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Abstract

J. Sekiguchi determined the semisimple symmetric pairs (g, b), called nice symmetric pairs, on
which there is no non-zero invariant eigendistribution with singular support. On such pairs, we
study regularity of invariant distributions annihilated by a polynomial of the Casimir operator.
We deduce that invariant eigendistributions on (gl(4, R), gl(2, R) x gl(2,R)) are locally integrable
functions.
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Introduction

Let G be a reductive group such that Ad(G) is connected. Let o be an involutive automor-
phism of G. We denote by the same letter o the corresponding involution on the Lie algebra g
of G. Let g = h @ q be the decomposition into +1 and —1 eigenspaces with respect to . Then
(g,h) is called a reductive symmetric pair (or semisimple when g is semisimple). Let H be the
group of fixed points of ¢ in G.

In [7], J. Sekiguchi describes semisimple symmetric pairs on which there is no non-zero
invariant eigendistribution with support in q — q"%¢ where "% is the set of semisimple regular
elements of q. These pairs, called nice symmetric pairs, are characterized by a property on
distinguished nilpotent elements and we can generalize this notion to reductive pairs (Definition
4.1). Our main result is the following . Let w be the Casimir polynomial of q and d(w) the
corresponding differential operator on q.

Theorem 0.1. Let (g,h) be a nice reductive symmetric pair. Let V be an H- invariant open
subset of q. Let © be an H-invariant distribution on V such that

1. There exists P € C[X] such that P(0(w))© =0,
2. There exists F € Li, (V) such that © = F on VN q"%.
Then © = F as distribution on V.

In [2], E. Galina and Y. Laurent obtained stronger results on invariant distributions on nice
symmetric pairs by different methods based on algebraic properties of D-modules. They proved
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that any invariant distribution on a nice pair which is annihilated by a finite codimensional ideal
of the algebra of H-invariant differential operators with constant coefficients on q is a locally
integrable function ([2] Corollary 1.7.6).

Our approach uses properties of distributions. Assuming that S = © — F' is non-zero, we are
led to a contradiction. By the work of G. van Dijk ([8]) and J. Sekiguchi ([7] ), we can adapt the
descent method of Harish-Chandra. Thus, we construct a non-zero distribution S defined on a
neighborhood W of 0 in R” x R™ with support in ({0} x R™)NW such that there exist a locally
integrable function F on W and a differential operator D, which is obtained from radial parts
of d(w) near semisimple elements and nilpotent elements, satisfying P(D)S = P(D)F. Using
the method developed by M. Atiyah in [1], one studies the degree of singularity along {0} x R™
of different distributions in this equation. One deduces that S = 0 and thus a contradiction.

In the last section, we complete the results of [3] on the nice symmetric pair (g/(4,R), gl(2,R) x
gl(2,R)) and deduce that any invariant eigensdistribution for a regular character on this pair is
given by a locally integrable function.

1 Notation

Let M be a smooth variety. Let C°°(M) be the space of smooth functions on M, D(M)
the subspace of compactly supported smooth functions, Llloc(M ) the space of locally integrable
functions on M, endowed with their standard topology and D’'(M) the space of distributions on
M.

For a group G acting on M, one denotes by F& the points of F fixed by G for each space F
defined as above.

If N C M and if f is a function defined on M, one denotes by f/y its restriction to N.

If V is a finite dimensional real vector space then V* is its algebraic dual and V¢ is its
complexified vector space.The symmetric algebra S[V] of V' can be identified to the space R[V*]
of polynomial functions on V* with real coefficients and to the space of differential operators
with real constant coefficients on V. Similary, one has S[V¢] = C[V*] and this algebra can
be identified to the space of differential operators with complex constant coefficients on V. If
u € S[V] (resp. S[Vc]), then d(u) will denote the corresponding differential operator.

Let G be a reductive group such that Ad(G) is connected, and ¢ an involution on G. This
defines an involution, denoted by the same letter o on the Lie algebra g of G. Let g = h @ q
be the direct decomposition of g into the +1 and —1 eigenspaces of o. Then (g,b) is called a
reductive symmetric pair. Let H be the subgroup of fixed points of ¢ in G.

Let ¢4 be the center of g and g, its derived algebra. We set
¢g=¢gNgandqs =gsNgq.

If x is an element of g and t is a subspace of g, we denote by t, the centralizer of « in .

We fix a non-degenerate bilinear form B on g which is equal to the Killing form on g;. Then
w(X) = B(X, X) is the Casimir polynomial of gq.



2 Transfer of distributions and differential operators

We recall results of ([8] sections 2 and 3) and ([7] section (3.2)) on restriction of distributions
and radial parts of differential operators. Their proofs are similar to ([4] or [10] Part I, chapter
2).

