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Abstract

We introduce the notion of relative pseudo-coefficient for relative discrete series
representations of real spherical homogeneous spaces of reductive groups. We prove
that K-finite relative pseudo-coefficient does not exist for semisimple symmetric spaces
of type GC{GR, where K is a maximal compact subgroup of GC, and construct strong
relative pseudo-coefficients for some hyperbolic spaces. We establish a toy model for
the relative trace formula of H. Jacquet for compact discrete quotient ΓzG. This allows
us to prove that a relative discrete series representation, which admits strong pseudo-
coefficients with sufficiently small support, occurs in the spectral decomposition of
L2pΓzGq with a nonzero period.
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1 Introduction

The notion of pseudo-coefficient for a discrete series representation was first introduced in
the group case, i.e X “ G ˆ G{diagpGq » G, where G is the group of real points of any
connected reductive algebraic group defined over R. It is defined as follows: let µ be the
Plancherel measure of G. Given a discrete series representation π of G, a test function
φ P C8c pGq is said to be a pseudo-coefficient of π if for µ-almost irreducible tempered
representation ρ, then tr ρpφq ‰ 0 if and only if ρ is equivalent to π. Here tr ρpφq is the
trace of the trace operator ρpφq. In ([7] Proposition 1), it is shown that every discrete
series representation of G admits pseudo-coefficients.

In this article, we consider real spherical homogeneous spaces, that is homogeneous
spaces for a real reductive group G, with an open orbit for any minimal parabolic subgroup.
On such spaces, we define the notion of relative pseudo-coefficient for relative discrete series
representation (see Definition 3.1).

˚The first author was supported by a grant of Agence Nationale de la Recherche with reference ANR-
13-BS01-0012 FERPLAY.
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In the case of semisimple symmetric spaces of type GC{GR, we show, using properties
of orbital integrals (see [6] and [17]), that no relative discrete series representation admits
K-finite relative pseudo-coefficient, where K is a maximal compact subgroup of GC (see
Theorem 6.2).

We look also at hyperbolic spaces over C and over the quaternions H, i.e X “ G{H,
where G “ Upp, q,Kq and H “ Up1,Kq ˆ Upp´ 1, q,Kq for K “ C or H.

For the rest of this introduction we fix such a G and H. Using results of J. Faraut,
M. Flensted-Jensen and K. Okamoto and results of [10], we show that some relative dis-
crete series representations of these spaces do not have relative pseudo-coefficients (see
Proposition 4.1), but there exists a countable family of relative discrete series represen-
tations having what we call strong relative pseudo-coefficients i.e. which isolate a single
relative discrete series representation among the irreducible unitary representations of the
group G having a nonzero H-fixed distribution vector (see Theorem 4.8).

We give an application of the existence of these strong relative pseudo-coefficients,
whose support are arbitrary small, to existence of some representations occurring in the
spectral decomposition of L2pΓzGq where Γ is a torsion free cocompact discrete subgroup
of G, stable by the involution σ whose fixed point group is H (see Theorem 5.7). Existence
of such cocompact discrete subgroups is shown using adelic methods (see Proposition 5.6).

For this application, we establish a toy model for the more sophisticated relative trace
formula of H. Jacquet ([18]).

Let ξΓ be the distribution vector for the right regular representation of G in L2pΓzGq
given by integration over ΓXHzH, which is compact in our case. We denote by cξΓ,ξΓ the
corresponding generalized matrix coefficient.

Then it is easy to give two expressions of cξΓ,ξΓpfq for f P C8c pXq. One expression,
which is called spectral, involves periods of representations, i.e. H-fixed distribution vec-
tors of irreducible subrepresentations of L2pΓzGq, the other, called geometric, involving
relative orbital integrals, i.e. the average of f on orbits of elements of Γ under the action
of H ˆH. We call the equality of these 2 expressions a relative trace formula.

When one plugs a strong relative pseudo-coefficient into the spectral side of the relative
trace formula, it singles out the contribution of the relative discrete series representation.
On the geometric side, as we can find strong relative pseudo-coefficient with sufficiently
small support, we get only the contribution of the neutral element and this contribution
is equal to fp1q.

Altogether, it shows that the relative discrete series representation with strong relative
pseudo-coefficients occurs in L2pΓzGq.

This paper is organized as follows: In section 2 we prove a relative trace formula for
ΓzG when H is a unimodular closed subgroup of G, Γ is a cocompact discrete subgroup of
G such that the volume of ΓXHzH is finite and the centralizers of elements of Γ in HˆH
are unimodular. In section 3, we introduce the notion of relative pseudo-coefficient and
prove our application of existence of strong relative pseudo-coefficient when H is the fixed
point group of an involution of G. In section 4, we explain our results (existence or non
existence of strong relative pseudo-coefficient for relative discrete series representations)
for hyperbolic spaces. In section 5, we construct cocompact discrete subgroups of unitary
groups on C and H satisfying our assumptions and section 6 is devoted to prove that no
relative discrete series representation of GC{GR admits K-finite relative pseudo-coefficient.

2



2 A relative trace formula for ΓzG.

If M is a differentiable manifold, then CpMq and C8pMq will denote the space of contin-
uous functions and smooth functions on M respectively. Let CcpMq and C8c pMq be the
subspaces of compactly supported functions in CpMq and C8pMq respectively.

Let G be a real reductive group. We consider a discrete cocompact subgroup Γ of G
and a closed subgroup H. We assume that

1. H is unimodular,

2. the volume volppH X ΓqzHq of pH X ΓqzH is finite,

3. for each γ P Γ, the subgroup pHˆHqγ “ tph, h
1q P HˆH;h´1γh1 “ γu

is unimodular.

(2.1)

We set ΓH :“ H X Γ. We fix Haar measures on these groups, discrete groups being
equipped with the counting measure.

If V is a topological vector space then V 1 will denote its topological dual.
Let pπ, V q a continuous representation of G in a Hilbert space V . We denote by V 8 Ă V
the space of C8 vectors of π endowed with its natural topology (For the topology of V 8,
see [4] section 2.4.3 and Lemma 2.15 where two equivalent definitions are given). We
define the space of distribution vectors V ´8 as the topological dual of V 8. Let π8 be the
representation of G in V 8, and π´8 be the dual representation of π8 in V ´8.
If f P C8c pGq and ξ P V ´8, we have π´8pfqξ P pV

1q8. Hence, if ξ1 P pV 1q´8, we can
define the distribution mξ,ξ1 by

mξ,ξ1pfq “ xπ´8pfqξ, ξ
1y, f P C8c pGq.

If pπ, V q is unitary for a scalar product p¨, ¨q, then the map j : v ÞÑ p¨, vq, intertwines
the conjugate representation pπ, V q of pπ, V q and its dual representation pπ1, V 1q. Let ξ1

and ξ2 be two elements of V ´8. We define ξ2 P V
´8

by ξ2pwq “ ξ2pwq. By the above
identification, we can consider ξ2 as an element of pV 1q´8. Thus we can define

cξ1,ξ2pfq “ mξ1,ξ2
pfq.

Let us explain what happens if ξ1 and ξ2 are elements of V 1. Notice that V 1 inherits
of a natural scalar product from the one of V . Then xξ1, ξ2y is just the scalar product
pξ1, ξ2q. This leads to cξ1,ξ2pfq “ pπ1pfqξ1, ξ2q. In other words, cξ1,ξ2pfq is an ordinary
matrix coefficient.

We will call in general cξ1,ξ2 the generalized matrix coefficient of ξ1, ξ2 P V
´8 and

write :

pπ´8pfqξ1, ξ2q :“ cξ1,ξ2pfq “ xπ´8pfqξ1, ξ2y. (2.2)

We consider the right regular representation R of G in L2pΓzGq.
Then, for f P CcpGq, the corresponding operator Rpfq maps any function ψ P L2pΓzGq to
the function

rRpfqψspxq “

ż

G
fpgqψpxgqdg “

ż

G
fpx´1yqψpyqdy
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“

ż

ΓzG
ψpyqKf px, yq d 9y

where
Kf px, yq :“

ÿ

γPΓ

fpx´1γyq, x, y P G, (2.3)

and this sum has only a finite number of nonzero terms for x, y contained in a compact
subset of G since f is compactly supported and Γ is discrete.

Therefore, Rpfq is an operator with continuous kernel Kf .

We define the H-invariant linear form ξΓ on CpΓzGq, which contains L2pΓzGq8 “

C8pΓzGq (see [25] Theorem 5.1), by

ξΓpψq “

ż

ΓHzH
ψphqd 9h.

Then, the generalized matrix coefficient

cξΓ,ξΓpfq :“ pR´8pfqξΓ, ξΓq, f P C8c pGq

associated to ξΓ according to (2.2) is an H-biinvariant distribution on G.

The relative trace formula in this context gives two expressions of the distribution cξΓ,ξΓ ,
the first one, called the spectral side, in terms of irreducible representations of G, and the
second one, called the geometric side, in terms of orbital integrals.

We first deal with the spectral part. For this purpose, we consider the spectral decom-
position of L2pΓzGq:

L2pΓzGq “ ‘πPĜHπ bMπ,

where Ĝ is the set of equivalent classes of irreducible unitary representations pπ,Hπq of G
and Mπ is a finite dimensional vector space whose dimension is the multiplicity of π in
L2pΓzGq (For finite multiplicities, see [13] §2. 3 Theorem).
Then the space Vπ :“ Hπ bMπ is the π- isotypic component of L2pΓzGq. We denote by
ξΓ,π the restriction of ξΓ to Vπ. Therefore, we obtain

cξΓ,ξΓpfq “
ÿ

πPĜ

cξΓ,π ,ξΓ,πpfq, f P C8c pGq. (2.4)

For γ P Γ, we define the groups

pH ˆHqγ “ tph1, h2q P H ˆH; h´1
1 γh2 “ γu, and pΓH ˆ ΓHqγ “ pH ˆHqγ X pΓˆ Γq.

