PALEY-WIENER THEOREMS FOR A p-ADIC SPHERICAL VARIETY

PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

ABSTRACT. LetS(X)be the Schwartz space of compactly supported smooth

functions on the p-adic points of a spherical variety X, and let ¥'(X) be
the space of Harish-Chandra Schwartz functions. Under assumptions on
the spherical variety, which are satisfied when it is symmetric, we prove
Paley—Wiener theorems for the two spaces, characterizing them in terms
of their spectral transforms. As a corollary, we get relative analogs of the
smooth and tempered Bernstein centers — rings of multipliers for S(X)
and € (X). When X = a reductive group, our theorem for ¢ (X) special-
izes to the well-known theorem of Harish-Chandra, and our theorem for
S(X) corresponds to a first step — enough to recover the structure of the
Bernstein center — towards the well-known theorems of Bernstein [Ber]
and Heiermann [Hei0O1].
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1. INTRODUCTION

The goal of this paper is to characterize the spectral transform of the
spaces of Schwartz (i.e. smooth, compactly supported) and Harish-Chandra
Schwartz functions on the points of a homogeneous spherical variety over
a p-adic field, and produce rings of multipliers, that is, G-endomorphisms,
which generalize the (tempered and smooth) Bernstein centers. We do it
under some assumptions on the variety, the main one being that the variety
and its associated “Levi varieties” are “factorizable” — this is a condition
that allows one to continuously vary the central character of a representa-
tion appearing in the space of functions on the variety by multiplying by
characters of the group. This condition restricts us to a slightly larger set-
ting than that of symmetric spaces. (In the non-symmetric case, there are
some other conditions for which we have no general proof, and have to be
checked “by hand” in each case; but we expect them to hold in general.)
Our assumptions are explained in §2.1, and the range of their validity is
discussed in detail, including some examples, in Appendix A.

Let X be a spherical variety for a group G over a non-Archimedean local
field F, satisfying those assumptions. We will be denoting X (F') simply by
X (and similarly for other varieties), when this causes no confusion. We
assume that X = X (F) is endowed with a G-eigenmeasure, and normalize
the action of G on L?(X) (and other spaces of functions on X) so that it
is unitary. The maximal split torus Z(X) of G-automorphisms of X is the
(split) center of X. To X one associates some “simpler” spherical G-spaces
Xo with more symmetries, called the boundary degenerations, parametrized
by standard Levi subgroups in the “dual group” of X, whose Weyl group
we denote by Wx. When G is not split then we demand that X is symmet-
ric, and these symbols refer to their “relative” versions, cf. §2.5.

1.1. Paley—Wiener for the Harish-Chandra Schwartz space. The defini-
tion of the Harish-Chandra Schwartz space ¢'(Xg) (including the case Xg =
X) is recalled in §2.6. It is a topological vector space (more precisely: an
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LF-space, i.e. countable strict direct limit of Fréchet spaces) of functions
which plays a central role in the derivation of the Plancherel formula for
the group by Harish-Chandra, cf. [Wal03]. On the other hand, the method
of proof of the Plancherel formula introduced in [SV] and adopted in [Del]
directly leads to the L2-Plancherel formula, without having to characterize
the spectral transform of Harish-Chandra Schwartz functions; thus, this
problem remained open.

In §5 it is shown that ¥ (Xe) has a direct summand, the intersection with
the “discrete-modulo-center” part L?(Xg )qisc of L?(Xg), which we will de-
note by €' (Xe)aisc- That carries an action of a ring of multipliers 345¢(X %),
the “discrete center” of Xg, which is isomorphic to the ring of C'° functions

—disc
on the “discrete spectrum” X, GL) of Xg (to be explained below):

5dISC(XL) COO(XL )
By [SV, Del], for each © one has a canonical “Bernstein map”:
Lo : L*(Xe) — LA(X).

Moreover, for each w € Wx (2, 0), i.e. each element of Wx which takes a
standard Levi O of the dual group to a standard Levi 2, there is a canonical
“scattering map”

Su i L(Xe) > L2(Xq),
which is w-equivariant with respect to the “centers” (i.e. G-automorphism
groups) of these spaces and such that we have a decomposition:

e = Y, Sw (1.1)
weWx (2,0)
Notice that, despite the notation, the scattering operators are not parametrized
by elements of Wy, but by triples (0, Q, w e Wx (£, 0)).
The main theorem [SV, Theorem 7.3.1], [Del, Theorem 6] on the Plancherel
decomposition of L?(X) states:

1.2. Theorem. Let 1§ 4. denote the map 1§ composed with projection to the dis-
crete spectrum. The sum:

@L X@ disc» (12)

where ¢(©) is the number of “Weyl chambers” associated to © (= #{w € Wx|wO
Ax}), is an isometric isomorphism of L*(X) onto

((‘D L2 (XG)disc> 5
©

the subspace consisting of collections (fe)e such that for all triples (©,Q,w €
Wx (2, ©)) we have: Sy, fo = fa.
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Our first version of the Paley—Wiener theorem for the Harish-Chandra
Schwartz space reads:

1.3. Theorem (cf. Theorem 13.5). The scattering maps S,, restrict to 345¢(X é )-
equivariant isomorphisms (of LF-spaces) on the discrete part of the Harish-Chandra

Schwartz spaces:'

Sw : %(XG)disc = %(Xﬂ>discy (13)
where 395¢(X§) acts on € (Xq)aisc via the isomorphism:
537(XE) = 5 (XE) (1.4)

induced by w.
The sum (1.2) restricts to an isomorphism of topological G-modules:

v %(X) - <@%(X@)disc> . (15)
S}

There is also a more explicit version of this theorem, in terms of “nor-
malized Eisenstein integrals” and “normalized constant terms”. Let 7 be
an irreducible smooth representation of G. One defines the space of 7-
coinvariants S(X),, the largest m-isotypic quotient of S(X); equivalently:

S(X); = Homg(S(X), 7)* ® 7.

Its smooth dual can be identified with a canonical submodule C*(X)™ of
C*(X). One defines various subspaces CF, (X)™, Cs,(X)™ correspond-
ing to the condition of square integrability, resp. compact support modulo
center, and denotes the sets of unitary irreducible representations which
appear discretely, resp. cuspidally, by X4, resp. X"P. Dually, we have

the corresponding quotients:
S(X)W - S(X)ﬂ',diSC - S(X)T(,Cusp'

The same definitions can be given for any boundary degeneration Xg,
but taking into account that this space is “parabolically induced” from a
“Levi spherical variety” X§ for a Levi subgroup Lg, i.e.:

Xo ~ X§ x%e G,
The corresponding coinvariants are also parabolically induced, and indexed
by representations of Le.

—disc
As o varies over the set X5 of those representations which appear
discretely-mod-center, the spaces %o, := S(Xg)s.disc are the fibers of a
complex algebraic vector bundle (actually, a countable direct limit of such) %g

Hn Theorem 13.8 we extend this statement to the whole Harish-Chandra Schwartz space,
but this is not necessary for formulating the Paley—Wiener theorem and only comes as a
corollary of it.
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—disc
over the complexification of X5 , and the canonical quotient maps give
rise to a surjective morphism:

—disc

where CJe, o] denotes regular (polynomial) sections of the given vector
bundle. In Theorem 5.2 we show that this extends continuously to an
isomorphism (via the orthogonal quotient map ¢(X) — % (X)aisc) of LF
spaces:

- —disc
€ (Xo)dise — CP(XE |, %o) (1.7)
(smooth sections). The aforementioned action of the discrete center 395¢(X5)
—disc
on the left is, by definition, the natural action of C* (X é ) on the right.
It follows from their 345¢(X})-equivariance that the operators S,, act

fiberwise on these vector bundles; more precisely, it turns out that there
are elements:

—disc
Fwel <X@L) ,Homg(ze,w*zg)) :
where I' denotes rational sections whose poles do not meet the unitary set
(cf. §3.2), such that the following diagram of isomorphisms commutes:

—disc

¢(Xo)dise — CP(X§  , Zo)

‘| B

—disc

%(XQ)disc B Coo(Xng 7,%&])

Similarly, the Bernstein maps tg are explicitly given by normalized Eisen-
stein integrals associated to discrete data, which are explicitly defined maps:

E@,a,disc : ‘:%:T = COO(X@)gisc - Cm(X)

(where ~ denotes smooth dual), varying rationally with o. If f € L?(X¢g)
admits the decomposition:

0
disc

= fXA 17 (2)dor

with 7 € C*(Xg)5,,, then its image under the Bernstein map is the wave
packet:

L@f = JAdiSC E@,a,discf&dga (18)
X§

cf. [SV, Theorem 15.6.1], [Del, Theorem 7]. We use the Lz—continuity of 1g to
prove that the normalized Eisenstein integrals (which are a priori rational
in o) have no poles on the imaginary axis, thus dually we get normalized
constant terms (often called normalized Fourier transforms in the literature on
symmeric spaces):
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—disc

E(S,disc : ‘S(X) - F(Xé 7$@)7 (19)

representing ¢§ 4;.., where by I'(e, ¢) we denote again rational sections whose
poles do not meet the unitary set. Combining all of this with Theorem
1.3 we get the following explicit Paley-Wiener theorem for the Harish-
Chandra Schwartz space:

1.4. Theorem (cf. Theorem 13.6). The normalized constant terms (1.9) extend
to an isomorphism of LF-spaces:

“(X) = (@ Cwu@di“,z@)) , (1.10)
(€]

where ™ here denotes .7,,~invariants, i.e. collections of sections (fo)e such that
for all triples (©,Q, w € Wx (2, ©)) we have: .7, fo = fa.

In the group case, this theorem is part of the Plancherel formula of Harish-
Chandra, appearing in Waldspurger [Wal03]. However, our proof is new,
starting from a priori knowledge of the L?-maps (1.2) and their properties.

We remark that (1.8), in combination with the fact that .*; is the iden-
tity on Sy,-invariants, provide an explicit way to invert this map by means
of normalized Eisenstein integrals. Notice that we do not explicitly iden-
tify the scattering maps; this can be the object of further research, with a
number-theoretic flavor since their poles are often related to L-functions.
We only describe their relation to normalized Eisenstein integrals in (10.19),
and give a few examples of those scattering operators in §15.

A corollary of this theorem (or its previous version 1.3) is the existence
of a ring of multipliers on ¢’ (X). Notice that each w € Wx (2, ©) induces the
isomorphism (1.4) between discrete centers. Let:

3P (X) = (@adi“ufé)) (1.11)
(C)

denote the invariants of these isomorphisms, for all triples (0, 2, w € Wx (2, ©)).
One can call this ring the tempered center of X — it is the relative analog of

the tempered center of Schneider and Zink [SZ08] (whose structure can
also be inferred directly from the Plancherel theorem of Harish-Chandra
[Wal03]).

1.5. Corollary (s. Corollary 13.7). There is a canonical action of 3**™P(X) by
continuous G-endomorphisms on € (X).

This action, by definition, corresponds to the obvious action of 3*™P(X)
on the right hand sides of (1.3), (1.10).
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1.6. Paley—Wiener for the Schwartz space. We now come to a Paley—Wiener
theorem for the Schwartz space S(X) of compactly supported smooth func-
tions on X. In analogy with the previous case, this has a distinguished di-
rect summand S (X )cusp, its “cuspidal part”, consisting of those functions
f € S(X) such that for any open compact subgroup J, the Hecke module
H(G,J) - f is a finitely generated module under Z(X) (s. section 6). The
(orthogonal) complement of S(X)cusp in S(X) consists of those functions
which are orthogonal to any of the spaces C,(X)™ introduced before.

The same definitions hold for the boundary degenerations Xg, and the
space S(Xg)cusp comes equipped with the action of a “cuspidal center”

3"P(X}), identified with the ring of polynomial functions on the subset

/\Lcusp /Edisc
X5 c Xg -
3P(X) =C[XE ] (1.12)
Here we have the “equivariant exponential maps”:
eo : S(Xo) — S(X), (1.13)

whose transposes:
eg 1 CP(X) - C*(Xo)

are a convenient way to generalize the classical theory of asymptotics of
matrix coefficients (see [SV, §5]). The name “exponential maps” is due to
the fact that the space X¢g can be identified with the open G-orbit in a nor-
mal bundle to some orbit g in a compactification of X, and on charac-
teristic functions of sets close to c0g the map eg coincides with a physical
“exponential” map, that is, a p-adic analytic map whose differential is the
identity, cf. [SV, §5]. For an explicit formula for the maps eg, cf. (1.19) be-
low. The space S(X) is the sum of all egS(Xe)cusp:

1.7. Theorem (s. Theorem 14.1). We have:

S(X): Z QQS(X@)cusp-
@CAX

We note that this fails to be true without the assumption that X is strongly
factorizable, cf. Remark 14.2; interesting phenomena await the researcher
who will work on the general case!

A basic element in our analysis is a similar to the unitary case decompo-
sition into “smooth scattering maps” when © and ) are conjugate:”

eheolsXolwn = D, Ous (1.14)
’LUEWX(Q,G))

where the maps S, : S(Xg)cusp = CP(Xq)cusp are 5CUSP(Xé)—equivariant
when this ring acts on C*(Xq)cusp Via the isomorphism:

FUP(XE) = 5P (XG) (1.15)

2Again, these maps are initially defined only on cuspidal summands, but a posteriori
extended to the whole space, cf. Theorem 14.7.
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induced by w. Note that in this case neither the scattering maps nor the
isomorphisms between cuspidal spectra of X5 and X are provided by the
L%-theory: all these are results that we need to establish.

The adjoint eg, (“smooth asymptotics map”) of e does not preserve com-
pact support, therefore the maps S, have image in some subspace of C*(Xgq).
If we let ST (Xq) denote the space generated by the images of those S, (for
all associates © of 2 and all w € Wx(1,0)), then (cf. Theorem 9.2) each
scattering map S,, extends canonically to an isomorphism:

S, : ST(Xe) = ST(Xq).

The first version of our Paley—Wiener theorem for the Schwartz space
reads:

1.8. Theorem (cf. Theorem 14.4). Let €§ ., denote the map e composed with
projection to the cuspidal summand. The sum:

e = Z eEl;,cusp : S(X) - @SJF (XG)CUSP (1'16)
o S

is an isomorphism into the (S, ) -invariants of the space on the right, i.e. the sub-
space consisting of collections ( fe)e such that for all triples (©,Q, w € Wx (2, ©))
we have: Sy, fo = fa.

Again there is a more explicit version of this theorem. Consider the bun-
dle Lo whose fibers are the cuspidal coinvariants Lo » := S(Xg)s,cusp; it
is a (countable direct limit of) complex algebraic vector bundle(s) over the

—~—cusp —disc

complexification of the subset X§ < X5  where these spaces are non-
zero.

In analogy to (1.7), the canonical quotient maps give rise to isomor-
phisms:

—

- 7 Cusp
S(XG)cusp - (C[Xe 759]- (117)
The action of the cuspidal center 3°"P(X{) is nothing but the action of

——cusp
C[X§ ] on the right hand side.

For the space S (Xg)cusp this extends to an identification with a “frac-
tional ideal” (i.e. a subspace of the space of rational sections which, when

multiplied by a suitable element of (C[)/(gcu p], becomes regular):

S (Xo)eusp = CT[XL Lol < C(XE . Lo), (1.18)

but this identification needs some explanation. The “fractional ideal” will
not be identified (except in specific examples); this seems to be a number-
theoretic question, as in all known examples it involves L-functions. We
only know that it is obtained by inverting “linear polynomials” (see §3.4
for the definition of “linear”). Despite the notation, it does not only depend
on the isomorphism class of Xg, but it actually depends on X itself. It can,
in principle, be computed by (10.19) whenever the normalized Eisenstein
integrals can.
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Using the isomorphism (1.18), the smooth scattering maps S,, can be
expressed in terms of the same fiberwise scattering maps .7, as before (but
restricted, of course, to the subbundle Lg of £ which they turn out to
preserve). Namely, the isomorphism (1.18) fits into a commuting diagram:

—cusp

8+(X®)cusp ;>(C+[Xé 769]
Sw iyw
- —cusp

ST(Xq)eusp —> C*F [Xg% , Lo

Although the fiberwise scattering maps .7, are the same as before, the
inversion of (1.18) is not given by the same fiberwise formula as the inver-
sion of (1.7): the latter is inverted by an integral over the unitary spectrum,
and the former as an integral over a translate of the unitary spectrum, cf.
(9.4) and (9.5). Thus, the smooth scattering maps S,, do not coincide, as
maps between spaces of functions, with the unitary scattering maps S,
despite the fact that their spectral transforms are expressed in terms of the
same operators .7%,.

