LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC
SPACES (I)

PASCALE HARINCK AND HUBERT RUBENTHALER

Part I: Structure and Orbits

Abstract: This is an extended version of the first part of a forthcoming paper where we will
study the local Zeta functions of the minimal spherical series for the symmetric spaces arising
as open orbits of the parabolic prehomogeneous spaces of commutative type over a p-adic field.
The case where the ground field is R has already been considered by Nicole Bopp and the second
author ([7]). If F is a p-adic field of caracteristic 0, we consider a reductive Lie algebra g
over F which is endowed with a short Z-grading: § = g_1 @ go ® g1. We also suppose that the
representation (go, g1) is absolutely irreducible. Under a so-called regularity condition we study
the orbits of Gy in g1, where Gy is an algebraic group defined over F, whose Lie algebra is g.
We also investigate the P-orbits, where P is a minimal o-split parabolic subgroup of G (o being

the involution which defines a structure of symmetric space on any open Go-orbit in g ).

AMS classification: 22E46, 16532
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INTRODUCTION

The ultimate purpose of this paper will be (in a final version) to define local Zeta functions for
a class of reductive p-adic symmetric spaces (attached to the representations of the o-minimal

series) and to prove their explicit functional equation.

But in the present first part, we are only concerned with classification and structure theory
for these symmetric spaces.
Let F be a p-adic field of characteristic 0 whose residue class field has characteristic # 2. The

main object under consideration is a reductive Lie algebra g endowed with a short Z-grading

g=V-ogoV" (VT #{0}).

This means that [g,g] C g, [g,VE] C VE [VF,V*H] = [V-, V-] = {0}. We also suppose
that the corresponding representation of g on VT is absolutely irreducible. Then (g, V') is an
infinitesimal prehomogeneous vector space. It is well known that such a grading is defined by
a grading element Hy. We normalize it in such a way that ad(H,) has eigenvalues —2,0, 2 on

V=, g, VT, respectively.

We introduce a natural algebraic subgroup G of the group of automorphisms of g whose Lie
algebra is g (which was first used by Iris Muller ([15])). This group is defined at the beginning of
section 1.7 as the centralizer of Hy in the group of automorphisms of g which become elementary

over a field extension. Then (G, V™) is a prehomogeneous vector space.

Although a part of the structure theory can be carried out with no further assumption
(section 1.1 up to section 1.7), we need to introduce the so-called regularity condition, and we
will essentially only consider regular graded Lie algebras in this paper. A graded Lie algebra is
said to be regular (Definition 1.7.11) if the grading element Hj is the semi-simple element of an
slo-triple. This condition is also equivalent to the existence of a non-trivial relative invariant
polynomial Ay of the prehomogeneous space (G, V™), and also, as we will see in section 4, to

the fact that the various open G-orbits in V' are symmetric spaces.

These open orbits of G in V' (and in V™) are precisely the symmetric spaces we are interested

n.

One can always suppose that g is semi-simple. Then the assumptions on the grading imply
that g+ V+ (where the overline stands for scalar extension to an algebraic closure) is a maximal
parabolic subalgebra of E, and hence it is defined by the single root which is removed from the
root basis of E to obtain the root system of g. It can be shown that this single root is a “white”
root in the Satake-Tits diagram of g. Therefore the gradings we are interested in are in one to
one correspondence with “weighted” Satake-Tits diagrams where one “white” root is circled.
The classification is done in section 2 and the list of the allowed diagrams is given in Table 1
(section 2.2).
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A key tool in the orbital descripion of (G, V™) is a kind of principal diagonal
... egtcVt

where X\, A1, ..., \; is a maximal subset of strongly orthogonal roots living in V*. This sequence
starts with the root Ay, the root defining the above mentioned parabolic, and is obtained by an

induction process which we call “descent” (see sections 1.5 and 1.6).

A first step in the classification of the orbits is to prove that any G-orbits meets this principal
diagonal. This is done in Theorem 3.2.2. Another step is the study of the so-called rank 1 case
in section 1.12 (Theorem 1.12.4).

Finally, in order to classify the orbits, we need to distinguish three Types (see Definition 2.2.2)
and the full classification of the orbits is obtained in Theorem 3.8.8 for Type I, Theorem 3.8.9
and Theorem 3.8.10 for Type I, and Theorem 3.9.8 for Type I11.

Section 4 is devoted to the study of the associated symmetric spaces. Let €2q,...,8,, be the
open orbits in V. As we said before these open orbits are symmetric spaces. More precisely
this means that if we choose elements [ J+ € Q;, and if H; = Zg(I ]+ ) then for all j there exists
an involution o; of g (in fact the restriction of an involution of g which stabilizes g) such that
H; is an open subgroup of the fixed point group G?. Therefore Q; ~ G/H; can be viewed as a
symmetric space. A striking fact is that all these G-symmetric spaces have the same minimal
o;-split parabolic subgroup P (i.e. ¢;(P) is the opposite parabolic of P). Moreover (P, V™)
is again a prehomogeneous space. We define and study a family of polynomials Ay, ..., Ay
which are the fundamental relative invariants of (P, V). We also determine the open orbits of
(P, V1) in terms of the values of the A; (Theorem 4.3.6). Finally we introduce an involution -y
of g which exchanges V' and V'~ and which allows to define the fundamental relative invariants

of (P,V~) and to determine its open orbits.

This paper follows the same lines as the corresponding paper which dealt with the real case
by Nicole Bopp and the second author ([7]). But of course, due to the big difference between
the structure of the base fields, the proofs (as well as the definition of the group which acts),

are often rather different.

We must also mention that the study of graded algebras over a p-adic field was initiated by
Iris Muller in a series of paper ([14], [15], [16], [17]), in a more general context (the so-called
quasi-commutative case), but her results seem to us less precise and sometimes weaker than

ours. Moreover she never considered the symmetric space aspects of these spaces.

Finally it should be noticed that, via the Kantor-Koecher-Tits construction (which is still valid
over a p-adic field), there is a bijection between the regular graded Lie algebras we consider
here and absolutely simple Jordan algebra structures on V' (see [8], and the references there).
And, probably, the group G which is used in this paper is very closed to the “structure group”
for the p-adic Jordan algebra V.
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1. 3-GRADED LIE ALGEBRAS

1.1. A class of graded algebras.

In this paper the ground field F' is a p-adic field of characteristic 0, i.e. a finite extension of
Qp. Moreover we will always suppose that the residue class field has characteristic # 2 (non
dyadic case). We will denote by F an algebraic closure of F. In the sequel, if U is a F-vector

space, we will set

Definition 1.1.1. Throughout this paper a reductive Lie algebra g over F satisfying the fol-
lowing two hypothesis will be called a graded Lie algebra:

(Hy) There exists an element Hy € g such that ad Hy defines a Z-grading of the form
g=V egaV’" (V7 #£{0},

0 for X eg;
where [Hy, X| = ¢ 2X for X e V't :
—2X  for X eV—.
(Therefore, in fact, Hy € g)
(Hy) The (bracket) representation of g on V+ is irreducible. (In other words, the representa-

tion (g,V'™) is absolutely irreducible)

The following relations are trivial consequences from (Hy) :

g VICcVT [gV]cV s gglCg; [VT,VT]Cg; [V, VT]=[V",V7]={0}.

1.2. The restricted root system.

There exists a maximal split abelian Lie subalgebra a of g containing Hy. Then a is also
maximal split abelian in g.

Denote by 3 the roots of (g,a) and by X the roots of (g, a). (These are effectively root systems:
see [28], p.10).

Let Aut,(g) denote the group of elementary automorphisms of g ([4] VII, §3, n°1).

Two maximal split abelian subalgebras of g are conjugated by Aut.(g) ([28], Theorem 2, page
27, or [27], Theorem 3.1.16 p. 27)

Theorem 1.2.1. (Cf. Th. 1.2 p.10 of [7])

(1) There exists a system of simple roots Il in 3 such that
vell = v(Hy) =0 or2 .

(2) There exists an unique root Ay € I such that Ao(Hy) = 2.

(3) If the decomposition of a positive root A € S in the basis 11 is given by

A = moAo + Z myv , mo € ZT,m, € ZT
vell\{A\o}

then mo =0 or mg = 1. Moreover A belongs to 3 if and only if mg = 0.
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Proof. Let S be the subset of 5 given by
S={reX|AH) =0or2}.

It is easily seen from (Hjp) that S is a parabolic subset of i, ie. gV is a parabolic subalgebra
of §. It is well known (see [3] chap. 6 Prop. 20) that there exists an order on ¥ such that, if a
root A € 3 is positive for this order, then g* is a subspace of g ® V*+. If II denotes the set of

simple roots of 5 corresponding to this order, then I satisfies (1).

There exists at least one root Ag € II such that Ag(Hp) = 2 because V* £ {0}. Moreover the
commutativity of V™ which is the nilradical of the parabolic algebra g @ V' implies (3).

Let us suppose that there exists in II a root A1 # Ao such that A (Hy) = 2. Let V4 be the sum

of the root spaces g* for the roots \ of the form
A=X+ Y. my (m,EZT).
vell,y(Ho)=0
Since Vj does not contain g, it is a non-trivial subspace of V* which is invariant under the

action of g. This gives a contradiction with (Hz) and the uniqueness of Ay such that \o(Hy) = 2

follows, hence (2) is proved.
U

Let us fix once and for all such a set of simple roots II of 3. Then

I =TU{\},
where IT = {v € IT| v(H,) = 0} is a set of simple roots of ¥. We denote by St (resp. ©1) the
set of positive roots of ¥ (resp. ¥) for the order defined by II (resp. II).

Then we have the following characterization of Aq :

Corollary 1.2.2. The root A\ is the unique root in S such that
[ ] )\0(H0) =2 3
e AeETtT= A -A¢XD.

Proof. 1t is clear that Ay satisfies the two properties. Let u € 5 a root satisfying the same
properties. Then the first property implies that pu € St Suppose that p # \g. Then = Ao+
Yoeam,v with A C II; A # 0, and m, # 0. This implies that u = v1+- - v+ Ao+ Vkp1+ - -+,
where each partial sum is a root. Then either p — v, € 5, or (if vg11 = -+ = v, = 0) one has
p— (4 ) =X € 3. In both cases the second property would not be verified.

O

Remark 1.2.3. Let m be the centralizer of a in g (which is also the centralizer of a in g). We
have then the following decompositions:
g=me) g, g=mae) ¢, Vi= )Y g\
PYSS AEX AesH\x+
The algebra [m, m] is anisotropic (i.e., his unique split abelian subalgebra is {0}), and is called

the anisotropic kernel of g.
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1.3. Extension to the algebraic closure.

Let us fix an algebraic closure F of F. Remember that for each vector space U over F we note

U the vector space obtained by extension of the scalars:
U=U SQF F.

We have then the decomposition

g=V-ogoV’
and according to (Hy), the representation (g, V1) is irreducible. Let j be a Cartan subalgebra
of g which contains a. Then j C g and j is also a Cartan subalgebra of g. This implies that j is
a Cartan subalgebra of g (and also of §) (see [4], chap.VIL, §2, Prop.3)
Let R (resp. R) be the roots of the pair (E, i) (vesp. (g,j)) and let Ea (resp. @ ) be the
correspondlng root spaces.
Let X € g . Let us write X = Y a;X; where a; € F and where the elements X; € g are F-free
eigenvectors of a. Then for H € a, we have [H, X] = a(H)X = > a[H, Xi] = > a;a(H)X
Hence [H, X;] = a(H)X;. If Xi = Y7y v 10y X, We obtain [H, X;] = > A(H) Xy = a(H) 3 X
Therefore a(H) € F, in other words the restrictions to a of roots belonging to R, take values
in F'.
We denote by p:j° —> a* the restriction morphism. One sees easily that p(R) = X U {0} and
that p(R) = X U {0}.

Let us recall the following well known result:

Lemma 1.3.1.
Let A€ X. Let Sy = {a € R, p(a) = A\}. Then we have:

Proof. Let a € S, and X € Ea. The element X can be written X = Z?Zl a; X; where a; € F
and where the elements X; € g are free over F and are eigenvectors a (a is split). Then for
H € a we have:

H, X] =" a[H X)) =Y a7H)X;, =a(H)X = NH)X =", a;\(H)X;. Therefore
for each H € a, v;(H) = A(H).This implies the inclusion ) . Sy Ea C g*. Conversely let X € g*
whose root space decomposition in g is given by X = > BERU{0} Xp. For H € a we have:

[H, X] = MH)X =Y MH)Xz=>_ B(H)Xj,
and hence p(f5) = A. O
Set P = {a € R, p(a) € ©TU{0}}. One shows easily that P is a parabolic subset R. Therefore

there is an order on R such that if R* is the set of positive roots for this order one has Rt CP
([3], chap. VI, §1, n°7, Prop. 20). Then:

p(RT) =Xt U{0}
and hence
p(RT) =Xt u{0}.
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We will denote by ¥ the set of simple roots of R corresponding to R™.

Proposition 1.3.2.

There is a unique simple root o € U such that plag) = Ao.

Proof. Suppose that there are two distinct simple roots ag, Sy such that p(ag) = p(Bo) = Ao,
and suppose that these two roots belong to the same irreducible component of R.

Then the highest root in this irreducible component will be of the form:

v = moap +m By + Z maQ, mo,my > 1, my > 0,
aceW\{ao,B0}

and then

p(v) = (mo +mq)Xo + Zmyu.
vell

And this is impossible according to Theorem 1.2.1.
Consequently each of the roots «ag and Sy belong to a different irreducible component of R.
Let wy (resp. wy) the highest root of the irreducible component of R containing oy (resp. Bo).
As w;(Hp) = 2 (because ag(Hy) = Bo(Ho) = 2 and w;(Hy) = —2,0,2) the linear forms w; are
dominant weights of the irreducible representation (g, V+). This implies the result.

O

Remark 1.3.3. If we had supposed that [g, g] was absolutely simple, then the second part of

the proof would have been superfluous.

1.4. The highest root in 3.

Proposition 1.4.1.

There is a unique Toot \° € S such that
o \N(Hy))=2;
e VAeXt N4 Ag.
This oot \° is the highest root of the irreducible component of S which contains Ao-

Proof. Let w be the highest weight of the representation (g, V+). We will show that the restric-
tion of w to a is the unique root in D satisfying the conditions of the proposition.

Define A\’ = p(w). Then A% € T and X°(Hy) = w(Hy) = 2. Let A € . If A+ A\° € & there
exist two roots «, 8 € R such that pla) = Xand p(B) = A+ A°. As g’ C V+, the root § will be
a weight of (g, V") and therefore can be written : 8 = w — > e MayY (my € N). Restricting
this equality to a one gets:

p(B) = A+ X0 = p(w) = > myp(y) =X => myp(y).

'\/6‘17 ’yE‘Tl

Hence

A=— vap(V)' (*)

yew
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But A € X C £ and from the hypothesis p(y) € S+ U {0}; the preceding equation () is
therefore impossible and we have showed that A\’ = p(w) satisfies the required properties.
Let A! be another root in ¥ having these properties. In fact A' € ¥F. Set

S={aeR"|pla) =1}

Each element in S is a weight of (g, V*¥) (as a(Hy) = p(a)(Hy) = M(Hy) = 2, we have
Ea € V1), Let w! be a maximal element in S for the order induced by RT.

oif 5 € R is such that p(B) = 0, then w'+ S is not a root, because we would have w!+3 € S
and this contradicts the maximality of w!.

o If 3 € R* is such that p(B) # 0, then w!' + 3 is not a root, because in that case p(w! + 3) =
A+ p(B) would be a root of >+ and this contradicts the second property.
Therefore w' is a highest weight of (g, V+), hence w! = w. This implies \' = \°.
The commutativity of VT implies that \° + \ ¢ > for A € &\ ©F. From the obtained
characterisation of A’ we obtain the last assertion.

O

1.5. The first step in the descent.

Let [y be the algebra generated by the root spaces g™ and §~—>°. One has:
b= e 5 e
(Just remark that g~ @ [g=*°, g*0]@ g is a Lie algebra). This algebra is graded by the element

H Ao € a.
We will need the following result:

Lemma 1.5.1.
Let u = u_1 @ ug ® uy be a semi-simple graded Lie algebra over F'. Suppose that uy is an

absolutely simple ug-module. Then the Lie algebra u' generated by uy and u_y absolutely simple.
Proof. The algebra u is again graded and semi-simple:
u=u_1OuSuy

and from the hypothesis 17 is a simple ug-module. As before for Iy, one has u’ = u_; & [u_1,1]®
uy, and one verifies easily that u’ = u_;®[u_y, u;]@uy is an ideal of u, and therefore semi-simple.
Then it is enough to prove that v/ = _; @ [u_r,1u;] ® Uy is a simple algebra over F. Let J be
an ideal of w. We will show that J = {0} or J = w’.

Note first that the ideal W = 1, orthogonal of  for the Killing form of 1 , is a subset of .
Hence

u=u @ (-, wm] &w’) euw

As J is an ideal of W/, the space J N1y is stable under [w_7,1;]. On the other hand J N1y is
also stable under 1y” because [tp”,1;] = {0} (In a semi-simple Lie algebras orthogonal ideals

commute). Therefore J N1y is a sub-ug-module of uy. From the hypothesis, either J Nuy = uy
or JNuy = {0}.
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o If JNuy = uy, then [u_y,u;] C J. Let Uy be the grading element (which always exists). From
the semi-simplicity of u’, one gets Uy € [u_1,uy]. Hence Uy is in J. This implies that u_y C J,
and finally J = w'.

o If JNuy = {0}, then if J* is the ideal of ' orthogonal to J for the Killing form, we get
J+ =1, hence J = {0}.

This proves that v is simple.

Proposition 1.5.2.
The representation ([§720, 3], 3%) is absolutely simple and the algebra [y = g & [§, %] &
9% is absolutely simple of split rank 1.

Proof. Let m = Z4(a) be the centralizer of a in g. Consider the graded algebra
u :af)\o @m@a)\o
From Lemma 1.5.1, to prove that TO is absolutely simple, it is enough to show that the repre-

sentation (m, g*) is absolutely simple. One has:

o

m=j® > 7.
{a€R | p(a)=0}
The algebra m is reductive, and his root system for the Cartan subalgebra j is ﬁo = {a €
R | p(a) = 0}. We put the order induced by R+ on Ry.
We have to show that the module (ﬁ,ﬁ/\_o) is simple. If it would not, this module would have a
lowest weight o distinct from «q (see Proposition 1.3.2). But from hypothesis (Hz), the module
(§.V¥) is simple, and his lowest weight (with respect to Rt = RT NR) is ag. There exists
then a sequence [y, ..., B of simple roots in ¥ = v \ {ao} such that oy = g+ 1 + -+ + Sk,
and such that each partial sum is a root. But as p(ag) = p(a1) = Ao, and as the roots §; are in
R+, we obtain p(Bi) =0, fori=1,... k. Hence §; € 7%3 and oy — B, =ag+ B1+ -+ Br_1
is a root. As «y is a lowest weight, this is impossible.
The fact that this algebra is of split rank one is easy.
O

Let g, = ZE(TO) be the centralizer of Iy in §. This is a reductive subalgebra (see [4],chap.VII,
§1, n°5, Prop.13). The same is then true for 9= Zg(?o) = ZE(TO) ([5], Chap. I, §6, n°10). (We

will show the last equality in the proof of the next proposition).

Proposition 1.5.3.
If g1 NV £ {0}, then g1 satisfies the hypothesis (Hy) and (Hg), where the grading is defined
by the element Hy = Hy — H),.

Proof. Tt is clear that Hy € g;. As H), € N[o, the actions of ad Hy and of ad H; on g; are the
same. As g1 NV #£ {0}, the eigenvalues of ad H; on g; are —2,0, 2. Therefore the hypothesis
H, is satisfied.

It remains to show that if g, = gNg; and if V_1+ = VN4, the the representation (gl,V_fL) (or

(91, V_fr)) is irreducible over F.
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~ =S =-S5\, =S =S =S = =~
From Lemma 1.3.1 onehaslp =g °@®[g °, g °|@®g ° whereg ° =gl =3 .9 - Let

a€S)

us first describe g, = Zg(NIO). It is easy to see that ZE(TO) C Z(lp). Let X € ZE(NIO). Let us
write X = H + Y _~ X, whith H € j and with X, € 9. As [X, X;5] = 0 for § € £85,,, we

aER
_ 8
obtain that X €j; ® > 5.5 8 , where

jlz{HEﬂOz(H):O,VaESAO}

Ri={B€eR| Bla,Vae Sy}

_ _8

We will now show that j1 &> 5.5 8 C Z5(l)-
_8 - _8

e Consider first g for 5 € Ry. Any element X € g C g can be written X = >"" | ;X; where

o ~ _8
X; € g and where the e;’s are elements of F' which are free over F. As § € R; one has [X,g | =

» _S — ~ ~
{0} for each 7 € Sy,. As §° C o~ ZaESAO g , one has [X,g*] = {0} = Z?Zl ei[ Xi, 9.
As [X;,g*] C g and as the e;’s are free over F, we obtain that [X;, g*°] = {0}.

One would similarly prove that [X;, 7] = {0}. Hence X € Z;(I).

e Consider now j; = {H € j|a(H) = 0,Ya € S),}. An element u € j; can be written
U = ZLI a;u; where the elements a; € F are free over F and where u; € j. Then for o € S Ao
one has: a(u) = 0 = Y a;a(y;). This implies that a(u;) = 0, for any o € S), and
any i. Therefore the elements u; belong to j; = {u € j,a(u) = 0, Vo € S,,}. But then
u =" au; € (1) and [u;, =] C [ui,EiSM] = {0} (from the definition of j;). Hence

u; € Z5(lp), and therefore u € Z5(1y).
Finally we have proved that

_ ~ = _ -8
g1 = Z5(lo) = Zz(ly)) =11 @ Z g .
BER,

If g e ﬁl, then a(Hg) = 0 for all root a € S,,. Hence Hp € i1, and the restriction of 3 to j; is
non zero. This implies that j; is a Cartan subalgebra of the reductive algebra E and R, can
be seen as the root system of the pair (@T, j1). The order on R defined by R+ induces an order
on R; and on the root system Ry = Ry N R of the pair (91,j1) by setting:

ﬁf:ﬁlﬂﬁJr, Rf:Rlﬂﬁ+:ﬁ1mR+

Let wy be the highest weight, for the preceding order, of one of the irreducible components of the
representation (g, V_1+) w;y is a root of 'ﬁf and we will show that it is also the highest weight
of the representation (g, V") which is irreducible from (Hs). This will show that (gr, V;") is
irreducible. To do this we will show that if 3 € R* then w; + 3 ¢ R.

w

—w1 B ~
(1) If B € RY, then from the definition of w; we get [g ,g |={0}. Hence w; + 3 ¢ R.

(2) If B ¢ R, there exists a root a € Sy, such that o and 3 are not strongly orthogonal. We
will show that in that case there is a root v € S, such that

() y+feRandy—LF¢R.
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(2.1) If p(B) # 0, then a — 3 is not a root. If it would be the case, we would have

pla—B) = pla) = p(B) = Xo — p(B)

But p(8) # Ao as 8 € X1, s0 A\g — p(3) would be a root, and this is impossible as A is a simple

root in £, In this case the root o satisfies ().

(2.2) If p(B) = 0, consider the root fB-string through «. These roots are in S, and as «
and (3 are not strongly orthogonal, this string contains at least two roots. This implies that
there exists a root ~y verifying (x).

Therefore, from [3] (chap. 6, §1, Prop. 9) we obtain that (/3,7) < 0. As w; and ~ are strongly
orthogonal, we have (wy,7) = 0 (w; € R} and v € Sy,).

Now if wy + 8 is a root, we would have:

(w1 + B,7) = (w1,7) + (B,7) = (B,7) < 0.

Then wy + B + 7 is a root and (wy + 8+ 7)(Ho) = 4 (as wi1(Hy) = 2, B(Hy) = 0,7(Hp) = 2).
Hence wy + B is not a root.
This means that w; is a highest weight of (g, V*) which is irreducible from (Hz). Therefore

(gl,V_fr) is irreducible (and w; = w).

O

Set a; = aNg;. Then a; is a maximal split abelian subalgebra of g; included in g; (because the
actions of the maximal split abelian subalgebras can be diagonalized in all finite dimensional

representation).

Proposition 1.5.4.
1) The root system Sy of the pair (§1,a1) is

Si={AeS, ALNI={ e, AL A}

(where L means "orthogonal” and where AL means "strongly orthogonal”.)

2) Consider the order on > defined by
SP=3tn3,.
This order satisfies the properties of Theorem 1.2.1 for the graded algebra g, .
3) The set of simple roots I defined by if is given by:
I, = (TN U{AD}
where Ay is the unique root of ﬁ1 such that A\ (Hy — Hy,) = A\ (Hp) = 2.

Proof.

1) Let us first show that a root A € 3 is strongly orthogonal to A if and only if it is orthogonal
to )\0.

Let A € ¥ be a root orthogonal to \g. Let

)\—q)\o,...,/\—)\0,)\,)\+>\07...,)\+p)\0
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be the Ag-string of roots through A. From [3] (Chap. VI, §1, n°3, Prop. 9) one has p — q =

-2 ((/\);”\OO)) = 0. Hence p = ¢, and the string is symmetric.
a) If N(Hy) = 2, then as A+ Ao ¢ & (from (Hy)), we get A — Ao ¢ &
b) If \(Hy) = —2, then A\ — \g ¢ %, and the same proof shows that A + Ao ¢ 2.

¢) If \(Hy) = 0 then A\ € ¥. Recall that Il = ITU {\}. If A € T then A — A\g ¢ ¥, and
if A € 37 then A+ \g ¢ 3. Again the same proof shows that, respectively, A + \g ¢ 3 and
A— X &3,

In all cases we have showed that A\ AL \g.

For A € {A € &, AL A}, it is clear that §* € g1 = Z;(I), that Hy € a; = aN g and that
Al,, 18 a root of the pair (g1, a;). Conversely any root of the pair (gi,a:) can be extended to a
linear form on a by setting A(Hp) = 0, and this extension is a root orthogonal to A\, and hence

strongly orthogonal to Ay from above, and finally this extension is in S

2) The set £7 = ST NS, defines an order on . For A € £F one has A(H;) = A(Hy) = 0 or 2,
and this gives 2).

3) Let 11, be the set of simple roots in if From Theorem 1.2.1, II; = II; U {\} where
I, = {A € II;, \(Hy) = 0}. If X € 1IN, then A € I} and AN(Hy) = A(Hy) — A(Hy,) = 0.
Therefore 11 N'Y, C 1. Conversely let p € TI;. Then p € X*. Hence p can be written
p="> M, with m, € N. One has (11, A\g) = 0 and (v, \g) < 0 (because ITU {\o} = Il is a
set of simple roots). Therefore if m, # 0, one has (v, A\g) = 0, and hence v € 3. Finally we
have proved that II; = 1IN f]l.

O

Remark 1.5.5.
One may remark that II; C II, but ﬁl is not a subset of II. Indeed M (Hp) = 2, but there is
only one root A in II such that A(Hy) = 2, namely Ag. Hence \; ¢ II.

1.6. The descent.

Theorem 1.6.1.
There exists a unique sequence of strongly orthogonal roots in i*\ZJ“, denoted by Mg, A1y. .., A
and a sequence of reductive Lie algebras g D g1 D ++- D gr such that

(1) g; = ZE(TO LD --- @A[;-_l) where I, = g~ & [a=, g @ g is the subalgebra generated
by g~ and g

(2) The algebra g; is a graded Lie algebra verifying the hypothesis (Hq) and (Hg) with the
grading element Hy = Ho — Hy, — -+ — H),_,.

B)YVrNZheha --al) = {0}
Proof. The proof is done by induction on j, starting from Proposition 1.5.4, and using the fact

that g; is the centralizer oij_l in g;_;. It is worth noting that the construction stops for the
index k such that V*NZg, (I,) = {0}, which amounts to saying that Zy+ (ly® L &---®1,) = {0}.
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O

Definition 1.6.2. The number k + 1 of strongly orthogonal roots appearing in the preceding
Theorem will be called the rank of the graded algebra g.

Notation 1.6.3. Everything above also applies to the graded algebra g; = Vi @g; @ Vj+
which is graded by H; = Hy — Hy, —--- — Hy,_,. The algebra a; = aNg; is a maximal split
abelian subalgebra of g; contained in g;. The set ij of roots of the pair (g;, a;) is the set of
roots in & which are strongly orthogonal to Ag, A1,...,A;—1. We put an order on ij by setting
f);r =3t N ij. The corresponding set of simple roots ﬁj is given by ﬁj =11, U {\,;} where II;
is the set of simple roots of X; defined by X = ¥; N ¥* (where ¥; = ¥ N ;).

1.7. Generic elements in V' and maximal systems of long strongly orthogonal

roots.

We define now the groups we will use. If ¢ is a Lie algebra over F', we will denote by Aut(¥)
the group of automorphisms of . The map g — g ® 1 is an injective homomorphism from
Aut(®) in Aut(¢ ®p F) = Aut(€). This allows to consider Aut(€) as a subgroup of Aut ().
From now on € will be reductive.

We will denote by Aut,(£) the subgroup of elementary automorphisms of ¢, that is the automor-

42 where ad(x) is nilpotent

phisms which are finite products of automorphisms of the form e*
in £. If g € Aut,(£), then g fixes pointwise the elements of the center of € and therefore Aut,(£)
can be identified with Aut.([¢, €]).

Let us set Auto(€) = Aut(€) N Aut,.(€). The elements of Auty(€) are the automorphisms of &
which become elementary after extension from F to F. Again Auty(€) can be identified with

Auto([¢,€]). Finally we have the following inclusions:
Aut.(€) C Autg(t) C Aut([¢, €]) C Aut(f).

From [4] (Chap. VIII, §8, n°4, Corollaire de la Proposition 6, p.145), Auty(#) is open and
closed in Aut([t, €]), and Aut([¢,€]) is closed in End([¢, €]) for the Zariski topology ([4], Chap.
VIII, §5, n°4, Prop. 8 p.111), therefore Autg(€) is an algebraic group. As Autg(£) is open in
Aut([t, €]), its Lie algebra is the same as the Lie algebra of Aut(), namely [€, ¢]. We know also
that Auty() = Aut,() is the connected component of the neutral element of Aut([€ €]) ([4],
Chap. VIILS§5, n°5, Prop. 11, p. 113).

The group G we consider here is the following (this group was first introduced by Iris Muller
in [15] and [14]):
o G = Zpu(Ho) = {g € Auto(g), g.Hy = Hy} is the centralizer of Hy in Auty(g).
The Lie algebra of G is then Zgg(Ho) =gN (g, 9] = [g,9]+ [V, V7] D FH, ® [g,g].
As the elements of G fix Hy, we obtain that V* (which is the eigenspace of ad Hy for the

eigenvalue 2) is stable under the action of G. Of course the same is true for V.

The representation (G, V1) is a prehomogeneous vector space, or more precisely it is an F-form

of a prehomogeneous vector space. This means just that this representation has a Zariski-open
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orbit. In fact G can be viewed as the F-points of an algebraic group (also noted G). Then if
G = G(F) stands for the points over F of G, (G, V+) is a prehomogeneous vector space from a
well known result of Vinberg ([30]). As F' is algebraically closed, this prehomogeneous vector
space has of course only one open orbit. It is well known that then the representation (G, V™)
has only a finite number of open orbits. This is a consequence of a result of Serre (see [25],
p.469, or [12], p. 1).

One has G(F) = Z Auto@® (H0) = Z.5)(Ho)- (Because over an algebraically closed field one

has Aut.(g) = Auto(g)). Moreover, as we mentioned before, Auty(g) and Auty(g) are closed

and are the connected components of the neutral element in Aut(g) and Aut(g) respectively
(for the Zariski topology of End([g,g]) and End([g, g]).

The Lie subalgebra t = F'Hj is algebraic. Let us denote by 7' the corresponding one dimensional
torus. Then as G(F) = Z s uo ) (Ho) = Zpu,5 (1), we obtain that G(F) is connected ([11]
Theorem 22.3 p.140).

Definition 1.7.1. An element X € V7T is called generic if it satisfies one of the following
equivalent conditions:

(i) The G-orbit of X in V' is open.

(i7) ad(X) : g — VT is surjective.

Lemma 1.7.2.
Let X € V. If there exists Y € V'~ such that (Y, Hy, X) is an sly-triple, then X is generic in
V.
Proof. For v € V' one has 2v = [Hyp,v] = ad([Y, X])v = —ad(X)ad(Y)v. Hence ad(X) is
surjective from g onto V.

O

Note: Although, in the preceding proof we used the commutativity of V', the result is in fact
true for any Z-graded algebra.

For i =0,...,k, let us choose once and for all X; € g* and Y; € g~*, such that (V;, H,, X;) is
an sly-triple. This is always possible (see for example [28], Corollary of Lemma 6, p.6, or [27],
Proposition 3.1.9 p.23)

Lemma 1.7.3.

The element X}, is generic in V,'.

Proof. The Lie algebra gy is graded by Hy = Hy — Hy, — - - — H,,_, and not by H,,, therefore
we cannot use Lemma 1.7.2.

