX

′
, and for all n1 ∈ N, there exists a

constant C2 > 0 such that, for all xG ∈ XG and for all a1 ∈ A
′−
1 , one has

|Nk1(Ha1)ΘG′(H
′a1)−1Wψ′xG ,F

′
xG

(a1)| ≤ C2p
X′(G′, Di, n1, F

′
xG

)qX
′
(D′i, ψ

′
xG

).

(4.16)

Let D = ∪i=1,...,t{dd′′i ; d ∈ Di} and D0 = ∪i=1,...,t{dd′i; d ∈ D′i}. One has

sup
i=1,...t

sup
xG∈XG

pX
′
(G′, Di, n1, F

′
xG

)qX
′
(D′i, ψ

′
xG

) ≤ pX(G′, D, n1, F|G′)q
X(D0, ψ).

By (4.13) and (4.16), one deduces for all a ∈ AG and a1 ∈ A
′−
1

(1 + ‖HG(a)‖)kNk1(Ha1)ΘG′(H
′a1)−1|Wψ,F (Haa1)|

≤ C1C2p
X(G′, D, n1, F|G′)q

X(D0, ψ).

(4.17)

By (6.16), there exist CL, C
′
L > 0 and rL, sL in N such that, for l ∈ (H ∩ L′)\L′,

C−1
L N−rL((H ∩ L)l)ΘL((H ∩ L)l) ≤ ΘL′((H ∩ L′)l)

≤ C ′LNsL((H ∩ L)l)ΘL((H ∩ L)l).
(4.18)

Let r0 = supL∈L∞(G) rL and C0 = supL∈L∞(G) CL. Taking the inverse of the left inequal-
ity together with the fact that L∞(G) is adapted to G′ (cf. (3.19)), we obtain

pX(G′, D, n1, F|G′) ≤ C0p
X(G,D, n1 − r0, F ).

Taking C ′G and sG for L = G in (4.18), we choose k1 = k + sG and n1 = r0 + n in
(4.16). By (4.17), we obtain

(1 + ‖HG(a)‖)kNk(Ha1)ΘG(Ha1)−1|Wψ,F (Haa1)|

≤ C1C2C0C
′
Gp

X(G,D, n, F )qX(D0, ψ).

By (2.16) and (2.26), there exists C3 > 0 such that

Nk(Haa1) ≤ C3(1 + ‖HG(a)‖)kNk(Ha1).

Recall that ΘG(Haa1) = ΘG(Ha1) for a ∈ AG. Then one deduces (4.12) from the
previous inequalities.

Semisimple case. We prove the Theorem by induction on dimA1. If dimA1 = 0
then H\G is compact and the result is clear. Let us assume that dimA1 > 0. Let
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∆1 := ∆(P1). If a ∈ A1, we define s(a) = inf{〈α,HM1(a)〉|α ∈ ∆1}. For Φ ⊂ ∆1, we
define A−1 (Φ) to be the set of all a ∈ A−1 such that Φ = {α ∈ ∆1|〈α,HM1(a)〉 = s(a)}.
So, one has A−1 = ∪Φ⊂∆1A

−
1 (Φ). Let Q = LV ∈ P(G) be such that P1 ⊂ Q and

Φ = ∆1 − ∆L
1 . If Φ = ∅ (which corresponds to Q = G) then A−1 (Φ) = ∅, from our

hypothesis on the semisimple rank of H\G. Hence we can assume Q 6= G.

As the set {a ∈ A−1 (Φ)|t ≤ s(a) ≤ 0} is a compact subset of A−1 , the inequality
(4.12) on this set is clear. It is enough to prove the statement (4.12) on A−1 (Φ, < t) :=
{a ∈ A−1 (Φ)|s(a) < t} for some t < 0. By (3.13), there exists t < 0, which depends only
on J , such that, for all σ-parabolic subgroup containing P1 and a ∈ A−1 with s(a) < t,
one has

Fx(Ha) = δQ(a)1/2(Fx)Q((H ∩ L)a)

= δQ(a)1/2(Fx)
w
Q((H ∩ L)a) + δQ(a)1/2(Fx)

+
Q((H ∩ L)a).