2.1 Proposition. 1. For γ P Γ, the quotient pΓH ˆΓHqγzpH ˆHqγ is of finite volume
and for f P C8c pGq, the orbital integral of f at γ

Ipf, γq :“

ż

pHˆHqγzpHˆHq
fph´1

1 γh2qdh1 dh2

is absolutely convergent.
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2. We have the following relative trace formula

ÿ

γPΓHzΓ{ΓH

volppΓH ˆ ΓHqγzpH ˆHqγq Ipf, γq “
ÿ

πPĜ

cξΓ,π ,ξΓ,πpfq, (2.5)

where the left hand side is absolutely convergent.

Proof. The right hand side of (2.5) is just the expression of cξΓ,ξΓpfq given in (2.4).
For the geometric side, we will express cξΓ,ξΓpfq in terms of the kernel Kf .

Let f P CcpGq. We first compute R´8pfqξΓ. For this, we use the bilinear duality
bracket x¨, ¨y between V ´8 and V 8 where V “ L2pΓzGq. We define f̌ by f̌pxq “ fpx´1q.
Then, for ψ P C8pΓzGq, we have

xR´8pfqξΓ, ψy “ xξΓ, Rpf̌qψy “

ż

ΓHzH

`

ż

ΓzG
ψpyqKf̌ ph, yqd 9y

˘

d 9h.

The kernel Kf̌ is continuous and |Kf̌ | ď K|f̌ |. Applying the above equality to |ψ| and |f |,
one sees that the double integral on the right side is absolutely convergent and we can
apply Fubini’s Theorem. Thus we obtain

xR´8pfqξΓ, ψy “

ż

ΓzG
ψpyq

`

ż

ΓHzH
Kf̌ ph, yqd

9h
˘

d 9y.

We deduce that R´8pfqξΓ is the continuous function on ΓzG given by

`

R´8pfqξΓ

˘

pyq “

ż

ΓHzH
Kf̌ ph, yqd

9h.

Therefore, we can extend the map ϕ P C8c pGq ÞÑ cξΓ,ξΓpϕq “ pR´8pϕqξΓ, ξΓq to CcpGq.
Since Kf̌ px, yq “ Kf py, xq, we obtain for f P CcpGq

cξΓ,ξΓpfq “

ż

ΓHzH

`

ż

ΓHzH
Kf px, yqd 9x

˘

d 9y “

ż

ΓHzH

`

ż

ΓHzH

ÿ

γPΓ

fph´1
1 γh2qdh1

˘

dh2. (2.6)

For ph1, h2q P H ˆH, we have

ÿ

γPΓ

fph´1
1 γh2q “

ÿ

rγsPΓHzΓ{ΓH

ÿ

pγ1,γ2qPpΓHˆΓHqγzpΓHˆΓHq

fph´1
1 γ´1

1 γγ2h2q, (2.7)

where the sum has only a finite number of nonzero terms.
Applying (2.6) and (2.7) to |f | and using first Fubini’s Theorem for positive functions and
then for integrable functions, we obtain

cξΓ,ξΓpfq “
ÿ

rγsPΓHzΓ{ΓH

ż

ΓHzH

ż

ΓHzH

ÿ

pγ1,γ2qPpΓHˆΓHqγzpΓHˆΓHq

fph´1
1 γ1γγ2h2qdh1 dh2
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“
ÿ

rγsPΓHzΓ{ΓH

ż

pΓHˆΓHqγzHˆH
fph´1

1 γh2qdph1, h2q, (2.8)

the integral and the sum being absolutely convergent.
As by assumption the group pH ˆHqγ is unimodular , using the transitivity property

of invariant measures on homogeneous spaces (see [3] Chap. II, §3), we have

ż

pΓHˆΓHqγzHˆH
fph´1

1 γh2qdph1, h2q

“

ż

pHˆHqγzHˆH

´

ż

pΓHˆΓHqγzpHˆHqγ

fph´1
1 u´1

1 γu2h2qdpu1, u2q

¯

dph1, h2q

“ volppΓH ˆ ΓHqγzpH ˆHqγq

ż

pHˆHqγzHˆH
fph´1

1 γh2qdh1 dh2.

(2.9)

We deduce from this that the volume volppΓH ˆ ΓHqγzpH ˆHqγq is finite. Applying the
above equality to |f |, we deduce that the orbital integral Ipγ, fq of f P CcpGq at γ is
absolutely converging. Thus we obtain the first assertion of the Proposition.

Therefore (2.8) and (2.9) give

cξΓ,ξΓpfq “
ÿ

rγsPΓHzΓ{ΓH

volppΓH ˆ ΓHqγzpH ˆHqγq

ż

pHˆHqγzHˆH
fph´1

1 γh2qdph1, h2q.

Then the relative trace formula follows from (2.4).

3 Relative pseudo-coefficients with small support.

To define relative pseudo-coefficients for relative discrete series representation, we need to
review the abstract Plancherel formula. Here, we assume that G is a real reductive group
and H is a spherical subgroup, ie. G{H admits an open orbit for any minimal parabolic
subgroups, which ensures finite multiplicities in the Plancherel formula (see [21]Theorem
3.2 and [19] Theorem A).

We denote by pG the unitary dual of G and pick for every equivalence class rπs a
representative pπ,Hπq. We keep the notations of section 2.
The abstract Plancherel formula Theorem for the spherical variety Z :“ G{H asserts the

following. For every rπs P Ĝ, there exists a Hilbert space Mπ Ă pH
´8

π qH (note that as Mπ

is finite dimensional, this induces a Hilbert space structure on HompMπ,Hπq »M˚
πbHπ

and Mπ “M˚
π Ă pH´8π qH), such that the Fourier transform

F :

"

C8c pGq Ñ
ş‘

Ĝ
HompMπ,Hπqdµpπq,

F ÞÑ FpF q “
`

FpF qπ
˘

πPĜ
, FpF qπpξq “ πpF qξ P H8π

(3.1)

extends to a unitary isomorphism. Here µ is a certain Radon measure on Ĝ whose measure
class is uniquely determined. The precise form of the measure depends on the chosen scalar
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products on the various stalks HompMπ,Hπq. We have

}F }L2pZq “

ż

Ĝ
HπpF qdµpπq

where Hπ are Hermitian forms which are defined as

HπpF q
2 “

mπ
ÿ

j“1

}πpF qξj}
2
Hπ
, F P C8c pZq,

for ξ1, . . . , ξmπ an orthonomal basis of Mπ.

3.1 Definition. Let pπ0,Hπ0q P Ĝ be a relative discrete series representation for Z “

G{H, ie. which admits an embedding in L2pG{Hq.

1. A function f P C8c pG{Hq is a relative pseudo-coefficient for π0 if

(a) there exists ξ0 PMπ0 such that cξ0,ξ0pfq ‰ 0,

(b) for µ-almost all π P Ĝ distinct from π0 and for all ξ PMπ, then cξ,ξpfq “ 0.

2. Let ξ0 P Mπ0. A function f P C8c pG{Hq is a strong relative pseudo-coefficient for
pπ0, ξ0q if

(a) cξ0,ξ0pfq ‰ 0 and caξ0`ξ,aξ0`ξpfq “ aā cξ0,ξ0pfq, for a P C and ξ in the orthogo-
nal subspace of Cξ0 in Mπ0,

(b) for any unitary irreducible representation pπ,Hπq of G, non equivalent to π0,
and for all ξ P pH´8π qH , then cξ,ξpfq “ 0.

The relative trace formula for ΓzG allows to determine, in some cases, if a relative
discrete series representation π for G{H occurs in the spectral decomposition of L2pΓzGq
and has a nonzero period (ie. ξΓ,π ‰ 0).

3.2 Definition. We say that f P C8c pG{Hq has small support relative to Γ if Ipf, γq ‰ 0
for γ P Γ implies that γ P ΓH .

Let us assume that G{H has a relative discrete series representation pπ0,H0q. Then
H0 can be realized as a subspace of L2pG{Hq and the map ξ0 : ψ P H80 Ñ ψp1q is an
H-invariant distribution vector.

3.3 Proposition. If there exists a strong relative pseudo-coefficient f for pπ0, ξ0q with
small support relative to Γ then π0 occurs in L2pΓzGq with a nonzero period.

Proof. By definition, if f is a strong relative pseudo-coefficient for pπ0, ξ0q with small
support relative to Γ, then the geometric side of the relative trace formula (2.5) is reduced
to the term fp1q and the spectral side to the term cξΓ,π0

,ξΓ,π0
pfq “ pπ0pfqξΓ,π0 , ξΓ,π0q, hence

we obtain the Proposition.

7



We will precise the notion of small support relative to Γ in the case of symmetric
spaces. We assume that H is the fixed point group of an involution σ of G.
Most of the results of harmonic analysis on real reductive symmetric spaces are available
only when G is in the Harish-Chandra class (see [9] and [2]). From now, we will make this
assumption on G.

3.4 Lemma. If Γ is a σ-stable cocompact discrete subgroup of G then ΓH “ Γ XH is a
cocompact subgroup of H.

Proof. Let phnq be a sequence of H. As ΓzG is compact, extracting possibly a subsequence
of phnq, we can find a sequence pγnq in Γ such that pγnhnq converges in G. Since Γ is σ-
stable, the sequence of γnσpγnq

´1 “ γnhnσpγnhnq
´1 is a converging sequence in Γ. As Γ

is discrete, there exists n0 P N such that for n ě n0, we have γnσpγnq
´1 “ γσpγq´1 where

γ :“ γn0 P Γ. This implies that γ´1γn P Γ XH for n ě n0, and the sequence pγ´1γnhnq
converges. This proves that ΓXHzH is compact.