Let xg € qs. Let U be a linear subspace of q such that ¢ = U @ [z, h] and V be a linear
subspace of h such that h = V& bh,,. Consider the open subset ‘\U = {Z € U; U+ [z0+ Z,b] = q}
containing 0. Then the map ¥ from H x‘U to q defined by ¥(h,u) = h-(z¢+u) is a submersion.
In particular, Q = W(H x'U) is an open H-invariant subset of q containing 2. We fix an Haar
measure dh on H and we denote by du (respectively dx) the Lebesgue measure on U (respectively
q). The submersion ¥ induces a continuous surjective map ¥, from D(H x'U) onto D(2) such
that, for any F € L}, (q) and any f € D(H x'U), one has

/ FoW(h,u)f(h, u)dh du = /F(z:)\IJ*(f)(x)dx.
HxU

q

Theorem 2.1. For T € D'(Q) there exists a unique distribution ResyT defined on ‘U, called
the restriction of T to ‘\U with respect to ¥, such that for any f € D(H x‘U), one has

< T, U, (f) >=< ResuT,p«(f) >

where p,(f) € D(U) is defined by p(f)(u) = / f(h,u)dh.

This restriction satisfies the following propg"ties:
1. If U is stable under the action of a subgroup Hy of H then ResyT is Hy-invariant.
2. o+ supp (ResyT) C supp (T)N (zo +'U).
3. IfF € L} () then ResyF is the locally integrable function on ‘U defined by Resy F(u) =

loc

F(zo+u) .
4. If ResyT =0 then T =0 on Q.

Theorem 2.2. Let D be a H-invariant differential operator on q. Then there exists a differential
operator Rady (D), called the radial part of D with respect to ¥, defined on ‘U such that for any
f €D one has (D - f)(zo + u) = Rady (D) - Resy f(u) for u €' U.

Morever, for any T € D'(Q)H, one has

Resy(D - T) = Rady(D) - Resy(T).

3 Semisimple elements

We recall that a Cartan subspace of q is a maximal abelian subspace of q consisting of
semisimple elements.
If vt = q or g5, we denote by S(t) the set of semisimple elements of t.

Let a be a Cartan subspace of q. If \ € g¢, we set

02 = {X €gc;[A, X] = M(A)X for any A € ac}



and
S(a) = {\ € gts 08 # {0}}.
Then ¥(a) is the root system of (gc, ac)-
An element X of S(q) is g-regular (or regular) if its centralizer qx in q is a Cartan subspace. If

X € a then X is regular if and only if A(X) # 0 for all A € ¥(a). We denote by "9 the open
dense subset of semisimple regular elements of g.

Let Ap € S(q). Its centralizer 3 = g4, in g is a reductive o-stable Lie subalgebra of g. We
denote by c¢ its center and by 35 its derived algebra. We set

¢ =cNgq, c+:cﬁf), 3s =3sMq and 35 =3sNh.

The pair (35,37) is a semisimple symmetric subpair of (gs, hs) which is equal to (gs, hs) if Ag € ¢q
. Let H be the analytic subgroup of H with Lie algebra 37 .

We assume that Ag ¢ ¢q. We take a Cartan subspace a of q containing Ay and consider the
corresponding root system ¥ = X(a). We fix a positive system X1 of 3. For any A € XT, we
choose a C-basis Xy 1,... Xy m, of g&\: such that B(X);,0(X);)) = —d;j fori,5 € {1,...,my}.
Let X7 = {\ € ©*; \(Ap) # 0}. We set

my
Ve =) D (XgEa(Xy), Vi=VEinn Vo =Vgna
ezt =l

We have the decompositions h = 37 @ VT and q = 37 ® V—, with dim V* = dim V~ and
[Ao,b] = V.

If Zy € 37, we define the map 7z, from VT x 37 to q by nz,(v,Z) = Z + [v, Ag + Zy]. Then
1o is a bijective map. We set £(Zg) = det(nz, onp ') and 3~ = {Z € 37;£(Z) # 0}. Then 3~ is
invariant under H .

Thus the map v from H x'3~ to q defined by v(h,Z) = h- (Ao + Z) is a submersion.
By Theorem 2.1, for any H-invariant distribution © on g, there exists a unique HJ-invariant
distribution Res,-© defined on ‘37 such that, for any f € D(H x'37), one has < ©,%(f) >=<
Res;- 0, ps(f) >.

Let w,- be the restriction of w to 37. Then, one has:

Lemma 3.1. ([7]) Lemma 4.4). Let Rad,—(9(w)) be the radial part of O(w) with respect to
(Theorem 2.2). Then
Rad,- (0(w)) = € 1/20(wy-) 0 €% —

where (Z) = £(Z)~1/? (8(%7)51/2)(2) is an analytic function on ‘3.