We will show that ad(X}) : g — V' is surjective (Cf. definition 1.7.1). Let A be a root such
that g* C V" and let z € g*. Then

ad(Xy)ad(Yy)z = —ad(Hg)z = —A(Hg)z.

As ad(Yy)z € gk, it is enough to show that A(Hg) # 0. If A = Ag, then of course A\(Hy) = 2.
If A\ # Ay and AM(Hg) = 0, then A L g, and hence AL\, by Proposition 1.5.4 1). Then
ghcvtn ZE(TO OL® - ®1,) = {0}. Contradiction.
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Lemma 1.7.4.
If X s generic in V;*, then Xo+ X1+ -+ X;_1 + X is generic in V7.

Proof. By induction we must just prove the Lemma for j = 1. Let X be be generic in V;". We
will prove that [g, Xy + X] = V.

e One has [g1, Xo + X] = [g1, X] = V;", from the definition of g; and because X is generic in
v

o If z € g%, then [Yy,z] € g N1y and hence [Yp, 2] commutes with X € V;©. But then
ad(Xo + X)[Y0, 2] = ad(Xo)[Yo, 2] = [—Ho, 2] = —2z.

o If 2 € g with A\ # \g and 2z ¢ V", then u = A — \g is a root (as \ is not strongly orthogonal
to Ag) which is positive, hence in X1 (because A = A\g + ... ). Therefore u — Ay is not a root.
As p1+ Ao is a root, one has (u, A\g) < 0 (see [3] (Chap. VI, §1, n°3, Prop. 9)).

Suppose first that [g#, V;*] # {0}. Then there exists a root v € %T such §” C V;* and
i+ v € 5T, One would have (1 + v, M) = (1, Ag) < 0. Hence pu + v+ Ag would be a root, such
that

(1 + v+ Xo)(Ho) = p(Ho) + v(Ho) + Ao(Ho) =0+242 =14

and this is impossible from the hypothesis (Hy)
Therefore [g#, V;"] = {0} and then, as U = ad(Yp)z € g*, we have ad(X, + X)U = ad(X,)U =
ad(Xyp) ad(Yp)z = —ad(Hp)z = —2z.

O

The two preceding results imply:

Proposition 1.7.5. An element of the form Xo + X; + -+ + Xy, where X; € g \ {0}, is

generic in V7.

Proposition 1.7.6.

For j =0,...,k let us denote by W; the weyl group of the pair (g;,a;) (hence W = W,). Let
w; be the unique element of W; such that w;(X]) = 7. Then w;(A;) = A° and the roots ),
are long roots in .

Proof.
One has wy € Wy C Zau. 5)(Ho) C G = Zauto ) (Ho). Hence

wo(Ao)(Ho) = Ao(wo(Ho)) = Ao(Ho) = 2.

On the other hand, from Corollary 1.2.2, one has \g — A ¢ S for A € ©t. Therefore wo(No) —
wo(A) ¢ . But wo(A) takes all values in —XT when A varies in $*. Therefore wg(Ao) + A ¢ &
if A\ € ¥T. Proposition 1.4.1 implies then that wy(Ag) = A\°. It is easy to see that A° is also
the highest root of the root systems f]j. As \; is the analogue of )¢ in g;, we obtain that
w;(Aj) = A% As the highest root \° is a long root (see [3], Chap. VIL§1 n°1, Proposition 25
p.165), the roots A; are all long.

O
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Proposition 1.7.7.

(1) The set Ao, ..., A\, is a mazimal system of strongly orthogonal long roots in S+ \ X

(2) If Bo, - - ., Bm 1s another maximal system of strongly orthogonal long roots in S+ \ XF then
m =k and there exists w € W such that w(B;) = \j for j=0,..., k.

Proof. The following proof is adapted from Théoréme 2.12 in [18] which concerns the complex
case.

(1) We have already seen that the roots A; are long and strongly orthogonal. Suppose that
there exists a long root \giwhich is strongly orthogonal to each root A; (j =0,...,%). Then
3¥+1 would be included in Zy+(lp B G & -+ & 1)) = {0} (Theorem 1.6.1). Contradiction.

(2) Set @ = {y € £ |7 — By ¢ £}. Let us show that ® is a parabolic subset of ¥.

- We first show that ® is a closed subset. Let 7,72 € ® such that v4 + v, € ¥. Then
g7, 9] # {0}. Let X, € g\ {0} (¢ = 1,2) such that X, 4., = [X,,,X,,] # 0. The Jacobi
identity implies that [ X, +,,, X_g,] = 0. Hence v + 72 — o ¢ ®. And hence @ is closed.

- It remains to show that ® U (—®) = X. If this is not the case, it exists 79 € ¥ such that
Yo — Bo € Y and Yo+ Bo € . Therefore the Bo-string of roots through 7y can be written:

Yo — Bo, Y0, Y0 + Po

(remember that V* are commutative). From [3](chap. VI, §1, n°3, Corollaire de la proposition
9 p.149) one has

n(% — Bo, 50) =2 (*)

But from [3] (Chap. VI, p.148) this is only possible, as (3, is long, if 79 — Sy = —fp, in other
words if 79 = 0. Contradiction. Hence ® is parabolic in ¥
Then ([3], Chap. VI, §1, n°7, Prop. 20, p.161) there exists a basis II' of ¥ such that II' C ®.
Hence it exists wg € W such that wo(I') = II. Then wy(5o)(Ho) = Po(wo(Ho)) = Bo(Ho) = 2.
One also has A — wy(B) ¢ 2 for A € £+, If one would have A — wy(fy) € 3, then as A = woN
(with X" positive for II'), then w(\') — wo(By) € 53, and hence N — B, € %, this is impossible
from the definition of ®. But we know from Corollary 1.2.2 that these properties characterize
Ao- Hence wo(By) = Ao.
Suppose first & = 0. In this case the set A\g = wo(Bo), wo(S1), ..., wo(Bm) is a set of strongly
orthogonal roots. Hence wy(fy), ..., wo(Bm) € Zv+(l) = {0} This means that if k = 0 then
m = 0 and the assertion (2) is proved in that case.
The general case goes by induction on k. Suppose that the result is true when the rank of
the graded algebra is < k. In view of the above, there exists wy € W such that wy(8y) = Ao.
Then wy(B1), ..., w(Bm) is a maximal system of strongly orthogonal long roots in if \ 3. As
the graded algebra g; is of rank & — 1, we have m = k by induction and there exists w, € W,
(W1 € W is the Weyl group of 3) such that wq(wo(5;)) = A; for ¢ = 1,..., k. The assertion
(2) is then proved with w = wow.

U

Corollary 1.7.8. (see [14] Lemme 2.1. p. 166, for the regular case defined below)
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Let Mg, A1, ..., A\ be the maximal system of strongly orthogonal long roots obtained from the
descent. Let Hy,, Hy,, ..., Hy, be the corresponding co-roots. For i = 0,...,k we denote by
GHAi the stabilizer of Hy, in G. Then we have :

G = Aute(g).(m Gu, ).

Proof.
Let g € G. The elements ¢g.H,, belong to a maximal split torus a’. As the maximal split tori
of g are conjugated under Aut.(g) C G ([28], Theorem 2, page 27, or [27|, Theorem 3.1.16
p. 27) there exists h € Aut.(g) such that hg(a) = a, hence hg € Aut(g,a), the group of
automorphisms of g stabilizing a. But then hg acts on 5 and hg(Xo), ..., hg(Ag) is a sequence
of strongly orthogonal long roots in S+ \ ©*. From the preceding proposition 1.7.7 , there
exists w € W C Aut.(g) such that whg(\;) = A\;. Hence whg € ﬂfzo G, . It follows that
g =h"'wtwhg € Aut.(g).(NL, Gh,,)-

0

Definition 1.7.9. We set:
o’ =@ _(FH,, Ca
and
k
L= Zg(a") = (G,
i=0
Hence, from the preceding Corollary, we have G = Aut.(g).L.

Remark 1.7.10. Let j € {0,...,k}. Let us denote by G, the analogue of the group G for the
Lie algebra g; (hence Gy = G). As G; = Aut.(§; ® F) C Aut.(g ® F), any element g of G}
extends to an elementary automorphism of g ® F, which we denote by ext(g) and which acts

trivially on @i:ﬁs. Therefore ext(g) centralizes Hy and one has:
Aute(g]) C G] C ?J C a - ZAu‘@(@@F) (HO)

However, it may happen that, for ¢ € G}, the automorphism ext(g) does not stabilize g and
then ext(g) does not define an automorphism of g. For example (see the proof of Theorem

. I, 0 .
3.8.9), when g is the symplectic algebra sp(2n, F'), graded by Hy = 0 g ) where I, is

n

0
the identity matrix of size n, the group G is the group of elements Ad(g) for g = ( i - )
Hg
where g € GL(n, F) and 1 € F* and where G}, as a subgroup of G, is the subgroups of elements
of the form Ad(g;) where

g 0

0
0 I

’ 0 plegrt 0
0 I;

with g; € GL(n — 3, F) and p € F*.

This shows that G; is not always included in G.



LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (I) 19

Definition 1.7.11. A reductive graded Lie algebra g which verifies condition (Hy) and (Haz)

1s called regular if furthermore it satisfies:

(H3) There exist IT € V™ and I~ € V™ such that (I7, Ho, I') is an sly-triple.

Proposition 1.7.12.
In a regular graded Lie algebra g, an element X € V't is generic if and only if it existsY € V—,
such that (Y, Hy, X) is an sly-triple. Moreover, for a fixed generic element X | the element Y

1S unique.

Proof. If X can be put in such an sl,-triple, then X is generic in V' from Lemma 1.7.2.

Conversely, if X is generic in VT, then ad(X) : g — V™ is surjective (cf. Definition 1.7.1),
hence ad(X) : § — VT is also surjective, therefore the G-orbit of X in V+ is open and
X is generic in V+. But there is only one open orbit in V+. Therefore X is in the G-
orbit of IT (Definition 1.7.11). Hence there exists ¢ € G such that g.I* = X. But then
(9.17,9.Hy = Hp,g.I"™ = X) is an sly-triple. A standard tensor product argument (write
g.I7 =Y under the form Y = 3" | a;Y;, with a; = 1, ay, . .., a, elements of F free over sur F,
Y; € V7), shows that Y € V~. Uniqueness is classical,([4], Chap VII, §11, n°1, Lemme 1). O

From now on we will always suppose that the graded Lie algebra (g, Hy) is regular.

1.8. Structure of the regular graded Lie algebra (g, Hy).

Let Ag, A1, ..., A\x be the sequence of strongly orthogonal roots defined in Theorem 1.6.1. Let
Hy,, Hy,, ..., Hy, be the sequence of the corresponding co-roots.
Remember that we have defined:
Fori,j € {0,1,...,k} and p,q € Z we define the subspaces E; ;(p,q) of g by setting:
pX ifl=1i;
Eijpg)=qX €0 | [H\, X]=S¢X ifl=j;
0 if ¢ {i,5}.

Theorem 1.8.1.
If (g, Hy) is regular then

Hy=H),+ H\, +---+ H,,.
Moreover one has the following decompositions:
(1) 9= 24(a") @ (Dir; Ei5(1,-1))
(2) V= (28Y) ® (@i Eis(1,1)) ;
3) V= (g ™) @ (®ic;Bij(—1,-1)) .
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Proof. For j = {0,1,...,k}, we choose X; € g% \ {0}. From Proposition 1.7.5 the element
X = Xo+ X1+ -+ X} is generic. Therefore X can be put in an sl,-triple of the form (Y, Hy, X)
with Y € V= (Proposition 1.7.12). We choose also X_; € g~% such that (X_;, H,,, X;) is an
slo-triple, and we set Y/ = X_ o+ X_1 +--- + X _,.

Then (Y', H), + H\, +---+ H,,, X) is again an sly-triple. On the other hand

ad(X)2: V- — vt

is injective and as ad(X)?Y = 2X = ad(X)?Y’, we obtain that Y = Y’. But then Hy, =
ad(X)Y =ad(X)Y' = H), + Hy, +---+ H,,. The first assertion is proved.

Let now X be an element of an eigenspace of ad(a), i.e. either an element of a root space of g
or an element of the centralizer m of a in g (cf. Remark 1.2.3). The representation theory of
sly implies the existence, for all j = 0,1,...,k, of an integer p; € Z such that [H),, X| = p; X.
As Hy = Hy, + H\, +--- + H,, one has

2 it Xevt;
Po+pr+---+pr=10 if Xeg;
-2 fXeV .

Define w; = ¢ ¥ie2dX-icadX;

. Hence wj is the unique non trivial element of the Weyl group of
the Lie algebra isomorphic to sl; generated by the triple (X_j;, Hy,, X;). As the A; are strongly

orthogonal the elements w; commute and

H,, fori+#j ;
wj.H,\l. = A 7& J
—H,, fori=j.
Let J C {po,p1,---,pr} be the subset of i’s such that p; < 0. If we set w = [[,., w;, one obtains
that the sequence of eigenvalues of Hy, on wX is |po|, |p1], . . ., [px|. Hence [po|+|p1|+---+[px| =
0 or 2.

The case |po| + [p1]| + -+ + |pr| = 0 occurs if and only if X € Z(a®).

If |po| + |p1| + - -+ + |pk| = 2 then all p; are zero, except for one which takes the value £2, or
for two among them which take the value +1.

In the first case or if the two nonzero p;’s are equal then X € V* or X € V~. Otherwise one
p; equals 1 and the other —1, and then X € g.

To obtain the announced decompositions it remains to prove that
E;;(0,2) = ﬁAj and E; ;(0,-2) = ﬁ_’\f fori#£j .

A root space goccurs in F; ;(0,2) if \(H;) = 2 and A(H,) = 0 for £ # j, and this means that
AL XNif0# 5. As (A4 N)(Hp) = 4, A+ A\¢ is not a root. If X — A is a root then (A, A\g) # 0
([3] (Chap. VI, §1, n°3, Prop. 9)). Hence AL\, for ¢ # j and [g*,g*"] = 0 for £ # j. In
particular g* € ZE(YU LD - @Tj_l), and hence \ € f]j. As X > 0, one has \ € ij But ),
is a simple root in E;r, and therefore A — )A; is not a root. If A # A;, the equality A(Hy,;) = 2
would imply that A — ); is a root. Hence A = \; and F; ;(0,2) = g%. The same proof shows
that E; (0, —2) = g~.
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Corollary 1.8.2.
Let \ € 3. Then for 7 =0,1,... k, one has :

)\_L>\]<:>/\JL)\]

Proof.

Let A L A;.

If A\(Hy) = 2, then A+ \; is not a root, and if A — ); is a root one would have (A, \;) # 0, see
[3] (Chap. VI, §1, n°3, Prop. 9)). Therefore A 1L \;.

If A\(Hy) = —2, the same proof shows that A 1L \;.

If A(Hp) = 0, then either g* C Z4(a°) or g* C E,4(1,—1) for r # j, s # j.

a) If g* C Z4(a”), then (A\+X;)(H,,) = 2 and if A+ ); is a root the preceding Theorem 1.8.1
says that A+ \; = A;, this is not possible. Hence A + A; is not a root , and the same argument
as before shows that A AL \g.

b) If g* C E,4(1,—1) and if A+ ); is a root, then (A + X;)(Hy,) = 2, (A + X\;)(H),) = 1,
and (A + \;)(H,,) = —1, which is impossible. Again the same argument as before shows that
AL ). O

Remark 1.8.3. The decomposition of g using the subspaces E; ;(p, ¢) will be more useful that
the root spaces decomposition. The bracket between two such spaces can be easily computed

¢

using the Jacobi identity. We will also show that this decomposition is also a “root space de-

composition “ with respect to another system of roots than 5 (see Remark 4.1.7 and Proposition
4.1.8).

The first part of Therorem 1.8.1 shows that the grading of g; is defined by Hj, +---+ H),. By
setting I = X+ + X, 7 = X_; + -+ 4+ X_;, where the elements X, € g** are chosen
such that (X_,, Hy,, X;) is an sly-triple, one obtains an sly-triple (I;7, Hy, + -+ + H,\k,[;r).

Theorem 1.6.1 implies then the following decomposition of g;.

Corollary 1.8.4.
For j =0,...,k, the graded algebra (g;, Hy;, + --- + H.y,) satisfies the hypothesis (Hy), (Hz)

and (Hs). One also has the following decompositions:

(1) g5 = (Zw(ao) mﬁj) ® <@T#S;j§r;j§SEﬂ8(17 _1>) ,
(2) V}+ = <@§:j§>\s> ©® (®j§r<sEr,s(17 1)) ;

3) V7= (8Ld) @ (®icr<Bra(-1.-1)) .

One can also extend the preceding decomposition to a subset A which is different from {j, j +
L.k}

Corollary 1.8.5.
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Let A be a non empty subset of {0,1,...,k}. Define Hy = ZjeA H), and set:

ga={X €g|[Ha X]=0};
Vi={XeV*t|[HsX]=2X};
Vi ={X eVt |[Hy X]=-2X}

Then the graded algebra (ga =V @ ga ® Vi, Ha) satisfies (Hy), (Hz) and (Hs).

Proof. Note that if A°is the complementary set of A in {0,1,...,k} and if Hye = ZjeAC Hy,,
then g4 = Zz(Hac). This implies that ga is reductive ([4],chap.VIIL, §1, n°5, Prop.13). The
hypothesis (Hy) is then clearly verified. The regularity condition (Hg) can be proved the same
way as for g;.

It remains to show (Hs), that is that the representation (g A,V_X) (or (ga, V_X)) is irreducible.
Let U be a subspace of V_X which is invariant by g4. From Theorem 1.8.1 the algebra g

decomposes as follows:
g=o(-)@gado(l),

where g(—1) = ®i¢ajeali;(1, —1) and g(1) = @icajgals;j(1,—1). Remark also that g(—1) =
{Xe€g,[Ha, X|=—X}and g(1) ={X € g, [Ha, X] = X}.
Note also that U is included in the eigenspace of ad(H 4) for the eigenvalue 2.

e U; = [g(—1),U] is then included in the eigenspace of ad(H ) for the eigenvalue 1.

e Uy = [g(—1), U] is then included in the eigenspace of ad(H ) for the eigenvalue 0.

e One also has [g(1), U] = {0}.
We will now show that Uy @ U; ® U is g-invariant in V.

a) One has : [ga,U] C U, [g(1),U] = {0}, [g(—1),U] = U;. Hence [g, U] C U, ® U.

One also shows easily that:
b) [Q,Ul] C Uo@Ul @U,

¢)lg,Ug) cUpd U, U.
Therefore, using the hypothesis (Hg) for g, Uy @ U; @ U = V*. But U is contained in the
eigenspace of ad(H,) for the eigenvalue 2, namely V_A+, and U; (resp. Up) corresponds to the
eigenvalue 1 (resp. 2). This implies U = V_j.
O

Remark 1.8.6. Define A; = {j,j +1,...,k}. Then the reductive algebras g; and gy, are
graded by the same element Hy, + ---+ H,,. But these algebras are not equal. The obvious

inclusion g; C gy, is strict as Hy, € g, \ g;. More precisely one has
Vf—l‘; = aAj ﬂv+ = <@§:j§/\s> S <@j§r<sEr,s(1, 1)> — V}"— :
gAj - Zg(aO) @ <@T;ﬁs;j§r;j§5E7«7s(1, _1)) & (@T?fs;r<j§8<jEr,s(1a _1)>

Dstrict §j = Z9(a”) Ng; & <@r¢s;j§r;szEr,s(17 -1)) .
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Proposition 1.8.7.
The Lie algebra & =V~ & V=, VT @ VT generated by V't and V'~ is a reqular graded algebra

which is an absolutely simple ideal of g.

Proof. As g is regular, the element Hy € [V, V7], hence (Hy) is satisfied. The hypothesis
(Hs3) holds also clearly.

One easily verifies that & is an ideal of §. Therefore [V—, V] is the only part of g which acts
effectively on V. Therefore the representation ([V =,V '], V) is absolutely simple. In other
words (Hy) is true.

The fact that & is simple is then a consequence of Lemma 1.5.1.

O

Remark 1.8.8. From the preceding Proposition 1.8.7, we obtain that § = & @& &’ where the
subalgebra & = V- @[V =, V] @ V1 is an abolutely simple graded Lie algebra and where &' is
the orthogonal of & in § with respect to the form B. Moreover, the subalgebra & is an ideal of
g and hence &' is an ideal of § too. Therefore, if X € &' is nilpotent over an algebraic closure
of F, then 24X acts trivially on &.

Hence, in order to classify the orbites of G in VT, one can suppose that g is simple.

1.9. Properties of the spaces E; ;(p, q).

Proposition 1.9.1.
Let X € ¥ such that g* C E; ;(1,—1). Then X is positive if and only if i > j.

Proof. Let A € ¥ such that A\(Hy,) = 1 and A\(H);) = —1. From Theorem 1.8.1, A(H),) = 0 if
s# 1 and s # j.

If i > j, then A L A\; for s < j. But by Corollary 1.8.2, one has A 1L )\,, for s < 5. Hence
S ij. But as (A, A;) < 0 (AM(Hy;) = —1), A+ ); is a root. We have also A LA for s < j
and A; 1L, for s < j. Hence A+ )\, € f]j. As A e ¥, and as \; € ﬁj \ II; (Notation 1.6.3),we
obtain that X\ € ¥. But then X € ¥*.

Conversely suppose that A € ¥ and g* C E;;(1,—1) with i < j. Then g™ € F;;(1,-1), and
from above —\ € X*, hence A € X~. Hence if A is positive and g* € F; (1, —1), theni > j. O

We will denote by W and W the Weyl groups of 3 and 3], respectively. W is the subgroup of
w generated by the reflections with respect to the roots in ¥. In particular Hj is fixed by each

element of W.

Proposition 1.9.2.
Let sqg be the unique element of W sending X% on ¥~. Then

80.)\j :/\k—j fOT’j:O,]_,...JC .
Moreover the roots \; and \; are conjugated under W for all i and j in {0,1,..., k}.

Proof. Let us first prove that sq.\g = Ag.
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Recall (Corollary 1.2.2) that the root \g is the unique root in S such that

[ )\0(H0) = 2 )

(1) _
e AEXt=)\-r¢&%.

Therefore the root = sg.)\g is characterized by the properties:

e u(Hy) =2 (since sg.Hy = 2);

(2) -
o NeXT = pu+ ¢ (since 50.57 =%7).

From Proposition 1.4.1 (and its proof) we know that sq.)\g is the root A° which is the restriction
to a of the highest weight w of g on V*. From the proof of Proposition 1.5.3 we know also that
w is the highest weight of g; on V_ﬁ, and by induction w will be the highest weight of g, on
V_,:r. Hence w), is a root of 5, which is strongly orthogonal to Ag, A1,..., Ax_1. From Theorem

1.8.1, there is only one root having this property, namely \;. Hence A\ = s5.\g = .

We will now prove that sg.A\;1 = \,_1. We first decide to take Sg.§+ as the set of positive roots in
3. The corresponding base will be so.ﬁ. We have s9.X7 = X~ = —X7*. As Hy is fixed by W, the
elements A € so.11 still verify A(Hy) = 0 or 2 (condition (1) in Theorem 1.2.1). We apply now
all we did before and we obtain by ”descent” a sequence g, fi1, - - ., g of strongly orthogonal

roots. The root g is the unique root in sq.I1, such that po(Hp) = 2. Hence pg = S9.\g = Ag.

Now we will prove that sg.A\;1 = Ap_1. The centralizer of Tk verifies again (Hy) and (Hz) and

we will apply the preceding results to Z;([;). Corollary 1.2.2 applied to this graded algebra

implies that the root pu; is characterized by

o i (Hy)=2;
(3) qeo LA
e deXtand AN\, = +A ¢ 3.
The same Corollary applied to the graded algebra g; iimplies that the root \; is characterized
by
e \(Hp)=2;
e A\l
e deXTand AL =\ —-A¢&3%.

As 50.X7 = X7 and sg.\g = A\, we get ;= Sg. 1.

On the other hand the root A\;_; appears in V' and is strongly orthogonal to A\,. Let A € ¥
be a root strongly orthogonal to Ag. If A(H,,_,) = 0, then A is strongly orthogonal to A;_;
from Corollary 1.8.2. Hence A + A,_; is not a root. If A\(H,, ,) # 0, then by Proposition 1.9.1
there exists j < k — 1 such that g* C Ej_1,(1,—1). As (A + X\e—1)(Hy,_,) = 3, A+ M\p—1 is not
a root. This shows that \,_; verifies the properties (3). Hence \;,_1 = 1 = Sg.\1.

The first assertion is then proved by induction on j.

For the second assertion one applies the preceding result to the graded algebras g; and g; where

A; and A; play the role of \g. There exists an element s; € W; (W} is the Weyl group of (g;, a;))
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such that s;.\; = A\; and an element s; € W such that s;.\; = A\;. As W; and W; are subgroups
of W, s = sj’lsl- is an element of W which verifies 5.\, = ;.
O

Proposition 1.9.3.

(1) For j =0, ...,k the root spaces g™ have the same dimension.

(2) More generally the Lie algebras [; = § @ [g7, 34 @ g~ are two by two conjugated by G.
(3) Fori # j, the spaces E; j(1,1), E; j(—1,—1) and E; ;(1, —1) have the same dimension. This

dimension is non zero and independant of the pair {i,5} € {0,1... k}?.

Proof. (1) From Proposition 1.9.2 there exists an element s € W such that s.\; = A;. Let g be
an element of G such that g, = s. It is the easy to see that g.g% = gV . Therefore the vector
spaces g and gV are isomorphic.

(2) Let g € G be the preceding element. Then one has also ¢.g~> = §~». Hence g¢.I; :E.

(3) Fix a pair (,7) with i # j. We choose (X;,Y;) (resp. (X;,Y;)) in g~ x g% (resp. in
g~ x g%) such that(Y;, Hy,, X;) (resp. (Y}, Hy,, X;) is an sly-triple.

Then ad X; : E;;(—1,—-1) — E;;(1,—1) is an isomorphism whose inverse is -adY; (if v €
E; ;(—=1,—-1) then —adY;ad X;(u) = —[H),, u] + [X;, [Yi, u]] = u).

Similarly ad X : E; j(1,—1) — E; ;(1,1) is an isomorphism whose inverse is — ad Y.

This implies that the spaces E; j(£1,£1) are isomorphic when i and j are fixed.

In order to prove that the spaces E; ;(1,1) are isomorphic for distinct pairs (7, j) (with i # j),

we will use the elements of the Weyl group which permute the A;.

We prove first that E; ;(1,1) ~ Ej ;(1,1) for j < i < k (recall that k is the final index in the
descent). Proposition 1.9.2 applied to the graded algebra g; implies the existence of s; € W;
which permutes \; and A\;. The group W; is generated by the reflections defined by the roots
A strongly orthogonal to Ao, A1, ..., \i—1. As j <4, A; is invariant under W;. Hence

S; . E@j(l, 1) — Ek,j(la 1)
is an isomorphism. Indeed if u € E; ;(1,1) then [Hy, ,s;.u] = s;.[s; ' Hy,, u] = si.[Hy,, u] = s;.u
and [H),, s;.u] = s;.[s; ' Hy,,u] = s;.[Hy,,u] = s;u. Hence s;.E;;(1,1) C Ej;(1,1) and the

restriction of s; ' to Ej;(1,1) is the inverse.
Applying this to the triple 0 < k — j < k one obtains that
Sk—j : Ek—j,O(la 1) — Ek,O(L 1)

is an isomorphism.

One the other hand a similar proof (and Proposition 1.9.2) shows that
So - EkJ(l, 1) — Ek—j,O(L 1)

is an isomorphism.
This will imply that all the spaces E; ;(1,1) are isomorphic. Indeed let us start from E; ;(1,1)
and Ey (1,1) with j < ¢ and j' < 7'

From above we have the following isomorphisms:

Ei,j(]-7 1) ~ Ek,j(ly 1) ~ Ek—j,O(]-; ].) ~ Ek,0<]-7 ].) ~ Ek—j’,0(17 1) ~ Ek,j’(L 1) ~ Ei’,j’(la ].)
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It remains to prove that these spaces are not reduced to {0}.
If they were trivial, the spaces E; ;(£1, +1) would all be trivial and one would have the following

decompositions:
Vi=al_g% and g= Z4(a°).

But then g*® would be invariant under g. This is impossible by (Hs).

Notation 1.9.4. In the rest of the paper we will use the following notations:

(=dimgV for j =0,... k:
d= dlme(il, :|:1) for ¢ 7&] S {0, e ,k’}
e = dim g*)/2 for i £ j € {0,...,k} (e may be equal to 0).

From Theorem 1.8.1 giving the decomposition of dim V', we obtain the following relation
between, k, d and /.

Proposition 1.9.5.

dimV™* = (k+1) (€+%d) :

1.10. Normalization of the Killing form.

Let B be a non degenerate extension to § of the Killing form of [3,3]. As 3 = Z(3) ® [d, ]

where Z(g) is the center of g, we have

B(z1 +u, 20 + u') = k(z1, 22) + B(u,u’) for 21,20 € Z(g) and u,u’ € [g, g],

where B is the Killing form of [g, g] and x a non degenerate form on Z(g). We fix once and for

all such a form B.

Definition 1.10.1. For X and Y in g, we define the normalized Killing form by setting :

kAL
4 dimV+

A first consequence of this definition is the following Lemma.

bX,Y) = B(X,Y) .

Lemma 1.10.2.
For j € {0,...,k} one has b(H,,, Hy;) = —2. Moreover if (Y;, Hy,, X;) is an sly-triple such
that X; € g% and Y; € g7, then b(X;,Y;) = 1.

Proof. As the elements H), are conjugated (Proposition 1.9.2), as the roots \; are strongly
orthogonal, and as Hy = Hy), + H), +---+ H,, ( Theorem 1.8.1) one has:

- 1 =~ 1 dimV+
B(H,,, Hy,) = k—HB(HO,HO) =72 Ttrg(ad Hy)?* =38 Rt

And then from the definition of b, we obtain b(H,,, Hy;) = —2.
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On the other hand

- 1~

1~ dim V'
B(Y;, X;) = §B(Y;’7 [H);, X;]) = _§B<H)\j7H)\j) =—4

E+1 7

and hence b(Y}, X;) = 1.
U

Let A be a subset of {0,1,...,k}. Consider the graded algebra g4 defined in Corollary 1.8.5
which is graded by Hy = >
form ga (defined as b on g).

jea Hx;. We denote by ba a normalized nondegenerate bilinear

Lemma 1.10.3. Let &4 be the subalgebra of §a generated by V,© and V. If X and Y belong
to ga, then:
ba(X,Y)=b(X,Y) .

Proof. We know from Proposition 1.8.7 that G4 is absolutely simple. Then the dimension of
the space of invariant bilinear forms on & 4 is equal to 1 ( [5], Exercice 18 a) of §6). Hence the
restrictions of b and by to &4 are proportional. For j € A, X; € g% and Y; € g~ such that
(Y;, Hy,, X;) is an sly-triple, we have b4 (X;,Y;) = b(Xj;,Y;) = 1 ( Lemma 1.10.2).

O

1.11. The relative invariant A,.

Recall (§1.7) that the group we are interested in and which will act on V' is
G = Zauo@(Ho) = {g € Auto(g) , 9.-Ho = Ho}

Recall also that (G, V) is a prehomogeneous vector space. Let S be the complementary set of
the union of the open orbits in V.

Recall also the definition of a relative invariant:

Definition 1.11.1. A rational function R on V' is a relative invariant under G if there exists

a rational character x of G such that

R(g.X) = x(9)R(X) for allg € G and all X € VT \ S.

Remark 1.11.2. From the density of G in G = G(F) = ZAutO(E)(HO) = Zyu.(Ho) (81.7),
and from the density of V* in V+, the natural extension of R from V* to V*, is a relative

invariant of (G, V)

Lemma 1.11.3. Fort € F*, one has tldy+ € G|, . More precisely, we have tldy+ € L, .

Proof. Consider the subalgebra u ~ sly(F') generated by an sly-triple (Y, Hy, X) where X
is generic in V* Y € V. Consider also the group U = Autg(u). Extending the adjoint
representation from u to E, one sees that the group U can be injected into the group Auto(ﬁ).
On the other hand, one verifies easily that, for ¢ € F*, the map ¥, : g — ¢, defined by
U, (x) = tw, U(y) = t 1y, Uy(h) = h, for x € VT ,y € V-, h € g is an automorphism of g,
which stabilizes u and fixes Hy. From [4] (Chap. VIIIL,§5, n°3, Corollaire 2 de la Proposition



28 PASCALE HARINCK AND HUBERT RUBENTHALER

5, p.110), one has Auto(u) = Aut(u). Hence there exist nilpotent elements uy,us, ..., u, € u
such that W, = (e*"e™av2 . ¢*a™) . Note that these elements are also nilpotent in
§. Hypothesis (Hy) implies that the irreducible components of the u-module g are either
isomorphic to the trivial module (the isotypic component being Zg(X)), or isomorphic to the
adjoint representation, of dimension 3. In this last case the space of highest weight vectors is
V+. Let X' € V*, X’ # 0. The t-module W generated by X’ is therefore isomorphic to the
t-module &. Hence there exists an isomorphism « : # — 1/ such that o(X) = X’ and such that

d- u, eadﬁ Uy, . eadg u

— . . a
for all u € u, one has o adu = adu o a. Therefore « intertwines also e @ P

ao Wy = i R Y
Explicitly:
a oWy (X) = a(tX) = ta(X) = tX' = ™5™ 5" ™5™ 0 a(X)
T R R (xX7).
Hence for all X’ € V', we have shown that R R A (X)) =tX".
As 25" 2 MG ¢ Zauto(@(Ho) = G, we get tldy+ € G| . The same proof shows that

if (Y;, Hy,, X;) is an sly-triple such that X; € g% and Y; € g7, then

ad_u, ad_wu ad_ u _u, ad_u ad_ u
1 72 155 2

e s ..e 1 7(X),) =tX,, and e e T (Yy,) =t

1 adE Uy ad_u

And hence "5 e ...€ 8 "(Hy;) = Hy;. This implies that tIdy+ € L ..