Let θ be a Cartan involution of G which commutes with σ. Then K :“ Gθ is a maximal
compact subgroup of G.

Let g “ k ‘ p “ h ‘ q be the decomposition of the Lie algebra g of G in eigenspaces
for θ and σ respectively.

We fix a maximal abelian subspace a in pXq and we denote by A the analytic subgroup
of G with Lie algebra a. Then, we have the Cartan decompositions

G “ K exp p “ KAH.

We fix a K-invariant norm } ¨ } on p and we define a K-invariant function τ on G by

τpk expXq “ }X}, k P K,X P p.

For R ą 0, let AR :“ ta P A; τpaq ă Ru be the ball of radius R in A.
We set

rΓ :“ inf
gPG,γPΓ´t1u

τpg´1γgq.

3.5 Proposition. Let G and σ be as above. Let Γ be a σ-stable cocompact discrete
subgroup of G. Moreover, we assume that Γ is torsion-free. Then

1. rΓ ą 0.

2. Let f P C8c pG{Hq be compactly supported in KArΓ{2H. Then f has small support
relative to Γ.

Proof. 1. This property is asserted in [8]. We give a proof for sake of completeness.
If rΓ “ 0 then there would exist two sequences pgnq of G and pγnq of Γ with γn ‰ 1 for all
n P N, such that τpg´1

n γngnq converges to 0. Then

g´1
n γngn “ kn expXn with kn P K and Xn P p with lim

nÑ`8
}Xn} “ 0. (3.2)
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As ΓzG is compact, possibly changing pgnq and pγnq and extracting subsequences, we can
assume that pgnq converges to g P G and pknq converges to k P K. Thus using (3.2), we
see that the sequence pγnq converges, hence, as Γ is discrete, there exists n0 such that
γn is constant and equal to γ :“ γn0 for n ě n0. Going to the limit in (3.2), we obtain
g´1γg “ k. Therefore γ belongs to the discrete compact, so finite, group gKg´1XΓ. This
implies that γ is a torsion element, thus γ “ 1. This contradicts the hypothesis that all
γn are distinct from 1. This proves the first assertion.

2. Let h1, h2 in H and γ P Γ such that fph´1
1 γh2q ‰ 0. Then, the point g :“ h´1

1 γh2

belongs to KArΓ{2H. Therefore, we have gσpgq´1 P KArΓK, thus τpgσpgq´1q “

τph´1
1 γσpγq´1h1q ă rΓ. By definition of rΓ, this implies that γσpγq´1 “ 1, hence γ P ΓH .

4 Strong relative pseudo-coefficient for some hyperbolic
spaces.

The aim of this part is to construct strong relative pseudo-coefficients associated to some
relative discrete series representations of some hyperbolic spaces.

4.1 Preliminaries.

Let K “ R,C or H be the classical field of real, complex numbers or quaternions respec-
tively. Let x ÞÑ x̄ denotes the standard (anti-)involution of K. Let p ą 2, q ě 1 be two
integers. We consider the hermitian form r¨, ¨s on Kp`q given by

rx, ys “ x1ȳ1 ` . . . xpȳp ´ xp`1ȳp`1 ´ ¨ ¨ ¨ ´ xp`1ȳp`q, px, yq P Kp`q.

Let G “ Upp, q,Kq denote the group of pp` qq ˆ pp` qq matrices preserving r¨, ¨s. Let
H “ Up1,Kq ˆ Upp ´ 1, q,Kq be the stabilizer of x0 “ p1, 0, . . . , 0q P Kp`q in G. Then
H is the fixed-point group of the involution σ of G given by σpgq “ JgJ , where J is the
diagonal matrix with entries p´1, 1, . . . , , 1q. The reductive symmetric space G{H (of rank
1) can be identified with the projective hyperbolic space X “ Xpp, q,Kq (see [1] §2.) :

X “ tz P Kp`q; rz, zs “ 1u{ „,

where „ is the equivalence relation z „ zu, u P K˚, |u| “ 1.

The group K “ K1 ˆK2 “ Upp,Kq ˆ Upq,Kq Ă G is the maximal compact subgroup
of G consisting of elements fixed by the classical Cartan involution θ of G, θpgq “ pg˚q´1,
which commutes with σ. Here g˚ denotes the conjugate transpose of g.
Recall that g “ k‘p “ h‘q are the decompositions of the Lie algebra g of G in eigenspaces
for θ and σ respectively.
We define the one parameter abelian subgroup A “ tat; t P Ru by

at “

¨

˝

cosh t 0 sinh t
0 Ip`q´2 0

sinh t 0 cosh t

˛

‚
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where Ij denotes the identity matrix of size j. Then, the Lie algebra a of A is a maximal
abelian subspace of pX q. Let W be the Weyl group of A in G. The nontrivial element of
W acts on A by at ÞÑ a´t.

The Cartan decomposition G “ KAH holds and gives rise to the use of polar coordi-
nates on X (see [1] §2):

pk, tq P K ˆ R` ÞÑ katH, (4.1)

and the map pk, tq P K{K XMˆs0,`8rÞÑ katH is a diffeomorphism on its image.

The centralizer M of A in H is the subgroup of matrices

¨

˝

u 0 0
0 v 0
0 0 u

˛

‚

where u P K˚, |u| “ 1 and v P Upp´ 1, q ´ 1,Kq.

Hence, the homogeneous space K{K XM can be identified with the projective image
Y of the product of unit spheres SppKq ˆ SqpKq:

K{K XM » Y “ ty P Kp`q; |y1|
2 ` . . .` |yp|

2 “ |yp`1|
2 ` . . .` |yp`q|

2 “ 1u{ „ . (4.2)

Let P be the subgroup of G which stabilizes the K-line generated by γ0 “ p1, 0, . . . 0, 1q.
Then P is a maximal parabolic subgroup of G whose unipotent radical will be denoted by
N , and we have P “MAN ([11] V.1).

Let d :“ dimRK. We set ρ :“
1

2
pdq ` dpq ´ 1.

We recall some results about spherical distributions of positive type on X given in [11].
As X is a symmetric space of rank 1, the algebra of left G-invariant differential operators on
X is generated by the Laplace-Beltrami operator ∆ corresponding to the natural pseudo-
Riemannian structure. The Laplace-Beltrami operator comes, up to a scalar, from the
action of the Casimir of g on C8c pXq.

We denote by D1s,HpXq the space of spherical distributions Θ such that ∆Θ “ ps2 ´ ρ2qΘ.

We keep notation of §1 for representations.
For s P C, we define the character δs of P by δspmatnq “ est,m P M,at P A,n P N

and we denote by pπs :“ indGP δs´ρ,Hsq the normalized induced representation.
For s P C, we denote by ξs P pH´8´s qH the H-invariant distribution vector denoted by
us P E 1spΞq in ([11] page 395). By (loc. cit. Proposition 5.3), the map sÑ ξspφqpφ P H8´sq
is holomorphic on C. Moreover, by (loc. cit. page 396), we have pπ´sq´8pfqξs P H8s for
f P C8c pG{Hq. Thus, we can define the spherical distribution Us by (see [11] Définition
5.4.)

Uspfq :“ xpπ´sq´8pfqξs, ξ´sy, f P C8c pXq. (4.3)

Notice that for s P iR, we have Us “ cξs,ξs .
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According to ([11] Proposition 5.4 and Théorème 7.3), the spherical distribution Us
satisfies the following properties:

1. for f P C8c pXq, the map sÑ Uspfq is holomorphic on C,

2. ∆Us “ ps
2 ´ ρ2qUs,

3. Us “ U´s for s P C,

(4.4)

According to ([11] IX, (2 a), Proposition 9.1, Théorème 9.2 and Proposition 9.3), there
exists up to a scalar at most one positive type in D1s,HpXq for s P C, except when dq is
even and s “ 0.

If dq is odd, these distributions are the Us for s P iR, and the εsUs with εs “ ˘1 for a
set of real s.

If dq is even and s ‰ 0, these distributions are the Us for s in the union of iR and
some set of real s, and the distributions denoted p´1qr`1θr P D1ρ`2r,HpXq for r P N.

When dq is even and s “ 0, denoting by 1 the constant function equals to 1, the
distributions of positive type in D10,HpXq are given by Ap´θ0q `B with A,B ě 0.

Let pπ, V q be an irreducible unitary representation of G and ξ P pV ´8qH . Then the
generalized matrix coefficient cξ,ξ is a distribution of positive type. Moreover, as π has
infinitesimal character and as the Laplace-Beltrami operator comes from the Casimir of g,
the distribution cξ,ξ is an eigendistribution for the Laplace-Beltrami operator, hence, up
to a positive scalar, it is one of the distributions above.

Let us assume moreover that pπ, V q is a relative discrete series representation of X,
that is a subrepresentation of L2pXq. Let ξV be the evaluation at 1 of the elements of
V 8 Ă C8pXq. We say that the distribution T :“ cξV ,ξV is associated to the relative
discrete series representation pπ, V q of X.

By ([11] Théorème 10 and §X. (3) page 432), up to a positive scalar, the distributions
associated to relative discrete series representations of X are

1. if K “ R and q is odd:

εrUρ`2r`1 for r P Z such that ρ` 2r ` 1 ą 0,

where εr “ p´1qr`1 if r ě 0 and εr “ 1 if 0 ă ρ` 2r ` 1 ă 2ρ.

2. if dq is even:

Uρ`2r for r P ´N˚ and 0 ă ρ` 2r ă ρ,

and the p´1qrθr for r P N, which belong to D1sr,HpXq with sr “ ρ` 2r. (4.5)

4.1 Proposition. Let pπ, V q be a relative discrete series representation of X whose asso-
ciated distribution of positive type is of the form εUs0 for some s0 P R and ε “ ˘1. Then
pπ, ξV q admits no strong relative pseudo-coefficient.