4 Nilpotent and distinguished elements

Let Zy € q. Let Zy = Ap + X be its Jordan decomposition ([7] Lemma 1.1). We construct
the symmetric pair (35,37 ) related to Ay as in 3.

We assume that X is different from zero. From ([7] Lemma 1.7), there exists a normal
sla-triple (By, Xo, Yo) of (35,34 ) containing Xy, i.e. satisfying By € 34 and Y € 3, such that
[B(),Xo] = 2X(), [B(),YE)] = —2Y0 and [Xo,Yb] = BO .



We set 30 = RBy+RXy+RYj. The Cartan involution 6y of 30 defined by 60y : (By, Xo, Yo) —
(= By, —Yp, —X() extends to a Cartan involution of 35, denoted by #, which commutes with o.
([8] Lemma 1). The bilinear form (X,Y) — —B(0(X),Y") defines a scalar product on 3.

We can decompose 35 in an orthogonal sum 35 = ), 3; of irreducible representations j;
under the adjoint action of 39. One can choose a suitable ordering of the 3; such that (35 )y, =
i 130 Gs )ve = 0((35)x,) with 31 = 30 and dim 3; N (35 )y, = 1. We set n; + 1 = dim 3;.

Hence, there exists an orthonormal basis (wi,...,w;) of (35 )y, such that w; = HY—OH and
0
[Bo, w;] = —n;w; for i € {1,...,r}. In particular, one has n; = 2.
We set

T

0q(Zo) = 6,-(X0) = > _(ni+2) — dim (35).
i=1

Let N (35 ) be the set of nilpotent elements of 3 .
Definition 4.1. (/7] Definitions 1.11 and 1.13)

1. An element Xo of N (35) is a 33 -distinguished nilpotent element if (35 )x, contains no
non-zero semisimple element.

2. An element Zy of q with Jordan decomposition Zg = Ag + Xo is called q-distinguished if
Xo 15 a 35 -distinguished nilpotent element of 3 .

Definition 4.2. The symmetric pair (g,h) is nice if for any q-distinguished element Z, one has
3q(Z) > 0.

Let wg be the restriction of w to 3;. Though ws is not the Casimir polynomial on 3, one
has the following result:

Lemma 4.3. (/8] Lemma 4) The following assertions are equivalent:
1. Xo 1s a 35 -distinguished nilpotent element.

ws(X) =0 for all X € (35 )x,-

ws(X) =0 for all X € (35 )ve-

n; > 0.

(35 )x0 N (35 )vo = {0}

Thus, if Xy is a 35 -distinguished nilpotent element then one has w(Xo+ X) = 2B(Xp, X) =
2||Yo||z1 for all X € (35 )y,, where x; is the first coordinate of X in the basis (w1,...,w,) of

(35_)Y0‘

Gvo o

For any Xy € N (35 ), one has 357 = (35 )v, @ 35, Xo] and 35 = (35)x, @ [35, Yo]. From now on,
we set

U= (35 )v-

For X € U, we consider the map 1x from [37, Yo] x U to 35 defined by ¢¥x (v, 2) = z+[v, Xo+ X].
The map g is bijective.



We set #(X) = det(x o9y ') and \U = {X € U;k(X) # 0}. Hence, the map 7 from H} x'U
to 35 defined by m(h, X) = h-(Xo+ X) is a submersion.

We precise now some properties of m related to N (35 ).

By ([9] Theorem 23]), we can write N (3;) = O; U...O, where the O; are disjoints H -
orbits with O, = {0} and each O; is open in the closed set N; = O;U...0O,. One assumes that
O; = Hf - X.

Lemma 4.4. (/8] Lemma 17 and 18). There exists a neighborhood Uy of 0 in U such that
1. 7 is a submersion on H} x Uy,
2. Qo =n(H x Up) is an open neighborhood of Xg in 35 and Qo NN; = O;,
3. 0;N(Xo+Up) ={Xo}

4. Let © be an HJ} -invariant distribution on Q. Let Resy® be its restriction to U with
respect to T.

If supp (©) C Nj then supp (Resy®) C {0}.

We denote by w.- and ws the restrictions of w to ¢ and 37 respectively. One has w;- =
we— + ws. We precise now the radial part Rady(0(ws)) of O(ws) with respect to m. We denote
by Rady, x (0(ws)) its local expression at X € U.

Lemma 4.5. (/8] Lemma 13) The homogeneous part of degree 2 of Radyo(0(ws)) is zero if and
only if Xo is 35 -distinguished.