(4.19)

We fix such t < 0.
By (4.7), one has Fw

Q =
∑

s∈W (L|G|M)σ
FQ,s where FQ,s is of type II’ on (L ∩H)\L.

By the induction hypothesis applied to Lder∩H\Lder and the reduction to the semisim-
ple case, the Theorem is true for L ∩ H\L. Let k1 ∈ N. For s ∈ W (L|G|M)σ, there
exist D1, D

′
0 ∈ DX and for n1 ∈ N, there exists C ′0 > 0 such that, for a ∈ A−1 ,

|Nk1(Ha)ΘL((L ∩H)a)−1|Wψ,FQ,s(a)| ≤ C ′0p
s.X(L,Ds

1, n1, FQ,s)q(D
′
0, ψ).

Recall that

ps.X(L,Ds
1, n1, FQ,s) = sup

R=SN∈P∞(L)

sup
s′∈W (S|L|s.M)σ

νs
′s.X(S,Ds′s

1 , n1, (FQ,s)R,s′).

As L∞(L) ⊂ L∞(G) (cf. (3.18)), by (4.6) and the finiteness of W (L|G|M)σ, there exist
D,D0 ∈ DX , and for n1 ∈ N there exists C0 > 0 such that

|Nk1(Ha)ΘL((L ∩H)a)−1|Wψ,Fw
Q

(a)| ≤ C0p
X(G,D, n1, F )q(D0, ψ).

By (2.26) and (2.27), there exist C2 > 0 and r ∈ N such that

δ
1/2
Q (a)ΘL((L ∩H)a) ≤ C2Nr(Ha)ΘG(Ha), a ∈ A−1 . (4.20)

Taking k1 = k + r and n1 = n, this gives an upper bound like (4.12) for
|δQ(a)1/2

∫
X
ψ(x)(Fx)

w
Q(a)dx| on A−1 .

With the notation of Proposition 3.12, there exists δ > 0 such that A−1 (Φ, < t) ⊂
DL(δ) ⊂ A−1 . By Proposition 3.12 and (4.20), for n ∈ N, there exist ε > 0 and Cn > 0
such that, for a ∈ DL(δ) \ CL(δ), one has

δ
1/2
Q (a)|

∫
X

ψ(x)(Fx)
+
Q(a)dx| ≤
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Cn sup
x∈X
|ψ(x)|µX(G, 1, n, F )ΘG(Ha)e−ε‖HM1

(a)‖Nr(Ha),

for a ∈ DL(δ) \ CL(δ).
As µX(G, 1, n, F ) ≤ CpX(G, 1, n, F ) for some constant C > 0 and for k ∈ N, there
exists Ck such that Nr(Ha)e−ε‖H1(a)‖ ≤ CkN

−k(Ha), one deduces an upper bound like
(4.12) for |δQ(a)1/2

∫
X
ψ(x)(Fx)

+
Q(a)dx| for a ∈ A−1 (Φ, < t) \ CL(δ). Together with the

result above for Fw
Q and (4.19), one gets (4.12) for a ∈ A−1 (Φ, < t) \ CL(δ).

As CL(δ) is compact, one gets a similar inequality for a ∈ CL(δ). This achieves the
proof.

Theorem 4.6 Let F be an M-family, parametrized by X, of tempered functions on
H\G of type II’. Let ψ be a C∞ function on X.
(i) Wψ,F is an element of C(H\G).
(ii) For each k ∈ N, there exists a continuous semi norm qk on C∞(X) such that (with
the notation of Definition 4.1):

pk(Wψ,F ) ≤ qk(ψ), ψ ∈ C∞(X).

Proof :

Let k ∈ N. We fix D and D0 in DX as in the Theorem 4.5. Let Q = LV ∈ P∞(G),
s ∈ W (L|G|M)σ and d ∈ Ds. By assumption and Lemma 3.6 (iv), d.FQ,s is a s.M
family of type I on L ∩ H\L. By Proposition 3.8, there exist n = n(Q, s, d) ∈ N and
Cn > 0 such that

sup
x∈X

sup
l∈L∩H\L

Θ−1
L (L ∩Hl)N−n(H ∩ Ll)|d.(FQ,s)x(H ∩ Ll)| ≤ Cn.