Proof. Let f P C8c pXq such that εUs0pfq ‰ 0. By the holomorphy of s ÞÑ Uspfq (see
(4.4)), the complex numbers Uspfq for s P iR are not identically equal to 0. This implies
the Proposition.
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4.2 K-types of relative discrete series representation

In this section, we assume that K “ C or H. Hence, in particular dq is even.

We want to use the results of [10] where the groups are connected and semisimple. For
K “ C, we have G “ ZG1 where Z :“ tzIp`q; z P C˚, |z| “ 1u is central and contained in
H X K and G1 is equal to SUpp, qq which is semisimple and connected. For K “ H, we
have G » Sppp, qq which is semisimple and connected (see [20] Chap. I §1).

For r P N, we will denote by pρr, Vrq the relative discrete series representation
whose associated distribution is p´1qrθr, and by ηr the element of pV ´8r qH

such that cηr,ηr “ p´1qrθr. Note that ηr is equal to a positive multiple of
the evaluation at 1 of the elements of V 8r Ă C8pXq.

(4.6)

We will review the structure of K-module of Vr. For this, we introduce some notations.

By (4.2), the space C8pK{K XMq can be identified with the subspace of functions f P
C8pSppKq ˆ SqpKqq such that fpuζq “ fpζq, ζ P SppKq ˆ SqpKq, u P K˚ such that |u| “ 1.
According to ([11] page 399), for l,m P N, we set

Yl,m “ tf P C8pK{K XMq; ∆1f “ ´lpl ` dp´ 2qf, ∆2f “ ´mpm` dq ´ 2qfu,

where ∆1 and ∆2 are the Laplace-Beltrami operators in the spheres SppKq and SqpKq
respectively.

Let E be the set of elements pl,mq P Nˆ N such that Yl,m ‰ t0u. By ([11] page 399),
pl, 0q P E if and only if l is even.

Let r P N. We set
Er :“ tpl,mq P E; l ´m ě dq ` 2ru. (4.7)

Then by ([11] top of page 421), the decomposition of Vr as K-module is given by

Vr “
à

pl,mqPEr

Yl,m. (4.8)

Let l P 2N be even. We consider the function ωl,0 defined in ([11] bottom of page 406)
for K “ C or H. Let ζ “ pζ1, . . . , ζp`qq be the coordinates on SppKq ˆ SqpKq. Then ωl,0 is
given by:

ωl,0pζq “

ż

Up1,Kq
F pζ1uqdu, (4.9)

for some function F .
Let us prove that

ωl,0 is biinvariant by K XH. (4.10)

By definition, ωl,0 is right invariant by KXM . Recall that K “ K1ˆK2 with K1 “ Upp,Kq
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and K2 “ Upq,Kq. By loc. cit. top of page 407, we have ωl,0 P Yl,0, thus it is right invariant
by K2. But we have

K XM “

$

’

’

&

’

’

%

¨

˚

˚

˝

u 0 0 0
0 v1 0 0
0 0 v2 0
0 0 0 u

˛

‹

‹

‚

, u P K˚, |u| “ 1, v1 P Upp´ 1,Kq, v2 P Upq ´ 1,Kq

,

/

/

.

/

/

-

and

K XH “

$

&

%

¨

˝

u 0 0
0 v1 0
0 0 w2

˛

‚, u P K˚, |u| “ 1, v1 P Upp´ 1,Kq, w2 P Upq,Kq

,

.

-

,

hence K XH “ pK XMqK2. Then ωl,0 is right invariant by K XH.

As K˚ “ R`˚Up1,Kq where R`˚ is central in the multiplicative group K˚, we deduce
from (4.9) that ωl,0 is left invariant by K XH. Hence (4.10) follows.

We will determine the K-type of ωl,0.
Let K 1 “ K X SUpp, qq for K “ C, or K 1 “ K for K “ H. We denote by k1 the

Lie algebra of K 1. Then K-types with K XH-fixed vectors coincide with K 1-types with
K 1 XH-fixed vectors since, for K “ C, we have K “ ZK 1 where Z Ă K XH is central in
K.

We fix a maximal abelian subspace t of ipk1 X qq. As K 1{K 1 X H is of rank 1, the
dimension of t is equal to 1. We choose a short positive root γ of tC in k1C. Then the roots
of tC in k1C are of the form ˘γ,˘2γ. We identify C to t˚C by the map λ ÞÑ λγ.
By the Cartan - Helgason Theorem,

if µ is a unitary irreducible representation of K then µ admits a nonzero
K X H-invariant vector if and only if its highest weight is an even integer.
In that case, µ admits a unique, up to a scalar, nonzero K XH-fixed vector.

(4.11)

Let pK denotes the set of equivalence classes of unitary irreducible representations of K
and p pKqKXH the subset of those representations having a non-trivial pKXHq-fixed vector.
For µ P pK, let χµ denotes its character and dµ its dimension. We set

χHµ pkq :“

ż

KXH
χµpkhqdh,

where Haar measures on compact groups are normalized so that their volume are equal to
1. Then,

the function χHµ is, up to a scalar, the only function on K of type µ which is
biinvariant by K XH.

(4.12)

4.2 Lemma. Let µ P p pKqKXH be the representation with highest weight l P 2N. Then

1. µ is the unique K-type of Yl,0 having a nonzero K XH-invariant vector.
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2. The multiplicity of µ in Yl,0 is equal to 1 and ωl,0 is contained in this K-type.

3. ωl,0 “ Clχ
H
µ with Cl ‰ 0.

Proof. Let µ1 be a representation of K contained in Yl,0 and having a nonzero fixed vector
by KXH. Then by (4.11), it has a highest weight of the form kγ where k P N is even. The
formula for the value of the Casimir operator acting on a highest weight representation
implies that k “ l, hence µ1 “ µ.

As ωl,0 is K XH-biinvariant by (4.10), we deduce easily 2. and 3. from (4.12).

We come back to the structure of K-module of the relative discrete series representa-
tions pρr, Vrq, r P N.

For r P N, we denote by µr P p pKqKXH the representation with highest weight
lr “ dq ` 2r and we set ωµr :“ ωlr,0.

(4.13)

By (4.8), we have ωµr P Ylr,0 Ă Vr.

4.3 Lemma. Let r P N. There exists a unique KXH- invariant function ϕr in Vr of type
µr such that ϕrp1q “ 1.
Moreover, there exists a constant C 1r ‰ 0 such that ϕrpkq “ C 1rχ

H
µrpkq for k P K.

Proof. If ϕr satisfies the first assertion of the Lemma then the restriction of ϕr to K is
a nonzero K X H- biinvariant function of type µr. Hence by (4.12), this restriction is
proportional to χHµr and the second assertion follows.

Let us prove the first assertion. We first treat the case K “ H. By ([12] Table 2), there
is at most one relative discrete series representation for L2pXq with a given eigenvalue of
the Laplace-Beltrami operator. As µr satisfies (2.6) of loc. cit. (where xλ, λy has to be
replaced by xα, αy), Theorem 2.2 in loc. cit. implies that Vr contains a unique, up to a
scalar, K X H invariant function of type µr denoted there by ψλ with λ “ ρ ` 2r. By
definition, it satisfies ψλp1q “ ψ0

λp1q where ψ0
λ is given in loc. cit. (2.5). The formula

defining ψ0
λ shows that ψ0

λp1q ‰ 0. Thus the function ϕr :“ ψλ{ψλp1q satisfies the first
assertion of the proposition.

For K “ C, we proceed similarly by first going through the quotient by the center
Z Ă K XH.

Let µ P p pKqKXH with highest weight l P 2N. For s P C, the vector pπ´sq´8pχµqξs “
pπ´sq´8pχ

H
µ qξs is an analytic vector for πs. Thus, using Lemma 4.2 3., we can define

γlpsq :“ xpπ´sq´8pωl,0qξs, ξ´sy “ Uspωl,0q. (4.14)

An explicit expression of UspΦq for a K-finite function Φ in C8c pXq is obtained in ([11]
page 407). This expression allows us to calculate the function γlpsq in the next Lemma,
which is given for granted in [10].
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4.4 Lemma. Let µ P p pKqKXH be the representation with highest weight l P 2N. Let s P C.
According to ([11] page 405), we define the function

βl,0psq “ bl
ps´ ρqps´ ρ´ 2q . . . ps´ ρ´ lr ` 2q

Γpps´ ρ` l ` dpq{2q
, where bl is a nonzero constant.

Then, we have
γlpsq “ Uspωl,0q “ c1lβl,0psqβl,0p´sq

for some nonzero constant c1l.

Proof. We consider the function Aptq “ pet`e´tqdp´1pet´e´tqdq´1 according to ([11] page

403). We can find a sequence pFnqnPN of C8c ps0,`8rq such that supppFnq Ăs
1

2n
,

1

n
r and

ż `8

0
FnptqAptqdt “ 1.

Therefore, we have

lim
nÑ`8

ż `8

0
FnptqAptqgptqdt “ gp0q, for g P C8pRq. (4.15)

Using the Cartan decomposition (4.1), we define the function Φn on X by Φnpkatx
0q “

ωl,0pkqFnptq, k P K, t P r0,`8r. Hence, each Φn is of type µ and belongs to C8c pXq. By
([11] page 407), we have

UspΦnq “ clβl,0psqβl,0p´sq

ż `8

0
Ψl,0pt, sqFnptqAptqdtˆ

ż

K{KXM
ωl,0pkq

2dk,

where cl is a nonzero constant and Ψl,0 is given in term of the hypergeometric function by

Ψl,0pt, sq “ pcosh tqs´ρ 2F1

`ρ´ s` l

2
,
ρ´ s´ dp` 2´ l

2
,
dq

2
, tanh2 tq.