Similarly, the explicit version of the equivariant exponential map eg is
given by normalized Eisenstein integrals (as was the case for the Bernstein
map te), but using shifted wave packets this time. More precisely, if we fix

——cusp

a Haar-Plancherel measure do on Xé and use it to write f € S(Xo)cusp
as:

= fXA 17 (2)do

with 7 € C*(Xg)% ., = Zg:,, then by (1.17) f° extends polynomially to

cusp
non-unitary ¢’s and we have:

eof(z) = f e E@J’Cuspf&(x)do: (1.19)

e

for every “sufficiently positive” character w, cf. Theorem 7.4. (For symmet-
ric spaces, the fact that shifted wave packets are compactly supported can
also be proved using the results of [CD14] and a technique due to Heier-
mann in the group case [Hei01].)

Dually, this gives an expression of €, ..o, as a normalized constant term:

S(X) ->T(xE " Lo, (1.20)

which is the same map as (1.9) composed with the natural quotient g —
Leo.

The explicit version of our Paley—Wiener theorem for the Schwartz space
reads:
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1.9. Theorem (cf. Theorem 14.5). The morphisms (1.20) give rise to an isomor-
phism:

S(X) > (@ cHixt™, c@]> , (1.21)
S

where ™ here denotes .%,,-invariants.

A corollary of this theorem (or its previous version (1.8)) is the existence
of a ring of multipliers on S(X). Notice that each w € Wx (€, ©) induces the
isomorphism (1.15) between cuspidal centers. Let:

Z‘,sm()() _ <@5cusp(Xé)>

denote the invariants of these isomorphisms, for all triples (0, Q, w € Wx (Q, 9)).
One can call this ring the smooth center of X — it is the relative analog of
the Bernstein center (cf. §16.1). Then:

1.10. Corollary (s. Corollary 14.6). There is a canonical action of 3 (X) by
G-endomorphisms on S(X).

This action, by definition, corresponds to the obvious action of 3" (X)) on
the right hand sides of (1.16), (1.21). Note that this ring of multipliers is, in
general, larger than the ring induced by the Bernstein center. Indeed, there
are many known examples of relatively cuspidal representations which are
not cuspidal for the group, cf. [Mur]; the simplest example is the Steinberg
representation for the variety X = T\ PGLy, where T’ is a split torus.

In section 16 we discuss the example of X = a reductive group H un-
der the G = H x H-action by left and right multiplication. We show that
the multiplier ring 3™ (X) that we described above provides an alternative
proof for the structure of the Bernstein center as the algebra of polynomi-
als on the “space” of cuspidal supports. We also discuss the relationship
of our Paley—Wiener theorem with those of Bernstein [Ber] and Heiermann
[HeiO1]: in this case, our work is analogous to part A of [Hei01], and one
needs to apply part B, which is the hardest part of that paper, to obtain the
usual Paley-Wiener theorem. This is a good point to reflect on what our
theorem really represents: It represents a reduction of the study of smooth
functions on X to (relatively) cuspidal spectra plus the study of scattering
operators; it does not, however, reveal much about the nature of these op-
erators, which can be the object of further research.

However, this reduction is not straightforward, as there are facts that are
“obvious” in the case of a group, but not in the relative case. The most im-
portant of those is to show why a relatively supercuspidal representation
for a boundary degeneration Xg “scatters” as a relatively supercuspidal in
an associate direction Xq. (In the group this is obvious by the description
of cuspidality in terms of coinvariants under unipotent subgroups.) This
is one of the goals of the scattering theorems described in Section 9, and
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its proof is based on one of the main technical results of the paper, Propo-
sition 12.1. If we may try to encode its proof in one sentence, we would
say that “a priori knowledge that the asymptotics maps eg preserve com-
pact support does not allow the scattering maps to break the cuspidality
condition”. This proposition generalizes results of Carmona and Delorme
[CD14] in the symmetric case, which used a completely different proof ex-
ploiting the structure of symmetric spaces.

We now come a more detailed description of the contents of this paper,
and the main steps in our proofs.

1.11. Proofs. After introducing the necessary structure theory of spherical
varieties in section 2 and the bundles of discrete and cuspidal coinvariants
in sections 3 and 4, the first step is to show that the discrete, resp. cuspidal
summand of € (X), resp. S(X), is a direct summand. This is relatively easy
to do, and is done in sections 5 and 6.

The spectral characterization of € (X )qisc (1.7) and S(X )cusp (1.17) is the
next step, and the basis for those is the surjection (1.6); this follows from
the definition of the bundle %, and an application of Nakayama’s lemma
(Proposition 4.5). After this, (1.7) follows from the analogous statement for
abelian groups (we use here the assumption that X, and later X}, are all
factorizable, cf. §2), and (1.17) is immediate by projection from discrete to
cuspidal.

The unitary scattering operators S,, were introduced in [SV], but here we
need to prove that they preserve Harish-Chandra Schwartz spaces (at least
their discrete summands). The explicit expression (1.8) for g allows us to
relate the fiberwise versions .7, of the scattering maps to the asymptotics
of normalized Eisenstein integrals and normalized constant terms, hence
deducing their rationality in the parameter by a linear algebra argument,
Proposition 10.16. Essentially, the operator .#,,, for w € Wx(£2,©), is the
“w-equivariant part” of the asymptotics ef; of the normalized Eisenstein
integral Eg gisc. A priori knowledge of L?-boundedness of the operators
Sy, together with the “linear” form of the poles of Eisenstein integrals 8.5,
cf. also [BDO08], allow us to show that their poles do not meet the unitary
spectrum, Theorem 9.3, and since they are unitary it follows from (1.7) that
Sw, for w e Wx (9, 0), maps € (Xe)disc isomorphically onto € (Xq)adisc-

Using this fact, and a characterization of the Bernstein maps tg from
[SV], we are able to prove that 1o maps € (Xe)aisc into € (X) (Proposition
13.1). This is essentially the fact that some wave packets are in the Harish-
Chandra Schwartz space (cf. [DH14] for a result of this type for symmetric
spaces). Vice versa, the description of tg in terms of normalized Eisenstein
integrals (1.8), together with the regularity of normalized Eisenstein inte-
grals on the unitary spectrum, proves that (g ;.. continuously sends the
space ¢'(X) into ¢ (Xe)disc (Proposition 13.2), and this is enough to prove
the Paley—Wiener theorems 1.3, 1.4 for the Harish-Chandra Schwartz space.
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To construct the smooth scattering operators S,, one needs to study prop-
erties of the compositions eg,eg restricted to cuspidal summands, and more
precisely that the restriction of this composition to S(Xeg)cusp is zero if
does not contain an associate of ©, has cuspidal image if €2 is associate to ©
and has image in the orthogonal complement of the cuspidal summand if 2
strictly contains an associate of ©, Theorem 9.2. The proofs of these facts are
accomplished in section 12. The proof relies in a crucial way on a theorem
in [SV] (which in turn was based on a theorem of Bezrukavnikov and Kazh-
dan [BK15]) which says that the support of ef, f for f € S(X), is bounded,
i.e. of compact closure in a (fixed) affine embedding of Xg; this allows to
prove the vanishing of certain “exponents” of the normalized Eisenstein
integrals which by (1.19) spectrally decompose the maps eg. By totally dif-
ferent methods these results were obtained by Carmona-Delorme [CD14]
for symmetric spaces, via an explicit description of the constant term of
Eisenstein integrals, starting from cuspidal data, in terms of “C-functions”.

As was mentioned in Proposition 1.7, the space S(X) is the sum of all
“shifted cuspidal wave packets”, i.e. the sum of all egS(Xg)cusp- Then
(1.14) can be understood as a decomposition of the asymptotics of shifted
wave packets. The proof of Theorem 1.9 rests mainly on (1.14).

1.12. Acknowledgments. We are very grateful to the referee for numer-
ous corrections and suggestions. The first author has been supported by
a grant of Agence Nationale de la Recherche with reference ANR-13-BS01-
0012 FERPLAY, and by the Institut Universitaire de France. The third au-
thor was supported by NSF grants DMS-1101471 and DMS-1502270. He
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Part 1. Structure, notation and preliminaries

2. BOUNDARY DEGENERATIONS, EXPONENTS, SCHWARTZ AND
HARISH-CHANDRA SCHWARTZ SPACES

2.1. Assumptions. We let X be a homogeneous, quasi-affine spherical va-
riety for a reductive group G over a non-Archimedean local field F' in char-
acteristic zero. We will generally denote the points of a variety Y over our
fixed non-Archimedean field F' simply by Y, when this creates no confu-
sion. The assumption on characteristic is in order to use the results of [SV]
which freely applied the structure theory of spherical varieties in charac-
teristic zero. With minor modifications, those results should work in pos-
itive characteristic, and then the results of the current paper will directly
extend. We notice that for symmetric spaces, [Del] only required that the
characteristic of the field be different than 2; thus, we can already relax the
assumption on the characteristic in that case.
We will make the following assumptions on X:

If G is not split, X is symmetric. The symmetric condition (whether
G is split or not) subsumes all the conditions that follow, but should
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be considered as a provisional assumption in order to use the non-
split analogs of spherical root systems used in [Del] (cf. §2.5). Our
methods do not depend otherwise on the structure of symmetric
spaces, and once the analogs of [Del] are extended to the broader
setting of spherical varieties satisfying the assumptions below, our
results immediately extend.

If G is split, we assume:

(wf) X is wavefront;

(sf) X is strongly factorizable (cf. below for both of these notions);

(gi) X satisfies a strong version of the “generic injectivity” condition
(cf. §10.7).

Up to now, our assumptions guarantee the validity of the full
Plancherel decomposition of [SV, Theorem 7.3.1], [Del, Theorem 6].
Finally, we require the validity of the explicit Plancherel formula in
terms of normalized Eisenstein integrals:

(ep) The explicit Plancherel formula of [SV, Theorem 15.6.2], [Del,
Theorem 8] holds; this is the case, for instance, if the “small Mackey
restriction” of [SV, §15.5] is generically injective.

We repeat that all these conditions are satisfied if X is symmetric; for
the strong version of the generic injectivity assumption in the symmetric
case, which was not used in the aforementioned references, we prove this
in §10.7. We expect condition (sf) to be the only crucial condition for the
methods of this paper to work. (Without it, results for the Schwartz space
have to be modified, cf. Remark 14.2.) Condition (wf) is used because we
need the theory of asymptotics of [SV] (which should hold without this
condition), and we expect conditions (gi) and (ep) to hold in general (but
for now they have to be checked “by hand” in any non-symmetric case
that one is interested in). In Appendix A we check those assumptions for a
couple of non-symmetric examples.

2.2. Whittaker-induction. Our results also hold for a “variety” that is “Whittaker-
induced” from one as above, at least when G is split, where the necessary
results on which this paper is based have been proven in [SV]. That is, in a
certain setting one can consider, instead of the spaces of functions that we
will encounter, also spaces of sections of a line bundle defined by a charac-
ter of a unipotent group. The precise setting was explained in loc.cit. §2.6,
and we repeat it here:

Let P~ be a parabolic subgroup of GG, with a Levi decomposition P~ =
L x Up-. Suppose that X’ is a spherical L-variety which, for the purposes
of this paper, we will assume to satisfy the assumptions of the previous
subsection. Let V' = Hom(Up-,G,), and assume that we are given an L-
equivariant morphism A : X* — V with Zariski open image. Finally, let
Y : F' — C* be a non-trivial unitary character.
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We let X = X <" G be the corresponding “parabolically induced”
variety, and denote by C*(X, Ly) the space of smooth functions on the F-
points of X% x1 G which satisfy f(z,ug) = ¥, (u)f(z,g) forevery u € Up-,
where V¥, is the composition of ¢ with A(z).

The contents of the present paper apply to the space C* (X, L) (and the
subspaces S(X, L), € (X, L)) without modification, once one has the cor-
rect notion of “Weyl group”. This Weyl group is explained in [SV, §2.6], and
is different from the Weyl group of X viewed as a G-variety; for example,
for the Whittaker model of a split group G this is the full Weyl group of G.
For notational simplicity, we will not be writing C*(X, Ly) anywhere —
the notation in the paper is referring to sections of the trivial line bundle,
and the immediate reformulations necessary to cover this case are left to
the reader.

2.3. The split case. We start by giving definitions when the group G is
split. We will then modify them for non-split G, when the space X is sym-
metric (following [Del]).

Given a spherical variety X for a group G, we define the (connected)
center of X as the connected component of its G-automorphism group:

Z(X) := Autg(X)°.

It is known to be a torus, and we assume throughout (as we may, with-
out loss of generality, by enlarging G if necessary), that the natural map is
surjective:

Z(@)° - Z(X), (2.1)
where Z(G)? denotes the connected center of G. For any fixed Borel sub-
group, we denote by X the open Borel orbit on X.

Our varieties will be homogeneous, X = H\G, and we let X ab e the
homogeneous variety under the abelianization G*" of G which is obtained
by dividing X by the action of the commutator group [G, G]. If we choose
a point z € X with stabilizer H and let H* be the image of H in G*", then
as algebraic varieties: X*P = G /Hab,

We call X factorizable if dim X** = dim Z(X); all symmetric varieties
have this property. If X is factorizable then as algebraic varieties (but not
necessarily in terms of their F'-points):

X~ Z(X)- X',
where X' = H n [G,G]\[G,G]. This, of course, depends on the choice
of base point definining the isomorphism X ~ H\G, and if we choose
different such points x1, z2, . .. we get different subvarieties X{, X}, .. ..

Then, at the level of F-points, there are a finite number of points z; such
that X is the disjoint union of open-closed subsets:

X(F) = | ] zx)F) - X[(F). (2.2)
i=1
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The non-canonical subvarieties X will never appear in the statements, but
will sometimes be used in the proofs.

The group of unitary complex characters of the F-points of the torus X2
will be denoted by X", and its complexification (which can be identified
with the group of not necessarily unitary characters) by X, &b. The identity
component of X?P, i.e. the group of unramified unitary characters, will be
denoted by X", and this notation ( ™) will be used more generally to
denote groups of unramified characters.

To every spherical variety X one associates its set of (simple) spherical
roots Ax and the “little Weyl group” Wx, cf. [SV, §2]. The spherical roots
live in the lattice X'(X) of characters of a Borel subgroup which are trivial
on stabilizers of generic points, and W acts by automorphisms on X'(X).
There are actually various normalizations for the spherical roots, depend-
ing on the application that one has in mind; for a certain normalization,
they are part of the root data of the “dual group” Gx of X; for another
(the standard one in the theory of spherical varieties), they determine the
structure of certain compactifications. These two normalizations were re-
ferred to as “normalized” and “unnormalized” roots in [SV, §2.1, 2.2], and
both of them define a root system in the usual sense. The precise choice
of normalization will not be of particular concern to us, in general, and
when does matters we will clarify which definition we are referring to. In
any case, the action of Wx on X' (X), together with the dominant chamber
determined by those sets of simple spherical roots, is independent of the
chosen normalization of their lengths.

What is important for us is that one has the following set of data:

e Boundary degenerations: For every subset © — Ax, a spherical G-
variety Xg of the same dimension, with the property that

dim (Z(Xe)) = dim (Z(X)) + |Ax \ 6|.
We interchangeably denote:
Ax e = Z(Xo).

Under the convention that Z(G)? — Z(X) that we are using,
X is called wavefront if for every O the variety Xg is parabolically
induced from a spherical variety X} (called Levi variety) for the Levi
quotient Le of a parabolic Py

Xo =~ X5 xTe @ (2.3)

such that the action of Z(Xg) is induced from the action of the con-
nected center of Lo on X§. Only the conjugacy class of Py is canon-
ically defined (and then X§ is the fixed point set of its unipotent
radical on Xg); thus, whenever we use those Levi varieties we will
be careful that no non-canonical choice of a representative for Pg
affects our statements. The isomorphism (2.3) shows that X} can
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also be identified as the quotient of the open Pg-orbit on Xg (Where
Peo is in the class of parabolics opposite to Pg) by the (free) action of
the unipotent radical Ug of Pg. Since X Po JUg ~ XoPo /Ug canon-
ically [SV, Lemma 2.8.1], the Levi variety is also identified with the
analogous quotient for X (the quotient of its open Pg-orbit by the
Ug-action).

A wavefront spherical variety is called strongly factorizable if all of
its Levi varieties are factorizable. Symmetric varieties are strongly
factorizable [SV, Proposition 9.4.2], and these are the main source
of examples. In Appendix A we characterize strongly factorizable
varieties in terms of combinatorial data attached to the spherical
variety, and give a few examples of non-symmetric, strongly factor-
izable spherical varieties.