As P∞(G) is finite as well as D and W (L|G|M)σ for L ∈ L∞(G), there exist n1 ∈ N
and Cn1 > 0 such that, for L ∈ L∞(G) and s ∈ W (L|G|M)σ, one has

νs.X(L,Ds, n1, FQ,s) ≤ Cn1 .

One deduces
pX(G,D, n1, F ) ≤ Cn1 .

The Theorem follows from the Theorem 4.5 with qk = Cn1q(D0, .).

5 Some properties of Eisenstein integrals

5.1. Eisenstein integrals.
Let us recall some results of [BD]. Let P = MU be a σ-parabolic subgroup of G, (δ, E)
be a smooth representation of finite length of M . Let Iδ be the space of the induced
representation iK0

K0∩P δ|K0∩P
. Let iGPEχ or simply Iδχ be the space of the normalized

induced representation πχ := iGP (δχ), χ ∈ X(M)σ, where δχ = δ ⊗ χ. The restriction
of functions from G to K0 determines an isomorphism of K0-modules between Iδχ and
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Iδ. One denotes by πχ the representation of G on Iδ deduced from πχ by ” transport
de structure” by this isomorphism.

If ϕ ∈ Iδ and χ ∈ X(M)σ, one denotes by ϕχ the element of the space Iδχ corresponding
to ϕ by this isomorphism.

Let B be the algebra of polynomial functions on X(M)σ, which is generated by the
functions bm,m ∈M defined by bm(χ) = χ(m). One has:

For all ϕ ∈ Iδ and g ∈ G, χ 7→ πχ(g)ϕ is an element of Iδ ⊗ B. (5.1)

Let O be the union of the open (P,H)-double cosets in G. There exists a set of

representatives,WG

M , of these open (P,H)-double cosets which depends only on M and

not on P . Moreover for all x ∈ WG

M , x−1.P is a σ-parabolic subgroup of G (cf [BD]
Lemma 2.4). Let A be a maximal σ-split torus of M . We may (cf. [BD] , beginning of

section 2.4 and Lemma 2.4 ) and we will assume that for all x ∈ WG

M , x−1.A is a σ-split
torus. One says that x is A-good. Then x−1.M is the σ-stable Levi subgroup of x−1.P
(cf [CD], Lemma 2.2).
One sets Jχ = {ϕ ∈ Iδχ|Supp(ϕ) ⊂ O} and we define:

Vδ := ⊕
x∈WG

M
(E ′δ)

M∩x.H .

Let χ ∈ X(M)σ. To η ∈ E ′δ
M∩x.H , one associates j(P, δχ, η) ∈ J ′χ defined by:

j(P, δχ, η)(ϕ) =

∫
H∩(x−1.M)\H

〈ϕ(xh), η〉dḣ, ϕ ∈ Jχ. (5.2)

Then one has (cf. [BD], Theorem 2.8):

For χ in an open dense subset O of X(M)σ, j(P, δχ, η) extends uniquely
to an H-invariant linear form ξ(P, δχ, η) on Iδχ . There exists a non
zero polynomial q on X(M)σ such that for all ϕ ∈ Iδ, the map χ 7→
q(χ)〈ξ(P, δχ, η), ϕχ〉, defined on O, extends to a polynomial function on
X(M)σ.

(5.3)

The Eisenstein integrals are defined, as rational functions of χ ∈ X(M)σ, by

EG
P (η ⊗ ϕχ)(Hg) = 〈ξ(P, δχ, η), πχ(g)ϕχ〉, g ∈ G,ϕ ∈ Iδ. (5.4)

Let x ∈ WG

M and η ∈ E ′M∩x.Hδ . Then from our choice, x−1.P is a σ-parabolic subgroup

and x−1.M is its σ-stable Levi. One can choose 1 as an element ofWG

x−1.M and one has

E ′M∩x.Hδ = E
′(x−1.M)∩H
x−1δ ⊂ Vx−1.δ. Let χ ∈ X(M)σ. The map ϕ→ λ(x−1)ϕ is a bijective

intertwining map between iGP (δχ) and iGx−1.P ((x−1δ)x−1χ). By ”transport de structure”,
one sees