Theorem 4.6. ([8] Theorem 14) Let Xy be a 3 -distinguished nilpotent element and co = || Xo|.
Then, there exist analytic functions a;; (2 < i, < r) and a; (2 <1 < r) on Uy satisfying
ai ;(0) = 0 such that, for any H -invariant distribution T on Qy, one has

Resy (0(ws)T) = Rady ((9(ws))Resy(T)

1 02 .. 0 . 0?
(2:618:1:% + (dim 3, )(“)7301 + ;(nz +2)ri=———

- Co 81‘1 a.%z

0* . B
t 2 4i(X) 50, +Zai(X)axi)ResU (T)

2<i<<r i=2

where 1, ..., x, are the coordinates of X in the basis (w1, ..., w,).

5 The main Theorem

Our goal is to prove the following Theorem:

Theorem 5.1. Let (g,h) be a nice reductive symmetric pair. Let V an H- invariant open subset
of q. Let © be an H-invariant distribution on V such that

1. There exists P € C[X] such that P(8(w))© =0



2. There exists F € L (V) such that © = F on VN q"9.
Then © = F as distribution on V.

We will use the method developed by M. Atiyah in [1]. First we recall some facts about
distributions on R" x R™. Let N be the set of non-negative integers. For a = (ay,...,a;,) € N,
we set |a| = a1 + ...+ a, and

% =Ml =
1 L 2 T o

For ¢ € D(R" x R™) and € > 0, we set p.(x,y) = ¢(%,y) for (z,y) € R" x R™. For

Ex

T € D'(R" x R™) we denote by T the distribution defined by < T;,p >=< T, p. >.
Definition 5.2. Let V = {0} x R™ C R” x R”™ and T € D'(R" x R™).

1. The distribution T is regular along V if lin}) T.=0.
€—

2. The distribution T' has a degree of singularity along V' smaller than k if for all o € N”
with || = k, the distribution T is regular.

We denote by d;T the degree of singularity of T' along V' and we omit in what follows to
precise “along V7. Regularity corresponds to a degree of singularity equal to 0.

3. The degree of singularity of T is equal to k if d3T < k and d3T & k — 1.
Lemma 5.3. 1. If F € L} (R"™™™) then d3F = 0.
2. If d3T =k > 1 then d(x;T) =k —1 forie{1,...r}.

3. If dT < k then 86 T<k+1foriec{l,...r}.

T
4. Let 6y be the Dirac measure at 0 € R™ and 5801) = 0%. If S € D'(R™) then the degree of
singularity of 5801) ® S is equal to |af + 1.

Proof. 1. Let F € L} (R™™™) and ¢ € D(R™™™) with supp(¢) C K x K» where K; (resp., K)
is a compact subset of R” (resp., R™). One has

x
[ Fewe e < swp (o) (e, )|ddy
R™ xR™ € (x,y)ERT+m (eK1)x Ko
and the first assertion follows.
2. is clear.
3. Let a € N" such that |a|] = k+ 1. If a;j > 1 for some j € {1,...,r}, we set &/ =
(Oq, e 7 1, (07 ES PR Oér). Let p € D(Rr+m)
If a; > 1, one has
0 ~i % 0
< xaa—miT, e >= — < T, ;x% - + ?(&Eig@)g >

— =1 8
=—; <2 T,0e>— <271, (viz—¢)e >
8902-
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thus (7). converges to 0 since d;T < k.

0 i 0
If a; = 0, we choose j such that o;j > 1. One has < waa—T, 0. >=— < a2V, (:1;]‘8—90)E >
x; Ly

which tends to 0 as before.
4. We recall that for i € {1,...,r}, one has

a;)! Al yeesi—ly...0py .
L5 _ (—l)l(o(tif)l')!é(() ! ) if o; > 1
v 0 if 0 < 1.

Hence, one has a:acsé“) = (—1)l*laldy and for all 3 € N” with || = |a| + 1, one has xﬂééa) = 0.
The assertion follows. O

Definition 5.4. Let T' = 2%9%D where D is a differential operator on R™. Then T' increases
the degree of singularity at most || — |B|. The integer |a| — |3 is called the total degree of T in
x.

We can define the homogeneous part of highest total degree (in x) of an analytic differential
operator developing its coefficients in Taylor series.

Proof of the Theorem. Let © € D'(V) and F € L} (V)¥ such that P(0(w))© = 0 for a
unitary polynomial P € C[X] and © = F on V" =V N q"*. We write © = F' 4+ S where S is
an H-invariant distribution with support contained in V — V"®9. We want to prove that S =0,

which is equivalent to supp (S) = 0.