Another proof:

Proof. Let us give another proof of the preceding Lemma, more explicit, but based on the same
idea which is to use sls.

Let again (Y, Hy, X) be an sly-triple with X generic in VY € V. For t € F* consider the
automorphism 6(t) € Aut.(g) defined by

9<t) — etadEXet_ladﬁyetadﬁX' <*)

Set then

h(t) = 6(t)0(—1). (%)
Recall that V' (resp. V', resp. g) is the space of weight vectors of weight 2 (resp. -2, resp. 0) of
g for the adjoint action of the algebra u ~ sly(F'). From [4] (Chap. VIII, §1, n°5, Prop. 6, p.75),
h(t>|v+ =
identity. Over F, we can consider v/t € F'. Then the automorphism h(v/?) belongs to Aut,(g)
and stabilizes § as h(v), . = tldy+, h(Vt),,_ = t7'Idy-, h(V1), = Idg. The preceding
relations () and (%), (for #(v/t)and h(y/t)), imply then that the automorphism h(+/f) belongs
to Zautg) (Ho) = G. The same argument as in the first proof shows that tIdy+ € L. .

is scalar multiplication by ¢*, h(t); _ is scalar multiplication by ¢t~%, and h(t)|, is the

O

Theorem 1.11.4.
(1) There exists on V't a unique (up to scalar multiplication) relative invariant polynomial A

which is absolutely irreducible (i.e. irreducible as a polynomial on V).
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(2) Any relative invariant on V' is (up to scalar multiplication) a power of Ay.
(3) An element X € VT is generic if and only if Ao(X) # 0.

Proof. We begin by constructing a non trivial relative invariant P of (G,V™). We choose a
base of V' and a base of V', for example the dual base if we identify V'~ and (V*)* by using
the form b. One can then define a determinant for all linear map from V'~ into V. Consider
the following linear map:

(ad X)*: V- — VT,
Set, for all X € V:

P(X) = det(ad X)2.
We have, for g € G-

P(g9.X) = det(ad(g.X))?) = det(g.(ad X)*¢ "
= det(g) det(g") det(ad X)* = det(g)* P(X)

V+
If X is generic, it can be put in an sly-triple (Y, Hyp, X) (Y € V™), and then (ad X)? is an
isomorphism between V'~ and V. Hence P # 0. By Lemma 1.11.3, tIdy+ € G. Therefore the

character of P is non trivial, hence P is non constant.

+). Then
V+) which

is an irreducible polynomial and any other relative invariant is of the form c.Ay* (m € Z).

By Remark 1.11.2, the natural extension of P to V* is a relative invariant of (G

)
)

(by [26], Proposition 12, p. 64), there exists a non trivial relative invariant A of (G

We will need the following Lemma.
Lemma 1.11.5. There exists « € F such that al\g takes values in F on V.

Proof of the Lemma: Let G = Gal(ﬁ, F') be the Galois group of Fover F. Let 0 € G. Then o
acts on G and fixes each point of G. It acts also on V+ and fixes V. Then ¢ acts on Ay by
AS(z) = o(Ao(0~tx)). The action on characters of G is similarly defined. The polynomial Ag
is still irreducible. Let now G act on Ag.

Let xo be the character of A (it is a character of G for the moment). Let x € V+* and g € G.
One has:

A3(g.2) = o(Bo(o(g:2))) = o (Aol (g).0~1(2))) = olx0(o (9))o(Bo(o (x)))

= x§(g)AZ(z). Hence AJ is an irreducible relative invariant of (G, V), with character x§. As

this representation is irreducible ((Hg)), there exists ¢, € F such that
Af = crAy.

Let 2 be a generic element of V1, this implies that Ag(zg) # 0. Define v = m. Then
Af(zo) _ 0(Ao(z0)

CO': = =

Ao(z0) Ao(z0) o(a)

For x € V' one has:

o(a)Af(z) = o(a)csAg(x) = (o) ——Ap(x) = alo(z).
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As z € V', this can also be written:
Vo € G, o(aly(z)) = aly(x)

One knows that the fixed points of G in F are exactly the points in F. Hence for all z € VT,
one has aAg(x) € V*.

The Lemma is proved.

From now on we will denote by Ag the modified relative invariant of Lemma 1.11.5 which takes
it values in F on V',

Let P be a relative invariant of (G, V*). Its extension P to VT is a relative invariant of (G, V)
(use the density of G in G and of V* in V+). Hence it exists a € F and m € Z such that
P = aAl'. As P(x) = alo(x)™ for a generic point  in V* and as Ag(V*+) C F, one get that
acF.

Hence assertions 1) and 2) are proved.

One knows that X € V' is generic if and only if there exists an sly-triple (Y, Hy, X) (Y € V™)
(Proposition 1.7.12). In that case P(X) # 0 where P is the relative invariant defined at the
beginning of the proof. Hence Ag(X) # 0. Conversely if Ag(X) # 0 for X € VT, then
P(X) # 0, and therefore (ad X)? : V= — V7 is an isomorphism. Hence V* = Im(ad X),),
and X is generic.

Assertion 3) is now proved.

1.12. The case k = 0.

Recall that the case k = 0 corresponds to the graded algebra

h=g™elg™g"eg"
This algebra is an absolutely simple algebra of split rank 1 and it satisfies hypothesis (Hj)
and (Hsz) (Proposition 1.5.2). As this algebra is graded by H,, and as there exist X € gt
and Y € g~ such that (Y, Hy,, X) is an sly-triple ([28], Corollaire du Lemme 6, p.6, or [27],
Proposition 3.1.9 p.23), this algebra [, satisfies also (Hs).

Lemma 1.12.1.

The absolutely simple Lie algebras of split rank 1 graded by Hy (X being the unique restricted
root) and which satisfy (Hy), (Hz) and (Hg) (this last condition is automatically satisfied) have
the following Satake-Tits diagrams (d € N*):

A25—1 o —O ._©_. ..... o—eo 'B2 — 02 @i.

Proof. The proof is a consequence of a careful reading of the tables of Tits ([29]). It can also
be extracted from the recent work of T. Schoeneberg ([27]). For the convenience of the reader,
we give some guidelines in connection with this last paper:

- The fact that there exist no diagram of type Go, Fy, Fg (inner forms), Eg (outer forms), Er,

Es, Dy (with trialitarian action of the Galois group F/F) is a consequence of, respectively:
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Proposition 5.5.1 p.116, Proposition 5.5.3 p.118, Proposition 5.5.4 p.118, Proposition 5.5.13
p.134, Proposition 5.5.4 p.122, Proposition 5.5.7 p.126, and of Proposition 5.5.8 p.127.
- The case A, is a consequence of Proposition 4.5.21 p. 93 (inner forms) and of pages 112-113
(outer forms).
- The case B,, is a consequence of Proposition 5.4.4 p. 113.
- The case (), is a consequence of Proposition 5.4.5 p. 113.
- The case D,, (non trialitarian) is a consequence of Proposition 5.4.6 p. 114 and of the fact
that the diagrams on p. 115-116 do not occur.
One can note that (H;) excludes the diagrams of split rank 1 where the the unique white root
has a coefficient > 1 in the highest root of the underlying Dynkin diagram, and those which
have two white roots connected by an arrow.

OJ

Corollary 1.12.2.
The graded algebras

h=g"alg g log"
are either isomorphic to sly(D) where D is a central division algebra over F', of degree §, or

isomorphic to o(q,5) where q is a non degenerate quadratic form on F® which is the direct sum

of an hyperbolic plane and an anisotropic form of dimension 3 (in other word a form of index

1),

Proof. These are the only Lie algebras over F' whose Satake-Tits diagram is of the type given
in the preceding Lemma ([29], [27]).
O

Definition 1.12.3. By 1.9.3, all the algebms?i are isomorphic either to

A2671 o—o ._©_. ..... o—o or tO B2 @i.

In the ﬁrst(scgs}a we will s(cszy_t}mt g is of 1-type A (or (4,0) to be more precise), in the second
case we wil say that g is of 1-type B.

Theorem 1.12.4.
1) [f?o = sly(D) where D is a central division algebra over F', of degree §, the group G is the
group of isomorphisms of sla(D) of the form

woex=(5) = ()6 ()
y b 0 v y b 0 v

where a,b,x,y € D, with trp/p(a+b) =0 (trp,p is the reduced trace), and where u,v € D*.
Therefore the action of G on V't ~ D can be identified with the action of D* x D* on D given

by
(u,v).2 = uzv !,
the group G being isomorphic to (D* x D*)/H where H = {(\,\), A € F*}.
Hence there are two orbits: {0} and D*, and the fundamental relative invariant is the reduced

norm vp,p of D over F'. Its degree is 0.
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2) [fN[o = 0(q,5) where q is a non degenerate quadratic form over F® which is the sum of an
hyperbolic plane and an anisotropic form Q) of dimension 3, then the group G can be identified
with the group SO(Q) x F* acting by the natural action on F3. The fundamental relative
invariant is then Q. There are four orbits, namely {0} and three open orbits which are the
sels O; = {x € F3,Q(x) € w;}, (i =1,2,3), where u; runs over the three classes modulo F**
distinct from —d(Q) (d(Q) being the discriminant of Q).

Proof. 1) Let us make explicit the structure of sly(D). For the material below, see [27], p. 93.

It is well known that
a x .
sly(D) = {( b) , where a,b, 2,y € D, with trp,r(a+0b) = 0}.
Y

A maximal split abelian subalgebra is given by:

It is easy to see that

[D,D] 0 )

a 0
m=2Z a) = ,a,be Dt +0)=0}=ad®
[2(D)() {<0 b) a FD/F(G ) } < 0 [D,D]

(recall that [D, D] = ker(trp,r), by [6], §17, n°3, Corollaire of proposition 5, p. A VIIL.337).
Therefore the anisotropic kernel of sly(D) is given by

[D,D] 0

) ~ [D,D] @ [D, D).

Its Satake-Tits diagram is

Ad*l X Ad*l o —eo [ @ *—Oo

~ 1 0 ~
The grading of g = sly(D) is then defined by Hy = <0 1), and this implies that g =

slo(D) =V~ @®gad VT where

00 0
vo=f() V) ey~ vi=q] 7) zeny~p
y 0 00
and
a 0
g={ 0 b ,a,b € D, trp/p(a+b) = 0}.

We will now determine the group G' = Zut,(st,(0)) (Ho) = {9 € Auto(sla(D)), g.Hy = Hp} and
his action on V* ~ D.
Let g € G. As g.Hy = Hy, one get gV~ C V—, gVt C V't g.g C g. Let g be the natural

extension of g as an automorphism of sly(D) ® F = slyq(F'). From above, g stabilizes V=, V+
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and g. By [4] (Chap. VIII, §13, n°1, (VII), p.189), there exists U € GL(2d, F) such that
g.x = UzsU' Vz € slyy(F). Let us write U in the form

U= (a B)a O‘aﬁafyadeMd(F)'
o)

As g stabilizes VT, for all z € My(F), there exists 2’ € My(F) such that
a BY (0 xz\ (0 2\ [a B
v 6)J\o o) \o o)\y o

L 0
It follows that v = 0. Similarly the invariance of V— implies that § = 0. Hence U = (3 5)’

with o, d € GL4(F). Let us now write down that the conjugation by U (that is, the action of
g) stabilizes sly(D). For all a,b € D, the element

a 0 a O al 0 B aaa! 0
0 6)\0 b 0 &) 0  dbst

belongs to sly(D). Therefore the map a — aaa™ (resp. b — b6~ ) will be an auto-
morphism of the associative algebra D. By the Skolem-Noether Theorem ([1] (Théoreme I11-4
p.70), [19] (12.6 p.230) there exists ug (resp. vg) in D* such that caa™ = upaug ' for all a € D
(resp. 0b6~! = wobvy* for all b € D). Hence uy'a (resp. vy 'd) is an element of My(F) = D
which commutes with any element of D, and hence it belongs to the center of My(F) = D.
Therefore ug'a = A\.1 and vy '6 = p.1 (\,pu € F), i.e. & = Aug and § = pvg. As g stabilizes V*+
and V'~ and

Aug 0 a x\ (A tuy? 0 B upauy 't A tugzug !
0 pwvo) \y b 0 p gt ) \ N pegyug b vbugt ’

0
we deduce that \u~! € F* and g is the conjugation by V = (g ) with v = \u~tug € D*
v

and v = vy € D*.

Therefore the assertions concerning the action and the orbits are clear. It is also clear that the

u
conjugation by induces the trivial automorphism if and only if u =v = X € F*. This
v

proves that G = (D* x D*)/H.

0
As vp,r is a polynomial on D which takes values in F, it is also clear that P( 0 ﬁ ) = vpyr(w)

is a relative invariant. As the reduced norm is an irreducible polynomial ([23]), this relative

invariant is the fundamental one.

2) We will now give a realization ' of the Lie algebra (there is only one up to isomorphism)

whose Satake-Tits diagram is
B, G—=0

IWe thank Marcus Slupinski for having indicated this realization to us.
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For this, let D be a central division algebra of degree 2 over F'. There is only one such algebra
by [1] (Corollaire V-2, p. 130), and of course D = (%) is the unique quaternion division
algebra over F' ([13], Th. 2.2. p.152). Recall that 7 is a uniformizer of F' and that v is a unit
which is not a square. Let a — @ (a € D), be the usual conjugation in a quaternion algebra.
The derived Lie algebra [D, D] is then the space of pure quaternions, that is the set of a € D
such that @ = —a.

Set
- a b
9={X=< _>ﬂ€DﬁmeUIM}

c —a

It is easy to verify that g is a Lie algebra for the bracket [X, X'] = X X' — X'X, X, X' € g. Set

also
t 0
a= ,t e F}.
{(O ) )

It is clear that a is a split torus in g. If a’ is a split torus containing a, then a’ is contained in

the eigenspace for the eigenvalue 0 of ad(a), that is

0
a’C{(g _),aED}:D.
—a

As D = F.1®[D, D], and as [D, D] is anisotropic (see for example [27] Corollaire 4.4.3. p.78),

we obtain that a’ = a, hence a is a split maximal torus in g. The Lie algebra g is graded by
1 0
Hy = :

where

g=V aga V",

vt {(8 8) be[D, D)},

vz{<2 8),ce[D,D]},

gz{(é _Oa>,a€D}:D.

Note that [g, g] ~ [D, D] is anisotropic of dimension 3. Let us now show that g is simple. If [

is an ideal of g, as [a, ] C I, one has:
I=V - nha@nae(VinI).
If (VtNnI)#{0}andifbe (VT NI)\ {0} then the elements of the form

a 0 0 b\, (0 ab+ba\ (0 ab—ab) [0 2Im(ab)
[0—5’00]_00 ~\o o ~\lo 0

run over V7 if @ € D. An analogous statement is true if (V~ N 1) # {0}. If (g 1) # {0},
then (V™ N1I) # {0} and (Vt N1I)# {0}. On the other hand, if V* C I and V~ C I, then
it is easy to see that g C I. Finally we have shown that g has no non trivial ideal. Hence g

is a simple Lie algebra of dimension 10. Therefore E — g ®p F is a semi-simple Lie algebra of
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dimension 10 over F. There is only one such algebra, it is the orthogonal algebra o(5, F) whose
Dynkin diagram is B,. Therefore the algebra g, with the grading described before, is indeed
the algebra whose Satake-Tits diagram is

B, o—=
(To avoid the preceding dimension argument, it is possible to compute explicitly E by using the
fact that F is a splitting field of D and show that

E:{<A b ) JA€ My(F),B,C € [My(F), My(F)] = sly(F)}

C —7(A)
)) = ( g _ﬁ>. This algebra is

h A
Wz{( h),WherehGImD:[D,D],/\,,ueF}.

where the anti-involution 7 of M(F) is defined by 7( (a ?

v
o(5,F)).
Remind that [D, D] =ImD = {a € D,a = —a}. Set

//L —_—
One sees easily that [g, W] C W, where [ , ] is the usual bracket of matrices. The corresponding
representation is of dimension 5. An easy but a little tedious computation shows that the
symmetric bilinear form

ho A Y 1
U( , ) = —5 (Rl + B'h+ XNp+ M)
L —h M/ —h 2

is invariant under the action of g. The form W is the bilinear form associated to the quadratic

h A
form ”determinant” q(( h>) = —h? — A\p. This form is the direct sum of an hyperbolic
M —

plane and the anisotropic form Q(h) = —h? on [D,D]. The space F* in the statement of
the Theorem is therefore [D, D] and the algebra g is realized as the algebra 0(g,5) as in the
statement.

We need also to consider W. One has:

W= Y ™M) here U € (My(F), Mu(F)] = sbo(F), 2,y € F.
yId2 -U

Let us denote by g, @Q and VU the lifts of ¢,Q and ¥ to W, respectively. These are given by

(remark that UU" 4+ U'U is a scalar matrix if U, U’ are in sly(F)):

U «zId
a( ) =0 —ay
yldg U

(U o0 ,
Q((O _U>>=—U

—_ U CL’IdQ U/ I/Idg 1
v ; = ——(UU +UU+2y+xy
((y1d2 —U) <y’1d2 —U’)) 5 Ty +ay)
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The Lie algebra g acts on W by the adjoint action: [E, W] C W. More explicitly a calculation

A B = Id —
shows that for € g and v aldy € W one has
C —7(A) yldy —U

[A B U zld, |- [A, U] +yB — 2C —(UB+ BU) + z(A + 7(A))
C —7m(A)) \yld, —U ) \CU+UC —y(A+1(A) [7(A),U] + 2C — yB

and this last matrix is effectively an element of .

This implies that the representation of E in W is faithful, that the form V is invariant under E
and therefore g is realized as o(W,7).
Let ¢ € Aut(g). As g ~ o(W,q) is a split simple Lie algebra, we know by [5], Chap. VIII, §13,
n°2, (VII), p. 199, that
Auto(g) = Aut,(g) = Aut(g)
and that there exists a unique M € SO(W,q) such that, for X € g one has
p(X)=MXM,

the right hand side being a product of endomorphisms of W. In the rest of the proof we will
write ¢ = M , by abuse of notation, and we will consider that ¢ € SO(W,7q).
Under the action of Hy the space W decomposes into three eigenspaces corresponding to the

eigenvalues —2,0,2 :

— 0 O R — U 0 — == 0 xIds —
W_zz{(yldg O)ayeF}, W():{(O _U>,U€§[2<F)}, W2:{<O 0 ),JJGF}.

We will need the following Lemma.

Lemma 1.12.5.
Let o € Aut(g) = SO(W, 7).

¢ stabilizes W _o, Wo, Wy;
a) ¢ fizes Hy < Pl € SO(W,Q);

there ewists a, € F* such that Py, = o@lld‘wi2 and Ply, = a¢Id|W2.

b) Let g € Aut(g) and let G be his natural extension to an element of Aut(g). Then one has:
q stabilizes W_o, Wy, Wa;

9 € G = Zauy@(Ho) < (7, € SO(Wo,Q);
ag € I,

Proof of the Lemma:

a) Suppose that ¢ commutes with Hy, then Hy = pHyp ™" (products of endomorphisms of W).
(i=-2,0,2). Let T € W, (i = —2,0,2). Then Hy.0(T) = ¢Hyp t¢(T) = oHy(T) = p(iT) =
io(T). Hence ¢ stabilizes the spaces W;.

As W_, and W are 1-dimensional , there exist oy, By € F" such that
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0 0 0 0 0 zxId 0 a,zld —
90( ) - ) 90< ? ) = v ? , Ty € F.
yldy, 0O B@yldg 0 0 0 0 0

But as ¢ € SO(W,7q), one has

. 0 xlds o 0 a,rlds . o 0 xlds L
q(w((yld2 0 >))_Q(<5¢y1d2 0 ))— %Bwy—q(<y1d2 0 ))— zy.

Hence 3, = a;l. As q, = @ one get that Plyy, € SO(Wy,Q).
0
Conversely suppose that ¢ satisfies the conditions on the right hand side of a). Let us look how
pHop™!
U zld, e @ (U)o tald, Ho 0 20 aldy | e 0 2x1d,
— — — .
yldy, —U apylds —o HU) —20,ylds 0 —2yldy, 0

But one has:

U ZL’IdQ Hy 0 2£L'Id2
— .

Therefore pHyp~' = Hy, and this proves a).

acts on W:

b) is a consequence of a).
End of the proof of Lemma 1.12.5.

If g € G, let oy be the element az € F™* obtained in the preceding Lemma.

Lemma 1.12.6.
b
The action of g € G on V' = {(8 0) , be [D,D]} is as follows

0 b _ 0 agng,D<b>
g'(o o>_<0 [0] >

0 b 0 0\ _ . .
In order to compute g. =g g~ ", we will compute its action on the element

Proof of the Lemma:

00 0 0
h A . .
h € W, using the preceding Lemma 1.12.5. One has:
-
f - - 00 - -
ho X a7 g7 (h) OégllA agub  —bg~'(h) — g~ (h)b
uw —h agie  —g ' (h) 0 —ag b

agug(b) —a(bg~(h) + gl(h)b)> (%)
0 —agpug(b) |

0 b
Let us show now that the action of the element (0 Y9 g'“i)’D]( )) is the same. One has:
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(© Ypp (b)) [h A = agug(b) —a(g(b)h + hg(b)) (55)
0 0 \u —h 0 —agug(b)

As the bilinear form associated to @ is B(b, h) = bh+hb (b, h € [D, D]) and as g),,, € SO(Wo, Q)
we obtain bg~'(h) + g~ (h)b = g(b)h + hg(b), hence (*)=(**).

End of the proof of Lemma 1.12.6.

From Lemma 1.12.6 we know that the map

G — SO(W,,Q) x F*

g — (9|w0>%>
is a bijection. We have therefore proved the first part of the statement 2) Theorem 1.12.4.
From [13] (Théoréme 2.2. 1) p. 152 ), there are four classes modulo F*? in F*, which are the
classes of 1,u, m,ur (u is a non square unit and 7 is a uniformizer). And from [13] (Corollary
2.5 3), p.153-154) the anisotropic form @) represents all (non zero) classes except the class of
—d(Q). If for by,by € VT ~ [D, D], the elements Q(b;) and Q(by) are in the same class then
there exists t € F* such that Q(b1) = t*Q(by) = Q(tby). Witt’s Theorem implies then that
there exists g € O(Q) such that by = tg(bsy). As the dimension is 3, det(—Idy+)= —1 and one

can suppose that g € SO(Q). The Theorem is proved.
[

Remark 1.12.7. As the algebras T ande are isomorphic (Proposition 1.9.3), Corollary 1.12.2

and Theorem 1.12.4 will also be true forN[j :

Lemma 1.12.8.

Let us fix an element X' = X1 + Xo+ -+ X;.  (X; € g%\{0}). Then for X € g™ one has
VE=1lg X"+ X]+9" .

The codimension of the G-orbit of X + X' in V' is given by

Cif X =0

0if X#0.

codim[g, X + X'] =

Proof.
If X # 0, then by Proposition 1.7.5, X + X! is generic in V*. Hence V* = [g, X + X'] and
codim[g, X + X'] = 0.
If X =0, we know by Corollary 1.8.4 that
VE =V @ (9= B0 (1,1) @7 .

X1 is generic in V;" by Proposition 1.7.5 applied to g;. Therefore:

Vit =g, X' C [g, X ). (%)
Let Y; € g~ be such that {Yj, H,,, X;} is an sly-triple. Let A € Ey;(1,1), then B = [V}, A] is
an element of Ey (1, —1) C g and one has

(B, X' =[B, X1+ Xo+ -+ X = [B,X;] = [V}, A, X;] = [V}, Xj], A| = [H;, A| = A .
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Hence @¥_, Ey ;(1,1) C [g, X'] and from decomposition () above we get
V=g, X' +gv .

To obtain the result on the codimension, it is enough to prove that the preceding sum is direct.

The relations
[3g(a0)=X1] - @?:1§Aj c Vit

{0} if j = 0,

[Ei;(1,-1),X"] C o
Ei,j(17 1) lfj # 0 y

imply that

9, X' C Vit @ (&1 Eo3(1,1))
Hence

0, X'] = V" @ (®]_, Eo;(1,1)) ,
and finally

Vi=[g, X'legv.

1.13. Properties of A,.

Let 9; be the fundamental relative invariant of the prehomogeous vector space?i (0<i<k).
By Theorem 1.11.4,9; is absolutely irreducible. As all the algebrasNIi are isomorphic (Remark
1.12.7), the 6;’s have all the same degree .

Notation 1.13.1. Let us denote by s the common degree of the polynomial ¢;. By Theorem
1.12.4 there exists two types of graded algebras of rank 1. One has

J in case (1) corresponding to the diagram  ®—@- .—©—..T. (6 € N¥)

2 in case (2) corresponding to the diagram C—»

Theorem 1.13.2.
(1) Ag is a homogeneous polynomial of degree k(k + 1).
(2) For j =0,...,k, let X; be an element of g*\{0} and let x; € F. Then

23 0%) =5 do(30%,)
=0 =0 =0

Proof.
(1) Consider the prehomogeneous vector space Th=lLorF =g [ %, g%] @ gh. By

[18] (Proposition 2.16) the degree of dy (= k) is equal to the number of strongly orthogonal
roots (over F), Boas---, Bk, appearing in the descent applied to the graded algebra E (see
[18] for details). More generally let us denote by f;1,...,fi. the strongly orthogonal roots
appearing in the descent applied to the graded algebra E But then the set of k(k + 1) roots
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Body--sBoss--sBrts-- -, Prx is a maximal set of strongly orthogonal roots in V*+ (if not it
would exist a root A\pyq over F' which is strongly orthogonal to Ag,..., ;). Then, again by
Proposition 2.16 of [18], one obtain that the degree of Ag is k(k + 1).

(2) For i = 0,...,k, let us fix elements X; € g \ {0}. Consider the polynomial map on g*
given by

[LZXF—)Ao(X—f—XZ) WhereXi:XQ+X2—|—"'+Xi_1+Xi+1—|—"'+Xk .

Let L; be the the group similar to GG for the graded algebra N[Z-, that is Ly = Z, @ )(H ). By

Corollary 1.8.4 one gets that Yk = ZE(N[O SREE @Tk_l). As all the algebras [; are conjugated
(Proposition 1.9.2) one has alsoTi = Z§(~[O @ @Ti_l @EH P EBTk) Therefore the elements
of L;, which are products of exponentials (of adjoints) of nilpotent elements of L ® F, fix all
the element X*.

Since L; C G = G(F) and since A, is, by construction, the restriction to V' of a relative

invariant polynomial of (G, V+), we deduce that for g € L; and X € g™ one has :
1i(9-X) = Do(9.X + X*) = Ao(g-(X + X)) = x0(9) Ao (X + X7) = xo(g)(X).

Hence p; is a relative invariant for the prehomogeneous space (L;, g*), with character Xoj, -
This invariant is non zero, as p;(X;) = Ao(Xo + -+ Xi) # 0. For t € F, let go(t) be an
element of Ly such that go(t)|EAO = tldg, (Lemme 1.11.3). If g € G is such that gi[ig = TZ
then the element g;(t) = ggo(t)g~! € L; satisfies gi(t)|§Ai = tldg, and x0(gi(t)) = xo(go(t))
Therefore the polynomials y; have the same homogeneous degree, say p. Then

Ao(go(t) .. ge(®).(Xo + -+ Xp)) = Do(t(Xo + -+ X)) = t"FFDAG(Xg + - - - + X})

= xo0(90(t))Ao(Xo + g1 (). X1 + g2(t). Xo + - - - + gr(t). Xx)

I

= X0(90(t))x0(g1(%)) - - - x0(gr(t)) Ao (Xo + - - - + X})
= tp(k+1)A0(XO + o+ X))
Hence x = p is the common degree of the y;’s, and p; = ¢;0;, with ¢; € F* (remind that d; is

the fundamental relative invariant of (L;, g*)).

Also for (xg, 1, ..., 1) € FFL:
Ag(woXo + -+ + 13 X) = Hfzo 2% Ao (Xo+ -+ Xp)

1.14. The polynomials A;.

Let j € {1,2,...,k}. By 1.11.4 applied to the graded regular algebra (g;, Hy, +- - -+ H,, ), there
exists an absolutely irreducible polynomial P; on Vj+ which is relatively invariant under the
action of G = Zau,,) (Ha,+ - -+Hy,) C G. By Corollary 1.7.8 applied to (g;, Hx,+- - -+H),),
one has G; = Autc(g;).(N5_;(G)n,.)-

Let x; be the corresponding character of G;. We will define extensions of these polynomials to
V*, using the following decomposition:

Vi=VieViwhere V' =( & E.(1,1)®(®g").

r<s,r<j r<j
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Definition 1.14.1. We denote by A; the unique polynomial (up to scalar multiplication) such
that
Aj(X +Y)=PF(X) for X e VI Y € V;- |

where P; is an absolutely irreducible polynomial on Vf, under the action of Gj.

It may be noticed that, as P; is the restriction to V;-* of an irreducible polynomial on W, which
is relatively invariant under the action of G_j, the polynomial A; is the restriction to V' of a

polynomial defined on V+.

Theorem 1.14.2. Let j,s € {0,1,...,k} and let X, € g* \ {0}.
(1) A; is an absolutely irreducible polynomial of degree k(k +1 — 7).
(2) For X € V' one has

Aj(9-X) = x;(9)A;(X) for g € Gy ;
Aj(g.X) = Aj(X) for g € Aute(g;) ;
Aj(9.X) = Aj(X) for g =exp(ad Z) where Z € & E,4(1,-1) .

r<s
(3) For s =0,...,k, let X, be an element of g*\{0} and let x, € F. Then, for j =0,...,k,

A, (Zk; 2.X,) = ﬁx”” A, (Zk: X,) .
- b r

(4) The polynomial X € V;" = Ao(Xo + X1 + -+ X1 + X) is non zero and equal (up to

. . . . . +
scalar multiplication) to the restriction of Aj to ViT.

(X)
A;(X)

Proof.

Statements (1) and (3) are just Theorem 1.13.2 applied to the graded algebra g;.

As g; = ZQ(TO &L G- @Tj_l), it is easy to see that V- is stable under ad(g;). Hence
B —

The first assertion in (2) is a consequence of the definition of A;.

We know from §1.7, that the groups Aut.(g;) and Autg(g;) are respectively isomorphic to
Aut.([g;, 9;]) and Auto([g;,9;]). Then, from ([4] Chap VIII §11 n°2, Proposition 3 page 163),
the group Aut.(g;) is the derived group of Auty(g;). It follows that the character y; is trivial

on Aut(g;), this is the second assertion of (2).

As any element of
n= @ E.(1,-1)Cg

I<r<s
is nilpotent, we obtain that A; is invariant under the action of the group generated by the
elements exp(adn;).
One has the decomposition:
ng= @ E.4(1,-1)=n;® K(0)® K(1)
r<s
where
K0)= & E (l,-1)and K(1)= & E, ((1,-1).

r<s<j—1 r<j—1, j<s
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Note that
K(1)={X en[Hy+...+ H\_,X] =X}
and
n, ®K(0)={X en,[Hy\+...+H,_ ,,X]=0}

Therefore, as [n;, K(0)] =0, we get [n;, K(0) & K(1)] C K(1).

Hence any element of exp(ad(n)) can be written exp(ad Z’) exp(ad Z) with Z’ € n; and Z €
K(0) & K(1). Therefore it is enough to show that A, is invariant by exp(ad Z).

But [K(0), V"] = [Br<s<jo1 Brs(1, 1), (Bjcrey By o (1, 1)) ®(@)_; 8)] = {0}. One has also
[K(1),V;"] € V" as V;* is the eigenspace of ad(H), + ... 4+ Hy,) for the eigenvalue 2 and
as K(1) is the eigenspace of ad(H), 4 ... + Hy,) for the eigenvalue —1. Hence for X € V;*
and for Z € K(0)® K(1) one has exp(ad Z).X = X + X', with X’ € V;*. This implies that
Aj(exp(ad Z).X = A;(X).

It remains to prove (4). Let ); be the polynomial on V}+ defined by

Q;(X)=A0o(Xo+...+ X1 + X).

The polynomial @); is non zero because Q;(X; + ... + Xj) = Ao(Xo+ ... + X) # 0 (as
Xo+ ...+ Xj is generic by the criterion of Proposition 1.7.12).