2.4. Remark. Note that the Levi variety attached to the whole set
of spherical roots is not equal to X, if X is parabolically induced.
For example, if X = N;\G1, where N; is maximal unipotent in G,
under the G = A; x Gi-action (where A; = B;/N;, with B; the
Borel subgroup normalizing N;), then X is wavefront, Ax = J,
but X ﬁx =X é = Aj under an A; x Aj-action. This creates the
paradox that some varieties (such as this example) are “strongly
factorizable” without being “factorizable”, but this is only a mi-
nor nuisance, since for a parabolically induced variety all spaces of
functions that we are interested in are parabolically induced, s. §2.6
— thus, one can work directly with the Levi variety X ﬁX, which is
factorizable. To avoid extra notation, however, instead of writing
X ﬁx we will at several points in this paper assume, implicitly, that
X is factorizable.

For © = (J the variety Xg is horospherical, i.e. stabilizers con-
tain maximal unipotent subgroups of G. More precisely, stabilizers
contain the commutator subgroup of a parabolic in the class of P,

which in this case we denote by P(X)~. Its opposite P(X) is the
parabolic which stabilizes the open Borel orbit on X. (Again, of
course, only its class is defined.) We denote Ax 5 simply by Ax —
it is the “universal Cartan” of X; its character group has a canonical
identification with X' (X). For every ©, Ax g is canonically iden-
tified with the connected kernel of © in Ax, and we denote by
A% o the monoid of elements a € Ax o(F) with the property that

|e7(a)| < 1forall vy € Ax, and by fi}ye the subset of those elements
with |e7(a)| < 1 forall v € Ax \ ©. (We use the exponential symbol
in order to use additive notation for the group X'(X)).

Exponential map: For every open compact subgroup J of G, a system
of J-stable subsets Ng of X = X (F'), with Ng < N if © < ), and
for each © a J x A}’@-stable subset Ng) of Xg, which generates all
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Xo under the action of Ay g, together with identifications:
Ne/J = N§/J, (2.4)

characterized by their compatibility with certain p-adic analytic “ex-
ponential maps” (s. [SV, §5]) and by the fact that the induced map
on characteristic functions extends to an equivariant map, that will
be explained in §7. Such a set Ng will be called a “J-good neigh-
borhood of ©-infinity”, and from now on we will not distinguish
in notation between Ng and Ng , i.e. we will be denoting the latter
also by Ne. (This constitutes abuse of notation, since only .J-orbits
on these sets are identified, but it will only be used for statements
that depend only on the identification of the J-orbits, not the sets
themselves.) The above identifications clearly also identify Nq/J,
for all 2 ¢ ©, with subsets of Xg/J, and the set:

N§ = No ~ U Ngq
QcO
is stable under the action of J x A% o and has compact image in
Xo/Ax 6. We note the decomposition:

X =| |N6. (2.5)
S

We have Na, = X, hence the complement of Ueg Ay Ne is com-
pact modulo the action of Z(X).

The modular character of Pg, i.e. the inverse of the modular character
of Py, will be denoted by ég. (Our convention is that a modular character
is the quotient of right by left Haar measure.) The functor of normalized
induction from Pg, resp. Py, will be denoted by Ig, resp. Ig-:

1
IeV :={f: G — V smooth|f(pg) = 63 f(g) forall p € Po},

1
Io-V :={f: G — V smooth|f(pg) = 65> f(g) forall p e Pg}.

We similarly denote, for every representation 7 of G, the normalized Jacquet
modules with respect to Pg, resp. Pg, by e, resp. mg-. These are, by def-
inition, the coinvariants of the corresponding unipotent radicals, tensored
by the inverse square root of the corresponding modular character, so that
we have canonical Lg-morphisms:

(IeV)e =V, (Ig-V)g- V.

Actions of Weyl groups will always be defined to be left actions. We con-
sider the Weyl group W of G as an automorphism group of its universal Car-
tan A = B/N (where B is any Borel subgroup, with unipotent radical NV, so
that the universal Cartan is a unique torus up to unique isomorphism). For
subset S of the positive simple roots of A in G, corresponding to a class of
parabolics Pg, any element w which maps S into the positive simple roots
gives rise to an isomorphism between the Levi quotients Lg and L,,s of the
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corresponding parabolics, unique up to inner conjugacy. In particular, this
is true for the Levi quotients Lg, Lo (Where ©, 2 = Ax) and an element

weWx(Q,0) :={weWx|wd =0} c Wx c W.

Finally, the notation ® ~ Q will mean that ©® and 2 are associates, i.e.
Wx(Q,0) # .

2.5. The general symmetric case. In the general symmetric case (when GG
is not necessarily split), the boundary degenerations Xg are defined in [Del,
§3.1]. They are denoted there by Xp, while the Levi varieties X, é are de-
noted by X.

For consistency of notation with the split case, we will make a small
modification to the definitions of [Del]. Namely, in §2 of loc.cit. the tori Ap
are defined as certain central split subtori of Levi subgroups; thus, they do
not need to act faithfully on the boundary degenerations Xp. (More pre-
cisely, their action might have finite kernel.) Here, we will denote by Ap
(or, rather, Ax ) the quotient by which these tori act on Xp; equivalently,
Ap for us will be a quotient of the identity component Z(M)° of the maxi-
mal split torus in the center of the Levi quotient M. (For a group M, we will
use the notation Z(M)? for the maximal split torus in its center; the nota-
tion Z (M), without the exponent 0 will not be used, again for consistency
with the split case.)

These tori correspond to the maximal split tori of what, over the algebraic
closure, is Z(X) or Z(Xg) under the definitions of the previous subsection.
While it is not very good to have notation which is not stable under base
change, it is convenient here that the emphasis is not on geometry but on
harmonic analysis, and we will adopt it. Similarly, for the definition of Wx
in the general symmetric case, cf. [Del, §7.5], denoted there W (Ay).

2.6. Normalized action and the various Schwartz spaces. We assume that
X (F) carries a G(F)-eigenmeasure’ with eigencharacter 7, and any choice
of such measure endows all the spaces Xg(F') with G(F')-eigenmeasures
with the same eigencharacter which make the identifications (2.4) of neigh-
borhoods of the form Ng/J measure-preserving, cf. [SV, §4.1], [Del, The-
orem 2]. This measure on Xg(F) is also an Ax g(F)-eigenmeasure, and
whenever a group acts on a space Y endowed with an eigenmeasure with
eigencharacter x, we normalize the action of the group on functions on Y so
that it is an L%-isometry:

(g-Ny) =+vx(9)f(yg) (2.6)

This also identifies the space C*(Y') (uniformly locally constant functions
on Y') with the smooth dual of S(Y) := CZ(Y).

3In fact, under our assumption of factorizability it is possible to twist such a measure
and make it invariant; however, even if we do this for X it will not be the natural choice for
the Levi varieties X&, as we will see, so one ends up working with eigenmeasures anyway.
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On the Levi varieties X é =X Po/Ug the measure on X gives rise to an
Lg-eigenmeasure for which the following is true:

J“ flx)dx = f f(uzx)dudz.
XPo x§ Jue
This depends on the choice of Haar measure on Ug. The character by which
Le acts on this measure is dg7 (recall that n is the eigencharacter of the
measure on X). Thus, we need to twist the unnormalized action of Lg on
functions by (775@)% in order to obtain a unitary representation.

Another way to describe this twisting is the following: if we identify X§
as a subvariety of Xg fixed by the parabolic Py, and g € Py with image
l € Lo, then for a function f a function on Xg we have:

L (Flxz) = 080 (g - )l xe. 27)

(The twist by /7 is already contained in the G-action on Xe.) Animportant
observation is that, by introducting this twisted action for Lg, the action of
the connected center of Lg on f| Xk coincides with the action of Z(Xg)

on C*(Xg), under the identification of Z(Xg) = Ax e as a quotient of

1
Z(Le)". Indeed, the twist by 63 is contained in (2.6), by taking into account
the eigencharacter of the measure under the action of Z(Xg).

We caution the reader that this may not be the most natural-looking action; for
instance, if X has a G-invariant measure and we consider the Levi variety
X é ~ Ay, the usual action of A on C*(Ayx) is twisted by the square root
of the modular character of P(X ). However, this definition is such that the
space of L2-functions on Xg is unitarily induced from the analogous space
on X§:

L*(Xo) = Io- L*(X§), (2.8)

The Schwartz space S(X) is, by definition, the space C°(X) of compactly
supported smooth functions on X (and similarly for any homogeneous
space). The twist (2.7) on functions on X§ allows us to write, using again
the functor of normalized induction from Pg:

S(Xe) = Io-S(X§), (2.9)
Moreover, if X is a direct product:
X = 2(X) x X,
where X' is a [G, G]-spherical variety, we clearly have a decomposition:
S(X) =8(Z2(X))@S(X).

In the general factorizable case, using a decomposition such as (2.2) and
pulling back functions by the action map:

Z(X) x Xj - Z(X) - X,
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it is immediate to identify S(X) with:
0 dia
D (S(2(x) @S(xp) HO AT, (2.10)

i

i.e. invariants under the simultaneous action of the finite subgroup Z(G)"n
[G, G] on both factors. (Recall that Z(G)? — Z(X) under our conventions.)

For any function on Xg which is A x g-finite (i.e. its translates under the
normalized action (2.6) of Ax e span a finite-dimensional space) we call
exponents its generalized A x g-characters, considered as a multiset (i.e. each
character appears with a certain multiplicity).

We say that a function f € C*(X) (invariant, say, by an open compact
subgroup J) is tempered if for every © < Ax there is a J-good neighbor-
hood of ©-infinity where | f| is bounded by an Ax g-finite function with triv-
ial exponents (equivalently: by the absolute value of an A x g-finite function
with unitary exponents).

The Harish-Chandra Schwartz space ¢ (X) is the space of those functions
f € C*(X) such that for every tempered function F' we have:

pF(f):z‘[¥|f‘Iﬂdx~<cn. 2.11)

For example, in the abelian case X = Z(X) (by choosing a base point),
any smooth function descends to a function on a finitely generated abelian
group ~ R (torsion) x Z', and it is in the Harish-Chandra Schwartz space
iff its restriction to any Z"-orbit is bounded by the multiple of the inverse
of any polynomial in the coordinates ni, ng, ..., n,.

We similarly define this notion for the spaces Xg. Again, the twisted
action (2.7) allows us to write the Harish-Chandra Schwartz space of Xg as
the normalized induction of the Harish-Chandra Schwartz space of X§:

%(Xe) = Io-%(X§), (2.12)

Indeed, the action of G is clearly the correct one as was the case for L?(Xg)
and S(Xg); and the notion of “unitary exponents” used to define tempered
functions and, by duality, the Harish-Chandra Schwartz space coincides for
the action of Ax g on functions on Xg and X é.

The J-invariants of each of those Harish-Chandra Schwartz spaces have
a natural Fréchet space structure, defined by a system of seminorms pr
as above for F' belonging in any sequence (F,),, of tempered, J-invariant
functions with the property: for every tempered function F’ there is an n
and a positive scalar ¢ such that |F'| < ¢ |F,|. (In fact, this is a nuclear
Fréchet space.) Thus, the space % (X) is an LF-space, i.e. a countable strict
inductive limit of Fréchet spaces.

In case X is a direct product:

X =Z2(X)x X',
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where X' is a [G, G]-spherical variety, we have a decomposition:
E(X) = ¢ (Z2(X))®% (X),

where the completed tensor product is defined as a strict inductive limit
over the corresponding spaces of invariants under compact open subgroups,
and for each such subgroup it is uniquely defined by nuclearity. In simple
terms, this means the following: We may choose the sequence as above

of tempered functions F), to consist of product functions: Fj; = Fi(l) ®
Fj(2), where Fl-(l) and F]-(Q) denote, respectively, similar sequences on Z(X)
and X’. Then %(X)” is the completion of S(X)’ = S(Z(X))/ 2@’ @
S(X")7lG.CT with respect to the corresponding seminorms.

In the general factorizable case, using a decomposition such as (2.2) and
pulling back functions by the action map:

Z(X) x X! - Z(X) - X/,

it is immediate to identify:

A 0m dia;
C(X) =~ @ (F(2(X))@% (X)) H e, (2.13)
Notice that we also have:
L2 (X) ~ @ (L2(Z(X))®L2(XZ/)) (2()°n[G,G])d1e ’ (2.14)

(2

where the completed tensor product here is the Hilbert space tensor prod-
uct.

2.6.1. Comparison with alternative definitions. Since the definition of Harish-
Chandra Schwartz space is sometimes phrased differently in the literature,
we would like to verify that the one we gave coincides with other versions.
We start from the general definition given in [Ber88, §3.5]; according to it,
the Harish-Chandra Schwartz subspace of C*(X)” is the one defined by
the norms of L2(X, (1 + r)%ux)”, for all d > 1. Here r is a radial function on
X, and the measure pyx is a G-invariant measure. (We leave the case of an
eigenmeasure to the reader — cf. §3.7 of loc.cit.)

We remind that a radial function r : X — R™ is a locally bounded proper
function such that for every compact subset B — G thereis a constant C' > 0
with

Ir(gz) —r(z)| < C (2.15)
for all g € B,z € X. The definition of the Harish-Chandra Schwartz space
using radial functions generally depends on the radial function chosen up
to the equivalence relation:

r~71 = 3C>0st. Cl1+7r) <14+ <C(1+7).

However, for a homogeneous space X there is a “natural” class of radial
functions on X, described in [Ber88, §4.2]. It admits the following explicit
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description, whose verification we leave to the reader, using a (weak) Car-
tan decomposition for X.

By a (weak) Cartan decomposition for X we mean that there exists a
subvariety Y < X, which (over the algebraic closure) is an orbit of a Cartan
subgroup 7" of G, such that:

X(F)=Y*'U (2.16)

for some large enough compact subset U of G(F), where Y denotes a
certain notion of “dominant” elements of Y (F'), cf. [BO07, DS11] for the
symmetric case and [SV, Lemma 5.3.1] for the general split case. If we
fix a natural radial function R on Y (F) of the form R = |jw|, where we
choose a base point to identify Y as a quotient of the Cartan subgroup T
and w : Y(F) — V is a homomorphism with compact kernel to a finite-
dimensional real normed space V, the following is a radial function on X,
representing the natural class of radial functions:

r(x) := min{R(a)la € YT,z € aU}.

In fact, as the proof of [SV, Lemma 5.3.1] shows, the subvariety Y of
the above decomposition can be identified with the torus Ax defined in
§2.3, in a way compatible with the A}’@-actions on good neighborhoods
of infinity, i.e.: Considering a decomposition X = | |g N§ as in (2.5), the
action of A},e c Z(Xe)on Y n N coincides with its actionon Ax ~ Y,
restricted to Y+ n Ng,.

Thus, the above radial function is equivalent to the following one: Fix,
for every ©, a J-invariant compact subset Mg < Ng such that A}@M@ =
No, and let, for each x € Ng:

r'(z) = min{R(a)|a € A}@,m € aMep},

where R(a) is the fixed radial functionon Ax e < Ax.
Returning to functions, observe that the functions

Fy(x) = (1+7'(2)) % px (2]) "2

form a basis of tempered functions such as the ones used in our present
definition (2.11) of the Fréchet structure of the Harish-Chandra Schwartz
space. Thus, the system of norms of the spaces L?(X, (1 +7)%ux)” is equiv-
alent to the system of norms pp, defined using those functions. This shows
the equivalence of our definition with Bernstein’s.

Finally, we also have [DH14, Definition 3] in the case of a symmetric
space, which defines the Harish-Chandra Schwartz space in terms of bounds
of the form:

(@] < Oc(@) (Na(a)) ™"
with d > 0. The function Ny is of the form (1 + r)?, for an algebraic radial
function r; namely, X is realized as a closed subvariety of affine space, and
the function r is the maximum of the absolute values of the coordinates.
Such a radial function can easily be seen to be equivalent to the ones used
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above, cf. also [Ber88, §4.5]. The function O is a nonvanishing positive
smooth function, which up to a power of (1 + r) and a constant coincides

with the function z — ux(zJ )_%, by a result of Lagier [DH14, (2.27)] and
an estimate of the volumes in [KT10, Proposition 2.6]. Thus, this definition
of € (X) also coincides with the above ones.

3. BUNDLES OVER TORI

3.1. Bundles with flat connections over complex tori. Let T be a complex
algebraic torus, and let V' be a finite-dimensional complex vector space.
LetI' = T be a finite subgroup, and let p : I' — GL(V) be a representation.
Thus, I acts on the total space of the vector bundle 7" x V, and the quotient
V, is a vector bundle over the quotient torus Y = 7'/T".