EG
P (η ⊗ ϕχ) = EG

x−1.P (η ⊗ (λ(x−1)ϕχ)), g ∈ G,ϕ ∈ Iδ. (5.5)

5.2. Examples of families of type II’ of tempered functions.
We keep the notation of the previous subsection (cf. also after (3.8)). Let E ′(δ,H)2 =
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⊕
x∈WG

M
E ′2

M∩x.H . One introduces the C functions as in [CD], Proposition 6.2 (resp.,

Theorem 8.4). One has

If φ ∈ E ′(δ,H)2⊗ iGPEχ and δ and χ are unitary, EG
P (φ) is tempered when

it is defined and one has the following equalites of rational functions in χ:
Let Q = LV be a σ-parabolic subgroup. Then
EG
P (φ)w

Q = 0 if W (L|G|M)σ is empty.
Otherwise EG

P (φ)w
Q is equal, with the notation of l.c., to:∑
w∈W (L|G|M)σ

EL
L∩w.P (rL(C(w,Q, P, δχ)φ)).

(5.6)

Theorem 5.1 Let ϕ ∈ Iδ and η ∈ E ′(δ,H)2. There exists a non zero polynomial p
on X(M)σ, such that χ 7→ p(χ)EG

P (η ⊗ ϕχ), χ ∈ X(M)σ,u is a family Fχ of type II’ of
tempered functions on H\G.

Proof :

From the definition of C-functions and Proposition 6.2 in l.c., one sees that, for all
σ-parabolic subgroup Q, there is a non zero polynomial pQ in χ ∈ X(M)σ such that its
product with each term of the sum in (5.6) is polynomial. As the set of H-conjugacy
classes of maximal σ-split tori is finite, the set of H-conjugacy classes of minimal σ-
parabolic subgroups is finite. Let F be a set of representatives of these H-conjugacy
classes.

Let p be the product of the polynomials pQ when Q varies in the (finite) set P of σ-
parabolic subgroups of G containing an element of F . We will see that this polynomial
satisfies the property of the Theorem. One has to check the various properties of the
Definition 4.4.

Let µG be the restriction to AG of the central character of δ. The property 1) (i) is
true with µG as the central character of iGP δχ restricted to AG is the restriction to AG of
the central character of δχ. The exponents of (Fχ)Q are restriction to AQ of exponents
of the Jacquet module of iGP δχ. These have the required form (see e.g. [D1], Lemma 7
(i) which is valid without assumptions on δ and χ).
It remains to check the property c) of the Definition of families of functions of type I
(cf. Definition 3.5).
For this, we need to use the notation of Definition 4 in [D1]. Namely, let O be a C∞

manifold, V be a vector space and for all ν ∈ O, πν be an admissible representation of
G on V , such that the action of some maximal compact subgroup does not depend on
ν. For all v ∈ V and g ∈ G, the map ν → πν(g)v varies in a finite dimensional vector
space of vectors fixed by some compact open subgroup. Let us assume that it is C∞

for all v ∈ V . We say that (πν) is a C∞-family of representations of G in V .
LetD be a C∞ vector field onO. Let us define a smooth family (D.πν) of representations
of G in V × V as in [D1], Lemma 16, by:

(D.πν)(g)(v1, v2) = (πν(g)v1 +D(πν(g)v2), πν(g)v2), g ∈ G, v1, v2 ∈ V.

Let (ξν)ν∈O be a family of linear forms on V , such that for all ν, ξν is H-fixed by the
dual representation of πν , and for all v ∈ V , ν 7→ 〈v, ξν〉 is C∞ on O. Let v ∈ V and
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let us denote by Fν the generalized coefficient coefficient g 7→ 〈πν(g)v, ξν〉. Then DFν
appears as a generalized coefficient of D.πν . More precisely let ξ̃ν = (ξν , Dξν) ∈ V ′×V ′.
Then

DFν = 〈D.πν(g)(0, v), ξ̃ν〉.