This polynomial @; is also relatively invariant under G; (because G; C G centralizes the
elements Xo,...,X,_1). Fort € F, let g, be the element of G, whose action on VjJr is t.Ide+
(Lemma 1.11.3). By Theorem 1.13.2 one has:

Q;(9:X) = No(Xo+ ...+ X1 +tX) ="+ Q,(X).

Hence @); is a relative invariant of the same degree as A;. Therefore Q); = aA;, with oo € ™.
O

2. CLASSIFICATION OF REGULAR GRADED LIE ALGEBRAS

2.1. General principles for the classification.

Our aim is to classify the regular graded Lie algebras defined in Definition 1.7.11. The notations

are those of section 1. We have seen in section 1.3 that the graded algebra
g=V-aegaV*

is a regular prehomogeneous space of commutative type, over the algebraically closed field F,
defined by the data (El, ap). We associate to such an object the Dynkin diagram Ef, on which
the vertex corresponding to « is circled. Such a diagram is called the weighted Dynkin diagram
of the graded algebra E The classification is the same as over C. It was given in [18]. This is
the list:
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B, @®—eo—o—o -6——0

Doy @0 H\. (2n vertices)

Remind that the circled root «q is the unique root in U whose restriction to a is the root Ao
Therefore the Satake-Tits diagram of g is such that ag is a white root which is not connected
by an arrow to another white root. We associate to the regular graded Lie algebra (g, Hy),
the Satake-Tits diagram of g where the white root «ay is circled. Such a diagram will be called
the weighted Satake-Tits diagram of (g, Hy). Conversely if we are given a Satake-Tits diagram
where the unique circled root, not connected by an arrow to another white root, such that the
underlying weighted Dynkin diagram is in the list above, then this diagram defines uniquely a
regular graded Lie algebra. The grading is just defined by the element H, € a satisfying the
equations ag(Hy) = 2 (ap being the circled root) and 5(Hy) = 0 if 3 is one of the other simple
roots.

Remind that in the p-adic case, in which we are interested in here, and unlike the case of R,
the Satake-Tits diagram does not characterize g up to isomorphism. Two algebras having the
same Satake-Tits diagram may have distinct anisotropic kernels ([29], [27]). However, as far as
we are concerned, graded algebras having the same weighted Satake-Tits diagram will give rise
to the same orbital decomposition of (G, V).

The Satake-Tits diagram of g is obtained from the weighted diagram of g by removing the
vertex ag, and all the edges connected to «p.

Although this is not needed here, let us note that the infinitesimal representations (g, V™)
obtained this way exhaust all the F-forms of (g, V). By F-form we mean here a pair (u, W),
where the Lie algebra u is an F-form of g, and where W is a F-form of V+ such that [u, W] c W.
To prove this, one can remark that the results obtained over R in [21], are still true in the p-adic
case (see also Proposition 4.1.2. p.66 of [27]).

We will now give a simple “diagrammatic” or “combinatorial“ algorithm wich allows to deter-
mine the weighted Satake-Tits diagram of g; (section 1.5) from the diagram of g. By induction
this algorithm will give the 1-type (Definition 1.12.3). This algorithm allows also to determine
easily the rank of the graded algebra. (Remark 2.1.3 b) and c¢) below).
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For the definition of the extended Dynkin diagram see [3], Chap. VI §4 n°3 p.198.

Proposition 2.1.1.

Let us make the following operations on the Satake-Tits diagram of the reqular graded lie algebra

g:

1) One extends the Satake-Tits diagram by considering the underlying extended Dynkin diagram
where the additional root —w is white (w being the greatest root of 7%+)

2) One removes the verter ag (the circled root), as well as all the white vertices which are
connected to ag through a chain of black vertices, and one removes also these black vertices.
3) One circles the verter —w which has been added.

The diagram which is obtained after these three operations is the weighted Satake-Tits diagram

of g1
Proof. Remind that (Proposition 1.5.3)
Ri={BeR| Bla,Vae S}

Hence
Ri=RiNR={BeR| BLa,Vae Sy}

Remind also that we have defined the following sets of positive roots:
Ijéf :ﬁlﬂﬁJr, R;r :RlﬂﬁJr :ﬁlﬂR+,

which correspond to the basis \Tll and ¥, of 7%1 and R, respectively.

Let us first prove a Lemma.

Lemma 2.1.2.
One has V1 =R, NV,

Proof of the Lemma: Let (R; N ¥)T be the set of positive linear combinations of elements in
Ry N V. It is enough to show that (R; N W)™ = R.
The inclusion (R; N¥)* C R is obvious. Conversely let 8 € R{. Let us write 3 as a positive
linear combination of elements of W:
B=> mf, meN
BiEW
As (8 is orthogonal to any root which restricts to Ag, one has
(B,a0) =0 = Z zi(Bi, o).
BieW
As (Bi, ap) < 0 (scalar product of two roots in the same base), one gets
p= Z ;i 3;.
Bi€V,BiLag
Let now {v1,72,...,7vm} be the set of black roots which are connected to «q through a chain of
black roots (in the Satake-Tits diagram). Moreover we suppose that this set of roots is ordered
in such a way that ap +71 + ...+ € R+ for all p=1,...,m. This is always possible.
We will now show by induction on j that if ; belongs to the support of 8 then 3; L ~; for

j=0,...,m (where we have set 7o = ) . What we have done before is the first step of the
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induction. Suppose that 8; L ~;, for all j < p (p € {0,...,m —1}). As 8 € R, using the

induction hypothesis, one gets:

Byag+mn+. +Yp) =0= Z i Bi, Yp+1)-
Bi€V,B; Lv; (=0,....m—1)

Again, as (3,7,+1) < 0, one obtains

B = Z 7.

Bi€¥,B; Ly; (5=0,...,m)

End of the proof of the Lemma.

Hence \Tll = U, U {ay} where oy is the unique root of \Tll such that oy (H;) = 2 (Proposition
1.3.2). Let Wj be the Weyl group of Ry, and let w; be the unique element in W; such that
w; (V) = —¥;. Then Proposition 1.9.2 (in his “absolute“ version over I, whose proof is exactly
the same) implies that w; (1) = w where w is the greatest root of Ry, which is also the greatest
root of R.

Let us denote by Dyn(.) the Dynkin diagram of the basis

%0

of a root system. One has:

Dyn(‘il) = Dyn(\If1 U {Oél}) = Dyn(wl(\Dl U {Oél}> = Dyn(—\Ifl U {w}) = Dyn(\Ifl U {—(U}>
The preceding Lemma implies that the Dynkin diagram of g; is the underlying Dynkin diagram
of the Satake-Tits diagram described in the statement. It remains to show that the “colors ”
(black or white) are the right one.

For this, let X be the root lattice of R (that is the Z-module generated by ﬁ) The restriction

morphism p extends to a surjective morphism:
p: X — X,
where X is the root lattice of ¥ (in a*). Consider also the sublattice
Xo={x € X|pn(x) =0}.
The map p induces a bijective morphism: p: X/X, — X. Set
Ro={a € R|p(a) =0} ={a € R|p(a) = 0}.

The order on R induces an order on Ry by setting Re = RT™ NRy. We choose an additive
order < on Xj in such a way that R C X (for the definition of an additive order on a lattice
and for the notation we refer to the paper by Schoeneberg ([27], p.37), who call it “group linear
order”). For this it is enough to consider an hyperplane in the vector space generated by X,
whose intersection with Xy is reduced to {0} and such that R{ is contained in one of the
half-spaces defined by this hyperplane. X is then defined as the intersection of X, with this
half-space.

Similarly we choose an additive order on the lattice X such that ¥+ C X" and we set :

(X/Xo)" ={x e X/Xo|p(x) € X}



46 PASCALE HARINCK AND HUBERT RUBENTHALER

Let I' be the Galois group of the finite Galois extension on which g splits ([27], p. 29). The
data (X/Xo)* and X define what is called by Schoeneberg a I'-order on X ([27], Definitions
3.1.37 and 3.1.38 p. 37). This additive order is defined by

Xt =(X/Xo)t UXS

where (X/X()T stands here for the set of elements which are in a strictly positive class. If
a € RT, then either p(a) = 0, and in this case a € X € X, or p(a) € £ and then o € X
This shows that the order chosen at the beginning of this paper and which was defined by Rt
comes from a I-order in the sense of Schoeneberg on the corresponding root lattices. Similarly,
at step 1 of the descent, the order defined by ﬁf comes from a I'-order. Then from the proof
of Lemma 4.3.1 p. 72 of [27], we obtain that wy € (W;)r = {w € W(Ry),w(X]) = X;} (where
X1 is the root lattice of Ry, and X& is the subset of X! which vanish on a;), and that w; sends
a black root on a black root and a white root on a white root. This ends the proof.

O

Remark 2.1.3.

a) As expected, if one applies the procedure of Proposition 2.1.1 to the Satake-Tits diagrams
of Lemma 1.12.1, one obtains the empty diagram.

b) It is worth noting that the rank of g (cf. Definition 1.6.2) is the number of times one must
apply the procedure of Proposition 2.1.1 until one obtains the empty diagram.

c¢) The last diagram, obtained before the empty diagram, when one iterates this procedure, is
necessarily one of the two diagrams of Lemma 1.12.1. It defines therefore the 1-type de g.

d) It may happen that the iteration of the procedure of Proposition 2.1.1 gives a non-connected
Satake-Tits diagram (see example below). In that case the next iteration is made only on the

connected component containing the circled root.
Exemple 2.1.4.

The following split diagram corresponds to a graded algebra g verifying the hypothesis (H;),
<H2)a (H3):

The extended diagram is:

©A1

When one applies again the procedure to the diagram © | one obtains the empty diagram.

Hence the rank is 2.
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2.2. Table.

Notation 2.2.1. (Notations for Table 1)

We first define the type of the graded Lie algebra g according to possible values which can be
taken by e and ¢. This notion of type allows to split the classification of graded Lie algebras

according to the number of G-orbits in V.

Definition 2.2.2. ? .

o g is said to be of type [ if £ =%, § € N* and e = 0 or 4.
e g is said to be of type Il if { =1 and e = 1,2 or 3,

e g is said to be of type III if ¢ = 3.

- We denote always by D a central division algebra over F. Its degree is denoted by § (remind
that this means that the dimension is §%). If its degree is 2, then D is necessarily the unique

quaternion division algebra over F.

- This quaternion division algebra over F'is denoted by H and its canonical anti-involution is

denoted by v : x — T.
- M(m, D) = M,,(D) is the algebra of m x m matrices with coefficients in D.

- 5l(m, D) is the derived Lie algebra of M (m, D). It is also the space of matrices in M (m, D)
whose reduced trace is zero. (Recall that if x = (x;;) € M(m, D), Trpeq(x) = Y 7(z;,;) where
7 is the reduced trace of D. ([31], IX,§2, Corollaire 2 p.169). Recall also that the reduced trace

of the quaternion division algebra is 7(z) = x + 7.

- E' = F(y) is a quadratic extension of F. Then o is the canonical conjugation in E: o(a+by) =
a — by.
- Hy, is the hermitian form on E?" defined by Hs,(u,v) = ‘uS,o(v) where u,v are columns

I, 0

-u(2n, E, Hy,)= {X € sl(2n, E), XS, + S,'(c(X)) = 0} (this is the so-called unitary algebra
of the form Ho,)

I
vectors of E?" and where S,, = ( 0 I )

- Herm, (n, F) is defined as follows:

Herm,(n, E) = {U € M(n,E), 'o(U) = U}

- Q(p.g), With p > ¢ is a quadratic form of Witt index ¢ on FP*9. o(q(,q)) is the corresponding

orthogonal algebra.

- 5p(2n, F) is the usual symplectic Lie algebra (the matrices in it being of type 2n x 2n, with

coefficients in F).

- Sym(n, F') is the space of symmetric matrices of type n X n with coefficients in F'.

2We caution the reader that our notion of type in the non archimedean case is not related to the notion of
type in the archimedean(F = R) case done in [7]. Our definition of type is related to the structure of the open
G-orbits (see Theorem 3.6.3 below).
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- On H*" we denote also by Hy,, the hermitian form defined by Hy,(u,v) = ‘y(u)S,v where u,v
0 I,

are columns vectors of H?", and where, as above, S,, = ( I o
n

- u(2n,H, Hy,) = {A € M(2n,H), *AS, + S,A =0}

- SkewHerm(n,H) = {A € M(n,H), *A+ A =0}

- Herm(n, H) = {A € M(n,H), 'A = A}

- Skew(2n, F') is the space of skew-symmetric matrices of type 2n x 2n with coefficients in F.

- Ky, is the v-skewhermitian form on H?" defined by Ky, (u,v) = y(u)Ks,v where u,v are

0 I
columns vectors of H?" and where, by abuse of notation,we also set Ks, = I (;” > -
—in

u(2n, H, Ky,) = {A € M(2n,H), AKs, + Ky, A =0}



Table 1  Simple Regular Graded Lie Algebras over a p-adic field
] g’ v R v Satake-Tits diagram rank(=k+1) | ¢ d Type | 1-type
El(k + 17 D) - Q- O— -
(1) | sl(2(k+1), D) ® M(k + 1, D) Aon_1 Aokt . k41 5% 262 1 (A,6)
41, i where == &g €10
s , _
O—O .........
@) | w@nE.H) | sinE) Hermy (n, B) | Asns | Ch I b@ n 1] 2 | (41
TL}I O—O .........
3) | o(gmr1m) 0(q(n,n—1)) Frt B B, ©—0 00" 0==0 2 1|2n-3 I | (A1)
(4) | o(gntz,n—1)) | 9(@nt1,n—2)) Fnt B>7§ Bn_1 O—0—0—0"0==0 2 1 |2n-3 11 (A,1)
(5) o(qa1)) 0(3) F3 By By = Ay C—=—o 1 3| —— 111 B
6) | sp(2n, F) sl(n, F) Sym(n, F) Cy Ch O—0—=00—C=<0 n 1 1 I | (A1)
nz=2
(7) | u(2n,H, Hay) sl(n, H) SkewHerm (n, H) Can Ch —O—@- O—e—<0 n 3 4 111 B

(continued next page)
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Table 1 (continued)

Simple Regular Graded Lie Algebras over a p-adic field

g g vt R b Satake diagram rank(=k+1) d Type | 1-type
O—0—0—0- o—o/j
2m—2 —
(8) o(q(mm)) O(q(mfl,mfl)) F ggll Dm \O 2 2m—4 I (147 1)
O—0—0—0- o—o/i
2m—2 —
9) | o(@umrim) | 0(qm,m2) F Dy | B \O 2 2m—4 II | (4,1)
©_o ...... O—C0O+eer
(10) U(Q(m+2,m—2)) 0(q(m-&-l,m—B)) F2m72 D;VZ Bm72 2 2m—4 I (A, 1)
O—O—O—O ..... O——< )/©
(11) 0(g(2n,2n)) sl(2n, F) Skew(2n, F') | Dan | Dan \O n 4 I (A,1)
nz=3
(12) | u(2n, H, Kay,) sl(n, H) Herm(n,H) | D2 | Cn | & - © 77 ¢ O\. n 4 I (A1)
n=3
(13) split B split Eg Herm(3,0s) | Ex E; : 3 8 I (A1)

0g

HHTVHINHINY THHINH ANV MONIYVH HTVOSVd
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3. THE G-ORBITS IN VT

3.1. Representations of sl(2, F').

(For the convenience of the reader we recall here some classical facts about sly modules, see [4],
chap.VIII, §1, Proposition and Corollaire).

Let {Y, H, X} be an sly-triple (ie. [H,X|=2X,[H,Y] = —2Y,[Y,X] = H) in g and let E be a

subspace of g which is invariant under this sl,-triple.

Let M be an irreducible submodule of dimension m + 1 of E, then M is generated by a

primitive element e (ie. X.eq = 0) of weight m under the action of H and the set of elements
—1)

ep 1= %(Y)p.eo, of weight m — 2p under the action of H, is a basis of M.

We have also the weight decomposition F = @,¢cz L, into weight spaces of weight p under the
action of H. The following properties are classical:

(1) The non trivial element of the Weyl group of SL(2, F) acts on E by

(2) If, as before, M is an irreducible submodule of E of dimension m + 1, then

w : My, _op — Ms,_p, is an isomorphism. More precisely, on the base (e,) defined above,

one has
1

wey = ()" Penny = oy

(Y)"P.ey.

(3) For Z € E,, one has w?Z = (—1)Z.
injective for 7 < —p
(4) X7 : E, — E,p9; is bijective for  j = —p
surjective for 7 > —p
injective for 7 <p
Yi:E, = E, 5 is bijective for  j =p

surjective for 7 >p
3.2. First reduction.
Remind the definition of V;* (cf. Corollaire 1.8.4):
V=g NVt ={X e V*|[H,,, X] =0}
The decomposition of V' into eigenspaces of H), is then given by
VT =VitegheW;, where W' = {X € VI|[Hy,,X] =X} ={X € V|[H\ +...+H,,,X]| = X}.

Proposition 3.2.1.
Let X e VT,

(1) If Ag(X) = 0 then X is conjugated under Aut.(g) C G to an element of V;t.
(2) if A(X) # 0 then X is conjugated under Aut.(g) C G to an element of g @ VT,
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Proof. (we give the proof for the convenience of the reader although it is the same as in the
real case, see Prop 2.1 page 38 of [BR]),

(1) Let X be a non generic element of V. Then X belongs to the semi-simple part of g and
satisfies (ad X)® = 0. By the Jacobson-Morozov Theorem ([4] chap. VIII, §11 Corollaire of
Lemme 6), there exists an sly-triple {Y, H, X'}. Decomposing these elements according to the

decomposition g =V~ ®gd V™, one sees easily that one can suppose that Y € V~ and H € g.

The eigenvalue of ad H are the weights of the representation of this sla-triple in g, they are
therefore integers. Hence H belongs to a maximal abelian split subalgebra of g. By ([27]
Theorem 3.1.16 or [28], 1.3), there exists g € Aut.(g) C G such that g.H € a. One can choose
w € Ny, (g)(a) such that wg.H belongs to the Weyl chamber a* := {Z € a; A\(Z) > Ofor A €
Yt} Let {Y' H', X'} = wg{Y, H, X}. We show first that

No(H') = 0.

Any element in g0\ {0} is primitive with weight \o(H’) under the action of this sl,-triple, hence
Mo(H') > 0.

Suppose that Ag(H’) > 0. Let A € T\¥. By Theorem 1.2.1 we obtain A = \g + >, miA; with
m; € N and )\; € ©* and hence A\(H') > 0. Therefore, for all Z € g* C V*, we get

1 !/ /
Z = N ad X'(adY'(2)).

It follows that ad X’ : g — V' is surjective, and this is not possible because X’ is not generic.
Therefore A\g(H') = 0.

Let us show that X’ € Vj*. Let Y, € g7*\{0}. The sly;-module generated by Y, under the
action of {Y’, H', X'} has lowest weight 0 (adY'.Yy = 0 and ad H'.Yy = 0) and hence it is the
trivial module. It follows that ad X'.Y, = 0, and then X’ commutes with g*® and with g=*°.
Hence X’ commutes with H), and therefore X’ € V;". Since wg € Aut.(g), statement (1) is

proved.
(2) Let X € VT such that A;(X) # 0. This element decomposes as follows
X=Xo+X,+X,, withX,eg” X, eW X,eV".
From the definition of A; (cf. Definition 1.14.1), one has
A (X) = A(Xa).

Therefore X, is generic in V;". By Proposition 1.7.12 applied to g, there exists Y, € V|~ such
that {Ys, Hy, + ...+ Hy,, X2} is a slo-triple. The weights of this triple on V* are 2 on V", 1

on Wi and 0 on g*°. Let us note:
g1 = {X S g|[H)\1 + ... —f-H)\k,X] = —X}

The map ad X5 is a bijection from g_; onto Wf“, hence there exists Z € g_; such that [X,, Z] =

X,. If we write the decomposition of e*4 X according to the weight spaces of VT, we obtain

1
eM?X = Xo+ [Z, X1] + 51212, 5G] + X1+ (2, 6] + X
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1
= Xo+ [Z, X1] + §(ad 7). X, + Xo.
Hence 4% X belongs to X, @ g C V;™ @ g and this gives (2). O

Theorem 3.2.2. Any element of VT is Aut.(g)-conjugated to an element of g™ + ... ® g'~.

Proof. Let us show that any element of VT is conjugated under Aut.(g) to an element of
Vit e g
Let X € V*. If X is not generic, then X is Aut,(g)-conjugated to an element of V;* (Proposition
3.2.1, (1)).
Suppose now that X is generic. As the Lie algebra of Aut.(g) is equal to [g, g, the Lie algebra of
F* x Aut.(g) is I x [g, g, which is the Lie algebra of g, (see Remark 1.8.8, remember also that,
as g VT is a maximal parabolic subalgebra, the center of g has dimension one). Therefore the
orbit of X under the group F*.Aut.(g) is open. Suppose that Aut.(g). X N{Y € VT, Ay (Y) =
0} = 0. Then, as {Y € V1 A1(Y) = 0} is a cone, we would have F*.Aut.(g).X C {YV €
V* A1(Y) = 0}. This is impossible, as a Zariski open set is never a subset of a closed one.
Hence Aut.(g). X N{Y € VT, A1(Y) = 0} # 0. From Proposition 3.2.1 (2), we obtain that X
is conjugated under Aut.(g) to an element of g* & V;*.
The same argument applied to g; (j = 1,..., k) shows that if X € Vj+ then the Aut.(g;)-orbit
of X; meets g% @ V.1 ,. Any element of Aut,(g;) stabilizes g* + ... @ g~ and, by Corollary
1.8.4, one has V; = g*. The result is then obtained by induction.

U

3.3. An involution which permutes the roots in £; ;(£1,£1).

Define G := Auto(g).
For i = 1,...,k, we fix X; € g*. There exist then Y; € g~ such that {Y;, H,,, X;} is an
slo-triple. The action of the non trivial Weyl group element of this triple is given by

w; = eadXieaineadXi — eaineadXieain c Né(a)

Lemma 3.3.1. Let j # ¢ and p= £1. One has
(1) If H € a then w;.H = H — \;(H)H,,;
(2) If X € E,; j(1,p) then w;. X =adY;. X € E; ;(—1,p);
(3) If X € E,; j(—1,p) then w;. X =ad X;. X € E, ;(1,p);
(4) If X € E; j(£1,p) then w}. X = —X.
Proof. The first statement is obvious as w; acts as the reflection on a associated to ;.
As each E; j(£1,p) is included in a weight space for the action of the sl,-triple {Y;, Hy,, X;}, the

other statements are immediate consequences of the properties of sly-modules given in section
3.1. O

For i # 7, we set
Wy 5 = WW; = W;W;.

The preceding Lemma implies that w; ; satisfies the following properties.

Corollary 3.3.2. Fori # j and p,q € {£1}, one has
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(1) w;; is an isomorphism from E; ;(p,q) onto E; ;(—p, —q)
(2) The restriction of w}; to E;j(p,q) is the identity.

Remark 3.3.3. The involution w;; permutes the roots A such that g* C F; ;(£1,+1). More
precisely one has
0" C B (L —1) = wiy(\) = A =X+,
g C Eij(1,1) = w;;(A) = A= A\ — A,
9 CEi;j(-1,—-1) = w;j;(A) = A+ X\ + A},

3.4. Construction of elements interchanging )\; and A;.

Let ¢ and j be two distinct elements of {0, ..., k}. By Proposition 1.9.2, the roots A; and \; are
conjugated by the Weyl group W. The aim of this section is to construct explicitly an element
of G which exchanges \; and A;.

Lemma 3.4.1. Let A be a root such that g* C E; ;(1,—1). Then A + w; ;(\) is not a root.

A — A

Proof. If A\ = then w; j(A) = —A\, this implies the statement.

Let now \ # % Suppose that @ = A+ w; ;(A) is a root.

As g* C E;;(1,—1), one has w; ;(A) = X — \; + A; (Remark 3.3.3) and u = 2\ — \; + \;. It
follows that for s € {0,...,k}, the root u is orthogonal to A, and hence strongly orthogonal
to As (Corollaire 1.8.2). Let us write

/\:g‘i‘%, and U)Z,J()\):)\—/\z‘f‘)\J:E—%

If v and 3 are two roots, we set, as usually n(«, 8) = a(Hg) = Eg ? As A —w; j(A) = A\ — A is
not a root, and as A # w; ;(\), we obtain that n(\, w; j(A)) < 0. Remind that we have supposed
that = A+ w; ;(A) is a root. As w; ;(A) — A is not a root, the A-chain through w; ;(A) cannot
be symmetric with respect to w;;(A). This implies that n(A, w;;(A)) < 0. As X and w; ;(\)
have the same length (and hence n(X, w; ;(\)) = n(w; ;(A),\) = —1), we get

—1 =n(w;j(A), ) =2 —n(N\,A) +n(A;, A).

Consider the root § = X + \; = w;(\) = g Ai + A

preceding relation gives

+ T] Then n(d, \;) = n(d,A;) = 1 and the

It follows that either n(\;,0) or n(\;,6) is > 2. Suppose for example that n(\;,d) > 2.

Consider the d-chain through —\;. As (—=\; — 90)(Hy) = —4, —\; — ¢ is not a root. It follows
that —\; +20 = p + A; is a root. This is impossible as p is strongly orthogonal to A;.

Hence p = X+ w; j(A) is not a root.
U

Lemma 3.4.2. There exist X € E;;(1,—1) and Y € E;j(—1,1) such that {Y, Hy, — Hy,, X'}

15 an slo-triple.



LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (I) 55

Proof. By definition, for a root A, the element H) is the unique element such that S(H)) =
n(B,\), forall B € . If A= (\; — Aj)/2is a root it is then easy to see that Hy = Hy, — H),.
Any non zero element X € g* C E; ;(1, —1) can be completed in an sly-triple {Y, Hy, — Hy,, X}
where Y € g7 C E;;(—1,1).

If (\i — A;)/2 is not a root, let us fix a root A such that g* C E; ;(1,—1) and set X = —w; ;(\).
One has g C E;j(1,—1). Also N # X (N = —w; j(A) = =X+ \; — \; = A would imply that
A =222)  Let X, € g\ {0}. Choose Yy € §7* C E;;(—1,1) such that {Yp, Hy, Xo} is an sly-
triple. Then {w; ;(Xo), Hx,w; ;(Yy)} is an slo-triple as w; j(Hy) = —Hy and as w; j(Xo) € g
and w; ;(Yp) € g . Define

X = XO + U}Z’J(Yb) and Y = Yb + wiJ(X()) = U}ZJ(X)

Then one has
[H)\i - H)\ja X} = 2X and [H)‘l - H/\j7 Y] - 2Y

It remains to prove that [Y, X| = Hy, — H,,. Let Z = [V, X]. By the preceding lemma, A — X’
is not a root, hence [Yp, w; ;(Yo)] = 0 and [w; ;(Xo), Xo] = 0 and this implies

7 = Yo, Xo) — wis (Yo, Xo) = Hy — w;;(Hy) € a.
This shows that Z #0 (Z =0 Hy =w,j(H)) © A=w,;(A\) = A=A+ X &\ =)\).
Lemma 3.3.1 implies that w; ;(Z) = Z — N(Z2)Hy, — N\;(Z)Hy,. As w; ;Z = —Z, we obtain
)\z(Z)HAZ + )\j(Z)HA.

Z = ﬂ
2

Therefore Z € a° = ®F (F H,,.
Let H € a°. Then H = Zf:o #HA and an easy calculation shows that [H, Y] = MY
Therefore

B(H,Z) = Ai(H) = Ai(mé(}/, X).

On the other hand, the roots \; and \; are W-conjugate (Proposition 1.9.2), hence E(H,\i, H,,) =
E(H,\j,HA].) for all i, j. Define Cy := B(H, , Hy,) € F*. Then
=~ Ai(H) — Xi(H)

B(H,H\, — Hy,) = C, 5 , forH € a’.
As B is nondegenerate on a°, if we set Cy := —E(X7 Y) € F*, we obtain
Co
Z =—(H, — H
Ol(  — Hy)

If we replace Y by %Y, then {Y, H, — H,,, X'} is an sl-triple.
2
[

Let {Y, H), — Hy;, X} be the sly-triple obtained in the preceding Lemma. The action of the
non trivial element of the Weyl group of this sly-triple is given by

Yij = 6adXeadYeadX — eadYeadXeadY c Aute(g).

Proposition 3.4.3. Fori # j € {0,...,k}, the elements v; ; belong to Nay,(g)(a°) and
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fors =3
Yij(Hy,) = Hy, fors=i
H,, fors¢ {i,j}
(2) The action of ~;; is trivial on each root space g for s & {i,j} and it is a bijective

involution from g onto gi.

Proof. As X € E; j(1,-1), for H € a° one has

Ni(H) — X (H)

70() 5

(HM - HAj)?

and this gives the relations (1).

For {s,1} N{i,j} = 0 and p,q € {1}, one has [E;;(p,q), E; ;(p, q)] = {0}, therefore the action
7i; is trivial on the spaces Es;(p,q), and in particuliar of g** for s ¢ {i,j}. The relations (1)
imply that ~; ; is an isomorphism from g* onto g%. It is an involution because the action of

77; on the even weight spaces of Hy, — Hy, is trivial (section 3.1).
U

It is worth noting that the action of %-%j on g is not trivial . Indeed, if X is in an odd weight
space for Hy, — Hy, then 77;(X) = —X. Therefore, on order to obtain an involution, we will

modify 7; ;. This is the purpose of the next proposition.

Proposition 3.4.4. Fori# j € {0,...,k}, the element 7;; = i j o w} belongs to Ng(a°) and
it verifies the following relations:
H,, fors=j
Yij(Hy) = Hy, fors=i
and
—~2

Proof. By section 3.1, the action of w? on the spaces F;¢(£1,+1) (for s # i) is the scalar
multiplication by —1, and is trivial on the on the sum of the other spaces. Moreover, the action
of 7; ; on the spaces Ey,;(£1,£1) with {s,l} N{:,j} = 0 is trivial, and is an isomorphism from
E; o(£1,£1) onto E;((£1,+£1). Therefore one obtains

Tz(X) . _’Yi,jQ(X> for X - @5§§{i,j}Ei,s(j:17 :l:l) ) Ej,s(j:]-a :l:].)
w %EjQ(X) for X ¢ EB{SJ}Q{Z-J}:@ESJ(:EL :i:l).

As the subspace ©¢(; 1 Fis(£1, £1) © E; (£1, £1) of the odd weightspaces for Hy, — H),, the
element ’yZ ; acts by —1 on it, and this ends the proof. 0]

3.5. Quadratic forms.

Remind that the quadratic form b is a normalization of the Killing form (Definition 1.10.1).
For X € V*, let Qx be the quadratic form on V'~ defined by

Qx(Y) =b(e" YY), VeV
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If g € G, the quadratic forms () x and (), x are equivalent.
Therefore we will study the quadratic form @Qx for X € GB;?:OQ’\J'.
The grading of g is orthogonal for B and hence also for b. One obtains

Qx(V) = h((ad XY, ¥) = —b([X, V], [X, V)
Let
k
X=>X;, X;egh.
3=0

Let Eg;(—1,—1) € V~. The action of ad X;ad X; on Ej;(—1,—1) is non zero if and only
if (s,1) = (4,j) where 7 # j or s = [ = i = j. The quadratic forms ¢x, x, on Ej;(—1,—1)
(resp. g) for i # j (resp. i = j) are defined by

1 -y
ax,.x, (V) = —Eb([X,»,Y], [X;,Y]), forY € E;;j(—1,—1)(resp. g¥).
The decomposition of V'~ implies that the quadratic form Qx is equal to
(@?zo(b{j,xj) S (EB?<]'2 4x,.x;)-

Theorem 3.5.1. Let X =% | X; where X; € g4, Leti,j € {0,...,k}.
(1) If X; #0 and X; # 0, then qx, x, is non degenerate.
(2) Let m be the number of indices i such that X; # 0. Then

m(m — 1)
2

where { = dim g and d = dim E; ;(—1,1) fori # j.

rank Qx = mf + d,

Proof. The bilinear form associated to gy, x, is given by
1 -
Lx, x,(u,v) = —§b([Xi,u], [X;,v]), w,ve€ E;j(—1,—1)(resp. g™ ) fori # j(resp.i=j).

If i = j, (ad X;)? is an isomorphism from g~ onto g*. As the form b (proportional to E) is

non degenerate on g~ x gt the form Ly, x, is non degenerate on g,

If i # j, let us consider two roots A and y in the decomposition of E; ;(—1, —1). As ad X;(g") C
g™ and ad X;(g*) € g*™, the restriction of Ly, x, to g* X g* is non zero if and only if
A+ A = —(p+ Aj), that is if and only if g = —w; ().
Let w € g* such that, for all v € g+, one has Lx, x,(u,v) = 0. By section 3.1, ad X is an
isomorphism from g* C E; ;(—1,—1) onto g*™* C F; ;(1,—1) and ad X is an isomorphism from
g v C B j(—1,-1) onto g~ C E;;(—1,1). As the restriction of b to ghth x g=(+A)
is non degenerate, we get ad X;(u) = 0 and hence u = 0. This proves the first statement
The second statement is an immediate consequence of the formula Qx = (EB;?:Oqu,Xj) S5
(5,2 qx, x,) seen before.