By the following argument, one can see that this vector bundle is trivi-
alizable; however, we will not fix such a trivialization. The representation
p always extends to a complex algebraic homomorphism p : 7' — GL(V).
Indeed, p decomposes into a finite sum of characters of I'; viewing I' as
the points of a finite algebraic group, each character is algebraic. The co-
ordinate ring C[T'] of T, which is spanned by its characters, surjects onto
the coordinate ring of I', and hence for every character x of I', the (T, x)-
equivariant part of C[T'] is non-zero. Thus, x extends to a complex alge-
braic character of T, and p extends to p. Then, once we choose a basis
(vi,...,vp) of V, the trivialization of the bundle V), is given by the sections:
(t,v;(t)), where v;(t) = p(t)v;.

In this paper, we will apply this construction to 7' = X2, T/T' =a con-
nected component of Xgisc (and the corresponding tori for “boundary de-
generations” — see §4 for the definitions). The vector bundle will come
from certain spaces of coinvariants of S(X).

We want to endow the vector bundle V, with a flat connection, hence an
action (on its sections) of the ring D(Y') of differential operators on Y =
T/T. There are two obvious choices for doing that: One is to choose a
trivialization by sections v;(t) as before and require that the v;(t)’s are flat
sections;

this is not the action that we will use. Rather, we consider the natural
connection on the trivial vector bundle 7" x V:

D) ci(t)vi) = > (Des(t))vi (D € D(T)).
2 2
This descends to a connection on the quotient vector bundle (7" x V')/T" over
Y. Indeed, we have
D(Y) = D(T,

and moreover the action of D(7") on sections of 7" x V' commutes with the
action of GL(V'). Thus, the subring D(Y') preserves I'-invariant sections
over T, which are precisely the sections of V,, over Y. This is the action that
we will be using.
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For convenience we introduce a notion of flat functional on the vector
bundle with total space £ = (T'x V')/I'. A flat functional will be an element
of the dual vector space V*, thought of as a flat section of the dual of the pull-
back of E to T. It is by abuse of language that we call it a “flat functional
on E” since it is really a flat section of the dual vector bundle over the étale
cover T'of Y = T'/T", not a section over Y. Any sectiony — f, of V,, together
with a flat functional v*, give rise to a function F'(f,,v*) : t — (f;,v*) on T
(not on'Y = T'/T"). The action of differential operators was defined in such
a way that for every section f,, every flat section v* and every differential
operator D € D(Y) we have:

F(Dfy,v*) = DF(fy,v").

3.2. Various spaces of sections. Let 7' now denote the maximal compact
subtorus (considered as a real form) of a complex torus T¢; or, more gen-
erally, let T" be a torsor (principal homogeneous space) for a compact real
torus, and T¢ its complexification. Let L be a finite dimensional, complex
algebraic vector bundle over 7. We introduce the following notation for
sections of L:

e We denote by C[T, L] the regular sections of L over T'— that is, over
Tc.

e We denote by C(T', L) the rational sections.

e We denote by I'(T, L) the rational sections which are regular on the
real subset T'; by “regular” we mean that their polar divisors do not
intersect T; however, with an extra restriction on the poles which
we will introduce, this will turn out to be equivalent to the weaker
condition that they extend to C®, or even L?, sections (see Lemma
3.5).

¢ Thinking of (the set of real points of) 7" as a smooth manifold and
of L as a smooth vector bundle over T, we denote by C*°(T', L) the
smooth sections over T'; it carries a canonical structure of a Fréchet
space.

If L is trivializable, we have a canonical isomorphism:

C*(T,L) =CIT, L] ®c(T] C*(T).

e We now come to hermitian forms. The bundle of sesquilinear forms
on L is the (smooth) complex vector bundle L* ® L* over Tc. How-
ever, for the purposes of this paper, where T" will parametrize uni-
tary representations, it is more meaningful to start with sesquilinear
forms over T', view them as bilinear pairings between a representa-
tion 7 and its dual 7, by identifying 7 with 7, and extend them as
such to 7.

Therefore, we will not adopt the common notation where L de-
notes the complex conjugate of L, but L will denote the complex
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algebraic bundle which is obtained by L via base change by com-
plex conjugation with respect to the compact real form 7*:

Resc/r(1t) — Resc/r (1)

In other words, the vector space of sections of L over an open U <
Tt will coincide with the conjugate vector space of sections of L
over the complex conjugate U, and the coordinate ring of U will act
on them via complex conjugation:

C[U] — C[U].

Of course, over the real form T this canonically induces the same
smooth complex bundle as the complex conjugate of L. But, one of
the benefits of our definition of L is that now L* ® L* is a complex
algebraic vector bundle over T¢.

A hermitian metric on L (over T) is a smooth section of L*®L* over
T which corresponds to a positive definite hermitian form on every
fiber. A hermitian metric, together with a Haar measure on 7', give
rise to the Hilbert space of L? sections of L. Since T is compact, all
hermitian metrics and Haar measures give isomorphic topological
vector spaces of L%-sections, although of course the Hilbert norm
will depend on the choices.

The following easy lemma will be useful:
3.3. Lemma. Let T be a real torus and I a finite subgroup. The natural map:
C[T]| ®cpr/r) C*(T/T) — C*(T)
is an isomorphism.

Proof. As in the beginning of §3.1, we can extend each complex character x
of I to a character x of T' (y € C[T']), then write each f € C*(T') as a linear
combination of its x-equivariant parts:

£ = 3 hye where £(t) = = Y ()61,
X 8l

and finally f, = x - %, with the last factor an element of C*(7'/T"). This
shows surjectivity. Vice versa, for any sum >, P, ® fi € C[T] ®c[r/ry
C*(T/T"), we can similarly decompose the P,;’s in terms of characters of
I', and then the y-equivariant part of the sum can be written as Y ® f,, with
fx € C*(T/T'). For the sum }; ¥ ® fy to be zero, each f, has to be zero,
proving injectivity. g

3.4. Linear poles. We continue assuming that L is a complex algebraic vec-
tor bundle over a complex torus T, whose compact real form we denote
by T' or, more generally, over a torsor 1" for a compact real torus. A linear
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divisor on T' will be the scheme-theoretic zero set of a polynomial of the
form:
[T —m) 3.1)
i

where:

e the r;’s are non-zero scalars;

e the x;’s are “characters” of Tt — more precisely: non-zero eigen-

functions for the torus acting on T¢.

In particular, a linear divisor is always principal. The word “linear” stems
from the fact that under an exponential map: t — 7' (and its complexifica-
tion t¢ — T¢) their preimages are unions of affine hyperplanes — in fact,
affine hyperplanes associated to the real functionals v/—1 - dx;.

We say that a rational section f € C(T', L) has linear poles if:

H(Xi —r;)f € C[T,L] (regular sections)
for a finite set of characters y; and complex numbers r; as above. A very
crucial lemma will be the following:

3.5. Lemma. If f € C(T) has linear poles and belongs to L*(T), then it belongs
to I'(T"), i.e. its poles do not meet the real locus T

The notion of L!(T') is defined with respect to any Haar measure on 7.

Proof. Using the exponential map, we can pull back the function to a holo-
morphic function F' on the complexification tc of the Lie algebra, with poles
along complex hyperplanes and locally integrable on the real subspace t.
Thus, locally around any point on t which without loss of generality we
may assume to be the point 0, the pullback is equal to:

hel ™,

where the [;’s are real linear functionals, the n;’s are positive integers, and
h is a holomorphic function which does not identically vanish on the zero
set of any of the /;’s. If such a function is locally integrable, the same is true
a fortiori when the denominator is replaced by a single linear functional /1,
thus we may assume that F = h - I}, where h is not divisible by /;.

There is a (real) point of t in any neighborhood of zero which is in the
kernel of I; but not on the zero set of h (otherwise, h would be divisible
by l1). Thus, in a neighborhood of that point the function is bounded by a
constant times /; !, and cannot be integrable. O

Finally, if L;, Ly are two vector bundles as above, then Hom(L1, L) is
also such a vector bundle, and we can talk about its rational sections, and
linear poles for those sections. In particular, we have the following easy
corollary of the previous lemma:



PALEY-WIENER THEOREMS FOR A p-ADIC SPHERICAL VARIETY 27

3.6. Corollary. Suppose that M € C(T,Hom(L1, Ly)) has linear poles and in-
duces a bounded map:

L*(T, Ly) — L*(T, L)

(with respect to hermitian metrics on Ly, Lo and a Haar measure on T' — as re-
marked, all choices give isomorphic spaces of L? sections). Then M € T'(T, Hom(L1, L2)),
i.e. its poles do not meet the real locus.

Proof. Locally on T' we may trivialize the bundles and bound the hermitian
metric from below by a constant hermitian metric (with respect to the triv-
ialization). Thus, the square of the absolute value of the fiberwise Hilbert-
Schmidt norms:

T3t — | M|

is bounded below, locally, by a rational function with linear poles, no fewer
than those of M. The norm of M as a bounded map: L*(T, L1) — L?(T, Lo)
is the L!-norm of this function, and the previous lemma (or rather, its proof)
shows that the poles cannot meet the real locus. O

4. COINVARIANTS AND THE BUNDLES OF X -DISCRETE AND X -CUSPIDAL
REPRESENTATIONS

4.1. Coinvariants. For an irreducible representation 7 of G, the space of
w-coinvariants of S(X) is the quotient of S(X') by the common kernel of all
morphisms: S(X) — 7. They can be canonically identified with:

S(X)r = (Homg(S(X),n))* @ . 4.1)

This is a finite direct sum of copies of 7, by [SV, Theorem 9.2.1], [Del, The-
orem 4].

A subspace of Homg(S(X), ) corresponds to a quotient of the space
S(X)r of X-coinvariants. Let = have unitary central character y,; recall
here that by (2.1) (cf. also §2.5 for the meaning of Z(G)" in the general case)
we assume that the maximal split torus in the center of G surjects onto the
“center of X”. We call an element of Homg(S(X), ) “cuspidal” if 7 has
unitary central character and the dual:

7 — CP(X)

has image in the space of compactly supported functions modulo the cen-
ter. We call it “discrete” if the dual has image in L?(X/Z(X), xz), where
X# is the central character. We call it “tempered” if the dual has image in
the space of tempered functions or, equivalently, if the morphism extends
continuously to the Harish-Chandra Schwartz space ¢’ (X). The “contin-
uous” assumption will be implicit whenever we write homomorphisms
from € (X).
Thus, we have natural surjections:

S(X)ﬂ' - S(X)W,temp - S(X)w,disc - S(X)ﬂ,cusp7 (42)



28 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

where the second corresponds to tempered morphisms. The second, third
and fourth are also coinvariants for the Harish-Chandra Schwartz space,
i.e. the canonical quotient map from S(X) extends continuously to:

€ (X) = S(X)r temp- (4.3)

If 7 does not have unitary central character, we will still be using the no-
tation S(X )z, S(X)r temp, S(X)rdisc and S(X)r cusp for quotients of S(X)
such that the corresponding morphisms:

S(X)—>m or T > C*(X)

have the aforementioned properties up to a twist by a character of the
group.

4.2. X-discrete and X-cuspidal components. Assume X to be factoriz-
able. We let X°"P denote the set of irreducible representations 7 with uni-
tary central character such that S(X) cusp # 0; we let Xdisc denote the
set of irreducible representations 7 with unitary central character such that
S(X)rdisc # 0. Thus, Xeusp — xdisc,

Both sets have a natural topology, and split into disjoint, possibly infi-
nite, unions of compact components which can naturally be identified with
the real points of real algebraic varieties of the same dimension, each of
which is a principal homogeneous space for a torus. This structure arises
as follows:

Recall from §2 that X?" is a quotient variety of X, which is a torsor for
the torus G*P/H#P, and that we denote by X" the real torus of unitary
unramified characters of this torus.

By our assumption that X is factorizable, the torus X "™ acts (with finite
stabilizers) on X4¢ and X°"P. Indeed, any morphism M : S(X) — m can
be “twisted” by any element w € X™" by fixing a base point 2y € X" to
identify this space with the abelian quotient of G of which it is a torsor, and
considering w as a function on X. We then define M, € Homg(S(X), T®w)
by:

M, (®) = M(® - w). (4.4)

It is clear that M., is discrete (resp. cuspidal) iff M is.
By [SV, Theorem 9.2.1], [Del, Theorem 4], we have:

4.3. Proposition. For each open compact subgroup .J of G, the set of X ™ -orbits
on elements of X V¢ with non-zero J-fixed vectors is finite.

In particular, the set of XWr_orbits on X95¢ is countable, and the action
endows the latter with a real algebraic structure. We denote by X2**F, Xdisc,
Xg"" the complex points of these varieties.
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4.4. The bundles £, .%,. Consider the associations:
X(EuSp 37— L= 8(X)rcusps

X{éisc 31— ZLr = S(X)r disc-

The twisting (4.4) allows us to consider these spaces as fibers of com-
plex algebraic vector bundles £, Z over X", resp. Xd* endowed with
(slightly noncanonical) flat connections, following the formalism of §3.1.
More precisely, we will use this formalism for the J-coinvariants £/, £/
(where J is any compact open subgroup), which will be vector bundles
supported over a finite number of connected components by Proposition
4.3 and with finite-dimensional fibers, and then we will define the space of
sections of £, .Z to be direct limits over all J of J-invariant sections.

For notational simplicity, we only discuss the case of .#7 (X-discrete
series); the other is identical and, after all, it is just a quotient of ¥ 7 (and,
as we shall see later, also a direct summand).

We will exhibit the vector bundle .27 over X9 as a vector bundle of
the form V), in the notation of §3.1, with T" = X@nr and Y = a connected
component of X%, To identify Y with a quotient of T, we need to fix a
base point 7 in this connected component, which we take in the unitary set
X disc

The vector space V' will be the coinvariant space S(X)

J
T®w,disc”

J

7,disc’
unr
for any w e X@™.

identified as
a linear space (not equivariantly) with V, := S(X)
The way to perform this linear identification:

Bu:V = ‘S(X)J — S(X)f{®w,disc =V (45)

7,disc
is by fixing a point xg € X?P, as before, giving rise to the twisting M +— M,
of (4.4), viewed here as a linear isomorphism:
Homg (S(X), m)gise = Homg(S(X), 7 ® w)disc-

Moreover, the underlying vector space of the representation 7 ® w is natu-
rally identified with the vector space of 7, thus we get linear isomorphisms
between the spaces of discrete coinvariants:

S<X)7T,disc = (HomG’ (S(X), W)disc)* ® . (46)
This shows that the association:
A(Enr SW S(X);{(@w,disc? (47)

has the structure of an almost canonically (depending on the choice of
xp) trivial vector bundle, thus also an algebraic vector bundle (indepen-
dently of z0) with total space T x V over T = Xg™. (We remind that
V= S(X)i,disc‘)

Now notice that S(X) qisc is a canonical quotient of S(X') which depends
only on the isomorphism class of 7 and not on its realization. In particular,
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if T ~ ™ ® w for some character w of G then we have a canonical isomor-
phism:
Qy V= S(X);{,disc = S(X)#(@w,disc = Vw' (48)

(This is obvious if we think of S(X) as the quotient by the common kernel
of all morphisms S(X) — 7; to explain it in terms of the isomorphism (4.6),
we notice that the difference between any two choices of isomorphisms:
T — T®uw is a scalar which gets cancelled when we tensor 7 with the linear
dual of Homg (S(X), 7)disc.) This isomorphism, in general, is not the same
as the linear isomorphism f,, defined above for every w. The composition
B! o a, defines a representation p of the stabilizer in X" of  on V.
Now we endow 7 with the structure of a complex algebraic vector
bundle over X, disc by declaring that the bundle (4.7) is simply its pull-back
under the orbit map w — 7 ® w. In the notation of §3.1 we have ¥’ =V,
where V = S(X)J T = Xg™, T = is the subgroup of those w such that

m,disc’
TQw ~m, and p(w) = B! 0 .
Hence, .#” is the vector bundle over Y = T/T" with total space (T x
V)/I', and, by repeating the same process for each connected component,
a vector bundle over Xd*. The algebraic structure does not depend on
the choice of basepoint 7 for our representations, or base point xzy on X.
However, the corresponding flat connection, and hence the notion of flat
functionals of §3.1 depends on the choice of base point xy up to a character
of the torus X3"". More precisely, the “flat functionals” are the functionals
fu = (My)(fw), w*), with w* € V*. This dependence will not play any
role in our statements.
It is clear from the definitions that the natural map:
S(X)! = S(X);

7 disc
gives rise to regular sections of .#”, as 7 varies, i.e. it gives a canonical map:
S(X) — C[Xx¥se, 2], (4.9)
(Similarly, by composing with the quotient map . — £ we get a canonical
map:
S(X) — C[X°P £].) (4.10)
We have:

4.5. Proposition. The vector bundles 7, L over X’{éi“, resp. Xé“p, are trivi-
alizable (over each connected component).

The global (regular) sections of £ over X{&¢ (resp. L7 over X*P) are pre-
cisely the images of elements of S(X)” under (4.9).