Since Ψl,0p0, sq “ 1, we deduce from (4.15) that

lim
nÑ`8

UspΦnq “ c1lβl,0psqβl,0p´sq,

with c1l “ cl
ş

K{KXM ωl,0pkq
2dk.

It remains to prove that lim
nÑ`8

UspΦnq “ Uspωl,0q. For v P H8´s, one has

xpπ´sq´8pΦnqξs, vy “

ż

G{H
Φnpgqxpπ´sq´8pgqξs, vydg “

ż

K{KXM

`

ż `8

0
FnptqAptqxpπ´sq´8pkatqξs, vydt

˘

ωl,0pkqdk.

The map g : pk, tq ÞÑ xpπ´sq´8pkatqξs, vy belongs to C8pK{K XM ˆ Rq. Since Fn P
C8pr0, 1sq for all n P N, the function pk, tq ÞÑ FnptqAptqgpk, tq is integrable on K{KXMˆ

R. Hence by Fubini’s Theorem, we obtain

xpπ´sq´8pΦnqξs, vy “

ż `8

0
FnptqAptq

`

ż

K{KXM
xpπ´sq´8pkatqξs, vydk

˘

dt.
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As the map t ÞÑ
ş

K{KXMxpπ´sq´8pkatqξs, vydk belongs to C8pRq, we deduce by (4.15)
that

lim
nÑ`8

xpπ´sq´8pΦnqξs, vy “

ż

K{KXM
xpπ´sq´8pkqξs, vyωl,0pkqdk “ xpπ´sq´8pωl,0qξs, vy.

(4.16)
Let dµ denote the dimension of µ. Then Pµ :“ pπ´sq´8pdµχµ̌q is well defined as the
projector of H´8´s onto the µ-isotypic component pH´sqµ in H8´s. Hence we deduce that

xpπ´sq´8pΦnqξs, ξ´sy “ xPµpπ´sq´8pΦnqξs, ξ´sy “ xpπ´sq´8pΦnqξs, Pµξ´sy.

Applying (4.16) to v “ Pµξ´s, we deduce that lim
nÑ`8

UspΦnq “ Uspωl,0q. Thus, we obtain

the Lemma.

4.3 Existence of strong relative pseudo-coefficients for certain relative
discrete series representations.

In this section, we assume that dq is even and K “ C or H.

Existence of strong relative pseudo-coefficients for relative discrete series representa-
tions pρr, Vrq, r P N is an easy consequence of Proposition 4.7 below. This Proposition
corresponds to ([10] Lemma 9), but the proof given in loc. cit. is slightly incomplete. We
will give here a more precise and modified proof.

We first recall some results of [10] on the Paley-Wiener space of X. Notice that for
K “ C, we have to go through the quotient by the center Z Ă K X H to apply these
results.

Let pπ, V q a unitary irreducible representation of G in a Hilbert space V . If µ P pK then
its contragredient is equivalent to µ and Pµ :“ π´8pdµχµq is well defined as the projection
of V ´8 onto the µ-isotypic component Vµ Ă V 8. If ξ is an H-invariant distribution
vector, then

Pµξ “ dµπ´8pχ
H
µ qξ P V

KXH
µ , (4.17)

hence Pµξ “ 0 if µ R p pKqKXH .

Let a˚C be the complexification of the dual a˚ of a. Recall that W denotes the Weyl group
of A in G, hence we can consider the action of W on a.

Let R ą 0. Let PW paqR denotes the space of entire functions Ψ on a˚C which satisfy

@N P N, sup
λPa˚C

p1` }λ}qNe´R}Imλ}|Ψpλq| ă `8.

Then the classical Paley-Wiener space PW paq is the union of PW paqR for R Ps0,`8r.
Restricting to the W -invariant functions, the classical Fourier transform is a bijection

of C8c paq
W to PW paqW .

Recall that A “ tat; t P Ru is the abelian subgroup of G corresponding to the maximal
abelian subspace a of pX q. We fix R ą 0 and we denote by AR :“ tat; |t| ă Ru the ball
of radius R in A.

We have the following Paley-Wiener Theorem.
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4.5 Theorem. ([10] Theorem 1 and its remark) Let Ψ P PW paqWR . Let µ P pKKXH . Then,
there exists a unique function f P C8c pG{Hq of type µ, supported in KARH such that the
following holds:

For all unitary irreducible representations pπ, V q of G and for all H-invariant distri-
bution vectors ξ P V ´8 such that π´8p∆qξ “ pλ

2 ´ ρ2qξ, we have

π´8pfqξ “ ΨpiλqPµξ.

4.6 Proposition. Let r P N and µr be the K-type of highest weight lr “ dq ` 2r (see
(4.13)). We set sr :“ ρ` 2r. Let G P PW paqWR such that Gpisrq ‰ 0. Then, there exists
f1 P C

8
c pG{Hq of type µr supported in KARH such that

1. θrpf1q “ 1,

2. θr1pf1q “ 0 for r1 P N such that r1 ą r,

3. Uspf1q “ CγlrpsqGpisq, s P C, for some nonzero constant C.

Proof. As cηr,ηr “ p´1qr`1θr P D1sr,HpXq (see (4.5) and (4.6)), we have ρrp∆qηr “ ps
2
r ´

ρ2qηr. We apply Theorem 4.5 to µ “ µr. Then there exists g1 P C8c pXq of type µr
supported in KARH such that

pρrq´8pg1qηr “ GpisrqPµrηr, (4.18)

and
pπ´sq´8pg1qξs “ GpisqPµrξs, for s P C. (4.19)

By Lemma 4.2 and (4.17), we have Pµrηr “ dµrpρrq´8pχ
H
µrqηr and the analytic vector

pρrq´8pχ
H
µrqηr is a K XH-invariant function of type µr in Vr. By Lemma 4.3, we obtain

that pρrq´8pχ
H
µrqηr “ C 1ϕr for some constant C 1.

Let us prove that C 1 ‰ 0. By Lemma 4.3 again, the function ϕr coincides with C 1rχ
H
µr

on K. Since ρrpχ
H
µrq is, up to a scalar, the projection on the K XH-fixed vectors in Vr,

we have ρrpχ
H
µrqϕr “ C1ϕr for some nonzero constant C1. Recall that there is a nonzero

constant C2 such that ηr is defined by ηrpφq “ C2φp1q for φ P V 8r (see (4.6)). Thus we
deduce

C 1xϕr, ϕry “ xpρrq´8pχ
H
µrqηr, ϕry “ xηr, ρrpχ

H
µrqϕry “ C1C2

´

ρrpχ
H
µrqϕr

¯

p1q “ C1C2ϕrp1q “ C1C2 ‰ 0,

hence C 1 ‰ 0. Then θrpg1q “ C 1Gpisrq ‰ 0. We set

f1 :“
g1

C 1Gpisrq
.

Then f1 satisfies
θrpf1q “ 1.

and we obtain the first assertion of the Proposition.

Let r1 P N such that r1 ą r. As f1 is of type µr and µr is not a K-type of Vr1 by (4.8),
we have θr1pf1q “ 0.
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To prove the last assertion of the Proposition, we consider the property (4.19) for s P C.
By (4.17), we have Pµrξs “ dµrpπ´sq´8pχµrqξs “ dµrpπ´sq´8pχ

H
µrqξs. Using Lemma 4.2

and Lemma 4.4, this leads to

Uspf1q “
dµr

CrC 1Gpisrq
GpisqUspωµrq “

dµr
CrC 1Gpisrq

Gpisqγlrpsq.

This finishes the proof of the Proposition.

4.7 Proposition. Let r P N and µr be the K-type of highest weight lr “ dq ` 2r. Then,
there exists a function f P C8c pXq with support in KARH, sum of a K-invariant function
and of a function of type µr, such that

1. θrpfq “ 1,

2. θr1pfq “ 0 for r1 P N such that r1 ą r,

3. Uspfq “ 0 for s P C.

Proof. We set sr “ ρ ` 2r. Let G P PW paqWR such that Gpisrq ‰ 0. Let f1 P C
8
c pGq

be a function satisfying the properties of Proposition 4.6. Then for s P C˚, we have
Uspf1q “ CγlrpsqGpisq where C is a nonzero constant.
By definition (see Lemma 4.4), we have

γlrpsq “ c1lrβlr,0psqβlr,0p´sq,

and

βlr,0psq “ blr
ps´ ρqps´ ρ´ 2q . . . ps´ ρ´ lr ` 2q

Γpps´ ρ` lr ` dpq{2q
,

where lr “ dq ` 2r.

Recall that ρ “
1

2
pdp ` dqq ´ 1, then we have ´ρ ` lr ` dp “ ρ ` 2r ` 2 “ sr ` 2 with

sr “ ρ` 2r. Thus, we can write

Γpps´ ρ` lr ` dpq{2q “ 2´lrps` srqps` sr ´ 2q . . . ps´ ρ` dpqΓpps´ ρ` dpq{2q.

Hence we obtain

γlrpsq “
P psq

ps` srqp´s` srqQpsq
γ0psq

where

P psq “ 2lrc1lrb
2
lrps´ρqps´ρ´2q . . . ps´ρ´plr´2qqp´s´ρqp´s´ρ´2q . . . p´s´ρ´plr´2qq

and

Qpsq “ ps` sr ´ 2qps` sr ´ 4q . . . ps´ ρ` dpqp´s` sr ´ 2qp´s` sr ´ 4q . . . p´s´ ρ` dpq.