OJ

Proposition 3.5.2. There exist sly-triples {Y, Hy,, Xs}, s € {0,...,k}, such that, fori # j,
the quadratic forms qx, x, are all G-equivalent (this means that there evists g € G such that
Ixo0,x1 = qx,x; ©9), and such that each of the forms qx, x, represents 1 (i.e. there exists
u € B j(—1,—1) such that qx, x,(u) = 1).
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Moreover, if ¢ = 1, these forms satisfy the following conditions (remember that e = dim g*i+2s)/2
and d = dim E; ;(—1,1) fori # j):
(1) If e # 0, then the restriction of qx, x, to g~ NtX)/2 s anisotropic of rank e.
(2) Ifd—e # 0, and if W; j(—1,—1) denotes the direct sum of the spaces g=* C E; j(—1,—1)
where € X and p # (\; + Aj)/2, then the restriction of qx, x, to Wi is hyperbolic of

rank d — e (and therefore d — e is even).

Proof. Let X, € go. We fix a slo-triple {Yy, Hy,, Xo}. Let j € {1,...,k}. We choose the maps
Y0,; such that Proposition 3.4.3 is satisfied and we set Y; = v,y and X; = 7 ;Xo. Then
1Y}, Hy,, X;} is an slp- triple and for i # j, we have 70;(X;) = Xj;. Then, for Y € E; ;(—1,-1),
we obtain

0x,3, (V) = = 5b(10:(X0), Y1, [X;, V)

1 _ _ _
= —5b([X0, 70, (V)1 [X5: 90, (V)]) = @x0.x, (03 (V))-
Therefore gy, x, is equivalent to gy, x,for all j # 0 and j # 1.
Let 7 > 2. One has X; = 70.1(X;) = 70,17, (X0). As the restriction of 7371 to g*° is the identity,

(
one has X(] = ’}/(2)’1 (X0> = 70,1 (Xl) and hence Xj = 70,170,570,1 (Xl) As g9 = 70,170,570,1 fixes X(),
one obtains, for Y € Ey;(—1,—1),

1 _ _ -
4X0,X; (Y) = _§b<[X07g 1Y]7 [th IY]) = 4Xo,X, (g IY)
Therefore gx,), x; is equivalent to gx, x, -
Let us now prove that gx, x, represents 1. We fix an sly-triple {Y, H\, — H,,, X} with X €
Eo1(1,-1),Y € Ey1(—1,1) such that 4o = e*d¥e2dYe2dX - Ag X is of weight 2 for the action

of this sly-triple , one has 701(Xo) = %(ad Y)?(Xy). From the normalization of b (Lemme
1.10.2), we get

L= B(X0,Y2) = Blaoa(X0), Y2) = —b(1Y, Xo], [V Y1)
Set Z = [Y1,Y] € Ep1(—1,—1). Using the Jacobi identity, one has [X,, Z] = ad(Y1)([Xo, Y])
and [ X1, 7] = —[Y1, Y, Xi]] — [V, [X1, Y1]] = =Y. Therefore

4xox,(7) = ~ (X0, 21, 1%, 7]) = 3blad (V) ([Xo, V), ~Y)

= —Sb((Xo, Y], I, Y] = 1.

Suppose now that ¢ = 1.
If e # 0 then p = (\; + A;)/2 is a root, and its coroot is Hy, + H),. Let Y be a non zero
element in g~M+N)/2. Let {Y, Hy, + Hy,;, X} be an sl,-triple with X € g+tX)/2 and denote

by w = e2dXeadYead X the non trivial Weyl group element associated to this slo-triple . As X
ad Y)?
is if weight 2 for the action of this sl,-triple, one has wX; = ( 5 ) X; and wX; is a non zero

element of gY. As ¢ = 1, there exists a € F* such that wX; = aY;. Therefore, we get
1
QX,‘,XJ‘ (Y) = §b(ad(Y))2XZ, X]) = b(le,Xj) =a b(Y},XJ) =a 7é 0.

Hence the restriction of ¢x, x; to g~ itN)/2 i anisotropic.

We prove now the last assertion. We have d > e. For s =i or j, we note wy = €24 Xsgad¥sead Xs
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and w;; = wyw; = wyw;. Let p € ¥ such that p # (\; + );)/2 and such that g* C E;(1,1).
From Remark 3.3.3, we have w;ju = p — X\ — A;. Hence p/ = —w; u is a root, distinct
from g (because p/ = p would imply p = (A\; + A;)/2 and this is not the case) such that
g * C Eij(—1,-1). Let us fix an sly-triple {X_,, H,, X,,} where X, € g**. Applying w;
we obtain the sly-triple {w;;X,, H,,w;;X_,} where w;; X, € g7*. Using Lemma 3.3.1, we

obtain
1 1 1
4, x; (X—p) = _ib([XzﬁX—u]a (X, Xou]) = _éb(wiX—mij—u) = _§b(X—mwi7jX—u) =0
and
1 1 1
ax;,x; (wi; Xy) = _gb([XivXu]v (X, X)) = _gb(winiju> = _§b<wai7jXﬂ) =0.

This implies that the restriction of gy, x, to the vector space generated by X_, and w; ;X is
a hyperbolic plane. This ends the proof.
O

Remark 3.5.3. Rather than the forms g¢x, x, which were already used in the real case by
N. Bopp and H. Rubenthaler ([7]), I . Muller ({14],[17]) introduced the quadratic form fy, , on
E; j(—1,1) defined as follows: if (Y;, H),, X;) is an sly-triple then

Fripy (u) = —%b([u, Xi, [u, Y1)
From the preceding proof we see that
Py (W) = ax, x, (Vi u]), v e Eiy(=1,1).
3.6. Reduction to the diagonal. Rank of an element.

Proposition 3.6.1. For any element Z in VT, there exists a unique m € N, and for j =
0,...,m — 1 there exist non zero elements Z; € g™ (non unique) such that Z is G-conjugated

to Zoy+ 21+ ...+ Zy_1, or, equivalently, Z is G-conjugated to a generic element of thmﬂ.

Proof. By Theorem 3.2.2, any non zero element of V1 is G-conjugated to an element of the
form

Y=Yy+Y+...4+Y, withY; e ghy.
Let m be the number of indices j such that Y; # 0. For i # j, the element ;; € Ng(a?)
obtained in Proposition 3.4.3 exchanges g and gV and fixes g* for s ¢ {i,j}. Therefore Y is

conjugated either to an element of the form
Zo+Zy+ ...+ Zma, whereZ; € g¥\{0},

or, equivalently, to an element of the form Yj_,,+1 + ...+ Y; where Y; € g%\ {0}, that is to a

. +
generic element of V" +1-

Let us now show that for m # m/, the elements Z = Zy+Z1+.. . +Z,, and Z' = Z|+Z+.. +Z],

where the Z;’s and Z}’s are non zero in g%, are not G-conjugate. If they were, the quadratic

forms ()7 and @)z would have the same rank. But, according to Theorem 3.5.1, one has

rang () — rang Q7 = (m—m’)(f—{— m—2m d).
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Hence rang QQ; # rang Qz if m # m/.
0]

Definition 3.6.2. For Z € V', the rank of Z is defined to be the integer m appearing in the

preceding Lemma.

Remember from Notation 1.9.4 that £ is the common dimension of the spaces g and that e is
the common dimension of the spaces g*t%)/2. The structure of the G-orbits in V* depends
on the integers (¢, e).

In the next (sub)sections, we will completely describe the G-orbits in V', not only the open
one, see Theorem 3.7.1, Theorem 3.8.8, Theorem 3.8.9, Theorem 3.8.10 and Theorem 3.9.8
below.

But as the open orbits will be of particular interest for our purpose, let us summarize here our
results concerning the number of these orbits (this is a Corollary of the results obtained in the

following sections):

Theorem 3.6.3.

(1) Ift =6% § eN* ande =0 or4 (i.e. if § is of type I), the group G has a unique open orbit
in VT,

(2) if ¢ =1 and e € {1,2,3} (i.e. if § is of type II), the number of open G-orbits in V' depends
on e and on the parity of k:

(a) if e =2 then G has a unique open orbit in VT if k is even and 2 open orbits if k is odd,
(b) if e =1 then G has a unique open orbit in V' if k =0, it has 4 open orbits if k = 1, it has
2 open orbits if k > 2 is even , and 5 open orbits if k > 2 is odd .

(c) if e =3, then G has 4 open orbits.

(3) If ¢ = 3 (i.e. if g is of type 111, in that case e = d = 4), the group G has 3 open orbits in
V* if k=0 and 4 open orbits if k > 1.

We know from Remark 1.8.8 that we can always assume that g is simple. This will

be the case in the sequel of the paper.
3.7. G-orbits in the case where ({,d,e) = (§%,26% 0) (Case (1) in Table 1).

Theorem 3.7.1. If (¢,d,e) = (6%,20%,0), then xo(G) = F* and the group G has eractly
k+1 = rank(g) non zero orbits in V. These orbits are characterized by the rank of their

elements, and a set of representatives is given by the elements Xo+...+X; (j =0,...,k) where

k

FO@’\J‘ are conjugated by

the X;’s are non zero elements of g*. Any two generic elements of ®
the subgroup L = Zg(a®).

Proof. From the classification (cf. Table 1 - (1)), we can suppose that g = sl(2(k+1), D) where

1 0

D is a central division algebra of degree d overF', graded by the element Hy = kgl I
—dp41

Then V7 is isomorphic to the matrix space M (k + 1, D) through the map

B»—>X(B):<g f).
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The maximal split abelian subalgebra a is the the set H(¢o, ..., ¢oxr1) = diag(do, - . -, dors1)

where the ¢;’s belong to F' and the maximal set of strongly orthogonal roots associated to this
grading is given by )\j(H(qb(), ey ¢2k+2)) = Cbk—&—l—j — ¢k+2+j for ] € {0, ok + 1}

Let us denote by v the reduced norm of the simple central algebra M (k 4 1, D). Remember
that if E is a splitting field for M (k + 1, D), then M(k +1,D) ® E ~ M((k + 1)d, E), and if
o : M(k+1,D) — M((k+1)d, E) is the canonical embedding, then v(x) = det(¢(x)), for z €
M(k+1, D) (see for example, Proposition IX.6 p.168 in [31]). Also if x = (z; ;) is a triangular
matrix in M(k + 1, D) and if v denotes the reduced norm of D, then v(z) = [['=5"" vo(;,)
([31], Corollary IX.2 p.169).

Let us now describe the group G = Zaug,(si(2(k+1),0)) (Ho)-

Consider first an element g € Auty(sl(2(k+1), D)) and denote by gg the natural extension of g
tosl(2(k+1),D)®F = sl(2(k+1)d, E). We know from [4] (Chap. VIII, §13, n°1, (VII), p.189),
that there exists U € GL(2(k + 1), E) such that gg.x = UzU~! for all x € sl(2(k + 1)4, E).
Let us write U in the form

U= ( s ) u; € M((k+1)d, ).

Ug U2

Let now g € G. As g.Hy = Hy, we have ¢.V~ C V—, ¢ VT C V*and g.g C g. Then gg
stabilizes VT @ E, V- ® E and g ® F, and a simple computation shows that uz = uy = 0.

Y
X,Y € M(k+1,D). As gg also stabilizes g, the maps X + u; Xu;* and Y +— upYu, ' are

automorphisms of M (k + 1, D), for the ordinary associative product.

X
On the other hand, the algebra g is the set of matrices ( 0 0 ) € sl(2(k + 1), D) with

By the Skolem-Noether Theorem, any automorphism of M(k + 1, D) is inner, hence it ex-
ists v; and vy in GL(k 4 1, D) such that u; Xu;' = vy Xo7! and usXuy' = v, Xvy ! for all
X € M(k+1,D). Therefore v;'u; and v, 'uy belong to the center of M((k + 1)6, E). Tt

follows that there exist A\; and Ay in E* such that u; = Ajv; and us = Asv9. Hence the
AV 0
automorphism ¢ is given by the conjugation by U = 101 \ and its action on V'
2V2

is given by ¢.X(Z) = X(MA;'v1Zvyt) for Z € M(k + 1,D). As g stabilizes V* this im-

0
plies that A\ A\;' € F* and g is given by the conjugation by diag(gi,g2) = < 901 ) where
92

g1 =M\'v € GL(k+1,D) and go = v, € GL(k + 1, D).

The polynomial Ay defined by A¢(X(Z)) = v(Z) is then relatively invariant under G' and it

*

character is xo(g) = Ao(grg; ') for g = diag(g1, g2) . Therefore xo(G) = F*.

The group L = Ni_G Hi, corresponds to the action of the elements diag(g, go) where g; and

go are diagonal matrices with coefficients in D*.

From Proposition 3.6.1, any element in V' is conjugated to an non zero element Z € @;?ZOQ)‘J' )
Such an element corresponds to a matrix of M(k + 1, D) whose coefficients are zero except

those on the 2nd diagonal. This shows that the group L acts transitively on @;?:O@’\j . 0
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3.8. G-orbits in the case ¢ = 1.

In this section, we will always assume that ¢ = 1.
If £ = 0 the G-orbits in VT were already described in Theorem 1.12.4. Therefore we suppose
that k£ > 1.

If ¢ =1, the G-orbits in VT were studied by I. Muller in a more general context (the so-called
quasi-commutative prehomogeneous vector spaces), see [14]. Our results, are more precise than
hers in the sense that we obtain explicit representatives for the orbits, and also we give detailed

proofs.

For j € {0,...,k}, we fix sly-triples {Y}, Hy,, X;} which satisfy the conditions of proposition
3.5.2. The quadratic forms gx, x,; are then G-equivalent. We take ¢ = gx, x, as a representative
of this equivalence class. Then ¢ = ¢S, + qnyp Where ¢, is an anisotropic quadratic form of
rank e (¢2, = 0), and where gy, is a hyperbolic quadratic form of rank d — e.

We set Im(q)* = Im(q) N F*. Let a € F*. As ¢ represents 1, if ¢ is equivalent to ag, (which
will be denoted ag ~ ¢), then a € Im(q)*.

Remember (Corollary 1.7.8) that
G = Zputos) (Ho) = Aute(g).L where L = Za(a?).
Definition 3.8.1. Fort € F* and j € {0,...,k}, we define the following elements of G
Ox,(t) = e ot " adaYigt adaXs g — 9y (1) and  hy, (t) = Ox, (1)0x,(—1)
If {Y, Hy, X'} is an sly-triple where X is generic in V™ and Y € V—, we set also
Ox(t) = e s Xt ada X ot ads X and by (t) = Ox(£)0x(—1).
Then hx(v/t) € L and acts by t.Idy+ on V* (see Lemma 1.11.3).

Lemma 3.8.2. ([14], Proposition 3.2 page 175).
(1) F*2 C x0(G) = xo(L).
(2) If k+1 is odd then xo(G) = F*.
(3) If k+ 1 is even then xo(G) C {a € F*;aq ~ q} C Im(q)*.

Proof.
(1) We know from Theorem 1.14.2 (2), that the character o is trivial on Aut.(g) and hence

Xo(G) = xo(L).

Let g = hx,(t). From [4] (Chap VIII §1 n°1, Proposition 6 p. 75), we have g(Xo+ ...+ Xj)
t?Xo+ X1 +...+ Xp. As =1, we obtain by Theorem 1.13.2 that Ag(£*Xo+ X1+ ...+ Xz) =
t2Ao(Xo + X1 + ...+ X}). Therefore xo(g) = t* € F*?, and this proves the first assertion.

(2) Consider the generic element X = Xo+4 ...+ X, € V* and g = hx(v/t). Theorem 1.13.2

implies xo(g) = t**1 and this proves the second assertion.

(3) Let g € L. Then g stabilizes each of the spaces g% and F; j(+1,41). As £ = 1, there exist
scalars a;(g) € F* such that g.X; = a,(¢)X;. Theorem 1.13.2 implies then x(g) = H?:o a;j(g).



LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (I) 63

On the other hand one gets easily that g,.x,¢.x,_, = aj(9)ar—;(9)ax, x,_,- AS @g.x,.4.x,_, and
qx;.x,_; are G - equivalent to ¢, we get a;(g)ar—;(9)q ~ q. As k + 1 is even, the scalar

Xo(g) = H;’;lw a;(g)ak—;(g) is such that xo(g)g ~ g. This gives the third assertion. O

Lemma 3.8.3. (compare with [14], lemme 2.2.2 page 168). Let A € E; j(—1,1). Then there
exvists B € E;;(1,—1) such that {B, Hy, — Hy,, A} is an sly-triple if and only if the map
ad(A)? : gh — g% is injective (remember from Lemma 5.4.2 that such an sly-triple always
exists).

In that case, the element 0, = edAeddBeadd of Aut,(g) C G satisfies 04(X,) = X, for s # 1,7,
04(X;) = aX; and 04(X;) = a”'X; where a = qx, x, ([}, A]).

Proof. Tt is a well known property of sly-triples, that if such a triple exists the map ad(A)? :

g% — gV is injective.

Conversely, suppose that the map ad(A4)? : gh — gV is injective, and hence bijective. As
A is nilpotent in g (more precisely (ad A)> = 0), the Jacobson-Morosov Theorem gives the
existence of an sly-triple { B, u, A} in g. If one decomposes the element B and u according to
g = Z4(a°) ® (B, E,5(1,—1)), we easily see that one can suppose that B € E; ;(1,—1) and
u € Zy(a).

We will show that u = Hy, — Hy,.

As u commutes with the elements H,_, the endomorphism adwu stabilizes all eigenspaces of
these elements. Therefore, as £ = 1, there exists « € F' such that [u, X;| = aXj.

As [B,X;] = 0 = (ad A)3X; and as by hypothesis ad(A)?X; # 0, the sly - module generated
by X; under the action of {B,u, A} is irreducible of dimension 3 and a base of this module is
(X:, |4, X;],ad(A)?X;). This implies that a = —2.

Let 04 = e?d4eadBead4 he the non trivial element of the Weyl group of the sl,-triple {B,u, A}.
Then (cf. §3.1):

04(X;) = %ad(A)ZXi € gh.

Hence, there exists a € F* such that 64(X;) = aX,. As 0 # B(X,,Y;) = B(04(X;),04(Y7)) ,
we have 04(Y;) = a™'Y;. And as {04(Y;),04(H),),04(X;)} is again an sly-triple, we obtain that
O4(Hy,) = H,.

On the other hand, a simple computation shows that 04(H),,) = H,, if s #i,j and 04(H),) =

H)y, +u. Hence u = H,, — H),, which gives the first assertion of the Lemma.
By Remark 3.5.3 and the normalization of b (Lemma 1.10.2), we get

1 1

qXL,XJ([Y;> A]) = _§b<[*’47 Xz]v [A7 Y}]) = b(§

This ends the proof. U

(ad AP2X,.Y) = b(04(X.).Y)) = a b(X,.Y;) = a.

Corollary 3.8.4. (Compare with [14] Corollaire 4.2.2 and Remarques 4.1.6)
Let a € Im(q)*. Leti# j € {0,...k}.
(1) There exists g¢; € LNAut.(g) such that g¢;(X;) = aX;, g¢;(X;) = a7 ' X; and g¢;(X,) =
X, for s #1,j.
(2) If either
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(a) k+ 1 = rank(g) is odd,
or

(b) k+1 = rank(§) is even and if there exists a reqular graded Lie algebra (¥, Hp)
satisfying the hypothesis (Hy), (Hy) and (H3) such that the algebra t, obtained at
the first step of the descent (cf. Theorem 1.6.1) is equal to g (in other words, the
algebra g is the first step in the descent from a bigger graded Lie algebra),

then there exists g¢ € L such that ¢g(X;) = aX; and ¢*(Xs) = X5 for s # i. In
particular we have xo(G) = Im(q)*.

Remark 3.8.5. From the classification (cf. Table 1) and from Proposition 2.1.1, the condition
on the descent in case 2 (b) occurs if e = d € {1,2} (Table 1, (2) and (6)) or (d,e) = (2,0)
(Table 1, (1)) or e = 0,4, and k+ 1 > 4 (Table 1, (11) and (12)).

Proof.
(1) By hypothesis, there exists Z € Ej;(—1,—1) such that gx, x,(Z) = a. As ad(Y}) :
E;;(=1,1) = E; j(—1,—1) is an isomorphism, there exists A € E; ;(—1, 1) such that [Y;, A] = Z.

Then, as we have already seen at the end of the preceding proof, one has
1
a = qu,Xj(D/}? A]) = §b(ad(A)2X“ Y;)

As a # 0, the map ad(A)? : g% — g% is non zero, and hence injective because £ = 1 and the
preceding Lemma says that there exists an sly-triple {B, Hy, — H),, A} with B € E; ;(1,—1).

Moreover the element 64 € Aut.(g) C G fixes each X and each H,, for s # i,j and we have
04(Hy,) = Hy,;, 04(X;) = aX; and 04(X;) = o' X;. From the proof of Proposition 3.5.2, let
us set fi; = 70,77, Then the automorphisms f; ; € Aut.(g) C G satisfy the properties of
Proposition 3.4.3 and we have f; ;(X;) = X, and f; ;(X;) = X, for s # 4,j. Then, from the
preceding Lemma, the automorphism g¢; = f; j 0 64 € L N Aut.(g) and has the other required

properties.
(2) As the involutions fy; exchange X, and X; and fix X, if s # 4, we can suppose that i = 0.

Let &+ 1 be odd. The element g = g, ... g5, € L satisfies g(Xo) = a* Xy and g(X;) = a™' X,
if s > 0. From Definition 3.8.1, the element hx,. .x,(yv/a) € L acts by multiplication by a
on V* and hyx,(a"*/?) fixes X, if s # 0, and also hx,(a"*/?)(X,) = a=*Xj. It follows that the

element g¢ = hx, 1. +x,(v/@) o hx,(a™*?) o g has the required properties.

Let now k£ 4 1 be even and suppose that there exists a regular graded Lie algebra (T, [:]0), such
that the algebra t; obtained by performing one step in the descent (c¢f. Theorem 1.6.1.) is
equal to g. As we are only concerned by the action of an element of G on VT, we can always
suppose that t is simple (cf. Remark 1.8.8).

Let (Ao, - - - Agg1) the maximal set of stronly orthogonal roots associated to . Then (A1, ... Apy1) =
(Mo, -+ Ax). Let us fix the elements X; € th satisfying the conditions of Proposition 3.5.2 in
such a way that (X1, ... Xp1) = (Xo,..., Xp).
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Let R be the analogue of the group G for the algebra . Set v = Zx(H,) and a° = @fiolFH;i.
Therefore R = Aut.(v)Zr(a’). The first assertion of the Corollary gives the existence of an
element r € Zp(a°) N Aut,(r) such that r.Xo = aXo, X1 = a'X; and r.X, = X, for s £ 0.

As the automorphism r also fixes H,,, it stabilizes t; = g. Let r; € Aut(g) be the restriction of
r to g. As r centralizes a°, it is clear that 7 centralizes a’. Moreover, one has r.Xy = a= ' X
and r1.X, = X, if s # 0, from our choice of the elements X'j. Then, if we set g = 1 o hx,(a),

we have g.Xy = aXy, 9.Xs = X, for s # 0 and also xo(g9) = a.

It remains to prove that r; € Auty(t;). But as 1 € Aut(ty), it suffices to prove that r; belongs
to Aut.(t; ® F). As we have supposed that k + 1 is even, the rank k + 2 of t is > 3. Using
the classification (Proposition 2.1.1 and Table 1), one sees easily that the weighted Dynkin
diagram of t is of type Ag,—1 (corresponding to the cases (1) (with 6 = 1) and (2) in Table
1), C,, (corresponding to the case (6) in Table 1) or Ds, o (corresponding to the cases (11) and
(12) in Table 1). Here in all cases n = k + 2.

- If v is of type Ag,—1, then t >~ s[(2(k+2)+ 1, F'). From the description of the roots A; given in
the proof of Theorem 3.7.1 and also from [4] (Chap. VIII, §13, n°1, (VII), p.189), it is easy to
see that the group Zj ., s p)(ﬁo) is the group of conjugations by invertible diagonal matrices
Therefore the restriction 7, of 7 to § belongs effectively to Aut,.(t; ® F).

- If t is of type C,,, then, by [4](Chap. VIII §13 n°3 (VII) page 205.), one has Aut.(g @ F) =
Aut(g ® F), and this implies the result.

- If U = D,, 5 then the algebra t @ F is isomorphic to the orthogonal algebra 0(q(2n,2n); F).
We realize it as in ([4] Chap VIII §13 n°4 page 207). One fixes a Witt bases in which the
matrix of gan 2n) is the square matrix s, of size 4n whose coefficients are all zero except those

of the second diagonal which are equal to 1. The algebra t ® F is then the set of matrices

A B
7 = with B = —sy, ‘Bsy, and C = —sy, ‘Csy,. This algebra is then

C —Son tASQn

IQn 0 . . . . .
graded by the element Hy = 0 I where I, is the identity matrix of size 2n and one
—42n
02n—2 0 0
: 0 I
can choose )\ in such a way that i, = F 0
0 —12
0 02n72

Recall that a similarity of a quadratic form @) is a linear isomorphism ¢ of the underlying space
E such that Q(¢gX) = A(g)Q(X), where the scalar A(g) is called the ratio of g. If dim E = 2,
then a similarity g is said to be direct if det(g) = \(g)".

But we know from [4] (Chap VIII §13 n°4 page 211), that the group Aut.(t ® F) is the group

of automorphisms of the form ¢, : Z + sZs~! where s is a direct similarity of G2n2n)- It
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0
is easy to see that a similarity s commutes with Hy if and only if s = g .
0 ps2n ' som

with u € F* and g € GL(2n, F). Moreover, if s commutes with H,,, then g is of the form

0 g2
to a direct similarity of g(2,—2.2n—2) and hence the restriction belongs to Aut.(t; ® F ).

0 _ _
g= ( 5 with g1 € GL(2n — 2, F) and ¢go € GL(2, F). It is then clear that g restricts

The following result on anisotropic quadratic forms of rank 2 will be used later.

Lemma 3.8.6. Let QQ be an anisotropic quadratic form of rank 2. Let Im(Q)* be the set of
non zero scalars which are represented by Q). Then

(1) Im(Q)* is the union of exactly 2 classes a and b in F*/F*2.

(2) Let Q' be another anisotropic quadratic form of rank 2. Then Q' ~ Q if and only if
Im(Q")* = Im(Q)*. In particular, one has uQ ~ Q if and only if 1 = 1 or yu = ab modulo F*2.

Proof. Let m be a uniformizer of F' and let u be a unit of F* which is not a square. Then
F*/F** = {1,u,7,ur}. If —1 ¢ F** we suppose moreover that u = —1 .

(1) As @ is anisotropic of rank 2, there exist v,w € F*/F** with v # —1 such that Q ~
w(x? + vy?). Therefore it is enough to prove the assertion for Q, = 2% + vy*.

From [13] (Chapter I, Corollary 3.5 page 11), we know that u € Im(Q,)* if and only if the
quadratic form x? + vy? — pz? is isotropic. On the other hand the quadratic form Q,, =
r? — uy? — 2% + unt? is the unique anisotropic form of rank 4, up to equivalence (see [13]
Chapter VI, Theorem 2.2 (3) page 152).

If =1 € F*? then v € {u,m, ur}. Suppose that for example that v = u. Then @, cannot

2 or 2% 4 vy? — urz? would be

represent 7 or um, because in that case the forms 22 + vy? — 72
isotropic, and hence and then Qg, = 2% — uy? — 722 + unt? would be isotropic too. Finally

(@, represents exactly the classes of 1 and v. The same argument works for the other possible

values of v.
If u=—1¢ F*? then —1 is sum of two squares ([13] Chapter VI, Corollary 2.6 page 154)
and v € {1,7m,—7} (as the form @, is anisotropic, v cannot be equal to u = —1). The

forms x? + y? and —(z% + y?) have the same discriminant and represent both the element
—1. They are therefore equivalent ([13] Chapter I, Proposition 5.1 page 15). Then, as
Qun = 22 + y* — 722 — 7t? ~ —(2% + y?) — 722 — 7t ~ 2% + y* + 722 + 7t?, the same ar-
gument as above shows that the form (), represents exactly the classes of 1 and —1. By the

same way, if v = 47 one shows that (), represents exactly the classes of 1 and v.

(2) From above we know that an anisotropic quadratic form Q = ax? + by* with a,b € F*/F*?
represents @ and b if a # b and it represents +a if a = b and if —1 ¢ F*? (because then
-1 is a sum of two squares, the case where —1 € F*? has not to be considered because the
form @ would be isotropic). From [13] (Chapter I, Proposition 5.1 page 15), we know that
Q' = cx? + dy* ~ Q if and only if ab = c¢d modulo F*? and {a,b} N {c,d} # 0. This implies the

second assertion.
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O

Proposition 3.8.7. Suppose k =1 (i.e. rank(g) = 2). Let us denote by [F* : xo(G)] the index
of xo(G) in F* (equal to 1,2 or 4 according to Lemma 3.8.2 (1)). Then

(1) The group G has 1+ [F* : xo(G)] non zero orbits in V*: the non open orbit of X, and
the open orbits of Xo + v X, where v € F*/xo(G).
(2) Two generic elements in g D are G-conjugated if and only if they are L-conjugated.
(3) (a) Ife=1 or 3, then xo(G) = F*?,
(b) if e =0 or4, then xo(G) = F*,
(c) if e =2 then xo(G) is a subgroup of index 2 of F*.

Proof. By Proposition 3.6.1, any non zero element in V' is G-conjugated to an element Z =
ZL‘()XQ + [L’1X1 in V+ with ($0,£B1) 7£ (0,0)

If rank(Z)= 1 (i.e. xox; = 0), as we can use the element ~,; of Proposition 3.4.3 which
exchanges g and g™, we can suppose r; = 0 and x5 # 0. The element hy,x,(\/To ')
associated to Xo + X; (see Definition 3.8.1) belongs to L and acts by xy'Idy+ on V*. It
follows that Z is L-conjugated to Xj.

Suppose now that rank(Z)= 2 (i.e. zox; # 0). Then, as above, we obtain that Z is L-conjugated
to Z, = Xog +vX; with v = xglarl # 0.

By Theorem 1.13.2, one has A¢(Z,) = vAg(Z;). It follows easily that if v ¢ wyo(G), then the

elements Z, and Z,, are not G-conjugated.

Suppose that v = wp with g € xo(G) = xo(L) (cf. Lemma 3.8.2). Let g € L such that
Yo(9) = . As g € L, it stabilizes the spaces g% for j = 0 or 1. As dimg% = ¢ = 1, there
exist & and 8 in F* such that ¢.Xy = aXy and ¢g.X; = 5X;. Therefore Ay(g.(Xo + X1)) =
Ao(aXo + X1) = afAo(Xo + X1), and hence aff = xo(g) = p.

Then g.(Xo +wX;) = aXo+ pwX; = a (o’ Xy +vX;). The element hy,(a) associated to X,
belongs to L and satisfies h, (o) Xo = 02X, and hy,(a)X; = X;. The element hy,,x, (V& )
also belongs to L and acts by multiplication by a ™ on V*. As g.(Xo+wX;) = hxgx, (V@ ' )o
hx,(a)(Xo+vX7), the elements Xo+wX; and Xy+vX; are L-conjugated. This ends the proof
of (1) and (2).

It remains to prove the last assertion.

By Lemma 3.8.2, one has F*? C xo(G) C {a € F*;aq ~ q} C Im(q)*.

If e =1, then ¢ is the sum of the form ¢, of rank 1 and of a hyperbolic quadratic form gy,
of rank d — 1 (which may be zero). See Proposition 3.5.2. As ignyy ~ qnyp for all g € F* ([13]
Chapter I, Theorem 3.2 page 9), Witt’s decomposition Theorem ([13] Chapter I, Theorem
4.2 page 12), implies that aq ~ ¢ if and only if aqt, ~ ¢, As ¢, is of rank 1, we obtain
Xo(G) = F*?, and this is the assertion § (a), in the case where e = 1.

If e = 3, then ¢ is the sum of an anisotropic form ¢, of rank 3 and of a hyperbolic quadratic
form g, of rank d — 3. As above aq ~ ¢ if and only if ag, ~ ¢5,. But from [13], Chap. V1,
Corollary 2.5, p.152-153, we have aq¢t, ~ ¢, <= —disc(aq,) = —adisc(q,,) = —disc(qS,)-
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This means that agt, ~ ¢¢, < a € F*?. As above this again implies that xo(G) = F*2.
Hence (3) (a) is proved.
Let us suppose now that e even and hence e € {0,2,4}. The proofs will depend on the values
of e and d.
If (d,e) = (2,0) or (2,2) (cases (1) and (2) in Table 1) then the algebra g satisfies the condition
2 (b) of corollary 3.8.4 and hence xo(G) = Im(q)*.

- If (d,e) = (2,2), the quadratic form ¢ is anisotropic of rank 2, and therefore ¢ two classes
in F*/F*? (cf. Lemme 3.8.6). From above we obtain [F* : xo(G)] = 2.