Proof. The two cases are identical, so we work with .#7/. The fact that it is
trivializable follows from the generalities discussed in §3, but it will also be
seen explicitly by the argument that follows.
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The map S(X)7 — S(X )idisc is surjective for any irreducible 7, hence
(4.9), composed with evaluation at each fiber, is surjective. Choose a finite
number f; of characteristic functions on J-orbits z;J on X such that their
images form a basis of S(X)?, for some fixed 7. If f;(w) denotes the im-
age of f; in S(X)rgw, with all those vector spaces identified with the same
vector space V' as above, it is immediate from the above definitions that, in
this common vector space, fi(w) = w(z;) - f;(1). Hence, the images of the
fi’s form a basis for every fiber of (4.7). Since X{CMSC is affine, these global
sections trivialize the bundle.

To see that all global sections come from S(X )7, we can use Nakayama’s
lemma. Let Z be a finitely generated subgroup of Z(X) that surjects onto
Z(X)/(Z(X) n J). Its group ring can be identified with C[Z], the ring of
regular functions on the character group of Z. We have a restriction map
Xdisc 7 hence both sides of (4.9) (restricted to J-invariants) are C[Z]-
modules. For every point x of Zc (ie. for every maximal ideal of C[Z]) the
fiber of .7 over y is:

Bro S(X)3 discs (4.11)
where the map 7 —  is the restriction of the central character. This sum
is finite (there are finitely many X-discrete series with given central char-
acter and non-zero J-fixed vectors), and S(X)” surjects on it, because it
surjects on every summand and the representations indexing the sum are
irreducible and non-isomorphic.

By Nakayama'’s lemma, the C[Z]-modules S(X)” and C[X &, #] coin-
cide.

]

We let:
& =lim 27,
J
L =limc’

7
as direct limits of sheaves, i.e. the corresponding sections will be, by defi-
nition, sections of the finite-dimensional vector bundle of J-invariants for
some open compact subgroup J.

Now we will endow the bundles ., £ with hermitian structures, coming
from the Plancherel formula for X.

The Hilbert space L?(X) has an orthogonal direct sum decomposition
L*(X) = L*(X)dise ® L*(X)cont, where L?(X)gis. has a Plancherel decom-
position in terms of discrete morphisms from irreducible representations:
m — C%(X), in the sense of §4.1, i.e. with unitary central characters and in
L? modulo the center.

The hermitian structure on . is a canonical measure on X V¢ valued in the
space of hermitian forms on € (X ), that will be denoted

(s )y dm, (4.12)
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characterized by the following properties:
(1) for almost every , the hermitian form ( , ) _is G-invariant, positive
semi-definite, and factors through € (X)) dgisc = S(X)r.disc = Lrs
(2) for (I)l, <I>2 € CK(X),

<(b]_, ¢2>L2(X)disc = JA <@1, (b2>7r dm. (4.13)
Xdisc

Of course, this measure is absolutely continuous with respect to Haar
measure on X45¢, Choosing dr to be a Haar measure we obtain G-invariant
hermitian forms ( , )_on the fibers of .# over X 4. These forms are actu-
ally positive definite, and “flat” in the following sense:

Recall the conventions of §3.2 for the vector bundle .Z; it is a complex
vector bundle over X(Sisc, that only over X5 is equal to the complex dual
of £. Since 7 ~ 7 (the smooth dual) over X4, the fiber of -Z over an
arbitrary 7 € X ((C“SC can be identified with %4, the “discrete” 7-coinvariants.
The hermitian forms ( , ) can be seen as linear functionals:

2%y — C, (4.14)

for m € X%5¢, We claim that these are restrictions to X4 of flat functionals
in the sense of §3.1.

Indeed, this is just another way to say the following: Fix a base point
Te X disc and consider the non-equivariant isomorphisms £, of (4.5).
The claim is that, with respect to these isomorphisms, the hermitian form
(s )rgw Pulls back to the hermitian form ( , ) , for any fixed 7 € Xdise,
This is easy to see, since X is factorizable; indeed, for every representation
7 appearing discreetly mod center, the contribution of the family ™ ® w,
we X" to L2(X) is given by:

(P1, P2) (rgy, = J (@1 w ™, Py w ) _dw, (4.15)
Xunr

for the Haar measure dw whose push-forward to (the given connected com-

ponent of) X 4¢ is the measure dr. Notice that we have identified w with a

function on X, depending on the choice of a base point, as in the construc-

tion of f,,.

The forms (&, ®3) — <<I>1 cwTh Py - w*1>7r are ’Ehg forms (®q, ¢2>ﬂ®w
appearing in (4.13). To view them as restrictions to X4 of flat functionals
of the form (4.14) (defined for arbitrary = € Xgisc), we need to view them
as bilinear forms on S(X):

O @ Py (P w Py w)

a formula which makes sense (for ®1, 3 € S(X)) even when w is not uni-
tary. It is clear from the definitions that these are indeed flat functionals
in the sense of §3.1. Moreover, our ability to extend them off the tempered
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spectrum means that we can view the product
(,)dr (4.16)

as a volume form on X3 valued in the dual of the complex vector bundle %, ®
Zr. It is completely canonical once the measure on X is fixed. This will
be a useful point of view in order to shift integrals such as (4.13) off the
unitary locus.

Finally, the hermitian forms for 7 unitary induce a splitting of the canon-
ical quotient from discrete to cuspidal: .2, — L. This is, of course, just the
orthogonal projection to the cuspidal subspace of L?(X/Z(X), X)disc, for
every unitary character . The flatness of the hermitian forms with respect
to the vector space identifications 3,, shows that is induced by an injection
of algebraic vector bundles over X di:

L& (4.17)

splitting the canonical quotient map . — L.

4.6. The case of boundary degenerations. We have a similar decomposi-
tion for the analogous spaces of Xg, not in terms of representations of G but
in terms of representations of a Levi subgroup. Recall the isomorphisms
(2.9), (2.12):

S(Xe) = Io-S(X8),

% (Xe) = lo- (X&)

For each irreducible representation o of Lg, by inducing the quotient

S (Xé)(,,disc of S(X é ) we get a representation:

S(X0)odisc := (Homzg (5,C%(XE))disc)” ® Io-0,
together with a canonical map:
S(XQ) - S(X@)U,disc-

(This is the “discrete” quotient of the space S(Xg), defined in §15.2.6 of
[SV].) Similarly, we define the cuspidal o-coinvariants: S(Xg)s cusp- In
other words, the spaces of discrete and cuspidal o-coinvariants are the quo-
tients corresponding to morphisms:

Ig-6 — C*(X§)
which are induced by Frobenius reciprocity from morphisms (of the respective
type):
& — CP(X§).
The spaces S(Xg)s,disc form a trivializable complex vector bundle over

—disc

X é , which we will denote by 7o (again as a direct limit over J-invariants,
to be precise). The spaces S(Xg)s cusp form a trivializable complex vector

—

bundle over X écu , which we will denote by Lg. Again, the definition of
the algebraic structure of these vector bundles is obtained by pulling back
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to Xéunr, and they are endowed with the flat connections described in §3
(depending on the choice of a base point on X ).

Although the isomorphism (2.3), and the subsequent isomorphisms (2.12),
(2.9), depend on the choice of parabolic P in its class, it is clear that the
spaces S(Xg)o discs S(Xo)o,cusp can be considered as canonical quotients of
S(Xe), and hence the vector bundles Lg, %o do not depend on choices. In-
deed, the kernels of the maps S(Xg) — S(Xo)s.dises S(Xo) = S(Xo)o,cusp
do not depend on the choice of parabolic. As in (4.9), (4.10), these quotient
maps give rise to canonical surjections:

—disc ——cus
S(Xe) » C[XE, 2] »C[XE " Lo]. (4.18)

Asin the previous subsection, the Plancherel decomposition for L*(Xg)disc
———dis

gives a canonical volume form on X§. valued in (G%*8-invariant) linear
functionals on %o ® Zo:
(, )U do, (4.19)

and a splitting Lg — Lo of the canonical quotient map of vector bundles.

Part 2. Discrete and cuspidal summands
5. DISCRETE SUMMAND OF THE HARISH-CHANDRA SCHWARTZ SPACE

The Hilbert space L?(X) has an orthogonal direct sum decomposition
L*(X) = L*(X)dise ® L*(X)cont, where L?(X)gisc has a Plancherel decom-
position in terms of discrete morphisms from irreducible representations:
m — C%(X), in the sense of §4.1, i.e. with unitary central characters and in
L? modulo the center. We let ¢'(X )aisc = €(X) N L?(X)gisc, and similarly
for the spaces Xg.

5.1. Proposition. Let Y be a connected component of X4¢; it corresponds to a
direct summand L*(X)y of L*(X )aisc by restriction of the Plancherel measure to
Y. The orthogonal projection of an element of €' (X) to L*(X)y lies in € (X). In
particular, the orthogonal projection of an element of €' (X) to L*(X)aisc lies in
€ (X), and we have a direct sum decomposition:

%(X) = %(X)disc @® %(X)COHTJ
where € (X )aise = €(X) N L2(X) dise a1d € (X)cont = €(X) N L?(X)cont-

Since for every open compact subgroup J there is only a finite number of
connected components Y with L?(X){. # 0, the proposition actually gives
a finer decomposition of €' (X )qisc:

C(X)dise = By E(X)y, (5.1)

where Y ranges over all connected components of X 41sc.
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Proof. Since X is assumed to be factorizable (cf. Remark 2.4), we may rep-
resent ¢'(X) as in (2.13). Clearly, “projection to discrete” can be defined
only with respect to the action of [G, G], which reduces the statement to
the spaces % (X/) in the notation of (2.13), i.e. reduces the problem to the
case: Z(X) = 1.

In this case, we recall that the space L?(X)J,.. is finite dimensional [SV,
Theorem 9.2.1], and its elements are A x o-finite in a J-good neighborhood
of O-infinity, with strictly subunitary exponents (i.e. Ax g-eigencharacters
which are < 1 in absolute value in /i},@). Thus, the elements of L?(X)7..
belong to (X)), and the projection map: €' (X) — € (X )aisc is continuous.

Notice that this argument is a generalization of the usual criterion of Cas-
selman characterizing discrete series as those representations which appear
with subunitary exponents in all directions, s. Kato-Takano [KT10] for the
symmetric case. O

Similar decompositions hold for all the boundary degenerations Xg; this
is seen simply by inducing from the Levi varieties X}, i.e. it follows from
(2.12).

Now recall the vector bundle of Xg-discrete series .%5. We have seen
((4.18) and Proposition 4.5) that, through the canonical quotient maps to
coinvariants, elements of S(Xg) give all regular sections of %, i.e. all ele-

—disc
ments of C[X} |, %]
Moreover, the Plancherel decomposition for L?(Xg )qisc endows the com-

—disc
plex vector bundle %5 over X5  with the hermitian structure that was
discussed in §4.4, extending the above map to a canonical isomorphism:

dis

C, ZLo)- (5.2)

The spectral description of €' (Xg)aisc is as follows:

L*(Xo)aise — L*(X§

5.2. Theorem. For every ©, the canonical quotient maps: ¢ (Xe) — € (Xe)o disc
give rise to a canonical isomorphism:

—disc
¢ (Xo)dise ~ COO(X@L) ,Z0). (5.3)

The “isomorphism”, here and throughout the paper, is in the category of
G-representations on LF-spaces (countable strict inductive limits of Fréchet
spaces).

Proof of Theorem 5.2. The proof relies on the Payley-Wiener theorem for the
Harish-Chandra Schwartz space of finitely generated abelian groups.

By the isomorphism (2.12), it is enough to prove the theorem for ¢ (X, é)disc,
hence we are reduced to the case of Xg = X, assumed factorizable. We
need to show that the image of

(X) - LH(XT, 2)
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lies in C'°, and that the resulting map
(K(X)disc — % (XdiSC, g) (5.4)

is an isomorphism of topological G-modules.

We will first explain that it is enough to show this when G is replaced by
the group G’ = Z(X) x [G, G]. Since the F-points of the latter map to a
subgroup of finite index in G(F), it is immediate from the definitions that
the restriction map of representations is a finite covering Xdisc — X/disc,
the latter being the space of discrete coinvariants for X under the action of
G'. Moreover, for any 7’ € X'disc the fiber of the corresponding bundle .#”
of discrete coinvariants over 7’ is just the direct sum of the spaces .Z;, with
7 ranging over the fiber of 7/, in such a way that the inclusions . — £/,
and the projections in the opposite direction are C*, as 7 varies in any small
neighborhood in X 4% locally isomorphic to its image in X'4¢ . Thus, there
is an isomorphism of topological G’-modules

C® (Xdisc Dg/p) ~ (% (X-/disc j’)
and it is enough to consider the action of G’

But then, using the decomposition (2.13), and the Paley—Wiener theorem
for finitely generated abelian groups:

T (2(X)) ~ C*(Z2(X))
(depending on a choice of Haar measure on Z(X)), we get that (X ) gisc is
equal to the Z(G)° n [G, G]-invariant subspace of

—_

D C* (EX)OF (X ic

The second factor is the direct limit over all open compact subgroups J of
its J-invariants, which are finite-dimensional, hence the completion of the
tensor product here is immaterial. The space % (X})q4isc decomposes into a
direct sum of isotypic components for the [G, G]-action, thus identifying
% (L, Z(X) x Xi)dise, as a topological G’-module, with the analogous space

P CP(Z(X) x X, ),

of which C*(X'dis¢._#") is simply the space of invariants under the diago-
nal Z(G)° n [G, G]-action.

This completes the proof, but we would like to mention another way of
showing that the map (5.4) is onto, without appealing to the artificial de-
composition (2.13). Let Z < Z(X) be a free abelian subgroup such that
Z(X)/Z is compact. Notice that the group ring of Z is canonically iso-
morphic to the (complexification of the) coordinate ring of Z, the torus of
unitary characters of Z. Moreover, by elementary Fourier analysis, this ex-
tends to an isomorphism:

C(Z) = C*(2). (5.5)
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By restriction of central characters we get embeddings:
C[Z] — C[X"™].
and:

C(D(Z) — COO(XUI’H‘).
Recall the surjection of Proposition 4.5:

S(X) — C[X s, 2] (5.6)
The action of the Harish-Chandra Schwartz algebra of Z on S(X):

C(Z)®S(X) > € (X)

translates on the right hand side of (5.6) as multiplication by C*(Z). Fi-
nally, by Lemma 3.3 the multiplication map is surjective:

000(2) ®C[Z] C[Xdisc,g] — COO(X—disc’g)‘

This shows surjectivity of (5.4). The kernel is, essentially by definition,
the subspace € (X )cont, and thus the map induces an isomorphism of €' (X ) gisc

with C°(Xdise, 2, O

5.3. The discrete center of X. From Theorem 5.2 we deduce that the ring
—disc

C*(X é dlSC) of smooth functions on X, é acts G-equivariantly on the Harish-
Chandra Schwartz space % (Xg)disc; We extend this action to the whole
space ¢'(Xeo) by demanding that it acts as zero on ¢’ (Xe)cont. We will call
this ring the discrete center of X5, and denote it by:

e A disc /v L
C (X@ )233 (X®)~

In the case of Xg = X, we can think of this as the relative analog of
the discrete part of the center of the Harish-Chandra Schwartz algebra, i.e.
the discrete part of the “tempered Bernstein center” of Schneider and Zink
[SZ08].