Assuming S is non-zero, we are led to a contradiction. We will study S near an element
Zy € supp (S5) chosen as follows:

For Zy € supp (S) with Jordan decomposition Zy = Ay + Xo, we construct the symmetric
subpair (3s,34) related to Ag and we set g4, =3~ = ¢~ @3, as in section 3. Let S be the set
of Zy in the support of S such that rank(3;) = k. Since supp (S) C V — V" if Zy = Ay + Xo
belongs to supp (S) then Ag is not g-regular. One deduces that Sy = (). Let kg > 0 such that
S():Sl:...:SkO,l:(Z)andSko 7&@

For Zy = Ao + Xo in Sk,, we denote by N (35) = O1 U...O, the set of nilpotent elements
in 3; as in section 4. Since supp (S) N (Ag + N (35)) # 0, one can choose jy € {1,...,v} such
that supp (S)N(Ag+ O;) =0 for i € {1,...jo — 1} and supp (S) N (Ao + Oj,) # 0.

From now on, we fix Zg = Ag + Xg in S, such that Xo € Oj,.

For € > 0, we denote by W; the set of = in 3, such that, for any eigenvalue X of adgz, one
has || < e. The choice of kg implies that there exists ¢ > 0 such that supp(S) N (Zy+ W:) C
supp(S) N (Zo + ¢~ + N(35)). Hence, we can choose an open neighborhood W, of 0 in ¢~ and
an open neighborhood W; of Xy in 3, such that

supp(S) N (Ag + W, + Ws) C supp (S) N (Ag + We + N(35)). (5.1)

First case. Ay ¢ ¢q and X # 0.

We keep the notation of section 4. We fix a normal slo-triple (By, Yy, Xo) in (3s,35). We
choose an open neighborhood Up of 0 in U, the centralizer of Y in 35, as in Lemma 4.4. We
keep the notation of this lemma. We recall that the map v from H x‘ 3~ to q defined by
v(h,Z) =h-(Ap+ Z) is a submersion. Reducing Uy, W, and W if necessary, we may assume



that W, + Qo C W. + W, C' 3~ and that Vj = v(H x (W, + Qp)) is an open neighborhood of
Zy contained in V.

If T is an H-invariant distribution on V, we denote by Tj its restriction to Vp. By theorem
2.1, one can consider its restriction 77 = Res;~To to We + Qo with respect to . One has
Ap + supp (T1) C supp (T) N (Ao + W. + Qo).

We set T =& 127y where & 1/2 i5 the analytic function on W, + €y defined in section 3.

Now, we consider the submersion 7y from HJ x Uy x W, to 3~ defined by mo(h, X,C) =
h-(Xo+ X) + C. One denotes by T3 the restriction on Uy x W, of Ty with respect to my . We
have X + supp(73) C supp(72) N (Xo + Up).

Since F' is a locally integrable function, the distribution F3 is the locally integrable function

on Uy x W, defined by F3(X,C) = £Y/2(C + X)F(C + X).

By assumption, the distribution S is non-zero. By (5.1) and Lemma 4.4 (2.), one has
supp (S2) = supp (S1) C We + Qo NN, = We + Oj,. We deduce from Lemma 4.4 (3.) that
supp (S3) C {0} x W,.. By ([6], Lemma 3), there exists a family (S, )a of D’'(W,) such that
S3 = Z 5(()a) ® S, where &g is the Dirac measure at 0 of Uy and for o € N” | the S, with

a€eN";|a|<I
|a] =1 are not all zero.

By assumption, the distribution © satisfies P(@(w))@ = 0. By Lemma 3.1, one has

P(((‘)(ws) +A(w) — M(Z))@2 =0 on W, + Q.

Using the restriction with respect to mp, one obtains
P(RadU((‘)(ws)) +O(we) — ,1) O3 = 0 on Uy x W,

where i(X,C) = u(C + X) for X € Uy and C € W..
Let Dy be the homogeneous part of highest total degree d of Rady (9(ws)). We set

P(Rady (9(w,)) + 8we) - i) = DY + Dy

where N is the degree of P and D; is a differential operator with total degree in X strictly

smaller than Nd. Since O3 = Fj + S3 with S5 = Y 05" ® Sa, we obtain the following
aeN";a1 <1

relation on Uy x W,

(DY +D1)Ss = (DY + D) > 65" ® Sa) = —(DY + D1)F3 (5.2)

a€eNT;|a|<I

We study now the degree of singularity along {0} x W, of the two members of (5.2).

If X is not a 3 -distinguished nilpotent element then by Lemma 4.5, the homogeneous part of
degree 2 of Rady o(0(ws) does not vanish and is a differential operator with constant coefficients
of degree 2. Hence the total degree of Dy is equal to d = 2. Since Fj is a locally integrable
function, it follows from Lemma 5.3 that one has d2F3 = 0 and d2((D}’ + D1)F3) < 2N. By the
same Lemma, one has d2((DY + D1)S3) = + 1+ 2N. Hence, we have a contradiction.



