Ecole Polytechnique Formation préparatoire - Mathématiques

Topologie d'un espace métrique

1 Vocabulaire.

Définition.

Soit X un ensemble. Une **distance** est une application $d: X \times X \to \mathbb{R}^+$, symétrique (d(x,y) = d(y,x)) vérifiant :

- 1) Inégalité triangulaire : $d(x,z) \le d(x,y) + d(y,z)$
- 2) d(x,y) = 0 si et seulement si x = y

On dit que X muni d'une distance est un **espace métrique**.

Exemple fondamental:

Soit E un espace vectoriel défini sur $k = \mathbb{R}$ ou \mathbb{C} de dimension quelconque. On appelle norme sur E toute application $\| \cdot \| : E \to \mathbb{R}^+$ vérifiant les propriétés suivantes :

- (i) pour tout $v \in E$ alors $||v|| \ge 0$ et ||v|| = 0 si et seulement si v = 0.
- (ii) pour $v \in E$ et $\lambda \in k$ alors $||\lambda v|| = |\lambda| ||v||$
- (iii) pour tout v, w dans E, alors $||v + w|| \le ||v|| + ||w||$.

Toute partie $X \subset E$ d'un espace vectoriel normé muni de la distance $d(x,y) = \|x-y\|$ est un espace métrique.

Exemples de normes.

• La valeur absolue est une norme sur \mathbb{R} , le module est une norme sur \mathbb{C} , les fonctions suivantes sont des normes sur \mathbb{R}^n : on pose $x = (x_1, x_2, \dots, x_n)$.

$$\mathbb{N}_{\infty} = max(|x_1|, \dots |, x_n|)$$
 $N_1(x) = |x_1| + \dots |x_n|$ $N_2(x) = \sqrt{x_1^2 + \dots x_n^2}$

• Soit E l'espace vectoriel des suites $u=(u_n)_n$ d'éléments de k. Pour $u\in E$, on pose

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$
 $||u||_1 = \sum_{n \in \mathbb{N}} |u_n|$ $||u||_2 = \left(\sum_{n \in \mathbb{N}} |u_n|^2\right)^{1/2}$

Bien sûr, les valeurs obtenues ainsi peuvent être infinies. On pose alors :

- $l^{\infty} = \{u \in E; ||u||_{\infty} \text{ est fini }\}$ l'ensemble des suites bornées
- $l^1 = \{u \in E; ||u||_1 \text{ est fini }\}$ l'ensemble des suites absolument convergentes
- $l^2 = \{u \in E; ||u||_2 \text{ est fini }\}$ l'ensemble des suites de carré sommable

Alors pour j = 1, 2 ou ∞ , l'application $\| \|_j$ est une norme sur l^j .

On fixe X un espace métrique dont on note d la distance.

Définitions.

- 1. On appelle **boule ouverte** de centre x et de rayon r l'ensemble $B(x,r) = \{y \in X; d(x,y) < r\}$.
- 2. Un sous-ensemble $U \subset X$ est dit **ouvert** si, soit il est vide, soit pour tout $x \in U$ il existe r > 0 tel que $B(x,r) \subset U$. (Exemple : tout intervalle ouvert a,b de a est ouvert dans a)
- 3. Un sous-ensemble $F \subset X$ est dit **fermé** si son complémentaire est ouvert.

Attention un ensemble peut-être ni ouvert ni fermé (par exemple [0,1[dans $\mathbb{R})$, un ensemble peut-être à la fois ouvert et fermé (par exemple \mathbb{R}).

- 4. Soit $A \subset X$. On appelle **adhérence de** A le plus petit fermé de E qui contient A. L'adhérence de A est notée \bar{A} .
- 5. Soit $A \subset X$. On dit que A est **dense** dans X si $\bar{A} = X$.
- 6. Soit $A \subset X$. On appelle **intérieur de** A le plus grand ouvert de X contenu dans A. L'intérieur de A est notée $\stackrel{\circ}{A}$.
- 7. Un ensemble $V \subset X$ est un **voisinage** de $x \in X$ s'il existe un ouvert U de X tel que $x \in U$ et $U \subset V$.
- 8. Un ensemble $A \subset X$ est dit **borné** s'il existe R > 0 tel que $A \subset \overline{B(0,R)}$.