- (d,e) = (2,0) then ¢ is hyperbolic, hence universal and therefore xo(G) = Im(q)* = F* (cf.
[13] Chapter I, Theorem 3.4 page 10).

It remains to study the cases where e € {0,2,4} and d > 4, corresponding to the cases (8), (9)
and (10) of Table 1. From Remark 1.8.8, one can suppose that g = 0(¢(m+rm—r)) With 2r =e
and m > 4. We will describe precisely the group G is this case.

The quadratic form q(4r,m—r) is the sum of m — r hyperbolic planes and of an anisotropic
quadratic form g 9, of rank 2r, where gu,0 = 0. It exists a basis (e1,...,€m,€—m,...€-1) in

which the matrix of g(4rm—r) is given by

0 0 Sm—r
SQm,Qr = 0 Jan,Qr 0 )
Spm—r 0 0

where s, stands for the square matrix of size n whose coefficients are all zero except those on
the second diagonal which are equal to 1 and where J,,, 2, is the square matrix of size 2r of the
form g,y which is supposed to be diagonal for r # 0 and equal to the empty block for » = 0.

Hence

g = {X € M?m(F)y tXSZm,ZT + SQm,QrX = 0}

m—r

Then the maximal split abelian subalgebra a of g is the set of diagonal elements )\ " o;(E; ; —
Eom—i+12m—it1) with ¢; € F' (as usual E;; is the matrix whose coefficients are all zero except
the coefficient of index (i, 7) which is equal to 1) and the algebra g is graded by the element
Hy=2F) 1 — 2Es,9m - It is then easy to see that V' is isomorphic ™2 by the map

0 vy 0
ye P25 X(y)=1 0 0 —52_(717171)’27“ by | evt.
00 0
Set Xy = X(1,0,...,0) € g* and X; = X(0,0,...,1) € gM.

We denote by Simo(q(m-+rm—r)) the group of direct similarities of ¢(m+rm—r), that is the group
of elements A € GL(2m, F) such there exists u € F* satisfying *AS,, A = (1S, and such that
det(A) = p™. We will denote by u(A) = u the ratio of A.

If e = r = 0, the algebra g is split and from ([Bou] Chap VIII §13 n°4 page 211), we know
that the group Aute(g) is the group of automorphisms of the form Z ~— AZA~! where

A € Simo(qumm))- It is easy to see that an element A € Simg(qum,m)) commutes with
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H, if and only if there exists b € F* and g1 € Simo(qum-1,m-1)) of ratio u(gi) such that

(g)db=t 0 0 p(g)db=> 0 0
A = 0 g1 0] =0 0 b'g: 0 |. As b7lg, is a direct similarity of
0 0 b 0 0 1

ratio p(g1)b~2, we obtain that the group G is isomorphic to the group of direct similarities
Simo(qm-1,m-1)) of the quadratic form gg,—1,m-1). Its action on V* is given by ¢.X(y) =
X(u(g) yg=") for g € Simo(qn—1,m-1)) with ratio p(g).

Suppose now that r # 0. Let ¢ € G and denote by g its natural extension to g ® F. As g

commutes with Hy, the same is true for g and therefore , g stabilizes V* and V=~ (ie. gV*+ c V*

and gV~ C V7). From the split case above, the action of g on g® F' is given by the conjugation

w0 0
ofanelement A= | 0 g 0 |withp¢€ F*, G1S2(m—1),20G1 = S2(m—1)2- and det(gy) = p" 1.
0O 0 1

Such an element acts on V' by

o 0 pygy' 0
AXWA ' =X(pygr)=[ 0 0 -@S;t, v |, yer™™
0 0 0

As g € G stabilizes V1T and V', we see that the coefficients of g, are in F and that p €

F. Moreover the restriction of g; to F?"~2 which we denote by g, is a direct similarity of

d(m+r—1,m—r—1) with ratio Hs Le. g1 € SimO(Q(mflJrr,mflfr))'

Hence, in each case, the group G is isomorphic to the group Simo(qm+r—1,m—1-r)) of direct
similarities of g(mr—1,m—1-r). Its action on VT is given by ¢.X (y) = u(9) X (yg~") where p(g) is
the ratio of g. Then the polynomial Ag(X () = qumtr—1,m—1-r)(y) is relatively invariant under
the action of G and its character is given by xo(g) = p(g).

All the anisotropic quadratic forms of rank 4 are equivalent ([13] Chapter VI, Theorem 2.2 page
152) and all the hyperbolic quadratic forms are equivalent ([13] Chapter I, Theorem 3.2 page
9). Therefore, if e =1 =0 or e = 4 = 2r, for any u € F*, there exists g € Simo(qumtr—1,m—1-r))
whose ratio is u. Hence xo(G) = F™.

If e = 2 = 2r, then by Lemma 3.8.6, the anisotropic form g,, 2 represents exactly 2 classes a
and b in F*/F*? and HGan2 ~ Gan2 if and only if u =1 or u = ab modulo F*2_ Tt follows that
if g € Simo(qumtr—1,m-1-r)) then p(g) € {1,ab} modulo F*2. Hence the subgroup xo(G) is of
index 2 in F™.

This ends the proof of Proposition 3.8.7.
O

Theorem 3.8.8. In the case where e = 0 or 4 we have xo(G) = F* and the group G has
exactly k +1 = rank(g) non zero orbits in V. These orbits are characterized by their rank

and a representative of the unique open orbit is Xo + ...+ Xg.

k

J:OQ’\J' are conjugated under the subgroup L = Zg(a®).

Moreover two generic elements in @&
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Proof. From Proposition 3.6.1, any non zero element in V7 is G-conjugated to an element
7 = x20Xo+ ... + 2p_1X;m_1 of VT such that H::Ol xs # 0. It suffices to prove that 7 is
L-conjugated to Xo+ ... X,,_1.

If £+ 1 =2, the result is a consequence of proposition 3.8.7.

Suppose now that k +1 > 3. As e = 0 or 4, the form ¢ is either isotropic or anisotropic
of dimension 4, and hence I'm(q)* = F* (an anisotropic form of dimension 4 represents any
nonzero element because any form of dimension 5 is isotropic ([13], Chap VI, Theorem 2.2 p.
152)).

If d < 4 (as the conditions are then £ = 1, e = O or 4, and k + 1 > 3, this corresponds to
the cases 1 (with § = 1), (11) and (12 ) in the Table 1) then the algebra g satisfies one of
the two hypothesis in Corollary 3.8.4 (2). Hence, for i € {0,,...m — 1}, there exists ¢ € L
such that ¢"X; = x;X; and ¢'X; = X, for s # ¢. It follows that if g = H?igl g;*, then
g.(Xo+...X,_1) = Z, and this proves the required result.

In the case where e € {0,4}, k+1 > 3 and d > 4 (and £ = 1 of course), the classification shows
that this corresponds to the only case (13) in Table 1, and that k£ + 1 = 3. Again Corollary
3.8.4 gives the result.

O

The next Theorem gives the G-orbits in V' in the case where e = lore =3. If e =d = 1,
this classification coincides with the classification of similarity classes of quadratic forms over
F: a quadratic form Q) is similar to a quadratic form @’ if and only if there exists a € F** such
that @ is equivalent to a()’.

Theorem 3.8.9. Suppose that e =1 or e = 3.

(1) If k+1 = rank(g) = 2 (this corresponds to the cases (3), (4) and (6) with n = 2
in Table 1), then xo(G) = F*2. The group G has 5 non zero orbits, for which 4 are
open. A set of representatives of the open orbits is given by the elements Xy + vX; for
v e F*/F*2
Two generic elements of §*° @ g™ are L-conjugated if and only if they are G-conjugated.

(2) If k+1 = rank(g) > 3 then e = d = 1. This corresponds to the case (6) in Table 1,
namely the symplectic algebra. Remember also that F*/F*? = {1,u, 7, ur} where 7 is a
uniformizer of F' and where u is a unit which is not a square.

(a) If k+ 1= rank(g) > 3 is odd then xo(G) = F* and the group G has 2 open orbits

with representatives given by

k/2
Xo+ Y Xoj1— X

J=1

and
k/2
XO - UXl - 7TX2 -+ ZXQj,l - X2j-

Jj=2
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(b) If k+ 1 = rank(g) > 3 is even, then xo(G) = F*? and the group G has 5 open

orbits in V1, with representatives given by

(k—1)/2
> Xoj— Xoji,
§=0
(k—1)/2
Xo+vX; + Z Xoj — Xoji1, with v € {—u, —m, ur}.
j=1
and
(k—1)/2
X() — UXl — 7TX2 —f- U7TX3 + Z ng — X2j+1 .
=2

(¢) For m € {0,...,k}, two generic elements of V.t are G-conjugated if and only if
they are G,,-conjugated.
If k+ 1= rank(g) = 2p+ 1 with p > 1 then the group G has Tp non zero orbits
and if k+1 = rank(g) = 2p + 2 with p > 1 then G has Tp + 5 non zero orbits.
The representatives of these orbits are the representatives of the G,,-orbits of the
generic elements of V.t where m € {0,..., k}.

(d) Let X = 2o Xo+---+xp Xy and X' = x(Xo+-- -+ 2, Xg be two generic elements in
V*. Then Xand X' are L -conjugated if and only if there exits u € F* such that
px;xt € F*2 for alli € {0,...,k}.

Proof. 1f k 4+ 1 = 2 the result is a consequence of Proposition 3.8.7.
If K+ 1 > 3 then the classification in Table 1 implies that d = e = 1. As we have noticed in
Remark 1.8.8, one can suppose that g is the symplectic algebra

A B
sp(2n, F) — {( o ) : A,B,CeM(k+1,F>,tB:B,tC:C}, with &+ 1 = n,
Tjq 0

0 —Iiy
can be identified with the space Sym(k+1, F') of symmetric matrices of size k+1 on F through

which is graded by the element Hy = ) It follows that, V't (respectively V)

the map
0 B
BESym(k+1,F)r—>X(B):(O 0)

(respectively through the map

Be Sym(k+1,F)—Y(B) = (g 8))

The algebra a is then the set of matrices H (g, ..., ty) =

diag(ty, ..., to) 0 >

0 —dz’ag(tk, R ,to)
where diag(ty,...,ty) stands for the diagonal matrix whose diagonal elements are respec-
tively tx,...,tg. The set of strongly orthogonal roots associated to these choices is given

by Nj(H(tg,...,tg)) = 2t; for j = 0,...,k + 1 and the space g% is the space of matrices
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X (z;Ep1-jk+1-;) with z; € F, where E; ; is the square matrix of size k + 1 whose coefficients

are zero except the coefficient of index (4, j) which is equal to 1.

By ([4] Chap VIII, §13, n°3), we know that the group Autg(g) is the group of conjugations by
the similarities of the symplectic form defining g. This implies that G is the group of elements
0
g, 1] = Ad ( i - > where g € GL(k + 1, F) and p € F*. Let us denote by g = [g, ]
ng
such an element of G. Its action on VT is given by [g, u]B = u~'gB ‘g for B € Sym(k+1,F).
We normalize the relatively invariant polynomial Ay by setting Ay(X(B)) = det(B) for B €
Sym(k + 1, F') and from above we see that

Xo([g. 1) = p~*Vdet(g)?.

In particuliar , on a xo(G) = F* if k + 1 is odd and xo(G) = F*? if k + 1 is even.

Hence the orbits of G in V' are the classes of similar quadratic forms.

In order to give a set of representatives of these G-orbits, we will first normalize the elements X;.
Remember that the X;, j = 0,..., k satisfy the conditions of Proposition 3.5.2. This means that
for 7 # j, the quadratic form gx, x; represents 1. This quadratic form is defined on Ej; ;(—1, —1)

1 kE+1)(k+2
by g, () = —2b(X0 V][ Y]). As dimy+ = BFDEE2)
Killing form given in Definition 1.10.1 is

k+1 ~ .
— B(X,Y)=Tr(XY), X,Yeg.
hEN Ty Y =T g
Then, if we set X; = X (v;Epy1-jk41-;) with v; € F*, a simple computation shows that for
Y = Y(y(Ek+1—i,k+1—j + Ek+1—j7k+1—j)) € Ei,j(_L —1), we have

, the normalization of the

b(X,Y) =

ax,;,X; (Y) = Uivj?JQ'

Hence gx, x; represents 1 if and only if v;v; € F *2_ Therefore for all j € {0,...k}, there
exists a; € F™ such that v; = a?vo. Any element X = Zf:o x;X; is then conjugated to

X(Z?ZO 2;Egi1-jri1-;) by the element g = [g, vy '] where g is the diagonal matrix diag(ay, . . . , ag).

For X = X(B) € VT with B € Sym(k + 1, F), let us denote by fx the quadratic form on
F*+1 defined by B (ie. fx(z) = 'zBz). From above we obtain that for X = Z?:o z; X, the
quadratic form fy is similar to the form T € F*+! — Z?:o xT7.

We describe now the similarity classes of quadratic forms. From Witt’s Theorems ([13] Theorem
[.4.1 and Theorem 1.4.2, p.12), any quadratic form @ of rank r is the orthogonal sum of an
unique (up to equivalence) anisotropic form Qg of rank r,,, and a hyperbolic form Q@ m)
which is the sum of m hyperbolic planes with 2m + r,, = r (m is the so-called Witt index of
Q). Moreover, two quadratic forms are similar if and only if they have the same Witt index

and if their anisotropic parts are similar.

We recall the following classical results ([13] Chapter VI, Theorem 2.2 page 152, and Corollary
2.5 p. 153-154):
(1) Every quadratic form of rank > 5 is isotropic.

(2) Up to equivalence, there exists a unique anisotropic form of rank 4, given by 2% — uy?* —
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w22 —+ umz?.

(3) If @ is an anisotropic form of rank 3, then @ represents every class modulo F*? except
—disc(Q) where disc(Q) is the discriminant of ).

If @' is anisotropic of rank 3 with the same discriminant as @ then @Q + disc(Q)t* and Q' +
disc(Q)t? are anisotropic of rank 4, hence they are equivalent. Witt’s cancellation Theorem
([13] Chapter I, Theorem 4.2, p.12) implies then that @ ~ @’. Therefore there exist 4 equiva-
lence classes of anisotropic quadratic forms of rank 3 characterised by the discriminant. Hence
all the anisotropic quadratic forms of rank 3 are similar. Such a form is given by 22 —uy? — m22.
We describe first the similarity classes of anisotropic quadratic forms of rank 2. We know from
Lemma 3.8.6, that an anisotropic quadratic form @) of rank 2 represents exactly two classes
of squares a and b in F*/F*? which characterize the equivalence class of Q). Moreover uQ is
equivalent to @ if and only if 4 = 1 or ab modulo F*2,

Let a # b be two elements of F*/F*?. If ab # —1 the form ax?® + by? is anisotropic and
represents a and b and if a = —b with —1 ¢ F*? then —1 the sum of two squares ([13] Chapter

VI, Corollary 2.6 page 154) and then ax?® + ay? is anisotropic and represents +a. As there are

4

2) = 6 equivalence classes of anisotropic quadratic forms of

four classes modulo F*?, there (
rank 2.

Let a # b € F*/F*? defining the equivalence class of an anisotropic form @ of rank 2. Then, for
w # 1,ab modulo F*?, one has F*/F** = {1, ab, w, wab}. As ab(Q is equivalent to Q, and as w@
is not equivalent to (), a form which is similar to () is equivalent either to ) or to ab@). Hence
there are 3 similarity classes of anisotropic quadratic forms of rank 2. A set of representatives

of these classes are given by x? + vy? with v € {—u, —m, ur}.
Let @ be a quadratic form of rank £ + 1 > 3 and Witt index m: @ = Qan + Q(mm). Hence
rank(Qu,) < 4 and k + 1 = rank(Qq,) + 2m. By the classical results we recalled above, we get:

- If £+ 1 is odd, then rank(Q,,) = 1 or 3 there are two similarity classes of quadratic forms,
- and if k£ + 1 is even, then rank(Q,,) = 0,2 or 4 and hence there are 5 similarity classes of

quadratic forms.

The statements 2(a) and 2(b) are consequences of the description of the anisotropic quadratic

forms of rank < 4 given above.

Let us prove statement 2.(c). We denote by ¢ the natural injection from Sym(k + 1 —m, F)

M 0
into Sym(k + 1, F) given by M +— (M) = € Sym(k + 1, F). Therefore

0 O
the space V! is identified to the space Sym(k + 1 —m, F) by the map M — X («(M)). An
element X (c(M)) € V. is generic in V! if and only if det(M) # 0. The group G,, is the group
of elements ¢; = (g1, u| with g1 € GL(k+1—m, F) and p € F* acting on Sym(k+1—m, F)
by (g1, 1] M = g1 M ‘g
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Let Z = X(¢(M)) and Z' = X((M")) be two generic elements in V,I'. If Z and Z’" are G-
conjugated then there exist g € GL(k + 1, F) and pu € F* such that go(M) 'g = p o(M'). Let
g1 € GL(k+1—m, F) be the submatrix of g of the k + 1 — m first rows and the kK +1 —m
first columns of g. Then one sees easily that gy M 'gy = u M'. As Z and Z’ are generic in VI,
the matrices M and M’ are invertible and hence g1 € GL(k + 1 — m, F'). This shows that Z
and Z' are G,,-conjugated.

Conversely, if Z and Z' are G,,-conjugated then there exist g € GL(k+1—m, F) and p € F*

g 0

such that ggM gy = u M'. We set g = ) The element [g, 1] belongs to G and

m

satisfies Z' = [g, u|.Z. Hence Z and Z’ are G-conjugated.

This proves that two generic elements in VI are G-conjugated if and only if they are G,,-
conjugated.

Let S be the number of non zero G-orbits in V' and let S, be the number of G-orbits of rank
rin V*. By Proposition 3.6.1, we have S = Z’:;l S,. From above, S, is exactly the number of
open Gy41_,- orbits in Vj1_,. Using the statements 1, 2(a) and 2(b) we see that S; = 1, S, =4
and Sopy1 =2 forp > 1, Sy, =5 for p > 2. For k = 2, we therefore have S = 51 + 5,4+ 53 = 7.
If k=2p>4iseven, weget S =S+ S+ 7 | Sajr1+> 7 55 =5+2p+5(p—1) =T7pand
for k=2p+1>3o0dd, we get S =Sy + Sy + Y0 Saj1+ 307, Soj =5+ 2p+5p=Tp+5.
This ends the proof of 2.(c).

Here the subalgebra a° is equal to a. Therefore the group L is the group of elements [g, 1]
where p € F* and where g is a diagonal matrix of GL((k + 1), F'). If g is the diagonal matrix
in GL(k + 1, F) whose diagonal elements are (ag,...ap), then we have [g, p. Z?:o r; X; =
N adroXo + ... + ajxX},). This proves 2(d) and ends the proof of the Theorem.

Theorem 3.8.10. Suppose that e = 2.

(1) If k+1 = rank(g) = 2, then [F* : xo(G)] = 2. This case is case (9) and case (2)
with n = 2 in Table 1. The group G has 3 non zero orbits, for which 2 are open. A set
of representatives of the open orbits is given by Xo + vX; where v € F*/xo(G). Two
generic elements of §*° @ g™ are conjugated under the group L = Zg(a®) if and only if
they are G-conjugated.

(2) If k+ 1 = rank(g) > 3 then e = d = 2. This case corresponds to case (2) in Table 1,
namely g = u(2n, E, H,) where E is an unramified quadratic extension of F.

(a) If k+1 = rank(g) is odd then xo(G) = F* and the group G has a unique open
orbit in V.

(b) If k+ 1= rank(g) is even then xo(G) = Ng/p(E*) and the group G has two open
orbits given by O; = {X € V' Ag(X) = 1 mod Ng/p(E*)} and O = {X €
V* Ag(X) = mmod Ng,p(E*)}, where 7 is a uniformizer in F.

(¢) For m € {0,...,k}, two generic elements in VI are G-conjugated if and only if
they are G,,-conjugated. If k 4+ 1 = 2p is even then the group G has 3p non zero
orbits and if k+1 = 2p + 1 is odd, the group G has 3p + 1 non zero orbits. The
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representatives of these orbits are the representatives of the orbits under G,, of the
generic elements of V. where m € {0,...,k}.

(d) Let X = xoXo+ -+ 2 Xy and X' = 2 Xo + - -+ + 2}, Xy be two generic elements
of V*. Then X and X' are L-conjugated if and only if there exists p € F* such
paixi € Ngp(E*) for alli € {0,. .. k}.

Proof. The case k 4+ 1 = 2 is a consequence of Proposition 3.8.7.

If £+ 1 > 3, then from Table 1, we have d = e = 2. Using Remark 1.8.8, we can suppose
that g is u(2n, E, H,). This algebra can be realized as follows. Let E = F[\/u] be a quadratic
extension of F' where u is a non square unit. We denote by = — Z the natural conjugation of
E and by Ng/r the norm on E defined by associated to this extension Ng/p(x) = 2z. We also

setn=k+1.

0 I, . .
Define S,, = I 0o > Consider the Lie algebra

g={Zesl(2n,E);ZS, + S, 'Z =0},

0

I,
which is graded by the element Hy = ( 0 /

) . This implies that

. A B - _ _
g= {Z: ( A ) A, B,C € M(n,E) Tr(A— 'A)=0,'B=—-Band'C = —C}.
The subspace V' is then isomorphic to the space Herm(n, E') of hermitian matrices in M (n, E)
(ie. matrices B such that !B = B) through the map

B € Herm(n, E) — X(B) = ( 8 \/gB ) evt.

The space a is then the space of matrices

H ) = diag(tn—1,...,%0) 0
0s+++9ln-1) — 0 diag(—tn71,-~~a_t0) 7

with (to,...,tn—1) € (F*)" and the roots \; are given by \;(H (to,...,tn—1)) = 2t;.
We fix a basis of g by setting X; = X (B;) where B; € Herm(n, F) is a diagonal matrix whose
coefficient are zero except the coefficient of index (n — j,n — j) which is equal to 1. As in the

proof of Theorem 3.8.9, we see easily that Xy, ..., X} satisfy conditions of Proposition 3.5.2.

We will now describe the group G.

As g ®p E = sl(n, E), the group Autg(g) is the subgroup of Auty(sl(2n, £')) which stabilizes
g, and hence (using [4] Chap VIII, §13, n°1, VII, p.189) it is the group of the automorphisms
Ad(g) (conjugation by g) where g € GL(2n, E) such there exists u € E* vérifiant S, g = n.S,,.
The group G is the subgroup of Auty(g) of elements which commute with Hy. Therefore an

0
element of G corresponds to the action of Ad(g) where g = ( 901 > € GL(2n, E) is such
92
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1 1

that there exists u € E* satisfying go = p ‘1" and g1 = p'gp~*. This implies that g = p,

hence p € F*, and g, = p gy 1. Finally:

Gz{Ad(g);gz(g t0_1>,u€F*g€GL(n,E)}.

0 p'g

We denote by [g, 1] such an element of G. The action of [g, u] on V' corresponds to the action
lg, 1].B = p~'gB'g on Herm(n, E).

The polynomial B € Herm(n, E) — det(B) € F* is relatively invariant under the action of G
and we normalize the polynomial Ay onV™ by setting A¢(X(B)) = det(B), B € Herm(n, E).
This implies that

Ag(roXo+ .. Tp1Xpn1) =To...Ty_1.

Therefore

Xo(lg, u]) = n " Np/p(det(g)) (%)
and hence if n is even, we have xo(G) = Ng/p(E*) and if n is odd , we have xo(G) = F*. This
is a part of statements (2)(a) and (2)(b)

We describe now the G-orbits in V. We will prove the results by induction on n = rank(g).

In what follows, we identify V* with Herm(n, E) and we recall that the action of G is given by
g, 1].B = p~'gB 'g. By Proposition 3.6.1, any generic element of V* is G-conjugated to an
element of the form x¢ X+ ...+ z,_1X,,_1. Therefore it suffices to study the G-orbits in the

0
If n =2 (ie. k=1), one has det(I;) = 7 and det(l5) = 1. As xo(G) = Ng/p(E£*), we see from

relation (%), that the elements I, and I, are not conjugated .

I,.; O
space of diagonal matrices (with coefficients in F') under this action. We set I, = el > .

0
Let X = < 161 ) with zgzy # 0. As Ngyp(E*) = F** UuF*, we obtain that if zoz; ¢
Lo

10 1 0
Ng/p(E*) then xq = maaxr, for an element a € £* and hence X = x4 < 0 ) 1. ( 0 a ) =
a a

10
g, 27 '].I; where g = ( 0 ), and therefore X is G-conjugated to I.

If Tox1 € NE/F(E*)a then:

- either ¢ and z; belong to Ng/p(E*), then 2y = aa and z; = bb and hence X is conjugated

b 0
to I by the matrix g = < )
0 a

- or 9 and x; belong to mNg/p(E*), then xg = maa and z; = 7bb and then X = g, 7. Is.

This ends the proof for n = 2.
We will need the following result for the induction:
there exists g € GL(2,E) tel que tl, =g 'g. (xx)

(remember that from above 715 is either conjugated to I, or to I, this proves that it is actually

conjugated to I5.)
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147 1-—x
2 20
Suppose that —1 € F*?  then —1 = o with ay € F* and we set g =
l—7 147
T 200 2
Then - »
(1+m) -7
det(g) = T =T
hence g € GL(2, F) and
147 1—m 147 1—m
2 209 2 20
g'g= =rls.
l—7m 147 l—7 1+mn
T 200 2 200 2

If —1 ¢ F*2 then we can take u = —1. The quadratic form on F* defined by q(x,y,2,t) =
22+ 1?2 + 2% + 2 is isotropic (because —1 is a sum of two squares by [13], Chapter VI, Corollary
2.6. p. 154) and hence it represents all elements of F*. Therefore there exist a,b, c,d € F such

that 7 = a® + 0* + ¢* + d°. Weseta:ajt\/ﬁb,ﬁzc—i—\/ﬂdandg:( aB ?) One
-3 a

has det(g) = |a]* + |8]*> = a®* —ub? + ¢ —ud® = 7 (as —u = 1). Finally g € GL(2,E) and
g ‘g = (laf’|+[B]*)]z = L.

This ends the proof of ().

We suppose now that the statements 2.(a) and 2.(b) in the Theorem are true if rank(g) =

p < n and we will prove that they remain true for n + 1.

z, 0 0
Let X = 0 -. 0 whis z; € F*. We denote by n(X) the cardinality of set {j €
0 0 i

{O, cey ,n},xj < WNE/F(E*)}

Suppose first that n(X) is even.

As there exist automorphisms +; ; interverting X; and X (see Proposition 3.4.3), we can suppose
that z; € nNg/p(£*) if and only if j =0,...,n(X) — 1 and then z; = 7a;a;, and if j > n(X),
we have x; € Ng/p(E*) and hence x; = a;a;. We denote by g; a matrix in GL(2, E) satisfying
Let g, the block diagonal matrix whose n — n(X) first blocks are just scalars equal to 1 and
whose %n(X ) last blocks are equal to g;. Let diag(ay,...,ay) be the diagonal matrix whose
diagonal coefficients are a,,...,ag. Then g = diag(a,,...,a0)g. satisfies g 'g = X, in other

words X is G-conjugated to I, .
Suppose now that n(X) is odd.

If n is even then n+1 is odd, and hence n(7.X) is even. From above, there exists g € GL(n+1, E)
such that 7X = g 'g. This means that X is G-conjugated to I,,;1 by the element [g, 7].

We have proved that if n is even , any generic element is G-conjugated to I,,.1.
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If n is odd, as det(/n41) = 1, det(/r) = 7 and xo(G) C Ng/p(E*), the relation () implies that
I,+1 and I, are not G-conjugated .

Using again the automorphisms -; j,we can suppose that zo = maa with a € E*. We can write

X, 0
X = ( 01 where X; € M(n, E) is the diagonal matrix diag(xy,...,x1). Then n(X;) is
Lo

0
even, and hence there exists g1 € GL(n, E) tel que X; = g1 'g;. If we set g = ( gol ) €
a

GL(n, E), we get X = gl 'g and hence X is G-conjugated to I.
This ends the prove of statement (2) (a) and (2) (b) of the Theorem.

Let us now prove the statement 2 (c). Let ¢ be the natural injection of Herm(n — m, E) into

M 0
Herm(n, E') which associates to M € Herm(n —m, E) the matrix ¢«(M) = €

0 (1
M(n, E). This way we identify the V' to Herm(n — m, E) by the map M — X(:(M)). An
element X (¢(M)) € V. is generic in V,} if and only if det(M) # 0. The group G,, is the group
of elements g; = [gy, pu] where g1 € GL(n — m, E) and p € F*, acting on Herm(n — m, E) by
(g1, 1. M = p~'gi M 'gy.

Let Z = X(¢(M)) and Z' = X(«(M")) be two generic elements in V.. If Z and Z' are G-
conjugated then there exist g € GL(n, E) and u € F* such that go(M) 'g = pwu(M'). Let
g1 € GL(n —m, E) be the submatrix of g given by the first m — n rows and the first m — n
first columns of g. An easy computations shows that g; M ‘g, = uM’. As Z and Z’ are generic
in V't the matrices M and M’ are invertible and therefore g; € Gl(n — m, E). The preceding
relation shows then that Z and Z’ are GG,,,-conjugated.

Conversely, if Z and Z’ are G,,-conjugated then there exist gy € GL(n — m, E) and p € F*

g1

such that gy M ‘g, = uM’'. We set b g = . The element [g, 1] belongs to G and we

m

have Z' = [g, pu].Z. Hence Z and Z’ are G-conjugated. The assertion concerning the number
of orbits can be easily proved the same way as the corresponding assertion in Theorem 3.8.9.

The statement (2) (c) is now proved.

The group L is the group of elements | = [g, u| where g = diag(a,_1,...,a9) is a diagonal
matrix and where ¢ € F*. For such an element I, we have 1.3 x;X; = > .(u 'zja;a;) X;.
The last statement is then easy.

This ends the proof.

3.9. G-orbits in the case ¢ = 3.

In this subsection we suppose ¢ = 3.
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By Remark 1.8.8, we can assume that g is simple. If / = 3 (and rank(g)= k£ + 1 > 1) then it
corresponds to case (7) in Table 1 and its Satake-Tits diagram is of type Cy+1), (k € N) and
is given by

Note that case (5) in Table 1 is a particular case of case (7).

By ([27] Proposition 5.4.5.), g splits over any quadratic extension E of F, and (up to isomor-
phism) g ®p F ~ sp(4(k+ 1), E). We will use the following classical realization of g (also used
in [17]):

Let F*2 the set of squares in F*. Let u be a unit of I’ which is not a square and let 7 be a
uniformizer of F'. According to [13] (Theorem VI. 2.2, p.152), the set

{1,u, 7, ur}

is a set of representatives of F*/F*2. We set E = F[y/u] and we note — T the conjugation in
E. For n € N, we denote by I,, the identity matrix of size n. Consider the symplectic form ¥
on E**+1) defined by

0 1
\I/(X, Y) = tXKQ(k+1)Y7 Where KQ(k+1) = ( 2(k+1) ) )

—Ir41) 0
Then
- A B ; :
g@r E=sp(d(k+1),F) = O _t4 ; ALB,Ce M2(k+1),E),"B=B,'"C=C,.

We set:

J. 0 0
0 = J 0

Jr= Lo eEM2,E),J=|0 . 0| €MQ2k+1),E),T= 0ty € M(4(k+1), F).

0o 0 J.

The subalgebra g is then the subalgebra of g®r E whose elements are the matrices X satisfying
TX = XT.

Let us make precise the different objects which have been introduced in earlier section in rela-

tion with the Lie algebra g.

L4 0

The algebra g is graded by the element Hy = ( ) . More precisely we have

0 =Dyt

v{(5 0) ecmtninpiec - cil.

B —
Vvt — {(8 0) ; BeM(2(k:+1),E),tB:B,JB:BtJ},

and

A0 —
g = {(0 _tA> : AeM(Z(k+1),E),JA:AJ}.
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The subspace a defined by
trls
a=1{ H(to,... ty) = (I(_)I _0H> . with H = tealo e M(2(k+1),F)
tols
is a maximal split abelian subalgebra of g. If the linear forms 7; on a are defined by
ni(H(to,. ... tr)) =1,
then the root system of the pair (g, a) is given by
Y= {xn £, for 0<i<j<k}u{2n; for 0<j<k}
and the set of strongly orthogonal roots given in Theorem 1.6.1 is the set
{Xo, .., A} where  \; = 2n;.

We set also

St ={X € M(2,E); tX:X,J,rYZXtJW}:{<m ”);meE,ueF},
o

S ={Y e M@2E); 'Y =, tJW7:YJﬂ}:{<y M_);yEE,,uEF},
wom

and
L={AcM@2E),J,A=AJ} = {(”” ”y) L,y € E}
y T

For M € M(2, E), the matrix E;;(M) € M(2(k + 1), E) is block diagonal, the (k + 1 — 7)-th
block being equal to M and all other 2 x 2 blocks being equal to 0. In other words:
Xk
E; (M) = where X; =01if ¢ # jand X; = M.
Xo

All the algebras ZNJ are isomorphic and given by

~ E. (A E. (X
I = i(4) “(t) L AeL, XeST,YeS ;.
E;;(Y) Ej;(—"A)

The algebra g; is the centralizer of Lo, .. @Tj_l. It is given by

A 0 X, 0
_ 00 0 of .
YTV Y, 0 —A; o O
00 0 0

where the matrices A;, X; and Y, are square matrices of size 2(k + 1 — 7).