2

Assume that X is a 3; -distinguished nilpotent element. Lemma 4.6 gives coDy = 23:1W +
x
0 : 0? 0? : 0 1
(dim )5 -+ i+ 2zig ot > a55(X) g * >_ai(X)5 ) where o = | Xo|
=2 2<i<j<r =2
. Since a;j(0) = 0, the total degree of Dy is equal to 1.
For o = (a1,...,a,) € N', weset &' = (og, i1, il g o) and @& = (ag, ..., 1, 0—
1,41 ...ap). The relation :ciéc()a) = —aié(()al) and the above expression of Dg give
....1 — T .
0Dy -0 ® S0 = 2ad™) ® Sat D a1 (X)) ® S+ Y ai( X)W @ S,
2<i<j<r i=2
where .
Ao = —2(01 +2) +dim 35 — > (i +2)(e + 1).
i=2
Since ny is equal to 2 and (g, h) is a nice pair, we obtain
T
Ao = —0q(Z0) — [201 + > (ni +2)a;] <0 for all a € N
=2
Consider ag = (ai,...,ay) € N such that |ag| = I, Sa, # 0 and a; is maximal for these

properties. One deduces that the coefficient of (@) Sap in Do+ (X genrsjaj=t (5(()a) ® Sq) is
non-zero. Thus, the degree of singularity of (D} + D1)S3 is equal to 1 + 1+ N. Since Fj is
locally integrable and the total degree of Dy is equal to 1, we have dg(D(])V + D1)F3 < N. This
gives a contradiction in (5.2)

Second case. A € ¢q and Xg # 0.

The symmetric pair (35,37) is equal to (gs, bs). We just consider the submersion my from
H x Uy x W, to q defined by mo(h, X,C) = h - (Xo+ X) + Ap + C where Uy is defined as in
Lemma 4.4 for the symmetric pair (gs, bs)-

For T € D’(q)H7 we denote by T the restriction of T to Uy x W, with respect to my. As in
the first case, we have ©1 = F; + S1 where Fj is a locally integrable function on Uy x W, and
Si is a non-zero distribution such that supp (S1) C {0} x W,. Moreover the distribution 0
satisfies the relation

P<RadU(8(ws)) + 8(wc))@1 — 0 on Uy x W
The same arguments as in the first case lead to the contradiction S; = 0.

Third case. Xy = 0.
The open sets W, and W satisfy supp (S)N(Ag+W.4+Ws) C supp (S)N(Ao+We+N(35)).
By the choice of jy, we deduce that supp (S) N (Ag + W, + W) C supp (S) N (Ao + We).

If Ay € cq, then Vj = Ag + W, + W, is an open neighborhood of Ag in q. We identify q
with g x ¢q. Thus, the restriction Sy of S to V} is different from zero and satisfies supp(Sp) C
{0} x (Ao +W,). On the other hand, one has P(9(w))So = —P(9(w))Fjy,. Since d(w) is a
second order operator with constant coefficients, we obtain a contradiction as above.
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If Ag ¢ ¢q, we may assume that W, + W, C' 37. We denote by T; the restriction of an
H-invariant distribution 7" to W, + W with respect to the submersion v from H x'3~ to q and
we consider Ty = fl/ 2T as distribution on Wy x W,. Thus, we have Sy # 0 and supp (S2) =

{0} x W,. Moreover, the distribution @y = F5 + Sy satisfies P((@(ws) + 0(w,)) — /,L(Z))@Q =0
on Wy x Wy by Lemma 3.1. This is equivalent to

P((0(ws) + 0(w0) — 1(2)) S2 = = P((0ws) + 0(we)) ~ p(Z) ) Fe

Since J(ws) is a second order operator with constant coefficients, we obtain a contradiction as
above.
This achieves the proof of the Theorem. O

6 Application to (g[(4,R),g[(2,R) X g[(Q,R))
On G = GL(4,R) and its Lie algebra g = gl(4,R), we consider the involution o defined by

o(X)= ( 1;)2 0] ) X ( IO2 OI > where I is the 2 x 2 identity matrix. We have g =bh @ q
—13 —13

b:{(é‘ g>;A,BegZ(2,R)} andq:{<g §>;Y,ZEgZ((2,R)}.