5.4. Remark. Maybe from the point of view of the “relative Langlands pro-
gram” this is not quite the full “center”. Notice that if, for 7 € X disc the
space S(X ) disc has multiplicity n > 1 as a G-representation, then there is
a larger ring of G-automorphisms on the direct summand of ¢ (X)) corre-
sponding to the connected component of 7 in Xdisc (call Y this connected
component). However, this ring of G-automorphisms is non-commutative:
it is, noncanonically, the ring C*(Y, Mat,,), i.e. Mat,,-valued smooth func-
tions. The philosophy of the relative Langlands program proposed in [SV]
suggests that this multiplicity should be related to the number of lifts of
the Langlands parameter of 7 to a suitable “X-distinguished parameter”
into the L-group LGx of X; a more precise statement involves Arthur pa-
rameters and packets, and we won’t get into that. That suggests that there
might be a distinguished decomposition of S(X)r qisc into a direct sum of
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multiplicity-free spaces, each corresponding to a lift of the Langlands pa-
rameter of 7 to LG x. As 7 varies in a family, this would give a decomposi-
tion of the corresponding direct summand of € (X )gisc, and the elements of
the G-automorphism ring which preserve this decomposition would form
a commutative ring, isomorphic to as many copies of C*(Y") as the multi-
plicity of 7 in the discrete spectrum. This is not important for our analysis,
but we mention it in order to relate the version of “center” that we are using
here with that suggested by the Langlands picture.

6. CUSPIDAL PART OF THE SCHWARTZ SPACE

6.1. Main result. We have the following analog of Proposition 5.1 and The-
orem 5.2. We start by giving a definition for the cuspidal direct summand
S(X)cusp of S(X).

Recall the canonical quotients: g , = S(Xg)s.disc = Lo,0 = S(X0)o,cusp-

We have seen that the Plancherel hermitian form-valued measure (4.19) on
—disc
X% splits these quotients canonically; the resulting embedding of vector

bundles Lg — Zp gives rise, by the Plancherel formula, to a subspace of
LQ(XQ)cusp of L2(X®)disc-
Let H(G, J) be the Hecke algebra of .J-biinvariant measures on G.

6.2. Proposition. For a function f € S(X), invariant under a compact open
subgroup J, the following are equivalent:
(1) f € L2 (X)cusp;
(2) the H(G, J)-module generated by f is finitely generated over Z(X);
(3) the H(G, J)-module generated by f consists of functions that are zero on
every J-good neighborhood of ©-infinity, for every © # Ax.

Proof. We first prove that the first statement implies the third.
An f € L?(X)!,, has pointwise Plancherel decomposition:

cusp
fz) = f [T (@)dm (6.1)
X cusp

with f* e C°(X )eusps the space spanned by the images of all those mor-
phisms: 7 — C%(X) with image in the space of functions that are com-
pactly supported modulo Z(X). The theory of asymptotics, that we will
recall in the next section, implies that all f* vanish in any J-good neigh-
borhood of ©-infinity, for © # Ax, hence so does f.

The third statement implies the second, because the space of J-invariant,
compactly supported functions that are supported in the complement of
all those J-good neighborhoods is obviously finitely generated over Z(X),
since this complement is compact modulo Z(X), and Z(X) is Noetherian.

To show that the second statement implies the first, we may without
loss of generality assume that J is “good”, i.e. such that the functor of
J-invariants is an equivalence of categories between representations with
non-zero J-fixed vectors, and H(G, J)-modules (cf. [Ber84, Corollaire 3.9]).
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Indeed, if f is invariant under some bigger subgroup K, and its H(G, K)-
module is finitely generated over Z(X), then the same holds for its #(G, J)-
module, which is of the form },, h;H(G, K) - f, for a finite number of ele-
ments h; € H(G, J).

Hence, we assume that J is such, and that the space S := H(G,J) - f
is finitely generated over Z(X). In the case where Z(X) = 1, this im-
mediately implies that S is of finite length as a #(G, J)-module, hence
that f generates a G-module of finite length. Since this module belongs to
S(X) < L*(X), it is completely reducible, with its irreducible summands
obviously in L?(X)cusp-

In the general case, recalling that X is factorizable, and writing it as in
(2.2):

X(F) = | | 2(0)(F) - XU(F),

we notice first of all that the restriction of the space of functions % (G, J)-z- f
to (a certain) X/ is independent of the element z € Z(X). Thus, this restric-
tion is a finite-dimensional vector space which is an H([G, G], [G, G] n J)-
module, which implies by the above argument that it belongs to L*(X i)cusp
(the latter defined as before, replacing the group G by [G, G]). The restric-
tion of the pointwise Plancherel decomposition (6.1) to X; is the pointwise
Plancherel decomposition for f|x,. Hence, z - f | x, is supported on a fixed
compact subset of X; for all ¢, z and almost all 7, which means that fr
is compactly supported modulo Z(X), for almost all 7. This proves that
Je L2(X)cusp~

([

The space S(X) n L*(X)cusp of functions satisfying either of the above
equivalent conditions is the cuspidal part of S(X') and will be denoted by
S(X)cusp- The same definitions hold for a Levi variety X é, and by (2.9) this
defines a subspace S(Xg)cusp = IefS(Xé)Cusp of S(Xoe).

6.3. Theorem. For every connected component Y of X écusp, the orthogonal pro-
jection of an element of S(Xe) to L*(Xo)y,cusp lies in S(Xo). In particular, the
orthogonal projection of an element of S(Xe) to L*(Xe)cusp lies in S(Xe), and
we have a direct sum decomposition:

S(X@) = S(X@)cusp &) S(XG)noncuspa

where S(Xo)cusp = S(Xo) N L*(X6)cusp a1d S(X6)noncusp = S(Xo) N
L2 (X@>é_usp'
Finally, the natural map (4.10) from S(Xe) to sections of L over Xécusp is the
composition of an isomorphism:
cusp

8(X®)cusp = (C[Xé ) E@], (62)
with the orthogonal projection from S(Xeg) to S(Xe)cusp-



40 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

Proof. First of all, by (2.9) and the analogous isomorphism for the bundle
Lo, the theorem is reduced to the case Xg = X, assumed factorizable.

Since our space is assumed to be factorizable, by (2.10) the problem is
reduced to the case Z(X) = 1, in which case cuspidal morphisms: = —
C*(X) have image in S(X). The component L?(X)y,cusp, when Z(X) = 1,
is spanned by the images of all those morphisms for a given 7, and there-
fore orthogonal projection to (the finite-dimensional space) L?(X ){,chsp, for
any fixed open compact subgroup J, preserves compact support. The di-
rect sum decomposition follows.

By the fact that £ is a direct summand of .# (both trivializable vector
bundles), and by Proposition 4.5, the image of the map S(X) into sec-
tions of £ over X¢*P g equal to C[XsP, £]; and the kernel is the space

S(X)noncusp = S(X) N L2(X)Z,,- This proves the last claim. O

cusp*

For future reference, we note that since C*(Xg) is the smooth dual of
S(Xe) using the eigenmeasure that we have fixed (§2.6), there is a corre-
sponding direct sum decomposition:

COO<X9) = COO(XG)cusp (&) COO(XG)noncuspa

where C* (X )noncusp is defined as the orthogonal complement of S(Xg)cusp
and vice versa. Of course, S(Xg)cusp belongs to C*(Xe)cusp-

6.4. The cuspidal center of X. The cuspidal center of X} is the ring:
—~cusp
3P (XE) =CIXE ]

By Theorem 6.3, it acts naturally on S(Xg ), namely via the isomorphism
(6.2) on S(X)cusp and as zero on S(Xe )noncusp-

Again, as in Remark 5.4, we could have a larger, noncommutative ring
acting on S(X)cusp by G-automorphisms, if we wanted to take into account
the multiplicity of the spaces S(X) disc, but we will not consider that.

Part 3. Eisenstein integrals
7. SMOOTH AND UNITARY ASYMPTOTICS

The theory of asymptotics of smooth representations [SV, §4] provides
us with canonical morphisms (which in this paper we will call “equivariant
exponential maps”):

co : §(Xo) — S(X), (7.1)

characterized by the property that for a J-good neighborhood Ng < X of
O-infinity (s. (2.4)) the map eg restricts to the identification of characteristic
functions of J-orbits on Ng induced by (2.4).

On the other hand, the theory of unitary asymptotics [SV, §11] provides
us with canonical morphisms (the “Bernstein maps”):

o : L*(Xe) — LA(X), (7.2)
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characterized by the fact that they are “asymptotically equal to eg” close to
©-infinity (cf. loc.cit. for details).
We can characterize the spaces L2(X) dises S(X )eusp using these maps:

7.1. Proposition. We have:

S(X)cusp = ﬂ ker ‘%|S(X)a
O#£Ax

LX) dise = ﬂ ker 1§.
O#Ax

Proof. For L?(X)gisc this is part of the Plancherel formula of [SV], [Del].
For S(X)cusp, if an element f € S(X) is in the kernel of ef, for all
© # Ax, then the third condition of Proposition 6.2 is satisfied. Vice versa,
if that condition is satisfied, then ef f = 0 for all © # Ax, because, by
[SV, Lemma 5.2.7], there is no H (G, J)-stable subspace of C*(Xg) whose
elements are zero on a J-good neighborhood of infinity. O

Under the assumptions of the present paper (in particular, in the case
of symmetric varieties), and conjecturally always, these smooth and uni-
tary asympotics have spectral expansions in terms of normalized Eisenstein
integrals.

Recall the spaces of discrete and cuspidal o-coinvariants defined in sec-
tion 4; the normalized constant terms (restricted, here, to discrete and cusp-
idal spectra), whose definition will be recalled in the next subsection, are
certain explicitly defined morphisms:

E(g,a,disc : S(X) - f@,o = S(X@)O',diSC7

Eg,o’,cusp : S(X) - ﬁ@,a = S(X@))O',CU.SIN

the latter obtained from the former via the natural quotient maps: £ , —
Lo, which vary rationally in o, i.e. they are really the pointwise evalua-
tions of elements:

—disc

E(B,disc eC <Xé 7H0mG(S(X)’$@)> )

" /Ecusp
Ed cusp € C (X5 Homa(S(X), £o))
—disc
Here Homg(S(X), %o) denotes the sheaf over X5. whose sections
over an open subset U is the space of G-morphisms: S(X) — C[U, %o

—~cusp

(and similarly for L over X§ ).

—=disc
7.2. Remark. The fiber of this sheaf over 0 € X§  is a priori not identical to
Hom¢(S(X), Zo,+), since, in principle, there may be morphisms that don’t
extend locally to an algebraic family.

A priori this sheaf could be infinite-dimensional, but we claim:
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—disc
7.3. Lemma. Hom(S(X), %o) is a coherent, torsion-free sheaf over X§

Proof. Indeed, for every open compact subgroup J the space S(X)” is a
finitely generated module for the Hecke algebra H (G, J) [AAG12, Theorem
A], [SV, Remark 5.1.7]. Therefore,

Homg(8(X), Ze) = lim Homyy (g 1) (S(X)”, £8),
J
—=disc
and the individual Hom-spaces on the right are coherent sheaves over X}

—disc

Moreover, for every connected component Y of X5  there is a compact
open subgroup J such that

Homg (S(X), Zoly) = Homyy g, (S(X)”, Z&|v)
[Ber84, Corollaire 3.9]. Therefore, Homg(S(X), %) is a coherent sheaf over

—disc —~cusp

X é , and similarly for Lg over X é . Moreover, for every Y and J as
above, it is a subsheaf of the locally free sheaf (.Zé] ly)®, where S is a finite
set of generators of S(X)”, and hence it is torsion-free. O

The definition of normalized constant terms and normalized Eisenstein
integrals will be recalled in the next subsection, where we will also prove
the important property of regularity on the unitary set. We will also re-

——unr

call there the notion of a character w € XGL)(C being large, denoted w » 0.
Here we will take them for granted, in order to recall how they are used to
express smooth and unitary asymptotics.

The normalized constant terms are adjoint to “normalized Eisenstein in-
tegrals”, which can be described as morphisms:

E@,O',disc : g@,a - COO(X)7

E@,a,cusp : ZG\,; — C* (X),

varying rationally in 0. (By ~ we denote smooth duals.)
Now we recall the way in which Eisenstein integrals can be used to ex-
plicate smooth and unitary asymptotics. To formulate it, start from the

Plancherel formula for Xe, which canonically attaches to every f € L?(Xo)%,,

_ —disc _
a C*(Xg)-valued measure f7do on X5 . Explicitly, f belongs to the

“discrete g-equivariant eigenspace of C*(Xg)” (i.e. the dual of % ), and
is characterized by the property that for every ® € S(Xg) we have:

(fi®) 12(x0) = L,(\Ldisc L@ £ (2)®(z)dxdo. (7.3)

When f € S(Xe¢) the measure fdo extends to a C*(Xg)-valued differ-

—d

C
ential form on X§. , and another way to describe it is as follows. Recall the
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canonical map (4.9) (adapted to Xg):
—disc
S(Xe) = C[X§ ,Zol,
f = (U = fcr,disc)
(where f, 4isc denotes the image of f in the discrete o-coinvariants), and
the canonical volume form: (,)_do, valued in hermitian forms on Zg
obtained from the discrete part of the Plancherel formula of Xg, s. (4.19).
Then: ) B
fodo = <'7 fU,disc> do
as differential forms valued in the smooth dual of §(Xg).

We are particularly interested in the case when f € S§(Xg)cusp © L*(X0)disc,
in which the form f?do is valued in the dual of Lo, and supported on
ﬁcusp

ec ——cusp

Since the integrand in (7.3) is entire and supported on X5 , we can
shift the contour of integration and write:

(£12) p2xe) = L—fﬁ L@ £7 (2)®(z)dzdo (7.4)

——unr

for any character w of X§. .

7.4. Theorem ([SV, Theorem 15.4.2]). Forany w » 0, if f € S(X@)cusp admits
the decomposition (7.4) then:

cof @) = | vy Bogcum S (@) 7.5)
w—lX(f)
7.5. Theorem ([SV, Theorem 15.6.1], [Del, Theorem 7]). If f € L?(Xo)3%,.
admits the decomposition (7.3), then:

o f(x) = LA Eegise f7 (2)do 7.6)

We need to extend the validity of Theorem 7.4 to the cases considered
in [Del]. The proof of Theorem 15.4.2 in [SV] carries over verbatim, up to
Proposition 5.4.5 which we need to prove in the setting of [Del]:

7.6. Proposition. There is an affine embedding Xq < Y such that for every
O € S(X), the support of e, ® has compact closure in'Y .

Proof. We choose a finite extension E of our field over which G splits, and
we let X, G etc. denote points over E. Then, in [SV, §5.5] there is a filtration
of X defined by certain subsets X, indexed by points x in a rational vector
space ax, and similarly for the spaces Xg. (We point the reader to loc.cit.
for definitions and the notation.) By taking intersections with X, Xg, we
have obtain filtrations for this space.

Similarly, there is a filtration H> of the full Hecke algebra of G deter-
mined by the support of its elements, where )\ lies in a rational vector space
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a endowed with a surjective map: a — ax. We may analogously define a
filtration of the full Hecke algebra of G, by imposing the same conditions
on the support of its elements (considered as a subset of ).

The rest of the argument of [SV] (namely, [SV, Lemma 5.5.5], following
[BK15, Lemma 8.8] and [SV, Proposition 5.4.5]) now follow verbatim, prov-
ing Proposition 7.6. U

We complement this with a statement of moderate growth, that will be
used later:

7.7. Proposition. For any open compact subgroup J the image of S(X)” under
eg 1s a space of functions of uniformly moderate growth on Xeg; i.e. there is a
finite number of rational functions F;, whose sets of definition cover Xg, such that
each f € e (S(X)”) satisfies:

|| < Cp - min(1 + [£])
on Xg (for some constant Cy depending on f).

This is [SV, Proposition 15.4.3], whose proof holds in the general case.

8. DEFINITION AND REGULARITY OF EISENSTEIN INTEGRALS

The normalized constant terms:
Eg,o : S(X) - S(XG)U

are defined as the composition: 75> o Re ,, where Rg , and Tg , are oper-
ators — essentially: spectral decompositions of Radon transforms — fitting
in a diagram:
S(X) (8.1)
R@,o‘

S(Xga 6@)0
T@,U

S(X@>O'

The space XJ is the space of (generic) ©-horocycles of X, classifying pairs
(Q, D), where Q is a parabolic in the conjugacy class opposite to that of Py
(defined in §3) and © is an orbit for its unipotent radical Ug on the open
Q-orbit on X. Saying the same words about Xg would produce a canon-
ically isomorphic variety [SV, Lemma 2.8.1], and the operators Rg and Tg
are defined in completely analogous ways as operators from S(X), resp.
S(Xo), to S(X4,80),. Thus, for notational simplicity, we only describe
below the definition of the former. (From the definition it will be clear
that Tg factors through the quotient S(Xg),, which we noted in the dia-
gram above in order to make sense of the inverse of T. The operator Tg
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is essentially the standard intertwining operator between induction from two
opposite parabolics.)