Let us now describe the group G = ZAuto@(HO)'
By ([4] Chap VIII, §13, n%3), we know that the group Auty(g ®r F) = Aut(g ®r F) is the
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group of automorphisms of the form ¢, : X + sXs~! where s is a symplectic similarity of the
form W. This means that s € GL(4(k + 1), E) and there exists a scalar u(s) € E* such that
'sKog+1ys = p1(s)Kopt1). The scalar p(s) is called the ratio of the similarity s. It is easily
seen that any similarity s with ratio p such that ps(Hy) = Hp can be written s = s(g, ) :=

toyp—1

0 p'g
s(plasr), p?) with o € E* act trivially on g ®p E. More precisely one can easily show that

0
( 8 ) with g € GL(2(k+1), E) and pu € E*. As s(ulaps1y, %) = plst1), the elements

@s(gn) = Id <= Fp such that g = ployr), and A = g2,

Let Hg be the subgroup of GL(2(k + 1), E) x E* whose elements are of the form (ula(41), 42)
with ¢ € E*. Then, from above, the map (g,\) — ¢y, induces an isomorphism from
GL(2(k+1),E) x E*/Hg onto the centralizer of Hy in Auty(g ®p E), which we will denote by
Gg. If (g,n) € GL(2(k+ 1), E) x E*, we will denote by [g, u] its class in Gg. The action of
Gg on g ®p E stabilizes VT ®@p F and V~ ®p E. More precisely the action on V¥ ®@p E is as

follows:
0 X\ [0 p'gX'g
[g,m(oo)—(o X' )

The group we are interested in, namely G = Zau, ) (Ho), is the subgroup of Gg of all elements
which normalize g. As V1 and V'~ generate g, G is also the subgroup of G of all elements

normalizing V' and V™.
A result in the spirit of the following is indicated without proof in [17] (p. 112).

Proposition 3.9.1. Let G°(2(k + 1)) be the subgroup of elements g € GL(2(k + 1), E) such
that Jg = gJ. Then

G={g=lg g€ G 2k+1)UvVuG' 2k +1)),n € F"}

Proof. We identify V' with the space Sym j(2(k+1)) of symmetric matrices X € M (2(k+1), E)
0 X

00 )

As the extension F = F'(y/u) is unramified ([13], Chap. VI, Remark 2.7 p. 154), the uniformizer

7 of F is still a uniformizer in £. We will now define a unit e of £ which is not a square (and

such that JX = X *J through the map X — X =

hence, as before for F', the set {1,e, 7 er} will be a set of representatives of the classes in
If —1 € F*? then one can easily see that \/u is not a square in E*. In this case we set e = \/u
(of course e is still a unit in E). If =1 ¢ F*2 we can suppose that v = —1. Then by ([13]
Corollary V.2.6, p.154) —1 is a sum of two squares in F*. That is —1 = 22 + v (w0, yo € F*)
and in this case we set e = xg + yo/u ¢ E*? (again one verifies easily that e is not a square in

Let g € Gg. From the definition of the group G, one sees that there exist g € GL(2(k+1), E)
and u € {1,e,m, en} such that g = [g, u]. We will now fix such a pair (g,u). If ¢ € G then
[g, u]Vt C VT, and this implies that for all X € Sym;(2(k + 1)), one has

JugXtg=p'gX gt
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As J? = ml41), we obtain that for all X € Sym;(2(k + 1)), on has
(g7 JgJ )X (g JgJ ) = n T X. (+)
The proposition will then be a consequence of the following Lemma:

Lemma 3.9.2. Let M € M(2(k + 1), E) and v € E* such that MX 'M = vX for all X €
Sym;(2(k + 1)), then there exists a € E* such that v = a* and M = alyg1).

Proof of Proposition 3.9.1 (Lemma 3.9.2 being assumed)

Remember that we have fixed a pair (g, 1) in GL(2(k+1), E) x {1, e, 7, er} such that g = [g, ul.
eIf yu =1o0r u=mthen p='i = 1. The preceding Lemma and the relation (*) imply
g 1JgJ ! = £Iy441) and hence Jg = +gJ. If Jg = gJ then g € G°(2(k + 1)). If Jg = —gJ
then \/ug satisfies J\/ug = v/ugJ and hence g € /uG°(2(k +1)). Conversely, it is easy to see
that if g verifies Jg = +gJ and if u belongs to F* then [g, u] stabilizes V't and V™.

ee We show now that if 4 = e or u = er then the element [g, 1] of G does not belong to G.
Suppose that =€ or = er and [g, u] € G.

If -1 € F*? then —1 = a2 with oy € F* and we have set ¢ = \/u ¢ E*2. Then p~ ' = —1 = a?.
The preceding lemma implies Jg = eapgJ with e = +1. Taking the conjugate of this equality,
one obtains Jg = eapg.J. And therefore

g =eapJ 'gJ = ajJ ’gJ" = g,

and this is impossible as g # 0.

If —1 ¢ F*?, we have set v = —1 = a3 + y2, with zg,y0 in F*, and e = x¢ + yo/u. Then
2

u i = E__a2- (ey/u)?. Hence the preceding Lemma gives Jg = ee\/ugJ with €2 = 1,
cé

and this implies that Jg = —eey/ugJ and therefore
g = ee/uJ 'gJ = —ueeJ °gJ? = —g.

Again this is impossible as g # 0.
This proves the proposition. 0]

Proof of Lemma 3.9.2:

D)
For k = 0, we have Symj(2,E) = St = {( ﬂ)\x );azEE,)\GF}. Let us set M =
T
b
¢ € GL(2,F). The relation which is satisfied by M and v implies that for all x € F
c

and A € F, one has

a’nT + b*x + 2ab) = vnx
AT + d%x + 2de) = vx
actT + bdx + (ad +be)A = vA

The first two equations imply b = ¢ = 0 and a? = d*> = v and the third equation implies then
a = d. Therefore it exists a € E* such that

M =al,, and v=ad*e€ E*.
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On the other hand, a similar computation shows that if M € M (2, E) satisfies MX ‘M = 0 for
all X € ST then M = 0.

By induction we suppose that the expected result is true up to the rank & — 1. Let (M,v) €
M(2(k+ 1), E) x E* satisfying the hypothesis of Lemma 3.9.2. Let us write

M Mi

Ly ... Ly M,

with M" € M(2k,E) and M;,L; € My(E). The equality MX 'M = vX for all matrices
X € Symy(2(k + 1), E) of the form

X/
0
0 ... 0 X
(with X" € Sym;(2k, E) and X, € Sym,(2, E)) implies then that for all X' € Sym;(2k, E)
and all X, € Sym (2, E), one has

M'X'tM' = vX/
MyXq My = vXg
M;Xo'M; =0 for j=1,...k.
By induction , there exists a € E* such that v = a?, M}, = ... = M; = 0 and M’ = 'alyy, My =
eoals with €, ¢y € {£1}.
Taking Xy = 0 and X’ diagonal by blocks, each block being equal to Y € Sym,;(2, E), one
obtains
LiY'L;y=0 for j=1,...k forall Y € Sym;(2, F)

and hence L, = ... = L; = 0 from the case k = 0.

The equality MX ‘M = a*X for all matrices X € Sym;(2(k + 1), E) of the form

Y
0 0

X = )
Y0 0

where Y € M(2,E) and J,Y =Y tJ, implies then that €'ey = 1.
This ends the proof of Lemma 3.9.2. U

Definition 3.9.3. The subgroup G° of G is defined to be the subgroup of elements [g,1] of G,
with g € G°(2(k +1)). Hence we have:

Aut.(g) C G° C G.
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Remark 3.9.4. Recall that for j € {0,...,k}, the group G; (with Gy = G) is the analogue
of the group G for the Lie algebra §; and that G; C G. From the preceding Definition, one
has an injection G} < G° given by [g;,1] — [g, 1] where g; € G°(2(k + 1 — 7)) and where
i 0
g = ( ij , ) . In what follows, we will identify G with a subgroup of G° under this injection.
J
In particular, an element g; € G? will have a trivial action on @i;é@’\j.

In the same manner, we will denote by L? the corresponding subgroup for the Lie algebra [

We will now normalize the relative invariants A; on VjJr for j = 0,..., k. The determinant is

an irreducible polynomial on the space of symmetric matrices which satisfies:
det(p'gX tg) = p 2" Ddet(g)®det(X), X € Symy(2(k+1),E),[g, 1] € G.

Therefore one can normalize the fundamental relative invariant A, by setting

0 X k+1

The character g is given by
XO(Q) _ M72(k+1)det(g)2

for g = [g, u] € G. This implies that
X()(G) C F*2.

Similarly, the fundamental relative invariant &y of g*° (cf. Definition 1.14.1) is given by

Eoo(X
5o(X) = —det(X); for X = 0" Eoo(X) , X e st
0 0

Let us now fix elements 7; ; € Aut.(g) C G° satisfying the properties of Proposition 3.4.3. Then

"}/Z'J 0 7,,2( ) _ 0 JJ( ) , fOI" X c SJr.
0 0 0 0

We normalize the relative invariant polynomials §; of g% by setting
3;(X) = do(0(X)), X eg".
From Theorem 1.12.4, the L;-orbits de g*\{0} are given by
{X € 9%;6;(X) =vmodF*?}, wve (F*/F?)\{-disc(5;)}}.

Then, we normalize the polynomials A; (defined by their restriction to V;") (cf. Definition
1.14.1) by setting

k
A(Xi+ .+ X)) = [[0(X)), Xieg™.
i=j

Lemma 3.9.5. Let X and X' be two elements of ST such that det(X) = det(X’) mod F*2.
Then there exists g € G°(2) such that X = gX' g.
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Proof. We consider here the case k = 0, that is the algebra N[o =g D@ gl with [j =
g%, gh] ~ L, g*o ~ St ~ F3 and g7 ~ S™. Let Q be the quadratic form on S* defined

by Q(Y) = —det(Y) = —7a® + umb? + ¢ for Y = ( mlatvub) e > € S* (where
c a— \/ub

a,b,c € F). Remember also that this form is anisotropic.

Let U be the connected algebraic subgroup of G°(2) C GL(2,E) whose Lie algebra is u =
[L,L] C sl(2, E). We will first give a surjection from U onto SO(Q). By [24] (Corollary 24.4.5
and Remark 24.2.6) the group U is the intersection of the algebraic subgroups of GL(2, F)
whose Lie algebra contains u. As the Lie algebra of SL(2, EF) is sl(2, E) (see for example [2],
Chap. I, 3.9 (d)), we get that U C SL(2, F) and hence the elements in U have determinant 1.
We denote by W, the action of an element g of U on ST, in other words ¥g(Y) = gY ’g.
As U C SL(2,E) one has ¥y € O(Q). From Lemma 3.9.2 one has ¥, = Ids+ if and only if
g = +15. Therefore the map

Uy =U/N{£L} — 0(Q)
g — Wy

(defined up to a abuse of notation) is injective.

Let F be an algebraic closure of F. It is well known that SO(Q, F) is connected. As U is
connected, the same is true for U;. Therefore U(U,(F)) C SO(Q, F), and ¥ is an isomorphism
from U; on its image.

From [24] (Theorem 24.4.1), the differential of W is injective. As the Lie algebra of U; (which
is equal to u) has the same dimension (3) as 0(Q), the map VU is also a submersion. Hence
U (Uy(F)) is open in SO(Q, F). By [2] Chap. I, Corollary 1.4, the group ¥ (U, (F)) is also closed
in SO(Q, F). Therefore ¥(U,(F)) = SO(Q, F).

Let ¢ € SO(Q) and g € U(F) be such that Uz = ¢. The element g = i ~1
g
g, hence by duality g normalizes g~*° and therefore it normalizes Iy and [ly, [y]. This implies

that g € U. Finally the map g — VU, is surjective from U onto SO(Q).

normalizes

Let us now prove the Lemma. From the assumption, there exists x € F* such that Q(X) =
Q(xX’). From Witt’s Theorem SO(Q) acts transitively on the set {Y € ST; Q(Y) = t}, hence
there exists g € U C G°(2) such that X = zgX’ 'g.

In order to prove the Lemma, it is now enough to prove that for all Y € ST\ {0}, the elements
vY, 7Y and Y are conjugated under G°(2), as F*/F** = {1, u, 7, ur}.

Let Y € ST\ {0}. As J, = #J-!, one has 7Y = J,Y ‘J;. And as det(Y) = det(Y), the
preceding discussion implies that there exists g € U C G°(2) such that gY *g = Y. As
Jr € G°(2), it follows that 7Y and Y are conjugated by the element J,g of G°(2).
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Let us prove that uY is G°(2)-conjugate to Y. As —disc(Q) = u, a system of representatives
of the Ly - orbits in g ~ S* is given by

T 0 0 1 ma 0
Xio= , X1 = , and X,g9= ,

where aa = u (if =1 = a2 € F*? then a = ap\/u, and if —1 ¢ F*? then u = —1 = 23 + y2 with
To,yo € F* and o = x¢ + yo/u) (see Theorem 1.12.4 2)).

By proposition 3.9.1, Ly is the group of elements [g, u] with g € G°(2) U+/uG°(2) and u € F*.
Hence, there exist y € F* and g € G°(2) such that ygY 'g equals to X, Xo1 or X,0. Thus

it is enough to prove the result for this set of representatives.

0
Let gu = ( \{)ﬂ _\/ﬂ) - GO(Q), then guX170 tgu = UXL() and guXa,O tgu = U,X(LQ. If
a 0

ga = 0 @ S G0<2), then gaXO,l tga = ’LLXQJ.
(0

The Lemma is proved.
O

Corollary 3.9.6. Let k € N. Let X = Xo+ ...+ Xy be a generic element of ®F_ g, Let

j€{0,...,,k} and X} € g% such that 6;(X;) = 0;(X}) mod F**. Then Xo+ ... X;_1 + X} +
Xjy1+ ... Xy is LY-conjugated to X.

0 Eii(X;) 0 Ei (X))
0 0

S*. Then 0;(X;) = 0;(X}) mod F** if and only if det(X;) = det(X)) mod F**. By Lemma
3.9.5, the elements X; and X'; are G°(2)-conjugated. The result is then a consequence of the

definition of LY (see Remark 3.9.4).

Proof. Let X; = and X} = , where X; and X belong to

O

Lemma 3.9.7. Suppose that k = 1. Let X = Xq+ X, and Y =Yy + Y] be two elements of VT
such that X;,Y; € g8\{0} and 6y(Xo) = 61(X1) mod F*? and §o(Yy) = 61(Y1) mod F*2. Then

X and Y are in the same GV-orbit.

Proof. The normalization of 41, the hypothesis, and Corollary 3.9.6 imply that the elements X,
and vg.1(Xo)(respectively Y; and 71 (Yp)) are in the same L%-orbit. As LY acts trivially on g,
one can suppose that Xy = y91(Xo) and Y7 = 0.1 (Y0).

If 0p(Xo) = d0(Yo) mod F*? then Corollary 3.9.6 implies that X; and Y; are conjugated by an
element /; in L for j = 0,1 and then X and Y are conjugated by lol; € G°.

We assume now that do(Xo) # do(Yy) mod F*2. We can then write

0 0 Y 0
X and Y = 0Y ,
0 0 0 0

X
0
0

X =
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with X, Y € ST\{0}, and det(X) # det(Y) mod F*2.
Consider the polynomial Q(a,b) defined on F? by

Q(a,b) = det(aX —Y) — b*det(X).

Then Q(a,b) = det(X)(a® — b?) + 2a Co(X,Y) + det(Y) where Cj is a polynomial function in
the variables (X,Y). We set C1(X,Y) = (det(X))'C(X,Y), and hence

Q(a,b) = det(X)(a® — b*) + 2a det(X)C1(X,Y) + det(Y).
We obtain then
Q(a,b) = det(X) [(a + 01X, Y)) - bﬂ +det(Y) — det(X)CO1 (X, Y)2.

As the quadratic form (A, B) — A? — B? is isotropic, it represents all elements of F' ([13]
Theorem 1.3.4 p.10) and hence it exists (Ao, By) such that

det(X)(AZ — B2) + det(Y) — det(X)C1(X,Y)? = 0.

It follows that the pair (ag,by) = (Ag — C1(X,Y), By) satisfies Q(ao,by) = 0 or equivalently,
det(apX —Y) = bidet(X).

As X and Y belong to ST, we have det(apX —Y) = 0 if and only if qpX —Y = 0. As
det(X) # det(Y) mod F*?, we deduce that ag # 0 and by # 0. Therefore qpX —Y and —aoX
are two non zero elements of ST such that det(aeX —Y) = det(—apX) mod F*?. By Lemma

3.9.5, it exists g1 € GY(2) such that apX — Y = —agg; X gy, which is equivalent to

Y = CL()X + aong(tgl).

g Iy g1
~X(tg)X' I, )

As 'X = X, an easy computation shows that:

Let us set

g ( a(z)X an ) ('g) = ( 30{ 8, ) , with Y = apX + aoX('g) X 'gi1 X € ST, (%)
AsY = apX+apg:1X(*g;) # 0, one has X # —g; X (*g;) and this is equivalent to X ('g;)X 'g; #
—I5. This implies that Y’ # 0. Then, by computing the determinant in (%) above, we get
det(g) # 0 and det(Y) = det(Y’) modulo F*2.

As J,g1 = gi1J, and J,X = X 'J,, a simple computation shows that Jg = gJ and hence
geG'4).

The relation det(Y) = det(Y’) modulo F*? and Lemma 3.9.5 imply that there exists gy € G°(2)
such that

g0Y ‘g =Y.

I
10 = ? 0 S G0(4)
0 go

We set
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Then g = [g,1] and [y = [ly, 1] belong to G° and satisfy log(apX) = Y. Using Lemma 3.9.5

0
again, there exists go € G°(2) such that apX = g»X 'gy. Taking g} = g()2 ) e G4)
g2

and gy = [gh, 1] € G°, we deduce that lpgg. X =Y and loggs € G°. The Lemma is proved.
[

We are now able to describe the G-orbits in V't in the case ¢ = 3.

Let us set:
er=1,e=m, e3=um

and remember that {1,7,ur} = F*/F*?\{—disc(dy)}.

Forl € {1,2,3} and X = X,,, + ...+ X} € VT with X; € g%\ {0}, we define

n(X) = #{j € {m, ..., k} such that 6,(X;) = ¢; mod F*?}

Theorem 3.9.8.

We suppose that £ = 3

1) Let X = Xo+...+ Xy and X' = X} +. ..+ X], be two elements of V' such that X; € g*\{0}
(resp. X € 9%\{0}). Then the following assertions are equivalent:

(a) X and X' are in the same G-orbit,

(b) n(X) = n(X') mod 2 forl=1,2 and 3,

(

¢) X and X' are in the same G°-orbit.

2) Suppose that the rank of g is k + 1. Then the number of G-orbits in V' is 4(k + 1) with 3
open orbits if the rank is 1 (i.e. k =0) and 4 open orbits if the rank is > 2 (i.e. k > 1).

3) For v € {1,m,ur}, let us fir a representative Xo(v) € g of the orbit {Y € g';60(Y) =
vmod F*?} and, if k > 1, we set X;(v) = 70;(Xo(v)), for j =1,...k. A set of representatives

of the non zero orbits is then:

X()(l), X()(?T), X()(U?T),

and, if k > 1, for m € {0,...,k},
Xon(1) 4+ .00+ X1 (1) + Xi(1),
X (1) + .+ Xpa (1) + X (),
m(1) + .+ X (1) + X (um),
Xon(1) 4+ oo+ Xpo(1) + Xpoq () + Xg(um).

(where we assume that if k =1 then X;_o(1) = 0).
For k > 1, the 4 open orbits are those of the preceding elements where m = 0. For k =0, the
3 open orbits are those of the elements Xo(1), Xo(7) and Xo(ur).

Proof.
1) Clearly, (c) implies (a).
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If X and X’ are in the same G-orbit then Ag(X) = A¢(X’) mod F*? (because xo(G) C F*?),

and hence

This implies that

Which is the same as:

an2(X)+n3(X) (u>n3(X) _ ﬂ_nz(X')-l-ns(X/)(u)'ﬂB(X') mod F*2.

And as F*/F*? ~ (7Z/27)? this last equality implies that

na(X) + n3z(X)

and therefore ny(X) = no(X’) mod 2.
As ny(X)+n2(X)+n3(X) = ny (X)) +n2(X') +n3(X’') = k+1, we obtain also n1(X) = ny(X’)
mod 2. Finally

no(X") +n3(X’) mod 2 and n3(X) = n3(X’) mod 2,

ne(X) = ng(X') mod 2,for £ =1,2,3.
Thus (a) implies (b).

Suppose that n;(X) = n;(X’) mod 2 for [ = 1,2 and 3. We will show by induction on k that X
and X’ are G°-conjugated. By Corollary 3.9.6 the result is true for k = 0.

Suppose now that k£ > 1.

e If there exists an [ € {1, 2,3} such that n,(X) = n;(X’) = 1 mod 2. Then, applying eventually
the elements v; ; € Aut.(g) C G°, we can suppose that dy(Xo) = do(X() = €;. From the case
k = 0 there exists go € L{ such that goX{ = Xo. As L{ stabilizes the space @5_,gV, we get
goX'=Xo+ X]+...X].

By induction on the elements X; + ... + X}, and Xj ...+ X of V;" there exists g; € GY such
that g1 (X +...+ X]) = X; +...+ X;. As gy stabilizes g, we obtain g;goX’ = X and hence
X and X’ are G%conjugated.

e Suppose that n;(X) = ny(X’') = 0 mod 2 for all [ € {1,2,3}. This implies that & > 1 is odd.
The case k = 1 is a consequence of Lemma 3.9.7. Hence we assume k > 3.

As ny(X) + na(X) + n3(X) = k + 1, we cannot have ny(X) = 0 (or n,(X’) = 0) for all
¢ = 1,2,3. Therefore there exist r # s and v’ # s’ such that 6,(X,) = d,(X,) mod F*? and
6 (X) = 0y9(X.,) mod F*? . Using the elements 7; ; € G° if necessary, we can suppose that
r=r'=k—1land s=s=k.

Then X1 + X}, and Xj_, + X}, are two elements of V", such that

Sp_1(Xp_1) = 6(Xi)) mod F** and 6;,_1(X),_,) = 6(X}) mod F*2.

Then by Lemma 3.9.7 there exists g,_; € GY_; such that gp_1(X; |, + X;) = (X3_1 + X) and
hence g1 (X') = X[+ ...+ X o+ X1 + Xi.
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The elements X' = Yok—1716(Xy + ... + X}_5) and X = Yor-1716(Xo + - .. + Xp_2) of V5"

satisfy the condition n;(X) = n;(X’) = 0 mod 2 for all [ € {1,2,3}. By induction (applied to
V,) there exists g, € GY such that g, X’ = X.

The element 7o x—171 % (Xz—1 + Xz) € g2 + g™ is fixed by g5. We obtain:

997051710951 (X") = gv0k—1716 (X0 + ...+ Xjop + Xi1 + Xi)
= 5(X") + Yor-1716(Xe1 + Xi) = X + Yor-171.6(Xe-1 + Xk) = Yo p-171.6(X),

and this proves the first assertion.

2) Let Z € V*\ {0} . We know from Theorem 3.2.2 that the element Z is G-conjugated to an
element of the form Zy + ...+ Z; with Z; € g¥. Let m be the number of indices j such that
Zj = 0. Using the elements 7, ; € G of Proposition 3.4.3, we see that Z is G-conjugated to an
element of the form X = X,, + ... + X with X; € g\ {0} for j =m,... k.

Z belongs to an open orbit if and only if m = 0 (if not we would have Ay(Z) = 0).

If £ = 0 we have already seen (in Theorem 1.12.4 2)) that the number of open orbits is 3. If
k > 1, the number of open orbits is equal, according to the first assertion, to the number of
classes modulo 2 of triples (ny(X),n2(X),n3(X)) such that ny(X) + na(X) + n3(X) = k + 1.

This number of classes is 4.

3) Suppose m # m’. Then, according to Theorem 3.5.1, two elements X = X,,, + ...+ X} with
X; € g¥\{0} and Y =Y,y +... + Y, with ¥; € g*\{0} are not in the same G-orbit because
rang QQx 7# rang Qy-.

Finally, to conclude the proof, it will be enough to show that two generic elements Y =
Yi+...Yyand Y =Y/ +... Y/ of VI are G-conjugated if and only if they are G,,-conjugated.
Let g = [g, ] € G such that gY = Y’. Denote by g, € M(2(k —m+ 1), E) the submatrix of g

of the coefficients in the first &k — m 4+ 1 rows and columns. Set

’r_ g1 0
(3 0)
A simple block by block computation shows that [g, u] - Y = Y’. This implies that A,,(Y) =
p=2det(g1)?An(Y). AsY and Y’ are generic in V1, it follows that det(g;) # 0. Hence the
element [g;, 1] belongs to G, (see Proposition 3.9.1).
Conversely, if Y and Y’ generic in VI are GG,,, - conjugate then, by the first assertion, they are

GY -conjugate. Since G2, C G°, this achieves the proof of the Theorem.
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4. THE SYMMETRIC SPACES G/H

4.1. The involutions.

Let I'™ be a generic element of V. By Proposition 1.7.12, there exists I~ € V'~ such that
{I~, Hy, I} is an sly-triple. The action on g of the non trivial element of the Weyl group of
this sly-triple is given by the element w € G defined by

+ - + - + -
w:eadl ead[ €ad1 :eadl ead[ ead[ ]

We denote by o the corresponding isomorphism of g:
oX)=wX, XEe€gy.
We denote also by o the automorphism of G induced by o:
o(g) =wgw™!, forge G.
If X € g is nilpotent, then o (e X) = ead o(X),

Theorem 4.1.1.
The automorphism o is an involution of g which satisfies the following properties:
(1) Define h ={X € g;0(X) =X}. Then b =34(I") =34(17).
(2) Define q ={X € g;0(X) =—X}.Then ad I'" is an isomorphism from q onto V' and
ad I~ s an isomorphism from q onto V.

(3) o(I*) =1~ and o(V*) = V=. Moreover one has o(X) = - (ad I‘)2X, for X e VTt

N | —

1
and o(X) = §(ad I+)2X, for X e V.
(4) o(Hy) = —Hy and o(g) = g. Moreover, for X € g, one haso(X) = X+(ad I~ ad I")X.

Proof. For the convenience of the reader we give the proof although it is the same as for the
real case (See [7]). It is just elementary representation theory of the slo-triple {I~, Hy, I"}.

The irreducible components of g under the action of this sl,-triple are of dimension 1 or 3
(because the weights of the primitive elements are 0 or 2). The action of w? is trivial on each

of these components as they have odd dimension (see section 3.1). Hence o is an involution of

g.
The subalgebra g is the sum of the 0-weight spaces of theses irreducible components. If the
dimension of the component is 1 (respectively 3) then the action of w is trivial (respectively
multiplication by —1). Therefore b is the sum of the irreducible components of dimension 1,
and this proves the assertion (1), and q is the sum of the 0-weight spaces of the irreducible

components of dimension 3, and this proves the assertion (2).

The space VT is the sum of the sum of the subspaces of primitive elements of the irreducible
components of dimension 3. Hence the action of w on V% is given by %(ad I7)? (see section
3.1). This implies that (/") =1~ and o(V") =V".
If X € V™ then Y = (ad I7)?X belongs to VT and o(Y) = (ad o(I"))%¢(X) = (ad I7)?¢(X).
From the preceding discussion, we obtain o(Y) = 2(ad I7)?(Y). As (ad I7)? is injective on
VT, we get

o(X) = %(ad IM)?X.
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The assertion (3) is now proved.

As Hy = [I7,I"], we have o(Hy) = —H, and therefore o(g) = g. If X € b, we have
ad I~ ad It X = 0 and this means that o(X) =X =X +ad I~ ad I X.

If X € q\ {0}, then ad I*X is a non zero element of V*. Hence it is a primitive element of an
irreducible component of dimension 3. Therefore ad ITad I~ ad ITX = —2ad ITX. Asad I*
is injective on ¢, we obtain ad I~ ad ITX = —2X. And hence

wX=-X=X+adl ad I'"X.
This proves (4). O

Definition 4.1.2. An sly-triple {I~, Hy, [} is called a diagonal sla-triple if IT = Xo+. .. X}, is
a generic element of V™ such that X; € g8 \{0} and if I~ = Yo+...+Y) whereY; € g%\ {0}
and {Y;, Hy,X;} is an sly-triple for all j € {0,... k}.

Remark 4.1.3. Any open G-orbit in V' contains an element I which can be put in a diagonal
slo-triple {I~, Ho, I} (this is a consequence of Theorem 3.2.2).

For the rest of this section, we fix a diagonal sly-triple {/~, Hy, I"} and we will denote by o
the corresponding involution of g.
Recall also that a is a maximal split abelian subalgebra of g containing H, and that a° is the
subspace of a defined by

o’ = ®f_(FH,,.

Definition 4.1.4. A maximal split abelian subalgebra of q is called a Cartan subspace of q.

Lemma 4.1.5.
The maximal split abelian subalgebra a of g satisfies a = aNbh @ a’. Moreover anh = {H €
aAj(H)=0forj=0,...,k}.

The subalgebra a® is a Cartan subspace of q.

Proof. From Theorem 4.1.1 (4), for H € a, we get o(H) = H + (adl~adl")H = H —
Z?:o Aj(H)H),. This proves that a is o-stable and also the given decomposition of a.

Of course a’ is a split abelian subalgebra of q. It remains to show that a® is maximal among
such subalgebras. Let X be an element of q such that a® + F X is split abelian in q. From the
root space decomposition of g relatively to ¥, we get
X=U+ ZX,\, where U € 34(a) and X, € g*.
AEX

As X centralizes a°, if X # 0 for A € 3, we obtain that Alo = 0. Corollary 1.8.2 implies now
that X is strongly orthogonal to all roots A\; and hence ad/™ X, = 0. Therefore X, € h. As
o(U) belongs to 34(a) and o(X) = —X, we have X = U. This implies (maximality of a) that
X € aand hence X € anq = a’. This proves that a® is a Cartan subspace of q.

O

Lemma 4.1.6. Let o be the involution of g defined by o(X) = o(X) for X € g and by
o(X) = —0(X) for X e V- VT. Let q = {X € g,0(X) = —X}. Then a° is a Cartan

subspace of q.
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Proof. As 0 = ¢ on g, the space a’ is a split abelian subspace of q. It remains to prove the
maximality. Let X € q such that a® + FX is abelian split. Then X commutes with a® and
hence with Hy. Therefore X € g. Then X € a° by Lemma 4.1.5. O

Remark 4.1.7. From [10] (Proposition 5.9), the set of roots (g, a®) of g with respect to a® is
a root system which will be denoted by 30, The decomposition g given in Theorem 1.8.1:

g=30") e < Bo<i<j<k Eij(£1, il)) &) ( EB?:O a)‘j)7

is in fact the root space decomposition associated to the root system 50, Setting

ni(Hy,) = 0ij = { é iiz;j :
we obtain
20 = {£n; £n,(0 < i < j < k), £20;(0 < j < k)}.
And this shows that 30 is a root system of type Cr.1. In fact, as seen in the next Proposition,
this root system is the root system of a subalgebra g¢,,, C g, which is isomorphic to sp(2(k +

1), F) and which contains a” as a maximal split abelian subalgebra.

Proposition 4.1.8.

For 0 <i < k—1, consider a family of sly-triples (B;, Hy, — Hy,,,, A;) where B; € E; ;11(—1,1)
and A € E;;+1(1,—1) (such triples exist by Lemma 3.4.2). Consider also an sly-triple of the
form (By, Hy,, Ag), where By, € g~ and Ay € g*. Then these k + 1 sly-triples generate a
subalgebra §c,,, C § which is isomorphic to sp(2(k+1), F') and which contains a” as a mazimal

split abelian subalgebra.

Proof. The linear forms ng — 01,71 — M2, -+ -, Me—1 — Mk, 27k form a basis of the root system 320
which is of type Cjy1 as seen in the preceding Remark. As the 7;’s form the dual basis of the
H,,’s, it is well known that the set of elements {Hy, — Hx,, Hx, — H»,, ..., H\,_, — Hy,, H), } is
a basis of the dual root system in a”, which is of course of type Byy1. Define H; = Hy, — H),,,
with 0 <i < k—1, and Hy = H,,. As usual we define also n(a, 5) = a(Hp), for a, f € 30 and
where Hs € a is the coroot of 3. Tt is also convenient to set o; = A\; — A\jyy fori =0,... . k—1,
and ap = \g.
Then the generators satisfy the following relations, for i,5 € {0,...,k}:

(1) [H;, Hj] =0,

(2) [Bi, Aj] = bi Hi,

(3) [Hi, Aj] = n(ay, i) A,

(3') [Hi, Bj] = —n(ay, i) By,

(4) (ad By)™ese) 1B, = 0 if i # j,

(5) (ad Aj) i)t A, = 0 if § £ j.
The relations (1), (2), (3), (3') are obvious. Let us show relation (4). The sly-triple (B;, H;, A;)
defines a structure of finite dimensional sly-module on g. We have [A;, B;] = 0 and [H;, B;] =
—n(a;, ;) B; by relations (2) and (3'). This means that B; is a primitive vector of weight
—n(ay, a;). Therefore B; generates an sly-module of dimension —n(w;, ;) + 1. And this

implies (4). The same argument proves (5).
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The above relations are the well known Serre relations for sp(2(k + 1), F'). Hence the algebra
generated by these elements is isomorphic to sp(2(k + 1), F).
O

Remark 4.1.9. The preceding construction of the subalgebra gc,,, uses the same argument

as the construction of the so-called “admissible” subalgebras (see [22], Théoreme 3.1 p.273).