Propriété. Un espace métrique est toujours **séparé** c'est-à-dire qu' il vérifie la propriété suivante : pour tout $x \neq y$ dans X il existe un voisinage V de x et un voisinage W de y tels que $V \cap W = \emptyset$. (Cette propriété assure l'unicité de la limite d'une suite convergente).

On retrouve les propriétés suivantes bien connues sur $\mathbb R$ ou $\mathbb C$:

Propriétés. Soit I un ensemble, une famille d'ouverts $(U_i)_{i\in I}$ et une famille de fermés $(F_i)_{i\in I}$.

• $\bigcup_{i \in I} U_i$ est un ouvert • $\bigcap_{i \in I} F_i$ est un fermé • $\bigcap_{i \in I} F_i$ est un fermé • $\bigcap_{i \in I} F_i$ est un fermé • $\bigcap_{i \in I} F_i$ est un fermé.

Définition (topologie induite). Soit $A \subset Y \subset X$.

La partie A est ouverte dans Y s'il existe U un ouvert de X tel que $A = U \cap Y$.

La partie A est fermée dans Y s'il existe F un fermé de E tel que $A = F \cap Y$.

Exemples. l'intervalle [0,1[est ouvert dans $[0,+\infty[$ mais pas dans \mathbb{R} , il est fermé dans]-1,1[.

2 Suites.

Soit $(u_n)_n$ une suite d'éléments de X et $u \in X$.

La suite $(u_n)_n$ converge vers u si la suite de nombres réels $(d(u_n,u))_n$ converge vers 0. La suite $(u_n)_n$ a une **valeur d'adhérence** u si pour tout $\epsilon > 0$ la boule ouverte $B(u,\epsilon)$ contient une infinité de u_n . Ceci est équivalent à dire qu'il existe une sous-suite $(u_{\varphi(n)})_n$ de $(u_n)_n$ qui converge vers u (φ est ici une injection croissante de $\mathbb N$ dans $\mathbb N$). On dit également qu'on peut extraire une sous-suite de u_n (ou encore qu'il existe une suite extraite de $(u_n)_n$) qui converge vers u.

Propriétés. 1) Une suite convergente a une unique valeur d'adhérence, c'est sa limite. (Une suite qui a plusieurs valeurs d'adhérence est donc divergente).

2) $A \subset X$ est fermé si et seulement si toute suite $(u_n)_n$ d'éléments de A qui converge dans X a sa limite dans A.

Contre-exemple \mathbb{Q} n'est pas fermé dans \mathbb{R} , la suite des nombres $(1+\frac{1}{n})^n \in \mathbb{Q}$ converge vers $e \notin \mathbb{Q}$.

3 Continuité.

Soit (X, d) et (Y, D) deux espaces métriques. Une application $f : X \to Y$ est dite **continue en** $x_0 \in X$ si pour tout $V \subset Y$ voisinage de $f(x_0)$ alors $f^{-1}(V)$ est un voisinage de x_0 . Elle est **continue sur** X si elle est continue en chaque point de X.

Les propriétés suivantes sont équivalentes :

- (a) f est continue sur X,
- (b) pour tout $U \subset Y$ ouvert alors $f^{-1}(U)$ est ouvert dans X.
- (c) pour tout $F \subset Y$ fermé alors $f^{-1}(F)$ est fermé dans X.
- (d) pour toute suite $(x_n)_n$ d'éléments de X convergeant vers $x \in X$ alors la suite $(f(x_n))_n$ converge vers f(x).

Un homéomorphisme est une application f continue bijective telle que son inverse f^{-1} est continue.

L'application f est uniformément continue sur A si elle vérifie la propriété suivante :

$$\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 \ \text{tel que} \ \forall x \in A \ \text{et} \ \forall y \in A \ \text{v\'erifiant} \ d(x,y) < \delta \ \text{alors} \ D(f(x),f(y)) < \epsilon.$$

4 Partie compacte.

Définition. Une partie K de X est dite **compacte** si elle possède la propriété suivante : de tout recouvrement de K par des ouverts on peut extraire un recouvrement fini.

Ceci se traduit de la manière suivante : si $(U_i)_{i\in I}$ est une famille d'ouverts de X telle que $K\subset\bigcup_{i\in I}U_i$

alors il existe un ensemble fini $F \subset I$ tel que $K \subset \bigcup_{i \in F} U_i$.

Théorème. Soit $A \subset X$. Alors A est compact si et seulement si toute suite d'éléments de A admet une sous-suite convergente dans A.

Propriétés.