By assumption we have dq ě 2, hence 2r ď dq ` 2r ´ 2 “ lr ´ 2. Then, P1psq :“
P psq

ps` srqp´s` srq
and Qpsq are even polynomials such that Qpsrq ‰ 0 and P1psrq ‰ 0.
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By Proposition 4.6 3., we obtain

Uspf1q “ CGpisq
P1psq

Qpsq
γ0psq, with γ0psq “ c10

1

Γp s´ρ`dp2 qΓp´s´ρ`dp2 q
.

Since Q is even and Qpsrq ‰ 0, we may choose an invariant differential operator D P DpXq
such that

UspDf1q “
Qpsq

Qpsrq
Uspf1q, s P C,

and

θr1pDf1q “
Qpsr1q

Qpsrq
θr1pf1q, r1 P N.

Therefore the function f2 :“ Df1 satisfies the assertions 1. and 2. of the Proposition and

Uspf2q “ C
GpisqP1psq

Qpsrq
γ0psq.

Since PW paqWR is stable by multiplication by an even polynomial function, apply-
ing Theorem 4.5 to the trivial K-type, we can find a K-invariant function f3 P C

8
c pXq

supported in KARH such that

Uspf3q “ C
GpisqP1psq

Qpsrq
γ0psq “ Uspf2q.

By (4.8), the trivial representation is not aK-type of Vr1 for r1 ě 0, thus we have θr1pf3q “ 0
for r1 ě 0. Therefore, the function f “ f2´f3 satisfies the properties of the Proposition.

4.8 Theorem. Let R ą 0 and AR :“ tat P A; |t| ă Ru be the ball of radius R in A.
Then, for all r P N, there exists a strong relative pseudo-coefficient f P C8c pXq supported
in KARH for pρr, ηrq. This means that the function f satisfies

θrpfq “ 1, θr1pfq “ 0 for r1 P N, r1 ‰ r,

and
Uspfq “ 0, for s P C

Proof. Proposition 4.7 gives the result for r “ 0. Let r ą 0 and assume we have a strong
relative pseudo-coefficient fr1 for pρr1 , ηr1q (r1 ă r) supported in KARH. We denote by Ψr

the function obtained in Proposition 4.7. Then, the function fr “ Ψr ´

r´1
ÿ

r1“0

θr1pΨrqfr1 is a

strong relative pseudo-coefficient for pρr, ηrq with support in KARH.
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5 Existence of σ-stable torsion free cocompact discrete sub-
groups of Upp, q,Kq.

This section is entirely due to the kind help of R. Beuzart-Plessis and J. P. Labesse.

Let F be a totally real number field of degree rF : Qs “ r ą 1 and let V8 “ tv : F ãÑ Ru
denote the finite set of real places of F.

We consider the group G1 defined in ([26] page 372), which depends on K “ R,C or
H. By loc. cit., there exists a unique archimedean place v1 P V8 such that

G1pFv1q “

$

&

%

SOpp, qq for K “ R
SUpp, qq for K “ C
Sppp, qq for K “ H

(5.1)

and for v P V8, v ‰ v1,

G1pFvq “

$

&

%

SOpp` qq for K “ R
SUpp` qq for K “ C
Sppp` qq for K “ H

(5.2)

Let G “ ResF{QG1 be the group obtained by restriction of scalars. For v P V8, v ‰ v1,
we have GpQq “ G1pFq Ă G1pFvq and G1pFvq is compact, hence each element of GpQq is
semisimple. Thus the group GpQq is anisotropic.

Let AF and AQ be the rings of adeles of F and Q respectively. We denote by AF,f and
AQ,f the subrings of finite adeles in AF and AQ respectively.

Then, GpQq is diagonally embedded in GpAQ,f q and by ([24] Theorem 5.5 (1)), the
quotient GpQqzGpAQq is compact.

Let τ be the rational involution of G1 denoted τ1,0 in ([26] §2.2). The involution of G1pFv1q

induced by τ , again denoted by τ , is simply the restriction to G1pFv1q of the involution σ
of Upp, q,Kq defined in section 3. The involution τ defines a continuous automorphism of
GpAQq “ G1pAFq preserving GpAQ,f q “ G1pAF,f q.
We have the following classical result.

5.1 Lemma. Let Kf be an open compact subgroup of GpAQ,f q. Then the subgroup
ΓpKf q :“ GpRq X

`

GpQqKf q is a cocompact discrete subgroup of GpRq.

Proof. Let us give a proof for sake of completeness. Since GpQq is discrete in GpAQq, the
subgroup ΓpKf q is discrete. As GpQq is diagonally embedded in GpAQ,f q, we have also
ΓpKf q “ GpQq XKf .

We consider the map ψ from GpRqKf to ΓpKf qzGpRq given by ψpgkq “ ΓpKf qg. If
gk “ γg1k1 with g, g1 P GpRq, k, k1 P Kf and γ P GpQq, we have g “ γg1k1k´1. As GpAQ,f q

and GpRq commute, we obtain g “ γk1k´1g1, hence gg1´1 “ γk1k´1 P ΓpKf q. Therefore ψ
goes through the quotient GpQqzGpRqKf{Kf and the induced map is a surjection from
GpQqzGpRqKf{Kf to ΓpKf qzGpRq.

Thus it remains to prove that GpQqzGpRqKf{Kf is compact.

The group GpRqKf is an open subgroup of GpAQq. As GpQqzGpAQq is compact, the
number of pGpQq,Kf q double cosets, which are open, is finite. Then each of them is also
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closed, hence compact. We deduce that GpQqzGpRqKf{Kf is compact

5.2 Lemma. Let Kf be a compact open subgroup of GpAQ,f q. Then there exists a compact
open subgroup K 1

f Ă Kf of GpAQ,f q such that ΓpK 1
f q is a torsion free subgroup of ΓpKf q

of finite index.

Proof. We fix an embedding of G in GLpnq defined over Q. We have

GLpn,Zq “ GLpn,Qq
č ź

p prime

GLpn,Zpq.

By the proof of ([5] Proposition 2.2), the group GLpn,Zq contains a torsion free sub-
group Γ̃ of finite index of the form Γ̃ “ GLpn,Qq X K̃f , where K̃f is a compact open

subgroup of
ź

p prime

GLpn,Zpq.

Let K 1
f :“ K̃f XKf Ă GpAQ,f q. Then ΓpK 1

f q “ GpQq XK 1
f Ă Γ̃ is without torsion.

As K 1
f is a compact open subgroup of Kf , it is of finite index. It follows that ΓpK 1

f q is of
finite index in ΓpKf q.

5.3 Corollary. For each open compact subgroup Kf of GpAQ,f q, there exists a τ -stable
open compact subgroup K0

f Ă Kf such that ΓpK0
f q is a τ -stable torsion free cocompact

discrete subgroup of GpRq.

Proof. Let K 1
f be the subgroup obtained in the previous Lemma. As τ is a continuous

involution of GpAQq which preserves GpAQ,f q, the subgroup K0
f :“ τpK 1

f q X K 1
f is a τ -

stable compact open subgroup of Kf . It is clear that ΓpK0
f q is τ -stable since K0

f is τ -stable.

The properties of K 1
f imply that ΓpK0

f q is a torsion free cocompact discrete subgroup of
GpRq. Hence we obtain the Corollary.

5.4 Lemma. Let G “ G1 ˆ G2 be the product of two locally compact groups with G2

compact. Let Γ be a torsion free cocompact discrete subgroup of G. Then the projection
Γ1 of Γ to G1 is a torsion free cocompact discrete subgroup of G1.

Proof. If Γ1 was not discrete, there would exists a sequence pγ1,nq of distinct elements of
Γ1 converging to a limit l. There exists a sequence pγ2,nq in G2 such that γn “ pγ1,n, γ2,nq

belongs to Γ. Since G2 is compact, extracting a subsequence, we can assume that pγ2,nq

converges. Then the sequence pγnq convergences. As Γ is discrete, there is n0 such that
γn “ γn0 for n ě n0. This implies that pγ1,nq is constant for n ě n0, which contradicts
the fact that the γ1,n’s are distinct. Thus Γ1 is discrete.

Let us show that Γ1 is a cocompact subgroup of G1. Let pgnq be a sequence in G1.
Since Γ is cocompact in G, there exist a subsequence pg1nq of pgnq and a sequence pγnq in
Γ such that pγng

1
nq converges. Writing γn “ pγ1,n, γ2,nq with γi,n P Gi, we deduce that

pγ1,ng
1
nq converges, hence Γ1 is cocompact in G1.

Let γ1 P Γ1 and r P N˚ such that γr1 “ 1. Let γ2 P G2 such that pγ1, γ2q P Γ. Then
the sequence

`

pγ1, γ2q
n
˘

“ pγn1 , γ
n
2 q remains in a compact set, thus it admits a converging
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subsequence ppγ1, γ2q
kpnqq. As Γ is discrete, this subsequence is constant for n large enough.

Hence pγ
kpnq
2 q is constant for n large enough. This implies that there exists s P N˚ such

that γs2 “ 1. For m a multiple of r and s, we have pγ1, γ2q
m “ 1. As Γ is torsion free, this

leads to γ1 “ γ2 “ 1, hence Γ1 is torsion free.

5.5 Lemma. If Γ is cocompact in SOpp, qq (resp., in SUpp, qq) then Γ is cocompact in
Opp, qq (resp. in Upp, qq).

Proof. This follows from the fact that SOpp, qq (resp., SUpp, qq) is cocompact in Opp, qq
(resp., Upp, qq).

By (5.1) and (5.2), there is a compact group ΩK, depending on K, such that

GpRq “

$

&

%

SOpp, qq ˆ ΩR for K “ R
SUpp, qq ˆ ΩC for K “ C
Sppp, qq ˆ ΩH for K “ H

. (5.3)

We denote by G1,K the first factor of this decomposition.