A simple computation shows that ξ̃ν is H-fixed by the dual representation of D.πν .
This formula implies that DFν is in A(H\G). Applying an induction process, one sees
that it is true for any C∞ differential operators on O.
This applies immediately to Eisenstein integrals and this proves that our family F
satisfies condition c) of Definition 3.5. Hence F is of type I’.
The decomposition of Fw,ind

Q as in (4.5) follows from (5.6). If Q ∈ P each term of this
sum is of type I’, as it follows from the properties of pQ and the definition of p. If Q
is H-conjugate to an element of P , it is also true due to ([D2], Proposition 3.16 (ii)).
Hence F is of type II’ and the Theorem is proved.

6 Appendix: some properties of the derived group

Recall that we denote by Gder the group of F-points of the derived group Gder of G.
If J is a subgroup of G we denote, unless otherwise specified, by J ′ the intersection of
J with Gder. In particular, one has Gder = G′. Let Z(G) the group of F-points of the
center of G. We recall the following facts:

The group G′ÃG is cocompact in G and the group (H ∩ ÃG)AG is of finite
index in ÃG.

(6.1)

If Ã0 is maximal split torus of G, there exists a maximal split torus Ã′0 of G′ such

that Ã0 = ÃGÃ
′
0: this has been proved for at least one Ã0 in the proof of (2.11) and

the result follows from the fact that all maximal split tori of G are G-conjugate. It is
clear that Ã′0 is the maximal split torus of Ã0 ∩G′ and one has

The map Ã0 → Ã′0 is a bijection between the set of maximal split torus of
G and the set of maximal split torus of G′.

(6.2)

Hence one has:

All maximal split tori of G are G′-conjugate. (6.3)

If λ ∈ Λ(Ã0), let Pλ be the parabolic subgroup of G which contains Ã0, such that the
roots of Ã0 in the Lie algebra of Pλ are the roots α such that |α(λ)|F ≤ 1.
If P is a parabolic subgroup of G and Ã0 ⊂ P , there exists λ ∈ Λ(Ã0) such that P = Pλ.
One has seen (cf. after (2.11)) that the lattice Λ(Ã′0)Λ(AG) is of finite index in Λ(Ã0).
Then a power of λ is an element of this lattice, hence of the form λ′µ where λ′ ∈ Λ(Ã′0)
and µ ∈ Λ(AG). One deduces from the definitions the equality:

Pλ = Pλ′ . (6.4)
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Hence one can even choose λ ∈ Λ(Ã′0). From this and [BD] Equation (2.7), it follows
easily that P ∩ G′ is a parabolic subgroup of G′. Reciprocally if P ′ is a parabolic
subgroup of G′ then there exists λ ∈ Λ(Ã′0) such that P ′ = Pλ ∩ G′. Looking to Lie
algebras, one sees that Pλ is the unique parabolic subgroup of G such that P ′ = Pλ∩G′.
Altogether we have shown:

The map P 7→ P ∩G′ is a bijection between the sets of parabolic subgroups
of G and G′.

(6.5)

If P and Q are opposed parabolic subgroups of G, one can choose a maximal split torus
Ã0 ⊂ P ∩ Q and λ ∈ Λ(Ã0) such that P = Pλ and Q = Pλ−1 . As above we can take
λ ∈ Λ(Ã′0). This implies that P ∩G′ and Q∩G′ are opposed parabolic subgroups of G′.
One shows similarly that if P ′, Q′ are opposed parabolic subgroups of G′ and P (resp.,
Q) is the unique parabolic subgroup of G which contains P ′ (resp., Q′) then P and Q
are opposed.

It follows easily that the map P 7→ P ′ = P ∩ G′ is a bijection between the sets
of σ-parabolic subgroups of G and G′, and in particular between the sets of minimal
σ-parabolic subgroups. Then it follows:

The map M 7→ M ∩ G′ is a bijection for the sets Levi subgroups of σ-
parabolic subgroups of G and G′,

(6.6)

which can be specialized to Levi subgroups of minimal σ-parabolic subgroups. The map
which associates to such a Levi subgroup its unique maximal σ-split torus is a bijection
(cf. [HW] Proposition 4.7 and Lemma 4.5). Hence it follows that the correspondence
which associates to a maximal σ-split torus A of G the maximal split torus A′ of its
intersection with G′ is a bijection between the sets of maximal σ-split tori of G and G′.
Then one has:

The split torus A is the unique maximal σ-split torus such that A′ ⊂ A. (6.7)

This implies, for reason of dimensions, that A = A′AG. From which it follows:

Let A1 be a maximal σ-split torus. If A′1 = g′.A′, for some g′ ∈ G′, one
has A1 = g′.A.