By ([7] Theorem 6.3), the symmetric pair (gl((4,R), gl((2,R) x gl((2,R)) is a nice pair.
1
We first recall some results of [3]. Let (X, X') = §tr(XX’). The restriction of x to the

with

derived algebra of g is a multiple of the Killing form. Let S(qc )¢ be subalgebra of S(q¢) of all
elements invariant under He. We identify S(qc )¢ with the algebra of Hc-invariant differential
operators on qc with constant coefficients. Using s, we identify S(qc)fc with the algebra

1
Clqc]Hc of He-invariant polynomials on qc. A basis of Clqc]f¢ is given by Q(X) = §tr(X2)

and S(X) = det(X). The Casimir polynomial is just a multiple of Q.

By ([3] Lemma 1.3.1), the H-orbit of a semisimple element X = < 2 lg ) of q is charac-

terized by (Q(X), S(X)) or by the set {v1(X),v2(X)} of eigenvalues of Y'Z, where the functions
v and vy are defined as follows: let Y be the Heaviside function. Let Sy = Q? — 45 and

§ =Y (=5 /]S;]. We set
r=(Q+0)/2 and wvy=(Q—9)/2.

Regular elements of g are semisimple elements with 2 by 2 distinct eigenvalues or equivalently,
semisimple elements X of q such that v (X)va(X)(v1(X) — v2(X)) # 0 ([3] Remarque 1.3.1).

Let x be the character of C[qc]¢ defined by x(Q) = A1 + A2 and x(S) = A A2 where A and
A2 are two complex numbers satisfying AjAa(A — A2) # 0.

For an open H-invariant subset V in ¢, we denote by D'(V)XH the set of H-invariant distri-
butions 7' with support in V such that 9(P)T = x(P)T for all P € Clqc]c. Let N be the
set of nilpotent elements of ¢ and U = q — N its complement. In [3], we describe a basis of
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the subspace of D' (U )f consisting of locally integrable functions. More precisely, we obtain the
following result.

We consider the Bessel operator L, = 4 (zg—; + %) on C and its analogous L = 4 (tc‘é% + %)
on R. Let Sol(L., A) (resp., Sol(L, X)) be the set of holomorphic (resp., real analytic ) functions
fon C—R_ (resp., R*) such that L.f = Af (resp., Lf = Af). For A € C*, we set

Oy (2) = Z (Ae)" and  wy(z) = Z aln)(A2)"

12 N2
= 4 (nl) = 4n(n!)

where a(x) = —2?8:11)). Then (@, Wy = wy +1log(-)®P,) form a basis of Sol(L., \) , where log is

the principal determination of the logarithm function on C —R_ and (®y, W = wy +log |- |®))
form a basis of Sol(L, \).

For two functions f and g defined over C, we set

ST(f,9)(X) = f(n(X))g(ra(X)) + f(r2(X))g(1 (X))

and
Lf, 9)(X) = f(ri(X))g(r2(X)) = f(r2(X))g(v1 (X))

We define the following functions on q"%9:

1.

[(I)M’w)a] + [w>\1’ q>)\2} + log |V1V2|[(I))\17(I))\2]
VvV — U2

Fsing =

3. For (A, B) € {(®x,, ®»,), (B, W), (WL, ®y,), (W, W)}, we set

ST(A, B)
Fip=Y(5)———
A7B ( 0) ‘Vl _ I/2|

where Sy = Q% — 45 € C[qc)c and Y is the Heveaside function.
Theorem 6.1. (/3] Theorem 5.2.2 and Corollary 5.3.1).

1. The functions Fyne and Fying are locally integrable on q.

2. For (A, B) € {(®x,,Pn,), (P, W3,), (WX, ®y,), (WS ,WZ)}, the functions FX’B, are
locally integrable on U.

3. The family Fong, Fsing and FXB, with (A, B) as above form a basis B of the subspace of
D’(L{)f consisting of distributions given by a locally integrable function.

Corollary 6.2. Any invariant distribution of D’(L{)f s given by a locally integrable function

H

onU. In particular, the family B defined in the previous Theorem is a basis of D’(Z/{)X .
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Proof. Let T € D’(U)fg. We denote by F its restriction to U"9. By ([7] Theorem 5.3 (i)), F'is
an analytic function on U™ satisfying (¥) 9(P)F = x(P)F on U™ for all P € C[qc]Hc.

In ([3] section 4.), we describe the analytic solutions of (x) in terms of ®,, Wy and WY
for A = A1 and Ay. By the asymptotic behaviour of orbital integrals near non-zero semisimple
elements ([3] Theorems 3.3.1 and 3.4.1), and the Weyl integration formula ([3] Lemma 3.1.2),
one deduces that F' € L} (U)". Theorem 5.1 gives the result. O

loc

Corollary 6.3. Any invariant distribution of D’(q)f 1s given by a locally integrable function on
q.