5.6 Proposition. For sufficiently small τ -stable open compact subgroup Kf of GpAQ,f q,
the projection Γ1pKf q of ΓpKf q “ GpQqXKf onto G1,K according the decomposition (5.3)
is a σ-stable torsion free cocompact discrete subgroup of Upp, q,Kq.

Proof. By Corollary 5.3, we can choose Kf sufficiently small so that ΓpKf q is a τ -stable
torsion free cocompact discrete subgroup of GpRq. By Lemma 5.4, the subgroup Γ1pKf q

is a τ -stable torsion free cocompact discrete subgroup of G1,K. Since the involution τ
coincides with σ on G1,K, the Proposition follows from Lemma 5.5.

5.7 Theorem. Let K “ C or H. Let Kf and Γ1pKf q be as in Proposition 5.6. Then the
relative discrete series representation pρr, Vrq of Upp, q,Kq occurs with a nonzero period in
L2pΓ1pKf qzUpp, q,Kqq.

Proof. To apply the relative trace formula (2.5), we have to verify that Γ1pKf q and H
satisfy assumptions (2.1). The group H “ Up1,Kq ˆ Upp ´ 1, q,Kq is unimodular. By
(5.1) and (5.2), each element of GpQq is semisimple, hence each element γ of Γ1pKf q

is semisimple. By ([27] Part II, chap. 2 Proposition 13) , the centralizer of γσpγq´1 in
G “ Upp, q,Kq is reductive since γσpγq´1 is semisimple. Moreover, this centralizer is σ-
stable, hence the centralizer ZHpγσpγq

´1q of γσpγq´1 in H is reductive. As the identity
map induces an isomorphism from pHˆHqγ to ZHpγσpγq

´1qˆH, we deduce that pHˆHqγ
is reductive, hence unimodular. The quotient pΓ1pKF qXHqzH is compact by Lemma 3.4.
Therefore the assumptions (2.1) are all satisfied. By Theorem 4.8 there exists a strong
relative pseudo-coefficient for pρr, Vrq, with arbitrary small support. As Γ1pKf q is torsion
free, Proposition 3.5 and Proposition 3.3 give the result.
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6 Non existence of K-finite relative pseudo-coefficients for
GpCq{GpRq.

Let G be a connected, simply connected complex semisimple Lie group. Let H be a real
form of G and σ be the conjugation of G relative to H. We denote by g and h the Lie
algebras of G and H respectively. Let g “ h ‘ q be the decomposition of g relative to σ.
Hence we have q “ ih. Recall that a Cartan subspace of q is a maximal abelian subspace
made of semsimple elements. Then the map a Ñ ia is an isomorphism from the set of
Cartan subalgebras of h to the set of Cartan subspaces of q which preserves H-conjugacy
classes.

We fix a Cartan involution θ of h commuting with σ and we denote by K the maximal
compact subgroup of G of fixed points under θ.

By ([23] Theorems 1 and 2), the symmetric space G{H has relative discrete series
representations if and only if q has a compact Cartan subspace, or equivalently, if h is
a split real form of g. The goal of this section is to establish that no discrete relative
series representation of G{H admits K-finite relative pseudo-coefficient. (see Theorem 6.2
below). These results will follow from the inversion formula of orbital integrals (see [17]
Théorème 6.15).

We assume that H is split and we fix a split Cartan subalgebra a0 of h. Let Γa0 be the
lattice of elements X P a0 satisfying exp 2iX “ 1 and let Γ˚a0

be its dual lattice so that
µpXq P 2πZ for µ P Γ˚a0

and X P Γa0 .
Let P0 “ L0N0 be a σ-stable Borel subgroup of G with Levi subgroup L0 “ exppa0 `

ia0q. For µ P Γ˚a0
, we define the character δµ of P0 by δµpexppX ` iY qnq “ eiµpY q for

X,Y P a0 and n P N0. We denote by pπµ,Hµq the normalized induced representation
pindGP0

χµ,Hµq.
By ([15] Corollaire 2.6), the linear form ξµ defined by the integration over H{H X P0

ξµpψq “

ż

H{HXP0

ψphqd 9h, ψ P H8µ , (6.1)

where d 9h is a semi-invariant measure on H{H X P0, is an H-invariant distribution vector
of πµ.

Then by (eg. [9] Proposition 5 and [15] §3. Application 1.), the relative discrete series
representations of G{H are given by the representations pπµ,Hµq where µ P Γ˚a0

is regular.
Moreover, these representations occur with multiplicity one in the Plancherel formula and
the space Mπµ (defined in (3.1)) is equal to Cξµ. We denote by Γ˚a0,reg the set of regular
elements in Γ˚a0

and by Γ˚a0,sing
its complementary in Γ˚a0

.

We recall some facts about regular elements in G{H and orbital integrals (see [22] and
[17] §1 and §2).

Let ϕ be the map from G{H to G defined by ϕpgHq “ gσpgq´1. A semisimple element
x P G{H is regular if ϕpxq is semisimple and regular in G in the usual sense. Let pG{Hqreg
be the open dense subset of semisimple regular elements of G{H. To a Cartan subalgebra
a of h, we associate the Cartan subset A of G{H consisting of elements x such that ϕpxq
centralizes a. If x P pG{Hqreg then the centralizer a :“ Zhpϕpxqq of ϕpxq in h is a Cartan
subalgebra of h and x belongs to the Cartan subset A associated to a.
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If Y P h, we denote by ExpY the class of exp iY in G{H.
If V is a subset of G{H (respectively, a subset of h or of its dual space h˚), then Vreg will
denote the set of regular elements in V .

For x P G{H, we consider the polynomial function

detCp1´ t´Ad ϕpxqq “ tn ` qn´1pxqt
n´1 ` . . .` qlpxqt

l, (6.2)

where l is the rank of G and n is its dimension as a complex group. We set DG{Hpxq :“
qlpxq.

The orbital integral Mpfq of f P C8c pGq is the function Mpfq P C8ppG{Hqregq defined
by

Mpfqpxq “ |DG{Hpxq|
1{2

ż

H{ZHpaq
fph ¨ xqdh,

where a “ Zhpϕpxqq and ZHpaq is the centralizer of a in H. As in the group case (see[27]
Part II, 10.2. Proposition 2), orbital integrals satisfy the following property.

6.1 Lemma. ([6] §8) Let f P C8c pG{Hq. Let A be a Cartan subset of G{H. Then
there exists a compact subset U Ă A, depending on the support of f , such that for all
x P pA´ Uqreg, we have Mpfqpxq “ 0.

Proof. For sake of completeness we give a complete proof of this Lemma. Let ω be the
support of f . We consider the set ωA of elements a in A which are in the closure of Hω.
For x P G{H, as in (6.2) we consider the polynomial function detCp1 ´ t ´ Ad ϕpxqq “
tn ` qn´1pxqt

n´1 ` . . . ` qlpxqt
l. Each qj is an H-invariant regular function on G{H and

thus is bounded on ωA. Therefore, the roots of detp1´ t´Ad ϕpxqq are bounded on ωA.
Let Φ be the root system of pg, aCq. Since ϕpAq “ exppaCq X ϕpG{Hq, we can define

the functions ξα, α P Φ, on A by ξαpaq “ eαpXq for ϕpaq “ expX with X P aC.
Then the roots of detp1´ t´Ad ϕpaqq are the numbers 1´ξαpaq for α P Φ. Since these

roots are bounded on ωA, we obtain that the maps aÑ ξαpaq, α P Φ, are bounded on ωA.
This implies that ωA is bounded, and hence the closure U of ωA satisfies the Lemma.

We say that a closed H-invariant subset U of G{H is a compact modulo H if U XA is
compact for all Cartan subset A of G{H. Let C8comppG{Hq be the subspace of functions
f P C8pG{Hq such that the intersection of the support of f with a compact subset modulo
H is compact. Then the orbital integral Mpfq for f P C8comppG{Hq is well-defined.

According to ([17] Proposition 2.3), we define the space I8pG{Hq of orbital functions
on G{H as the image of C8comppG{Hq by M. By ([6] §8 and [17] §2), the space of orbital
integrals, that is the image of C8c pG{Hq by M, is the subspace of I8pG{Hq made of
functions which satisfy the support property of Lemma 6.1.

6.2 Theorem. No relative discrete series representation of G{H admits K-finite relative
pseudo-coefficient.

Proof. We first recall the Plancherel formula for G{H.

We fix a system rCarphqs of θ-stable representatives of H-conjugacy classes of Cartan
subalgebras of h. We may and will assume that a0 P rCarphqs.
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Let a P rCarphqs. Let a “ aI‘aR be its decomposition with respect to θ. We denote by
Γa the lattice made of elements X P aR such that exp 2iX “ 1 and by Γ˚a its dual lattice.
Let a˚I,reg be the set of λ P a˚I such that pλ, αq ‰ 0 for all imaginary roots α of aC in g. We
choose a positive system ∆ of the root system of pg, aCq such that for all non imaginary
roots α P ∆, one has σpαq P ∆. Let P “ exppaCqN be the Borel subgroup corresponding
to ∆. For λ P Γ˚a`a˚I,reg, we define the character δλ of exppaCq by δλpexppX`iY qq “ eiλpY q

for X,Y P a. Let pπλ,Hλq denotes the normalized induced representation indGP δλ.
For M “ G or H, we denote by WM paq the quotient of the normalizer of a in M by

the centralizer of a in M and we set Wa :“ WGpaq{WHpaq. Then, by ([17] Théorème
7.4 and [9] §4.2) for allmost λ P Γ˚a ` a˚I,reg, there exist linearly independent H-invariant

distribution vectors pξwλ qwPWa in pH´8πλ q
H , such that the Dirac measure has the following

spectral decomposition:

fpeHq “
ÿ

aPrCarphqs

da
ÿ

µPΓ˚a

ż

a˚I

cξwλ`µ,ξ
w
λ`µ
pfq|det adpλ` µq{h˚{a˚ |

1{2dIλ, f P C
8
c pG{Hq,

(6.3)

where dIλ is a Haar measure on a˚I and the da’s are constants depending only on the choice
of measures.