- 1. Soit K un compact de X. Alors K est fermé et borné.
- 2. si K est compact et $F \subset K$ est fermé alors F est compact.
- 3. Une réunion finie de compact est compacte.
- 4. Un produit fini de compacts est compact.
- 5. Soit K un compact de X et (Y, D) un espace métrique. Soit $f: X \to Y$ une application continue. Alors f(K) est un compact de Y et f est uniformément continue sur K.

En particulier, si $F = \mathbb{R}$, la fonction f est bornée et atteint ses bornes (c'est-à-dire il existe $x_0 \in K$ et $y_0 \in K$ tels que $f(x_0) = \inf_{x \in K} f(x)$ et $f(y_0) = \sup_{x \in K} f(x)$).

Lemme Soit (E, || ||) un espace vectoriel normé. Si la dimension de E est finie alors tout ensemble fermé et borné est compact. Ceci est faux en dimension infinie.

Conséquences. Soit E un espace vectoriel.

Deux **normes** N_1 et N_2 définies sur E sont dites **équivalentes** si toute boule ouverte pour N_1 contient une boule ouverte pour N_2 et réciproquement. Ceci est équivalent à la propriété suivante : il existe des constantes strictement positives C_1 et C_2 telles que pour tout $u \in E$, l'on ait :

$$C_1 N_1(u) \le N_2(u) \le C_2 N_1(u)$$

Lorsque E est de dimension finie, toutes les normes sont équivalentes et cet énoncé est faux si $\dim E$ est infinie.

Ainsi, lorsque E est de dimension finie, les notions introduites ne dépendent pas du choix de la norme mais par contre, ces notions dépendent du choix de la norme lorsque E est de dimension infinie.

5 Espace complet.

Une suite $(u_n)_n$ est **une suite de Cauchy** si pour tout $\epsilon > 0$ il existe $n_0 \in \mathbb{N}$ tels que si $(p \ge n_0)$ et $q \ge n_0$ alors $d(u_p, u_q) < \epsilon$.

Un sous-ensemble $A \subset X$ est dit **complet** si toute suite de Cauchy d'éléments de A converge vers $a \in A$.

Un espace vectoriel normé $(E, \|\cdot\|)$ complet est appelé **espace de Banach**.

Propriétés.

- 1. Tout espace vectoriel de dimension finie sur $\mathbb R$ ou $\mathbb C$ muni d'une norme $\|\cdot\|$ est complet.
- 2. Un espace compact est complet.
- 3. Si X est complet et $A \subset X$ est fermé alors A est complet.

Un espace vectoriel de dimension infinie peut être complet pour une norme et non complet pour une autre norme.

6 Partie connexe.

Une partie A de E est dite **connexe par arcs** si deux points a et b de A peuvent être joints par un chemin continu contenu dans A. (c'est-à-dire qu'il existe $\gamma:[0,1]\to A$ continu tel que $\gamma(0)=a$ et $\gamma(1)=b$).

Une partie A de E est dite **connexe** si A ne peut pas s'écrire comme réunion disjointe de deux ouverts non vides.

La notion d'ensemble "connexe par arcs" est généralement plus facile à imaginer que la notion d'ensemble "connexe". Tout ensemble connexe par arcs est connexe, mais la réciproque est fausse en général. Cependant, si $U \subset \mathbb{R}^n$ est ouvert alors U est connexe si et seulement si U est connexe par arcs.

Les propriétés importantes des ensembles connexes sont les suivantes :

On munit l'ensemble $\{0,1\}$ de la topologie discrète ce que veut dire que les ouverts sont \emptyset , $\{0\}$, $\{1\}$ et $\{0,1\}$.

Proposition:

- 1) Les propriétés suivantes suivantes sont équivalentes :
 - (a) A est connexe
 - (b) A ne peut pas s'écrire comme réunion disjointe de deux fermés non vides.
 - (c) si $Y \subset A$ est à la fois ouvert et fermé alors $Y = \emptyset$ ou Y = A.
 - (d) si $f: A \to \{0, 1\}$ est continue alors f est constante.
 - (e) si F est un ensemble discret et $f: A \to F$ est continue alors f est constante.
- (2) l'union de deux connexes d'intersection non vide est connexe.
- (3) les connexes de \mathbb{R} sont les intervalles (ouverts ou fermés ou semi-ouvert avec bornes finies ou infinies).
- (4) L'image d'un connexe par une application continue est connexe.
- (5) l'adhérence d'un connexe est connexe.