Let A € Homy, (S(X§), o), where o is an irreducible representation of
Le. Recall from §3 that the Levi variety X} can be identified with the quo-
tient of the open Pg-orbit on X by its unipotent radical Ug. We define a
Po-morphism:

A:S(X) - o®dbe (8.2)
formally (at least) as:
A(®) = A (Xé Sz — <I>(:L‘u)du> ,
Ue
i.e. by integrating over Ug-orbits in the open Pg-orbit and then applying
the operator A. There are two difficulties here: First, integrating over Ug-
orbits requires fixing a measure on them; secondly the result of this inte-
gration will not be compactly supported on X§.

Without fixing measures on Ug-orbits, the operation (Radon transform)
of integrating over them canonically takes values in a line bundle over X5
whose smooth sections we denote by C*(X§, §¢), and admits a noncanon-
ical isomorphism:

C*(X§,00) = C*(X§) ® do, (8.3)

cf. [SV, §5.4.1]. The image of “integration over generic Ug-orbits” will be
denoted by:

Re
S(X) = c*(x§,60)x « C(XE, d0). (8.4)

Inducing this Po-functional to G, we get a G-morphism (denoted by the
same symbol):

R
S(X) = C*(XB, 60)x,
where this notation stands for the corresponding line bundle over X.

For ease of presentation, let us now fix an isomorphism as in (8.3), and
denote by C°(X§) x the subspace of C*(X§) corresponding to C*(X§, do) x:

C*(X§,00)x ~ C°(XE5)x ® de. (8.5)

We will extend the morphism A to C*(X§)x by the usual method of
meromorphic continuation: Let ¢ € 5, and consider the following distribu-
tion on X @L):

S(XE) 30— (A(®),D).

Consider also the invariant-theoretic quotient Xg / Up = spec k[ Xg]
It can be shown (cf. [SV, Lemma 15.3.1]) that it contains X é as an open orbit,
whose preimage is precisely the open Pg-orbit in X. For a character w €

——=unr

Xé(c , considered as a function on Xé (this requires fixing a base point),
we write w » 0 if it vanishes sufficiently fast around the complement of the
open orbit; the set of such characters contains an open subset of the whole
character group.

Up
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Twisting by w we get from A and v functionals:
S(XE) 20 — (A(®-w), D) (8.6)

factoring through o ® w™!-coinvariants.

Then, for w » 0 (not depending on the choice of 7) and any f € C*(X})x,
the distributions (8.6) are in L' (X, f) — i.e., they are represented by mea-
sures w- A*(0) with Sx(g |f|-|w-A*(D)| < oo (Where A* denotes the adjoint of
A with image in the space of smooth measures on X&). That gives a natural
way to extend them to C*(X§) x as the integral

A(f)=| frw-A(D). (8.7)

X§
8.1. Lemma. Forany f € C*(X})x and © € & the integral (8.7) is rational in

——unr
the variable w € X é , with linear poles.
Recall that the notion of “linear poles” was defined in §3.4.

Proof. This follows from the theory of Igusa integrals and the proof of [SV,
Proposition 15.3.6], where it is shown that this integral has the form:

I(w) = fF 10l T,

i
where, denoting by D the complement of the open Pg-orbit in X:

— the f;’s are Pg-eigenfunctions (hence regular and non-vanishing
away from D), and the exponents s;(w) are such that the product
[T, 1£:15“) has eigecharacter w;
— F'is the pull-back of a finite function (i.e., generalized eigenfunc-
tion) on (F*)", for some r, via an r-tuple of “local coordinates”
(91, --,9r), which are rational functions whose divisor is contained
in D;
—  an algebraic volume form whose divisor is contained in D.
As in [SV, Proposition 15.3.6], we now refer to [Igu00] and [Den85, p.5]
for the fact that such an integral has rational continuation with linear poles.
O

8.2. Remark. For symmetric spaces, an alternative proof of rationality and
linearity of the poles was given by Blanc-Delorme in [BD08, Theorem 2.8(iv)
and Theorem 2.7(i)].

Composing this with the map Reg of (8.4) we now get, for every A €
Homp, (S(X§), o), a rational family of Pg-morphisms:

A, :S(X) - o Quw e,

whose specialization at w = 1 (if regular) is the operator A.
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If we let A vary, this defines a rational family of Pg-morphisms from
S(X) to the coinvariant space S(X§),gse; recall that

S(Xé)g = Homyp,, (S(X@Ij), 0)*®o.

Inducing from Pg, and forgetting the isomorphism (8.5), we land in the
coinvariant space:

S(X8,00)s = (Homp, (S(X§,06),0 ®6)” ® oo,

This completes the definition of the map Re ,, and the definition of Tg
is completely analogous. Notice that Tg , factors through the quotient
S(Xe) — S(Xe)s, and essentially coincides with the standard intertwin-
ing operator Ig- (o) — Ig(0):

S(Xe)s = Homo (S(X§),0)* ®Io-0

— S(X8,60), = Homp, (S(X§,d0),0 ®de)* ® Ieo.

Notice that Homy,, (S(X§),0) = Homp, (S(X§) ® de, 0 ® dg) canonically,
and the non-canonical difference between S(X§) ® do and S(X§, de) ac-
counts for the non-canonicity of the choice of measure on Ug for the inter-
twining operator.

We have the following:

8.3. Lemma. For o in general position (in a family of irreducible representations
—=un

of Le twisted by elements of X5 ) the representation Ig- (o) is irreducible and
the operator Tg  is an isomorphism.

Proof. Indeed, this follows from the fact that X, éunr contains “Pg-regular”
characters —i.e. characters which are non-trivial on the image of all coroots
corresponding to roots in the unipotent radical of Pg (s. the proof of [SV,
Corollary 15.3.3]) — that T , is always non-zero (wherever defined), and
that the points of reducibility are contained in divisors of the form {oo®Qw}.,,
where oy is some fixed point in this family and w varies along unramified
characters of Lg satisfying w|5px) = 1 for some root « in the unipotent
radical of Pg, cf. [Sau97, Théoreme 3.2] and also Lemma 11.3 later in the
present paper. g

Hence, the inverses of the operators Tg , form a meromorphic family of
operators, and we can define the normalized constant terms:
E§,=TgnoRoo: S(X) = S8(Xe)o-

The normalized Eisenstein integrals are by definition their adjoints:

—_—

Eo : S(Xo)s — C*(X). (8.8)

8.4. Lemma. The normalized constant terms E§ , (equivalently, the normalized
Eisenstein integrals Eg ) are rational in o, with linear poles.
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Proof. The rationality and linear poles of Rg, Te follow from standard Igusa
theory, as we recalled in Lemma 8.1. The fact that the inverse T,y L of the
standard intertwining operator has linear poles is also well-known, but we
recall an argument here, for the sake of completeness. By abuse of notation,
we will denote by T the standard intertwining operator Ig- (o) — Ig(0),
depending on a choice of Haar measure on Ug. We also denote by Ty the
corresponding operator when the roles of Pg and Pg- are reversed.

The composition Tg- o Tg : Ig-(0) — Ig-(0) is a scalar (o), varying
rationally as o is twisted by unramified characters of Pg. If that scalar is
zero, that representation is reducible. (This is [Cas, Theorem 6.6.2], which
is stated for o cuspidal, but the argument in this direction works for any
0.) As we saw in the proof of Lemma 8.3, the induced representation is
reducible along linear divisors. Thus, the zeros of v and the poles of T,;*
are linear divisors.

Now we project normalized constant terms to discrete and cuspidal quo-
tients of S(Xg),, to obtain the morphisms used in the previous section:

—disc

Eg,disc eC <Xé 7H0mG(S(X)7$@)> ;

—cusp
E(f),cusp eC (X(Ej 7H0mG(8(X)7 £@>> :

Linearity of the poles and their role in the Plancherel formula imply that
the poles actually do not meet the unitary set:

8.5. Proposition. Normalized Eisenstein integrals are reqular on the subsets of
unitary representations, i.e.:

—~disc

Ef e €T <X@ ,HomG(S(X),.Z@)> :

and:

——cusp

Eg,cusp el <X® 7H0mG’(S(X>7 ﬁ@)) .

Proof. Theorem 7.5 shows that for every ® € S(X), and every L?-section
o — v, of Zp, the inner product:

<E(>5,disc(1)7 v>g do

—disc
(see (4.19) for the unitary structure on .Zg) is integrable over X, é

Dividing by a Haar measure do, and assuming that v is actually regular,
we get a function o — <Eg dise s v> which has linear poles. By Lemma
’ o

—disc

3.5, these poles cannot meet the unitary spectrum X§ . O
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Part 4. Scattering
9. GOALS

This part is technically at the heart of our proof of Paley—-Wiener the-
orems. The goal here is to prove Theorems 9.1, 9.2; before we formu-
late them, let us explain what we will mean by saying that for associates
0,02 c Ax,and w € Wx(2,©), a morphism:

S(XG))cusp - COO(XQ)cusp (91)

is “w-equivariant with respect to the cuspidal center” 3C“Sp(Xé) (§6.4), and
similarly that a morphism:

%(XG)disc - %(Xﬂ)disc

is “w-equivariant with respect to the discrete center” 3dise( X, é ) (§5.3).
Conjugation by w induces an isomorphism between the Levi Lg and the

Levi Lo (unique up to conjugacy), and hence between their unitary duals.

It is not a priori clear that this preserves the discrete and cuspidal subsets:

—disc __ ——disc

X5 —X5

—cusp _ —-cusp

Xé — Xé ,
however this will be implicit (and hence will be proven) whenever we say
that a morphism of the form (9.1) is “w-equivariant”. Recall from §6.4, 5.3

that the cuspidal, resp. discrete center of X¢g can be identified with regular,

resp. smooth functions on }gcusp, resp. ;(gdlsc. Thus, w induces isomor-
phisms:

3UP(XE) > 5™ (X)
and:

50 () = 58 (xh),
and by saying that the map is “w-equivariant” we mean with respect to
this isomorphism. Notice that, by duality to S(Xq), the space C*(Xq)
decomposes as a direct sum:

COO<XQ) = COO(XQ)cusp (&) COO(XQ)noncuspa
and the action of ;,CUSP(XSL2 ) on C*(Xq)cusp is defined by duality in such
a way that it extends the action on §(Xq)cusp: for Z € C[X[ . p] we let

7" denote the dual element: ZV (7)) = Z(7) and we define Z - f, for each
f € C*(Xq)cusp by the property:

| oz n=] @or

Xa

for all ® € S(Xq)cusp-
Notice that €2 could be equal to ©, but w # 1, in which case the isomor-
phism between centers is not the identity map.
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Now we state the three main theorems of scattering theory, which will
be proven in the following sections.

9.1. Theorem. Consider the composition if, o ig, restricted to L*(Xe)aisc- It is
zero unless §) contains a Wx-translate of ©, and it has image in L?(Xq)cont unless
Q is equal to a Wx-translate of ©, in which case it has image in L?(Xq)gisc. In
the last case, it admits a decomposition:

P
LQ © L®’L2(X@)disc = 2 Sw’
weWx (Q,@)

where the morphism:
Sw : LQ(Xe)diSC e L2(Xﬂ)diSC

is w-equivariant with respect to 395°(X§), and is an isometry.
The operators S, restrict to continuous morphisms between Harish-Chandra
Schwartz spaces:

Sw : %(X@)disc - C’f(XQ)dism
and they satisfy the natural associativity conditions:
S 08y = Sy forwe Wx(Q,0),w € Wx(E,Q). (9.2)
(In particular, since S1 = 1, they are topological isomorphisms.)

The theorem is part of the main L?-scattering theorem [SV, Theorem
7.3.1], [Del, Theorem 6], except for two assertions: First, the condition on
equivariance with respect to sdise(x é ); indeed, the condition used in loc.cit.
to characterize the scattering maps .S, was w-equivariance with respect to
the action of A’X@ (viaw : Axe — Axq on L*(Xgq)), where A’X@ denotes
the image of the F-points of Z(Lg) via the quotient map: Z(Leg) — Axe.
This condition is slightly weaker than 345¢(X%)-equivariance. Secondly
and most importantly, the fact that the scattering maps (continuously) pre-
serve Harish-Chandra Schwartz spaces. Both of these will be proven in
Section 11.

9.2. Theorem. Consider the composition eg, o eg, restricted to S(Xe)cusp- It is
zero unless € contains a Wx-translate of ©, and it has image in C*(Xq)noncusp
unless 2 is equal to a Wx-translate of ©, in which case it has image in C*(Xgq)cusp-
In the last case, it admits a decomposition:

k
ehoeols(Xo)ws = . Sus
weWx (2,0)

where the morphism:
Sw : S(XG)cusp - COO(XQ>Cusp

is w-equivariant with respect to 3°"P(X k).
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If we denote the subspace of C*(Xq)cusp Spanned by the images of all opera-
tors Sy, by ST (Xq)cusp, as © varies and w € Wx (€2, ©), then there is a unique
extension of the operators S, to the spaces S*, i.e.:

Sw : S+ (X@)Cusp - 8+ (XQ)cuSp
satisfying the natural associativity conditions:
gw/ o Sw = Bw/wfor w e Wx(Q, @), w' e Wx (E, Q) (93)

Both types of scattering operators have spectral expressions, which should
be seen as the analogs of Theorems 7.4 and 7.5; to formulate them, let
w € Wx (1, ©) and denote by w*.Zq the pullback of the vector bundle %,

—disc —disc —disc
to X, under the isomorphisms afforded by w: X§ — X5 . Wewill
—disc

not distinguish between sections of Hom¢ (Lo, w* %) over X5 and sec-

—disc
tions of Homg ((w™1)* Le, %) over XSL2 ; this allows us to compose such
sections for a sequence of maps:
——disc —disc —disc

9.3. Theorem. For each w € Wx (2, ©) there is a rational family of operators,
with linear poles which do not meet the unitary set:

—disc
yw el <Xé ,Homg(,?@,w*fg)) s

preserving the cuspidal direct summands Lo, Lq, such that the scattering opera-
tors of Theorems 9.1 and 9.2 admit the following decompositions:

e Foranyw » 0, if f € S(Xo)cusp admits the decomposition (7.4) then:

Swf(x) = J —cusp Ly’uﬂjflf&<l.)d0' (9'4)
w—lXé
o If f € L*(Xo)disc admits the decomposition (7.3), then:
S (@) = | e S £ @) ©05)
X§

The operators .7, satisfy the natural associativity conditions:
S 0 Sy = S forweWx(Q,0),w' € Wx(E,Q). (9.6)

9.4. Remark. The operator .%,,-1 = .#, ! is a rational section of morphisms:
—disc

Lowe — Lo, as o variesin X, é , and hence its adjoint fu’ﬁ,l is a rational

section of morphisms: .:%:, — Lo ve.

The spaces .:2%:, — g@:(, are considered as subspaces of C*(Xg)
and C*(Xq), respectively, by duality with S(Xg), resp. S(Xq) — recall
that f7 € Zo,.

The proofs of the above theorems will occupy the rest of this part.
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10. EIGENSPACE DECOMPOSITION OF EISENSTEIN INTEGRALS

Recall that the (discrete part of the) normalized constant term gives the
morphisms (1.9):

—disc

E§ aise 1 S(X) > C(X§ L),

If we compose with the equivariant exponential map eq (for some 2 <

Ax), we get morphisms which we will denote by Eg’gis o

—disc
ESSe = Ed gic 0 €0 1 S(Xq) - C(XE L) (10.1)

These morphisms express the asymptotics, in the Q-direction, of normal-
ized Eisenstein integrals. Their projection to the cuspidal part (i.e. the pro-

jection from %5 to L) will be denoted by Eg’,?usp-

We notice that we have an action of a torus Ax n on S(Xq). If we fix
—disc

o€ Xg ,any map:
S(Xa) > Lo, (10.2)

(= the fiber S(Xg)q.disc Of Lo over o) is finite under the Ay n-action, be-
cause .Zp . if of finite length, but we will prove a stronger statement which
takes into account the variation of ¢. This has nothing to do with the Eisen-
stein integrals per se, and in fact we want to apply it to their derivatives
as well (in order to prove that the normalized constant term of the Harish-
Chandra space gives smooth sections over the spectrum), so we will dis-
cuss it in a more general setting.

We have already defined in §7 the sheaf Hom¢g(S(X), %o) which by

—disc

Lemma 7.3 is a coherent, torsion-free sheaf over Xéc ; recall that its sec-
tions over an open subset U are, by definition, G-morphisms: S(X) —
C[U, Zo] — cf. also Remark 7.2. By the same argument as in Lemma 7.3,

the sheaf:
M := Homg (S(Xq), Zo)

is also coherent and torsion-free. -
Let us fix a connected component Y < X é. We let:

MY =C (Y, HOIHG (S(XQ),X@)) = HOHIG (S(XQ),(C(K gg@)) (103)

denote the rational global sections of this sheaf over Y — they form a finite-
dimensional (by coherence) vector space over the field Ky := C(Y').