4.2. The minimal o-split parabolic subgroup P of G.

Definition 4.2.1. ([10]) A parabolic subgroup R of G (resp. a parabolic subalgebra v of g) is
called a o-split parabolic subgroup of G (resp. a o-split parabolic subalgebra of g) if o(R) (resp.
o(t)) is the opposite parabolic subgroup (resp. parabolic subalgebra) of R (resp. of t).

Let {I~, Hy, I} be a diagonal sl,-triple (see Definition 4.1.2). As above we denote by o the
involution of g associated to this triple. Hence we have the decomposition g = h & q where
h = 3,(I7) = 34(I7). We also denote by o the involution of G = Auto(g) given by the

conjugation by the element

+ - + - + -
w:eadl ea,dI 6ad[ :eadI ead[ ead[ ]

As o(Hy) = —H,, the group G is invariant under the action of 0. Let G C G be the fixed
point group under o. The Lie algebra of G is equal to h. Define H = Zg(I"). Then the Lie
algebra of H is h and hence H is an open subgroup of G°.

Consider the subalgebra p of g defined by
p=34(c") ® <@0§z‘<j§k: E;;(1, —1)).

Proposition 4.2.2.
The subalgebra p is a minimal o-split parabolic subalgebra of g. Its Langlands decomposition is

given by p = [+n=m; ©a, ©n where

n = Po<icj<ilij(1,—1)

=y 60, = 3(a)

a, ={H ca;(AeX,A\a°) =0) = \H) =0}
my is the orthogonal of a, in 34(a’) = m; & a,

Proof. The Theorem 1.8.1 and the Proposition 1.9.1 imply that p contains all root spaces
corresponding to the negative roots in . Hence p contains a minimal parabolic subalgebra of

g. Therefore p is a parabolic subalgebra of g.
Let ' be the set of roots A € ¥ such that g* C p. From the definition of p, one has
=% "U{aeX\a") =0} and p = 35(a) ® (Brer 97).

It follows that I'N—I" = {/\ € E, )\(Clo) = 0} And then n = @)\EF\(FF‘I—F)Q)\ = @O§i<j§kEi,j(17 —1)
is the nilradical of p. If H € a° then o(H) = —H. Therefore if X € FE;;(1,—1) then
o(X) € E;ij(—1,1). Then [ = o(p) Np = 34(a’) is a o-stable Levi component of p and p is a

o-split parabolic subalgebra. Let a, be the maximal split abelian subalgebra of the center of
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[. Then a, = Nyern—r ker(A). Hence the Langlands decomposition is given by p = m; @ a, & n
where m; is the orthogonal of a, in [ for the Killing form.
As a° is a Cartan subspace of q and as o(p) Np = 34(a’), Proposition 4.7 (iv) of [10] (see also
Proposition 1.13 of [9]) implies that p is a minimal o-split parabolic subalgebra of g.

O]

Let N = exp®® C G and L = Zg(a®). Then P = LN is a parabolic subgroup of G. From
the above discussion P is in fact a minimal o-split parabolic subgroup of G with o-stable Levi
component L = PN o(P) and with nilradical N.

We denote by A and A° the split tori of G whose Lie algebras are respectively a and a®. A is a
maximal split torus of G and the set of weights of A in g is a root system ®(G, A) isomorphic
to 2. More precisely, any root in 3 is the differential of a unique root in ®(G, A). In the sequel
of the paper we will always identify these two root systems. For A € ¥ and a € A, we will

denote by a* the eigenvalue of the action of a on g*.

4.3. The prehomogeneous vector space (P, V).

For the convenience of the reader, and although it will be a consequence of the proof of Theorem

4.3.2, let us give a simple proof of the prehomogeneity of (P, V).

Proposition 4.3.1.

The representation (P, V™) is prehomogeneous.

Proof. Remember that prehomegeneity is an infinitesimal condition. Therefore it is enough to
prove that (p, V+) is prehomogeneous. But the parabolic subalgebra p of g will contain a Borel
subalgebra b. The space (b, V+) is prehomogeneous by [18], Prop. 3.8 p. 112 (the proof is the
same over F as over C).

O

We will now show that the polynomial A; (see Definition 1.14.1) are the fundamental relative

invariants of this prehomogeneous vector space .

Recall ¢ is the common dimension of the g%’s and that £ is either a square or equal to 3 (cf.
Theorem 1.12.4).

Theorem 4.3.2.
The polynomials A; are irreducible, and relatively invariant under the action of P: there exists

a rational character x; of P such that

More precisely:
e xj(n)=1, neN,
o \ (a) = a"Ct-FM) g€ A

o xjim)=1, meLnH (H=ZsI"))
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Proof. The fact that the A;’s are irreducible, and their invariance under /N, have already been
obtained in Theorem 1.14.2 and its proof.
We have A C G and a € A acts by a® on g*. Therefore by Theorem 1.14.2 (3) we get

s$=)

k k
Aj(a(Xo+ ...+ Xp) = 8,00 aM X)) =[] a™ A (Xo+ ... + Xa),
s=0

for X € g™ \ {0}. (This gives the value of x; on A).

Let us show now that A; is relatively invariant under L (this is not given by Theorem 1.14.2
because L is in general not a subgroup of Gj).

Let Z=X+Y € V* where X € V" and Y € V;* (V;* was defined at the beginning of section
1.14). By Theorem 1.14.2 (4), there exists a constant ¢ such that A;(X +Y) = Aj(X) =
cANo(Xo+ ...+ X;_1 + X). An element of L normalizes V", V- ® F and each root space g .
As Ay is relatively invariant under G and L C G, we get for m € L:

A](m(X —f- Y)) = CA()(XO + e —I— Xj—l —I— mX) = CXQ(m)AQ(m_lXO —I— e + m_lXj_l —I— X)

Again by Theorem 1.14.2 (4), there exists a constant c¢;(m) such that Ag(m Xy + ... +
m X 14+X) = ¢;(m)A;(X) = ¢;(m)A;(X+Y). Therefore A;(m(X+Y)) = ccj(m)xo(m)A;(X+
Y'), and hence A; is relatively invariant under L.

This proves that the A;’s are relatively invariant under the parabolic subgroup P.
Let m € LN H. Then A;(mI™) = A;(I1) = x;(m)A;(IT). Hence x;(m) = 1.

We define the dense open subset of V' as follows:
O ={X e VT Ag(X)A(X) ... Ap(X) # 0}.
We will now prove that O is the union of the open P-orbits of V.
Lemma 4.3.3. Any element of O% is conjugated under N to an element of &%_,(g% \ {0}).

Proof. Let X € OF. As A(X) # 0, we know from the proof of Proposition 3.2.1, that there
exists Z € gsuch that [Hy,+... Hy,,Z] = —Z (and hence [H),, Z] = Z,) and e* 2 X € V" g,
Therefore Z € &%_ Ey ;(1,—1) C n. Let X' € V" and X° € g* such that e 7X = X% 4+ X',
Then, for j > 1, A;(X) = A;(X%+ X1) = A;(X!) as X0 e V5
As X € OF, we have A;(X') # 0 for j > 1. Then, by induction, we obtain that X is N-
conjugated to an element of @?ZO('QTAJ'). And as X is generic for the G action, we see that in
fact X in N-conjugated to an element of @5_,(g% \ {0}).

0]

Remark 4.3.4. Applying this Lemma to g;, we see that if X € VJ-Jr such Ag(X) # 0 for s > 7,
then X is N-conjugated to an element of the form Y; 4+ X7*! with X/™' € V1, and Y € g".

Remark 4.3.5. (Normalization)
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Suppose ¢ = 3. Recall that L; is the analogue of the group G for the graded Lie algebraTj, that
isL; =2 AutO(Tj)<H »;)- In the following Theorem we denote by d; a choice of a relative invariant
of the prehomogeneous space (L;,§%). And then we normalize the A;’s in such a way that

for X; € g% \ {0} and for j =0,...,k. Conversely one could also choose arbitrarily the A;’s,

and this choice defines uniquely the ¢;’s, according to the above formulas.

For k > 1, recall that Gj_; is the analogue of the group G associated to the graded Lie algebra
§r_1 which is of rank 2. From Proposition 3.8.7 and Theorem 3.8.10 one has x;_1(Gj_1) = F*?
if e=1or 3 and xp—1(Gr-1) = Ng/r(E)* if e = 2, where E is a quadratic extension of F'.

Theorem 4.3.6.
In all cases, the dense open set O is the union of the open P-orbits in V7.
(1) If g is of Type I (that is, if £ is a square and e = 0 or 4), then O is the unique open
P-orbit in V.
(2) Let g be of of Type II (that is ¢ =1 and e € {1,2,3}) and let S = x,—1(Gk—-1). Then
the subgroup P has |F*/S|* open orbits in V* given for k > 1 by

A (X
Ou:{XEVJF;#uj...uk_lESforj:O,...k—l},

where u = (ug, ..., ur_1) € (F*/S)*. (i.e. P has 4% open orbits in V* if e = 1 or 3,
and 2% open orbits if e = 2).

(3) If g is of Type III (that is if { = 3), then the subgroup P has 3*™! open orbits in V+
given by

O, ={X eV A(X)uj...up € F*?for j =0,...k},
where u = (ug, ..., w) € []%, (52-(5% \ {0}) /F*2).

Proof. As the A;’s are relatively invariant under P, the union of the open P-orbits is a subset
of O,

(1) Suppose first that £ is a square and e = 0 or 4 (in other words g is of Type I). Let X € OF.
By Lemma 4.3.3, X is N-conjugated to an element Z?:o Z; with Z; € g% \ {0}. This element

is of course generic for G.

From Theorem 3.7.1 and 3.8.8, two generic elements of the” diagonal” @jzoﬁ)‘f are L-conjugated.

Hence all the elements of Otare P-conjugated.

(2) We suppose now that £/ =1 and e =1, 2 or 3.

Let k> 1. Let S = x4-1(Gx_1). For j € {0,...,,k} we fix a non zero element X; of §% such
that for I = X + ... + X}, one has A;(I7) =1 for all j.

Let Z € O*. As before, Z is N-conjugated to an element X € @%_o(g" \ {0}). As £ =1, we
can write X = Z?:o x; X; with x; # 0.
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By Theorem 1.14.2, the polynomials A; are N-invariant. If we set u, = L5 modulo S for
Tk
s=0,....k—1, we get

A;(2) A (X) kol
AR(Z)k+1-i - Ap(X )R- = Huj modulo S,
5=J

and this implies Z € O,,.
Conversely, let u = (ug,...,up_1) € (F*/S)* and let Z and Z’ be two elements of O,.

These elements are respectively N-conjugated to diagonal elements X = Z?:o x;X; and
. _ x' x!
X' =% #' X, From the definition of @,, we have i Ikl T TR odulo S
J=0""70 Tk Tk @, ),
) x
for all j € {0,...k — 1}. Therefore Sk — modulo S for all j € {0,...k — 1}. This implies

that ;2] € S for all i € {0,1,...,k} (because F*? C S by Lemma 3.8.2). By Theorem
k

3.8.9 (d) (in the case e = 1 or 3) and Theorem 3.8.10 (d) (in the case e = 2), the elements X

and X’ are L-conjugated. It follows that two elements in O, are P-conjugated.

If w and v are two elements in (F*/S)¥~! such that O, N O, # 0, then u;...up_1 = vj... V51
modulo S for j = 0,...k — 1. Therefore u; = v; modulo S for all j and hence O, = O,. The

statement (2) is now proved.

(3) Consider finally the case ¢ = 3. Remember (see Theorem 1.12.4, 2)) that in this case, J;
is a quadratic form which represents three classes modulo F*? (all classes in (F*/F*)? distinct
from —disc(d;)). Let X € V' be a generic element of (P, V). We will show that X belongs
to O, for some u = (u, ..., ux) € [[r, (6:;(@ \ {0})/F*?).

As before, the element X is N-conjugated to an element Z = 25:0 Z; where Z; € g \ {0}.
From the normalization made in Remark 4.3.5, we have A;(Z) = [[° 05(Zs) where 5 is a
fundamental relative invariant of (L, g"*).

If we define u, = 6,(Z,) modulo F*2 we get A;(X)u; ... up = ANj(Z)uj .. up, = [['_; 6s(Z)us €

s=3 S
F*2_ and therefore X belong to O, with u = (ug, ..., u).

Conversely, let X, X’ € O, These elements are N-conjugated to (respectively) two “diagonal”
elements Z = Zy+ ...+ Zy and 2’ = Zj + ... + Z;, (Lemma 4.3.3). From the definitions we
have 0;(Z;) = 0;(Z;) modulo F** for j = 0,...,k. By Corollary 3.9.6, there exists I; € LJ
such that [;Z; = Z} (Recall that L} is the subgroup of L; defined in definition 3.9.3). As LY
centralizes @s#ﬁ’\é’, we get lg... 1.2 = Z' . Moreover ly...l, € P. Hence two elements in O,

are P-conjugated.

If w and v are two elements of (Ag(g** \ {O})/F*Q)kJrl such that O, N O, # 0 then u; ... u; =
v;...v, modulo F*? for j = 0,...%k . And hence v; = u; modulo F*? for all j, and therefore
O, = 0,.

Assertion (3) is proved.

The fact that O is the union of the open P-orbits is now clear.
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4.4. The involution 7.
From Remark 4.1.7 we know that the root system of (g, a®) is always of type Cry1 and consists

of the linear forms +n; £, for i # j and +2n;, 1 <1¢,7 < k where

n;(Hy,) = 0.
We know also ([3]) that then, there exists an element w of the Weyl group of Cy; such that

(%) w.n; = —ng—; fori =0,... k.

As this Weyl group is isomorphic to Ng(a")/Z5(a®), there exists an element v € Ng(a%) such
that w = Ad(v) ,. The property (*) implies that v normalizes g, exchanges V* and V™~ and
normalizes also P (ie. yPy~! = P).

In the Theorem below, we will give explicitly such an element 7, which moreover, will be an

involution of g.

We choose a diagonal sly-triple {17, Hy, I} that is such that [T = Xo+...+X; (X; € g%\ {0}),
I" =Yy + ...+, (Y; € g%\ {0}), where each (Y}, Hy,, X;) is an sl,-triple.

Let {Y,Hy, — H,,, X} be an sly-triple such that X € FE;;(1,-1) and Y € E;;(—1,1) (see
Lemma 3.4.2). Remember the elements

Yii = 6adXeaudYeadX _ eadYeadXeadY
,j — - .

which have been introduced in Proposition 3.4.3. We suppose moreover that the sequence X;
is such that ;5 (X;) = Xg_i, for 0 < i < n, where n is the integer defined by k = 2n + 2 if k
is even and k = 2n + 1 if k is odd. It is always possible to choose such a sequence.

Once we have chosen such an sly-triple, we normalize the polynomials A; by the condition:
A;(IT)y=1, forj=0,... k.

Theorem 4.4.1.
Suppose that {I~, Hy, I} is a diagonal sly-triple satisfying the preceding conditions.
There exists an element v € Ng(a®)such that

(1) v.Hy, = —H,y,_, for j =0,..., k;

(2) vX; =Y, forj=0,... k;

(3) 7* = Id;.

Such an element normalizes g, exchanges V't and V'~ and normalizes G, P, M, Ay and N.

Proof. We will first show the existence of an involution 7 of G such that Y(H)y;) = Hy,_, and
Y(Xy,) = X»,_, for j =0,..., k. For k =0, then the trivial involution satisfies this property.

We suppose that £ > 0. Let w; be the non trivial element of the Weyl group associated to
the slo-triple {Y;H),, X;}. Recall (Proposition 3.4.3 and Proposition 3.4.4) that the elements
Yij = iy o wi € Ng(a°) satisfy the following properties:
H,, for s=3j
%2] =Idg and 7;;(Hy,) =4 H), for s=i
Hy, for s¢{i,j}
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Consider again the integer n defined by £k =2n + 2 if k is even and k = 2n + 1 if £ is odd and

set:
o~ — N —_— N

Y =Yk O V110 -+ O Vnk—n-
Then
Y(Hy,) = Hy,_, for j=0,... Kk
As the pairs of roots ()\;, \_;) are mutually stronly orthogonal, the involutions 7, ;_; (see
Proposition 3.4.4) commute, and hence 7 is an involution of g.

2

From our choice of the sequence X, and as the action of w; on ®F_ g7 is trivial, we obtain

The involution 7 centralizes It and Hy, and hence it centralizes I~. Therefore 7 commutes

with w = e2d 17 ead I” gad I which is the element of G which defines the involution o associated

to the sly-triple {I~, Hy, I""}. Define
¥ =Fw = w.

The automorphism v commutes with w, and hence 7 is an involution of g. Moreover, using
Theorem 4.1.1, we get

Y(Hy,) = o(Hy,_,) = —Hy,_, for j=0,....k

’y(Xj) :O'(Xk_j) :Yk—j for j:O,,]{Z
This implies that v(Hy) = —Hy and hence v stabilizes g, normalizes G and exchanges V' and
V.
As y(Hy,) = —H,,_, for j = 0,...k, the element 7 stabilizes a’ and exchanges E; ;(1, —1) and
Ey_ir—j(—1,1). Therefore v stabilizes n and [ = 34(a"), and hence it stabilizes p. It follows

that v normalizes A°, L, N and P.
O

4.5. The P-orbits in V'~ and the polynomials V;.

In this section we fix an sly-triple (1™, Hy, ") satisfying the same conditions as for Theorem
4.4.1 where the involution + is defined. We set H = Zg(I)

Definition 4.5.1. For j =0,...,k, we denote by V; the polynomial on V= defined by
V](Y) = AJ(’Y(Y))v forY e V™.

Theorem 4.5.2.

The polynomials V; are irreducible of degree k(k+1— 7).

(1) Vg is the relative invariant of V— under the action of G.
2) For j =0,...,k, the polynomial V; is a relatively invariant polynomial on V~ under
J pory J Y poty

the action of the parabolic subgroup P. More precisely we have
Vi(pY)=x;(p)V;(Y), forpeP,

where x; 1is a character of P with the following properties:
ex;(n)=1, forneN,
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oy (a) = a= "ot HX3)  for g € A,
ox;(l)=1forle LN H.

Proof. As 7 is linear, V; is effectively an irreducible polynomial of the same degree as A, that
is k(k+1—7) (V; is non zero since y(I~) = I"). As v normalizes G and P, the fact that the
V,’s are relatively invariant is direct consequence of the same property for the A;’s (Theorem
1.14.2).

For p € P we have:
Vip-I7) = x; (0)V,;(I7) = Dj(ypy ™ IF) = x;(vpy™ ) V5(10),
and therefore
X; (p) = x;(ypy ™).
As 7 normalizes N, L and A and commutes with o, the assertion concerning the values of x;

on N, A, and LN H is a consequence of the same properties for the x;’s (cf. Theorem 4.3.2).
O

Let O~ be the dense open subset of V'~ defined by
O = {Y eV VO(Y)Vl(Y) c. Vk(Y) 7é 0}

Suppose ¢ = 3. Recall that L; is the analogue of the group G for the graded Lie algebra 1},
that is Lj = Z, . a y(H;). In the following Theorem we denote by ;" the relative invariant of
the prehomogeneous space (L;, ") defined by the identity

VilVi+ Y+ + %) =6 (V)Vin(Yja +.. + ) =0, (Y;) ... 6 (V)
for Y; € g%\ {0} and for j =0,...,k.
Using the involution v, the following description of the open P-orbits in V™~ is an easy conse-

quence of Theorem 4.3.6.

Theorem 4.5.3.
The dense open subset O~ s the union of the open P-orbits in V.
(1) If g is of Type I (that is if £ is a square and e € {0,4}), then O~ is the unique open
P-orbit in V.
(2) Let g be of Type 11 (that is if ¢ =1 and e € {1,2,3}) and let S = xx—1(Gx—1). Then
the subgroup P has |F*/S|* open orbits in V~ given for k > 1 by
O;:{YGV_;%UT..WA €S, forj=0,...k—1},
where u = (ug, ...,up_1) € (F*/S)*. (i.e. P has 4% open orbits in V=~ ife = 1 or 3,
and 2% open orbits if e = 2)
(3) If § is of Type I11 (that is if £ = 3), then P has 3* Yopen orbits in V~ given by

O, ={Y eV ;V;(Y)u;...up € F*for j =0,...k},
where u = (ug, . .., ur) € [1y (6; (@ \ {0})/F~2).
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The following Lemma gives the relationship between the characters of the V;’s and those of
the Aj’S.

Lemma 4.5.4. For g € G and p € P, we have:

Xo (9) = o)

and

x;<p>:“;—@)<p), Je k)

Proof. As the Killing forms induces a G-invariant duality between V™ and V~, we have:
dety+Ad(g) = dety-Ad(g™"), ge€G.

On the other hand, for X € V', let us consider the determinant P(X) = det(y- y+)(ad X)? of
the map (ad X)?: V~ — V7 (for any choice of basis). This polynomial P is relatively invariant
under the action of G because P(g.X) = detq - yv+)(g9(ad X)?¢7") = (dety+Ad(g))*P(X).
Hence it is, up to a multiplicative constant, a power of Ay. Therefore there exists m € N such
that
(dety+Ad(9))* = xo(9)™

If we take g € G such that g , =t Idy+ € G| ,, t € F* (cf. Lemma 1.11.3), then Theorem
2dimV'*

k(k+1)

The same argument for the dual space (G, V™) implies that (dety-Ad(g))? = xg (9)™. Therefore
we get xg (9)™ = xo(g)™™ for all g € G. As the group X*(G) of rational characters of G is a

1

lattice (see for example [20], p.121), it has no torsion. Therefore x, (g) = i and the first

1.13.2 implies that m =

assertion is proved.

Let us show the second assertion. As all the characters we consider are trivial on N, it is
enough to prove the relation for m € L. We consider the subgroup L' = Ly ... Lj of L = L(F)
(keep in mind that the groups L; are in general not included in G). The polynomials A; are
the restrictions to V't of polynomials defined on V+, which are relatively invariant under the
action of G. Therefore the polynomials V; also are restrictions to V= of polynomials of V"

which are relatively invariant under G.
We first show that for m € L, there exists [ € L' such that [7'm € LN H (*).

(Here L = L(F) = Zz(a®) and H = H(F) = Zg(I")).

If ¢ is a square, as m.X; € gV, it follows from Theorem 1.12.4 that m.X; is L;-conjugated to
X; and hence there exists [; € L; such that m.X; = [;.X,. Then the element [ = 1[,...l; € L'
is such that [~'m.I™ = I'" and therefore ["'m € LN H.

If ¢ = 3, we will use the description of G given in Proposition 3.9.1. Let E = F[\/u] be a

unramified quadratic extension of F' and let m be a uniformizer of F'. The group G is the group

L o : 0
of automorphisms of g given by conjugation by matrices of the form ( 8 where

tp—1
©g
g€ G2(k+1))UyuG°2(k +1)) and u € F*. We denote by [g, u] such an element of G.
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The space a° is the space of matrices

H(t,. . . .t 0 el 00
(ts - o) , where H(ty, ..., to) = 0O . 0 ,

0 “H(te, .. to) co

042

and (ty,...,ty) € F¥FL. Therefore the centralizer of a’ in G, that is L, is the subgroup of
elements m = [g, ] where g = diag(gg, - - ., 8o) is a 2 X 2 block diagonal matrix whose diagonal
elements g; belong to G°(2) U \/uG°(2). Let I; € GL(2(k + 1), E) be the 2 x 2 block diagonal
matrix whose all diagonal blocks are the identity in GL(2, E') except the (k — j 4+ 1)-th bock
which is equal to g; and the (2(k 4 1) — j)-th block which is equal to x ‘g;'. Then from the
definition of L;, we have Adl; € L; and m = Ad(lj...ly) belongs to L.

Hence we have proved that in all cases, for all m € L, there exists [ € L' such that ["'m € LNH.
As the characters x; and x; are trivial on L N H, we have x;(m) = x;(I) and x; (m) = x; (1)
for all j € {0,...,k}. It suffices therefore to prove the result for | € L' = LoL, ... L, C G.

Let [ € L' and j € {1,...,k}. Consider the decomposition of V* into weight spaces under the
action of Hy, + ... Hy,:

Vi=VieUeWw/,
where V;*, U” and W} are the spaces of weight 2, 1 and 0 under Hy, + ... Hy,, respectively.

More precisely:
V+ - @ljzjﬁ’\s © @j§r<sEr,s(17 1)

[]Jr - @r<j§sEr,s(17 1)
W+ —_ @Z;ég)‘s @ @T<S§j—1ET,S<]'7 ].)

Similarly we denote by V= = Vi~ @& U; @ W, the decomposition of V™ into weight spaces
of weight —2,—1 and 0 under Hy, + ... H,,. As the eigenspace, in V'*, for the eigenvalue r
of Hy;, + ... Hy,, is the same as the eigenspace, for the eigenvalue 2 —r of Hy, + ... Hy,_ |,
it is easy to see that W = (V! ;). Therefore (y(Gry1-;),W;") is a regular irreducible
prehomogeneous vector space whose fundamental relative invariant is the restriction of Vj_; 1
to W,

Let us write [ = ljly where Iy € L;...Ly C Gj and ly € Ly...Lj—y = y(Lgp1—j...Ly) C
V(Grir—)-

As [y acts trivially on Wﬁ, and as [y acts trivially on W, we have

XO(ll) = AO(XQ 4+ ...+ Xj—l + ll(Xj + ...+ Xk))

=N (L(X 4. 4+ Xe) = A(U(X 4.+ X)) = (D).
Define Iy := yloy ™' € Ly1—j ... L, C Gry1j.
If we consider the decomposition V' = V., y
argument as before to vy ™! we get xo(l5) = xk+1-j(7ly™"), and this is equivalent to

® Uy_; ® Wi, _; and if we apply the same

Xo (l2) = X1 (1)-
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Applying the first assertion of the Lemma, we obtain xo(l2) = x;y,_,;(1)~", and hence finally
xo(l) = xo(l)xo(l2) = x; (DX, (D7,

and this proves the second assertion.

Let Q1 and Q~ be the set of generic elements in V* and V', respectively. In other words:
OF ={z eV Ay(X) #0}, Q ={xeV ", VyX)#0}

Definition 4.5.5. Let ¢ : QT — Q™ be the map which sends X € QT to the unique element
Y € Q such that {Y, Hy, X} is an sly-triple.

If {Y, Hy, X} is an sly-triple, then for each g € G, {g.Y, Hy, g. X'} is again an slo-triple. Therefore

the map v is G-equivariant.

Proposition 4.5.6. For X € QF, we have

1 o Api1-(X)

VW) = gy Vi) = TR

i=1,... k.

Proof. Fix a diagonal sly-triple {1, Hy, It} which satisfies the condition of Theorem 4.4.1.
Then IT = Xo+ ...+ Xy and I~ =Yy + ... + Y}, where {V}, H,,, X;} are slo-triples.
As OT is open dense in Q" and as the function we consider here are continuous on Q7 it

suffices to prove the result for X € O%. The proof depends on the Type of g.

If g is of Type I (ie. ¢ is a square and e = 0 or 4) then any X € O" is P-conjugated to I (see
Theorem 4.3.6). Therefore it suffices to prove that for all p € P, one has

Vi) = Sl

From the normalization of the polynomials V; and A, the Lemma 4.5.4 implies

V1) = ) = ) Sean),

and this proves the statement in this case.

Suppose now that g is of Type I, that is that / = 1 and e = 1 or 2. By Lemma 4.3.3, X
is N-conjugated to an element Z = Z?:o 2;X; with zp,...,2z, € F*. By the hypothesis on
the X;’s and from the definition of the involution 7, we have ¢)(Z) = 25, 'Yy + ... + 2, 'Y} and
Y(W(2)) = 2, ' Xo + ... + 25 ' X. By Theorem 4.5.2 and 4.3.2, the polynomials V; and A; are

N-invariant and hence we have

Vo((X)) = Vo((2)) = Jo(r-0(2)) = ] [ = = AOI(Z) - Aozxy
and
V(X)) = V;(0(2) = Mj(vp(2) = T 24 = Apy1-5(Z)  App—5(X)

Ao(Z)  Dg(X) 7

and this again proves the statement.
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Suppose now that g is of Type 11, this means that £ = 3. We use the notations and the material
developed in §3.9. In particuliar we realize the algebra g as a subalgebra of sp(4(k+1), E) where
E = F[\/u] and where v € F*\ F*? is a unit. We will first describe precisely the involution v
and the polynomials V.

0 It
We define It = 0 0 ) where I € M(2(k+1), E) is the 2 x 2 block diagonal matrix whose

0 1 0 0
diagonal blocks are all equal to J; = Lo ) Then I~ = 0 ) . We normalize the
polynomials A; in such a way that A;(I7) =1 for all j € {0,...,k}.
0 1
We set ' = . We show now that v = (

1 0

r
r oo ) satisfies the properties of

0 Dy

4.4.1. As 7 centralizes the matrix Kopq1) = ( ), the element ~y (or to be

—I341) 0
more precise, the conjugation by 7) belongs to Auty(§ @ E). In order to verify that v € G,
it suffices to verify that v normalizes g. Recall that g is the set of matrices Z € g ®¢ E such
J. 0 0

_ J 0 0
that TZ = ZT where T = with J = 0 . 0 and J; = ") As
0 'J 10
0 0 J;

. r+Jr o . . .
YTy = 0 TJT and I'JT" = *J, we obtain v~'Ty = T. It follows that v normalizes
g and hence v € G.

A X
For 7Z = € g, we have
Y ‘A
~T'*AT —-T'YT
V.4 = .
—I'X" TAT
ZO,O Ce Z07k
If Z € M(2(k+ 1, E) can be written as Z = : : with Z, , € M (2, E), then
Zk,O Ce th
Sl Ji ... JiZliohy
I'Zl = : :
J1ZopJy ... JiZliod;

It is now easy to verify that v normalizes a® and satisfies the properties of Theorem 4.4.1 .

From the normalization made in section 3.9, we have

0 X —j+1 X .
Aj<0 . )=<—1>k det(X;)
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where X is the square matrix of size 2(k + 1 — j) defined by the 2(k + 1 — j) first rows and
columns of X. Explicitly, if X = (X, s)s=0...x where X, s € M (2, E), we have

,,,,,

XO,O ce XO,kfj

Xp—jo o Xp—jk—j

From the definition of V;, we get

0 0 0 —TYT

Yoo ... You
Therefore if Y = : : , we have
Yieo oo Yik
— N1 Y1 —Nh Yy ;i J1Y J1Yy ;1
Vi(Y) = (=) : : = ' :
LY N - LY,y J1Y e h J1Y ;5
As det(J;)? = 1, we obtain:
Yk Y Y, Yk
v,(v)=| : =] .
Y, ... Y, Y., ... Y

0 X 0 0
Let X = (0 0 ) € QF. A simple computation shows that ¢(X) = ( <1 ¢ ) If

0 Z
X € O7F, then by Lemma 4.3.3 , there exists n € N such that n.X = < 0 ), where

0
Z, 0 0
7 = 0 . 0 and Z; € M(2,E). We set Z =n.X. From above we get:
0 0 Z
k—j k
, 1 , . det(Z, JAVER I 0/
Vi) = ()] gy = (i e OB Beas(2)
+o det(Zy) 15, det(Z,) Ao(Z)
As the Aj’s and the V;’s are invariant under N, we have
Apr1—5(X)
V. ()(X)) = k=)
for all X € O%and hence for all X € Q7. O

Definition 4.5.7. Let s = (sg,...,s;) € C*L. We denote by |V|® and |A®| the functions
respectively defined on OF and O~ by

IAPF(X) = [Ag(X)*0 ... |A(X)[**, forX € OF,

V(YY) = [Vo(Y)[ ... [V(Y)[*, forY € O
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Definition 4.5.8. We denote by t the involution on C** defined by

t(s) = (—So — S1 — -+ — Sk, Sky Sk—15- -+, 51)5

for s = (sg,...,s) € CFL

Corollary 4.5.9. Let X € QF. For s € C**', we have

VP ((X)) = |A(X).

In particular, the polynomials |V|* and |A|*" have the same A°-character if and only if s' = t(s).

Proof. The first statement is a straightforward consequence of Proposition 4.5.6. The second

assertion follows then from Theorem 4.3.2 and 4.5.2 O
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