Proof. Let T € D’(q)XH. By Corollary 6.2, the restriction of T' to U is a linear combination of
elements of B. By Theorem 5.1 and Theorem 6.1, it is enough to prove that the functions FX’ B
with (A, B) € {(®y,, Px,), (P, WY,), (WX, ®y,), (WS, WS,)} are locally integrable on q or

equivalently, that the integral /\FXB(X)f(XNdX is finite for all positive function f € D(q).

q
For this, we will use the Weyl integration formula ([5] Proposition 1.8 and Theorem 1.27).

For € = (e1,€2) with €; = &, we define

up 0
0 0 u9
as = Xs(ula U2) = e1un 0 ; (ula u2) € RQ
0 E2U9 0
and
T —0
0 0 T 2
ap = ; (9, 7’) eR
T —0 0
0 T

By ([3], Lemma 1.2.1), the subspaces a;i,a4_,a__ and az form a system of representatives
of H-conjugaison classes of Cartan subspaces in q. By ([3] Remark 1.3.1), an element X € g
satisfies So(X) > 0 if and only if X is H-conjugate to an element of a. for some e. Furthermore,
one has {v1(Xc(u1,u2)), vo(Xe(ui,u))} = {e1u?, ous}.

Let f be a positive function in D(q). We define the orbital integral of f on "9 by
M()(X) = [1(X) — (X)) f(h.X)dX
H/Zy(X)
where Zp(X) is the centralizer of X in H and dh is an invariant measure on H/Zp(X).

By ([5] Theorem 1.23), the orbital integral M(f) is a smooth function on " and there exists
a compact subset Q of q such that M(f)(X) = 0 for all regular element X in the complement
of €.

Since Fj 5 is zero on ay™, one deduces from the Weyl integration formula that there exist
positive constants C. (only depending of the choice of measures), such that one has
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/FX,B(X)f(X)dXZ > Co | Fip(Xc(ur,up))
; cef(++),(+) (- T

X M(f)(Xe(u1,ug)) [uruz(e1u? — eaud)|dusdus.

By definition of F;{ p» there exist positive constants C, C and Cs such that, for all X, (uy,uz) €
Q"9 one has

|(e1uf — e2u3) Ff p(Xe(ur,u2))| < C(C1 + [log ua][)(Ca + | log |uz]).

One deduces easily the corollary from the following Lemma. O

Lemma 6.4. Let f € D(q). Then there exist positive contants C',C},C% such that, for all
Xe(ur,u2) € "9 one has

IM(f)(Xe(ur,u2))] < C'(CF + [logua |[)(C5 + |log Jus ).

Proof. Let H = KNA be the Iwasawa decomposition of H with K = O(2) x O(2), N =
Ny x Ng where Ny consists of 2 by 2 unipotent upper triangular matrices and A is the set of
diagonal matrices in H. It is easy to see that the centralizer of X in H is the set of diagonal
matrices diag((a, 3,, ) with (a,3) € (R*)2. Hence H/Zy(X) is isomorphic to K x N x
{diag(e*,e¥,1,1);z,y € R}.

For £ € R, we set ng = < é § > We define the function f by f(X) = [ f(k-X)dk. Then,

one has
MKl u) = vt =] [ ([ FO Gy 6om)dean) dody

with
L3

Y(“? 67 ‘/1:7 y7 57 ,’7) = < < O 0 > dlag(e‘Z’ey’ ]'7 ]‘)) ’ X57U'

Ty

Writing Y (u, e, z,y,&,m) = < 2 }0/ ), one has

v ure® —nuie® 4+ e¥éuy and 7 — grure”t —Eejure” +_77€2U2€_y .
0 ugeY 0 gouge Y

Since f € D(q), the function f has compact support in q. Identify q with R, there exists
T > 0 such that supp(f) C [T, T|®. If f(Y(u,e,2,9,£,m)) # 0 then we have the following
inequalities:

L |uie™| < T and |uge®¥| < T,
2. | —nuie® + e¥€uy| < T,

3. | —equre ™ + negquge V| < T.
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Changing the variables (£,7n) in (r,s) = (§uge? — nuie®, —€e1ure™™ 4 neguge™Y), we obtain the
result. O

Remark. By ([3] Corollary 5.3.1), the function Fg,, defines an invariant eigendistribution on q.
At this stage, we don’t know if it is the case for the functions Fy;,, and FX p- Indeed, the proof
of Theorem 6.1 of [3] is based on integration by parts using estimates of orbital integrals and
some of their derivates near non-zero semisimple elements of q. To determine if F;,, and Fj{ B
are eingendistributions using the same method, we have to know the behavior of derivates of
orbital integrals near 0.
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