For a “ a0, the space a˚0I is reduced to zero, and Wa0 is reduced to the trivial element
which we denote by 1. Then ξ1

µ coincides with the vector ξµ defined in (6.1).

Let µ0 P Γ˚a0,reg. We assume that there exists a K-finite relative pseudo-coefficient f0 P

C8c pG{Hq for pπµ0 ,Hµ0q, hence cξµ0 ,ξµ0
pf0q ‰ 0, and we want to obtain a contradiction.

Let us first prove that, in that case, there exists a relative pseudo-coefficient f P
C8c pG{Hq for pπµ0 ,Hµ0q such that

cξµ,ξµpfq “ 0 for all µ P Γ˚a0,sing. (6.4)

Let S be the finite set of K-types occurring in LpKqf , where L is the left regular
representation. Let µ P Γ˚a0

such that cξµ,ξµpf0q ‰ 0. We consider the projection PS of
H´8µ onto ‘τPSpHµqτ , where pHµqτ is the τ -isotypic component of Hµ. Therefore we have

cξµ,ξµpf0q “ ppπµq´8pf0qξµ, ξµq “ pPSpπµq´8pf0qξµ, ξµq “ ppπµq´8pf0qξµ, PSξµq ‰ 0.

Thus, the space HomKp‘τPSτ, πµq is non trivial. As πµ “ indGP δµ “ indKLXKδµ{LXK ,
we deduce from Frobenius reciprocity that HomKXLp‘τPSpτ{LXKq, δµ{LXKq is non trivial.
Thus, we deduce that there exists a finite set F in Γ˚a0,sing

such that for µ P Γ˚a0,sing
zF ,

we have cξµ,ξµpf0q “ 0.
By ([14] (2.1)), the algebra of G-invariant differential operators on G{H is isomorphic

to the center Zpgq of the universal enveloping algebra of g. We identify these two alge-
bras. Let Spa0,Cq be the symmetric algebra of a0,C and W pg, a0,Cq be the Weyl group of
pg, a0,Cq. We denote by γa0 the isomorphism of Harish-Chandra from Zpgq to the subal-
gebra Spa0,Cq

W pg,a0,Cq of W pg, a0,Cq-invariant elements in Spa0,Cq .
By ([15] Application 1.), each element z P Zpgq acts by γa0piµq on cξµ,ξµp¨q. Since µ0 is

regular, we have γa0piµ0q ‰ γa0piµq for all µ P Γ˚a0,sing
. As F is finite, we can find z P Zpgq

such that γa0piµ0q ‰ 0 and γa0pzqpiµq “ 0 for all µ P F .
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Since cξµ,ξµpz.f0q “ γa0piµqcξµ,ξµpf0q for µ P Γ˚a0
, and Zpgq acts by a scalar on the

generalized matrix coefficients associated to the principal series representations pπλ,Hλq

for a P Carrphqs and λ P Γ˚a ` a˚I,reg, we deduce that the function f :“ z.f0 is a relative
pseudo-coefficient for pπµ0 , ξµ0q which satisfies (6.4).

From now, we assume that f P C8c pG{Hq is a relative pseudo-coefficient for pπµ0 ,Hµ0q

which satisfies (6.4).

To prove the Theorem, we recall the inversion formula of orbital integrals (see [17]
Théorème 6.15).

For a P rCarphqs, we fix a positive system ψ of imaginary roots of aC in g.

By ([16] Théorème 6.1) and ([17] Théorème 5.3), to each a P rCarphqs and pλ, yq P
pΓ˚a ` a˚I,regq ˆWa, we can associate an H-invariant eigendistribution Θpλ, y, ψq, which is
a generalized matrix coefficient cξ,ξ1 for two H-invariant distribution vectors ξ, ξ1 of the
principal series representation pπλ,Hλq, and an orbital function F pλ, y, ψq such that, for
f P C8c pG{Hq and x P pG{Hqreg, we have

Mpfqpxq “
ÿ

aPrCarhs

ca
ÿ

µPΓ˚a

ż

a˚I

ÿ

wPW´1
a

ÿ

yPWa

F pwpµ` λq, y, ψqpxq xΘp´wpµ` λq, y, ψq, fydλ,

(6.5)
where the ca’s are constants depending only on the choices of measures.

Let a “ a0 and µ P Γ˚a0
. We have Wa0 “ t1u and ψ “ H. We set Θµ :“ Θpµ, 1,Hq

and Fµ :“ F pµ, 1,Hq. By ([15] Corollaire 2.6 and Corollaire 3.1), the distribution Θµ is
equal, up to a scalar, to the generalized matrix coefficient cξµ,ξµ associated to pπµ, ξµq and
Θsµ “ Θµ for s PWHpa0q. By ([17] Théorème 4.1), we have also Fsµ “ Fµ for s PWHpa0q.

Recall that f P C8c pG{Hq is assumed to be a relative pseudo-coefficient for pπµ0 ,Hµ0q

which satisfies (6.4).
We will consider MpfqpExpXq for ExpX P pG{Hqreg.

Let a P rCarphqs with a ‰ a0. Let py, wq PWa ˆW´1
a and λ P Γ˚a ` a˚I,reg.

By ([17] Théorème 5.8), if y ‰ 1 then F pwλ, y, ψqpExpXq “ 0 for all ExpX P pExp hqreg.
By ([16] Proposition 6.4), for allmost λ P Γ˚a ` a˚I,reg and for all w P Wa, the distribution

Θp´w´1λ, 1, ψq is equal, up to a scalar, to the generalized matrix coefficient cξwλ ,ξ
w
λ

where

pξwλ qwPWa is the family of pH´8λ qH which occurs in Plancherel formula (6.3). Hence, since
f is a relative pseudo-coefficient for pπµ0 ,Hµ0q, we have xΘp´wλ, 1, ψq, fy “ 0 for all
w PW´1

a .
Moreover, since f satisfies (6.4), we have Θµpfq “ 0 for µ P Γ˚a0

with µ ‰ sµ0 for all
s PWHpa0q.

Therefore, by the above properties of F pw´1λ, y, ψq for y, w P Wa, and the inversion
formula (6.5), we obtain

MpfqpExpXq “ C0Fµ0pExpXqxΘµ0 , fy, ExpX P pExp hqreg. (6.6)

where C0 :“ ca0 |WHpa0q|.

To obtain our contradiction about the existence of the pseudo-coefficient f , we need
to come back to the definition of Fµ0 on a open subset of pExp hqreg.
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For ε ą 0, we denote by Vε the open subset of elements X P h such that the real part
Repλq of each eigenvalue λ of adX satisfies | Repλq| ă ε. For ε small enough, the map

Exp is a diffeomorphism from Vε to ExpVε (see ([17] Lemma 4.4). Thus, X P Vε,reg if and
only if ExpX P pExpVεqreg.

Then by construction of Fµ0 (see [17] §4, page 76), we have

Fµ0pExpXq “ β̂H¨Xpµ0q | detpadµ0qh˚{a˚0
|1{2, X P Vε,reg, (6.7)

where β̂H¨X is the Fourier transform of the Liouville measure on the orbit H.X.

Classical results of Harish-Chandra on β̂H¨X implies that Fµ0 does not satisfy the sup-
port property of Lemma 6.1. We give below a proof of this result for sake of completeness.

Let α be a (real) root of a0 in h. Let X˘α P h be root vectors in h such that Hα :“
rX´α, Xαs is the coroot of α. Then aα :“ RpXα´X´αq‘Kerα is a Cartan subalgebra of
h and cα.a0C “ aαC where cα :“ Adpexp ´iπ4 pXα `X´αqq is the usual Cayley transform.
Then the imaginary roots of aα in h are β “ cαpαq and ´β and we have aα “ RiHβ`Kerβ
with Kerβ “ Kerα. We choose a basis ∆ of the root system of pg, aα,Cq. Each γ P ∆ can
be written γ “ γI ` γR according to the decomposition a˚ “ a˚I ` a˚R. We denote by C
the connected component of aα,reg made of elements X such that piγI ` γRqpXq ą 0 for
γ “ γI ` γR P ∆.

Then, by the properties of the Fourier transform of orbits (see [27] Theorem I.7.7),
there exist constants cpwq, w PWHpa0q, such that, for all X P C, we have

β̂H¨Xpµ0q | detpadµ0qh˚{a˚0
|1{2“

ÿ

wPWHpa0q

cpwqeixcαwµ0,Xy,

with cpwq ‰ 0 if and only if Imxcαwµ0, Xy ě 0.
We set Cε “ C X Vε. By (6.7) we deduce that for all X P Cε, we have

Fµ0pExpXq “
ÿ

wPWHpa0q

cpwqeixcαwµ0,Xy. (6.8)

Each element of Cε can be written X “ ´itHβ ` Y with t ą 0 and Y P Kerβ X Cε .
Since e2iβpXq “ e2t, the subset of elements ExpX, for X P Cε is not included in a compact
subset of the Cartan subset Aα associated to aα.

Then (6.6) and the support property of Lemma 6.1 would imply that there is an open
subset U Ă Cε such that Fµ0pExpXq “ 0 for all X P U . This would imply that the right
hand side of (6.8), which is an analytic function of X, is equal to 0 for all X P C. Since
µ0 is regular, the linear forms X ÞÑ ixcαwµ0, Xy for w P WHpa0q are distinct elements.
Thus we would deduce that cpwq “ 0 for all w P WHpa0q, which is impossible. This
contradiction achieves the proof of the Theorem.
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