(6.8)

Hence it follows from (6.3) that:

All the maximal σ-split tori of G are G′-conjugate. (6.9)

Let P = MU be a σ-parabolic subgroup of G. Recall that M ′ := M ∩G′. Let us show
that

AM ′ ⊂ AM . (6.10)

One has only to check that AM ′ is in the center of M . But the derived group Mder of
M is contained in Gder, hence contained in M ′. As M is the almost product of Mder

and its center, an element of M which commutes with Mder is an element of the center.
Our claim follows easily.
There exists λ ∈ Λ(AM) such that P = Pλ. As in the proof of (6.5), one shows that:

There exists λ ∈ AM ′ such that P = Pλ. (6.11)
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Applying (6.5) and (6.6) to a σ-stable Levi subgroup L of a σ-parabolic subgroup of G
and to L′ one sees:

The map P 7→ P ∩ L′ is a bijection between the sets of σ-parabolic sub-
groups of L and L′. The map M 7→ M ∩ L′ is a bijection for the sets of
Levi subgroups of σ-parabolic subgroups of L and L′,

(6.12)

As the derived group of L is contained in L′, by (6.1) applied to L instead of G, one
deduces that

If a finite set of minimal σ-parabolic subgroups of L′ leads to a Cartan
decomposition for (L′ ∩ H)\L′, the corresponding family of minimal σ-
parabolic subgroup of L leads to a Cartan decomposition for (L ∩H)\L.

(6.13)

Let us prove:

If f ∈ A((L ∩H)\L) then f|L′ ∈ A((H ∩ L′)\L′) and for any σ-parabolic
subgroup P = MU of L, one has (fP )|M∩L′ = (f|L′)P∩L′ . Moreover, if
f ∈ Atemp((H ∩ L)\L) then f|L′ ∈ Atemp((H ∩ L′)\L′) and (fP )w

|M∩L′ =

(f|L′)
w
P∩L′ .

(6.14)

It follows from Lemma 2.1 in [GK], that a finitely generated admissible L-module is
also an admissible finitely generated Lder-module. Hence the same property is true for
L′. This implies easily the former half of our first claim.
The space V of restriction to (L′ ∩ H)\L′ of smooth functions on (L ∩ H)\L is L′-
invariant. From the properties of the constant term of smooth functions on (L∩H)\L
and the characterization of the constant term of the elements of V ([D2] Proposition
3.14), one deduces the latter half of our first claim.
As the exponents of (fP )|M∩L′ are the restrictions to AM ∩ L′ of exponents of fP , one
deduces the second part of our claim. This achieves to prove (6.14).
Together with (6.12) this implies

If F be a family of type I of tempered functions on (H ∩L)\L then F|L′ is
a family of type I of tempered functions on (H ∩ L′)\L′. (6.15)

Let us prove that there exists constant C,C ′ > 0 and d ∈ N such that

CNd((H ∩ L)l)−1ΘL((H ∩ L)l) ≤ ΘL′((H ∩ L′)l)

≤ C ′Nd((H ∩ L)l)ΘL((H ∩ L)l), l ∈ L′.
(6.16)

From (2.27) applied to L and L′ this holds for l ∈ A−P ′ for every minimal σ-parabolic
subgroup P ′ of L′. From this fact, from the Cartan decomposition and the invariance
of ΘL′ (resp., ΘL) by a compact open subgroup of L′ (resp., L) the required inequality
is a consequence of the following assertion applied to L and L′.

There exists d ∈ N, and for all g1 ∈ G there exists c, c′ > 0 such that:

cN−d(Hg)ΘG(Hg) ≤ ΘG(Hgg1) ≤ c′ΘG(g)Nd(Hg), g ∈ G.
(6.17)

The right inequality is simply (2.24). The left inequality follows from the right one
applied to gg1 instead of g and g−1

1 instead of g1 as N(Hgg1) ≤ CN(Hg)N(Hg1) for
some C > 0.
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