This vector space carries a smooth A x o-action via the action of this torus
on §(Xq). Thus, over a finite extension of Ky, it splits into a direct sum of
generalized eigenspaces. We will describe the eigencharacters.

Let 7' denote the unitary dual of the “universal” split torus 7', defined as
the maximal central split torus of the Levi quotient of the minimal parabolic
of G. In what follows, characters of a Levi Lg are considered as characters
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of T' via the embedding of the minimal parabolic into the parabolic Pg.
Thus, we have restriction maps:

— yunr —~unr ~

X§c — Lec —Tt, (10.4)
and recall that there is also a quotient map:
Z(La)" — Ax,, (10.5)

whose image at the level of I'-points we are denoting by A’y q,.
For a (not necessarily unitary) character x € T¢ and an element w € W,
r

S~

it may happen that forall w € X5 the restrictions:

Y (xw)l (L)

factor through the quotient map (10.5). For example, this is the case if x
arises as the restriction of a character in (10.4), and w € Wx (€2, ©). We will
then write:

)y,
and whenever we use this notation we will implicitly mean that the char-

acters do factor through Ay (. This is also implicitly assumed for the char-
acters that appear in the following;:

10.1. Proposition. Choose a base point o € Y, and use it to construct the finite

cover: ;(\éum Sw—oQuweY. Let Ky = C(;(\éum) be the corresponding finite

field extension. Then all eigencharacters of A’ o, on My are defined over Ky
More precisely, ift : Le — (C[)/(gum]X c I%; denotes the tautological charac-

ter a — (w — w(a)), there is a character x € T, with restriction to Z(Le)° equal
to the central character of o, and a subset Wy < Wp,,\W such that the operator:

[T (z="0d)2) (10.6)

'LUGWl
annihilates My @y, Ky, for every z € A .
We used t for the tautological character of Lg into I€§ in order to reserve
the symbol t for the tautological character:
t: Al)(,@ — C[Y]X c IC;,
a — (0 — xo(a)), where x, denotes the central character of o.

Proof. Since Zg is (non-canonically) a direct sum of a finite number of
copies of Ig- () (the sheaf over Y whose local sections are regular sections
o' — ¢(d’) € Ig-(0")), it is enough to prove the proposition for the module:

v := Homg (8(Xq),C(Y, Ig-(e))) .
We have:
\ @y Ky © MY, i= Homg (8(X0), C(X5¢ To-(0®9)))
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therefore it is enough to show that M}, decomposes into a direct sum of
generalized eigenspaces as in the statement of the proposition.

We can represent o as a subrepresentation of a representation parabol-
ically induced from a supercuspidal 7, and then Ig- (0 ® w) becomes a
subrepresentation of /p(7 ® w), where P is a suitable parabolic, and 7 is
a supercuspidal representation of its Levi quotient L.

Notice that:

Homg (S(Xq), Ip(T ®w)) @ Homg (Ip(F ®@w ™), 0" (Xq)) ~

~ Homy,, (Ip(F @ w™ Hg-,C*(X4)),
where we recall that the index - denotes normalized Jacquet module with
respect to the parabolic P .
The Jacquet module Ip(7 @ w™1)q- is Z(Lg)-finite, and it is annihilated
for every z € Z(Lq) by the product:

(2 =" 0w) (=)

we(Wr,\W(L—Lg)/W¢)

(corresponding to its canonical filtration in terms of P, \G// P-orbits), where
W (L — Lgq) denotes the set of elements w € W with YL < Lq, and . is
the central character of 7. (We have implicitly chosen here a maximal split
torus and hence a class of standard Levis, for the Weyl group to act on
them.) Moreover, for w in general position, the statement will remain true
if we restrict the product to the subset (W ,\W (L — Lq)/Wr)* of those

cosets for which the restriction of elements of “(y,X§) to Z(Lg)° factors
through the quotient (10.5); indeed, Z(Lg)°? acts on C*(X%) through the
quotient Z(Lq)? — A%, and therefore this has to be the case for any
generalized Z(Lg)-eigenspace of the Jacquet module Ip(7 ® w™!)g- on
which a morphism Ip(7 @ w™1)g- — C*(X%) is non-zero.

Notice that at the step (*) we have used a duality which inverts charac-
ters of A’y ,, therefore the module Homg (S(Xq), Ip(T ® w)) will be anni-
hilated by:

(z =" (x7w)(2)) -

wE(WLQ\W(LHLQ)/WL).

(We could alternatively have used second adjointness from the begin-
ning, to analyze the A’y ,-action in terms of the Jacquet module Ip(T®w)q.)

This essentially completes the proof of the proposition, except that the
proposition was formulated with w an element of W, \W (instead of W ,\W /W)
and x a character of T (instead of ., a character of the center of the Levi
L of P); this formulation was chosen for uniformity, since P and L depend
on choices, and the component of the spectrum under consideration. We
may arrive at the statement of the proposition by choosing representatives
in Wi,\W, and choosing a character x of 7" which restricts to the character
X- of the maximal split torus in the center of L. O
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10.2. Remark. As we have seen in the last sentence of the proof, there is some
choice involved in the subset W7 < Wp,\W. Notice, however, that for
cosets represented by elements wx € Wx (€, ©) there is no choice involved,
since Wr,wxWro, = Wr,wx. Moreover, for those elements we have, by
construction:

“(xw) = the Lg-central character of “(ow) (10.7)

which, automatically, factors through A’Xﬂ.

We can think of the eigencharacters described in the last proposition as
A
correspondences Yo --» Aly g .:

—=unr

we XL (10.8)

T

c®uweYc Wi(Xw)‘A’)(QeA/)(,QC'
As a corollary of the proposition:

10.3. Corollary. The space My ®yc, Ky decomposes in a direct sum of generalized
eigenspaces for the action of A'x ¢, with eigencharacters ' (xt) as in the statement
of Proposition 10.1.

Proof. Indeed, choose a finite number of elements of A’y (, so that they dis-

tinguish the distinct characters *(xt). The space My ®x,. Ky decomposes
in a direct sum of joint generalized eigenspaces of those elements, and by
the proposition those have to be generalized eigenspaces for A’y . O

10.4. Derivatives. Now recall from 4.4 that % carries a flat connection,
which depends (in a very mild way) on choosing a base point x € X. The
resulting action of D(Y') (the ring of differential operators on Y on ele-
ments of the space:

My = Homg (S(Xq),C(Y, %))
does not preserve G-equivariance, but it does preserve eigencharacters up
to multiplicity:

Lemma. Let E € My and let Wy < Wy, in the notation of (10.6), be any subset
such that the corresponding operator:

Pp(z) =[] (= "(x0)(2))
weWpg

annihilates E, for every z € A'x ¢,
Let D € D(Y), so DE € Hom (S8(Xq),C(Y, %)). Then a power of Pg(z)
(depending only on D) annihilates DE, for every z € Al .
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Proof. For every fixed z, the polynomial:

Pg.(x) = [] (z="(xH)(2)

’LUEWE

is divided by the minimal polynomial of the operator z acting on E. The
ring D(Y") acts on polynomials with coefficients in Ky, simply by acting on
the coefficients. If D € D(Y') is of degree n, then the commutator:

[D, P
lies in the ideal generated by Pg .; therefore, Ppt!(2) = Pp*!(z) annihi-
lates DE. O

10.5. Weak tangent space of a family. In order to obtain more precise in-
formation about the characters “(xt) that appear in the annihilator of Eisen-
stein integrals and their constant terms, we need a way to encode represen-
tation-theoretic information on families of representations. This informa-
tion will be a “Lie algebra” version of the usual notion of supercuspidal
support.

Recall that an irreducible representation o of G is a subquotient of a
parabolically induced supercuspidal representation 7 of a Levi subgroup
L, and the pair (7, L) is called the supercuspidal support of o. It is well de-
fined modulo G-conjugacy (we think of 7 as an isomorphism class of rep-
resentations), and the set of G-conjugacy classes of such pairs has a natural
orbifold structure. Notationally, we can also write (7, P) when P is a para-
bolic with Levi subgroup L.

Let us denote by S P the space of supercuspidal pairs (7, L) and by SC¢
the set of their equivalence classes, which we may consider either as an
orbifold or (by invariant-theoretic quotient) as an affine variety. The fiber
of SPg over a fixed L is acted upon with finite stabilizers by the character
group L™, and therefore the tangent space of any point on the fiber can be
canonically identified with the Lie algebra of L.

A choice of parabolic P with Levi L gives an embedding ﬁ%m c fléﬂr,
where A is the universal Cartan, and hence of the Lie algebra [ of the
former into the Lie algebra af = Hom(A4,G,,) ® C of the latter. For a pair
x = (1,L) € SPg we will call weak tangent space W1, the image of (¢ in
the set-theoretic quotient af./IW. It does not depend on 7, neither on the
choice of parabolic P.

Any two points in S Py in the preimage of a point in SC¢ have the same
weak tangent space, thus this notion descends to the orbifold SC¢. More-
over, if by “tangent space” T, of a point  on an orbifold we mean the
quotient of the tangent space of a preimage on the covering manifold by
the finite stabilizer, there is a well defined map:

T, - Wig,

atevery z € SCg.
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Now, consider a set Z of finite-length representations of G. Let Z’ be
the set of isomorphism classes of irreducible subquotients of elements of
7', and let SC(Z) < SCq denote the set of supercuspidal supports of
elements of Z'. Then at every point z € SC;(Z) we have a well-defined
subset:

WTG’x(I) C WTG@ c OE/VV,
defined as the union of the weak tangent spaces at = of all embedded sub-
orbifolds: S < SCq(Z) < SCg. We use “embedded suborbifold” to re-
fer to the image in SC¢ of a smooth embedded submanifold of a finite
(smooth manifold) cover of SC¢. Equivalently, W1 ,(Z) denotes the set
of images in the “tangent space” T}, of the derivatives at zero of all smooth
one-parameter families:
v:(—€€) = SPq

with [y(0)] = z and [y((—¢,€))] = Z/, where [e] denotes the quotient map
SPg — SCq.

The union of the spaces W1 ,(Z) over all x € SC(Z) will be called, for
brevity, the “weak tangent space of Z” instead of “weak tangent space of
the supercuspidal support of Z”, and denoted W1(Z).

In what follows, we will apply these notions to Levi subgroups, instead
of the group G. Notice that for a Levi subgroup L, the corresponding notion
of weak tangent space for SC7, gives a subset of af /W1, where W, is the
Weyl group of L. If L = Lq for some €2 = Ax we will be using the index (2
instead of Lg.

Let 2 ¢ Ax. Let J be a family of G-morphisms {S(Xq) — 7}, where
7 varies over a set Jy of G-representations of finite length. Each such mor-
phism is equivalent, by second adjointness, to a morphism:

S(X§) — ma, (10.9)
where 7 denotes the Jacquet module of 7= with respect to Po — also of
finite length. Let Z denote the union, over all = € Jy, of the images of the
maps (10.9). We define:

SCo(J) = SCa(I)
and
WTa(J) = WTq(Z),
the latter whenever SCq(J7) is a suborbifold of SCy,.
These definitions can also be given without appealing to second adjoint-
ness, of course; it suffices to dualize the morphisms:

T — C”(Xq)
and to use Frobenius reciprocity, as in the proof of the preceding proposi-
tion.

—=disc
In the notation of the previous subsection (Y < X, é , etc), an element
E of Hom¢g(S(Xq), C(Y, Ze)) will be considered as a family 7 as above
by considering the evaluations of its points wherever they are defined, and
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we will also be using SC(E), WT'(E) to denote the supercuspidal support,
resp. weak tangent space, of this family.
In this language, the proof of Proposition 10.1 shows:
—disc
10.6. Corollary. Let Y = X5 be a connected component and let E € My =
Hom¢(S(Xq), C(Y, Zo)).

Then: e
sCa(E)yc ) P @-Xéc )], (10.10)
geG(x,Lq)
WToE)= | [“(aked)] (10.11)
weW/'cWy,\W
where:

e x is a supercuspidal pair for Le (i.e. x € SPg);
o G(z, Lq) denotes the set of elements in G carrying the Levi L of x into
Le;

——unr
a% o c denotes the Lie algebra of X, S, which can also be identified with

the Lie algebra of A/X,\@C (hence the notation), inside of af;
[] denotes classes in SCq, resp. WTgq;
o W' denotes some subset of the given set.

Proof. The proof of the corollary is essentially identical to that of Proposi-
tion 10.1, if we replace the action of Z(Lq) (or its quotient A’ ) by that of
the Bernstein center 3(Lq). The reader should notice here that, although we are
going to use the structure of the Bernstein center of Lq as the ring of polynomial
functions on the variety of supercuspidal supports, the present corollary will only
be used in the proof of Proposition 12.1 when Q # Ax; thus, we are not applying
a circular argument when reproving the structure of the Bernstein center in §16.1,
since one can establish it inductively on the size of the group.

In the notation of the proof of Proposition 10.1, with ¢ a base point in
Y, choosing a basis for Homp (S (XGL))7 0)disc We can identify the bundle

—_

Lo o@e OVEr Xéc ' with a subbundle of Ip(7 ® )", for some r, and hence
E with a rational section of the bundle:
Homg(S(Xq), Ip(t ®e)"). (10.12)
At each point w where it is regular, we get a specialization E,,, whose
dual, E} is an element of:
Homg(Ip(F @ w™ )", C*(Xq)) = Homr,(Ip(f @ w 1)§,-, CP(XE)).

The Lg-supercuspidal support of the Jacquet module Ip(7®w 1) con-
sists of the classes [(“(F®w™!),“L)], where w ranges in W ,\W (L —
Lq)/Wrp.

If we recall that 3(Lg) is the set of regular functions on the variety SCq,
each such w determines by pull-back a character:

tw :5(LQ) — lay,
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and hence as in Proposition 10.1 and Corollary 10.3, E' decomposes into its
generalized eigen-components with respect to the 3(Lq)-action, with those
eigencharacters t,:
E= ) EY (10.13)
weR
where by R we denote a minimal subset of representatives R — W, such
that the corresponding generalized eigensummands £ are non-zero.

Thus, there is a (nonempty) Zariski open subset U < X éznr such that for
w € U the supercuspidal support of Eq, : S(X§) — Ip(r®w)}, is precisely
equal to the set of classes [(“(T ®w),"L)] with w € R.

It is easy to see that the supercuspidal support of Eq , atall points where
it is defined is contained in this set of classes. Indeed, if E is regular at

——unr

we Xk5. ,and we group together the summands E" of (10.13) for which
the specializations of the corresponding eigencharacters t,, coincide at w
(equivalently, the classes [ (7 ® w), " L] coincide), then the elements of this
coarser decomposition of E are also regular at w, and we get the same
set of supercuspidal supports. (However, the summands could vanish at
some points, which explains why “precisely equal” was replaced by “con-
tained”.)

The corollary now follows. g

10.7. Generic injectivity. We recall the notion of “generic injectivity of the
map: a%/Wx — a*/W” in the language of [SV, §14.2] (for brevity we will
just say: “generic injectivity”), where a%; = Hom(Ax,G,;,) ® Q < a* =
Hom(B, G,,) ® Q. We will also introduce a stronger version of this notion,
to be termed “strong generic injectivity”, and will show that it holds for
symmetric spaces.

For each © ¢ Ax we let:

ak g := Hom(Ax e,Gn) ®Q ~ Hom((Xé)um, Gnm) ®Q,
which is embedded into a’ = a% / by the map induced from:
(Xé)unr - (Xé)unr.
We say that X satisfies the condition of generic injectivity if the following

holds:

Whenever the action of an element w of the full Weyl group
W on a* restricts to an isomorphism:

a},e — a},Q
(for any ©,Q2 < Ax, obviously of the same order, and pos-

sibly equal), there is an element of the little Weyl group Wx
which induces the same isomorphism.

We will say that X satisfies the strong generic injectivity condition if the
following holds:
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Whenever an element w of the full Weyl group W on a* re-
stricts to an injection:

a?(,@ - u?(,ﬂ
(for any ©,Q < Ay, obviously with |Q2] < |©]) there is an
element wx € Wy such that:

wX’a}"(,@ = w|a>)|<(7(_). (10.14)

Remember from §2 that we assume throughout that the strong generic
injectivity condition to hold for X, even though we will for emphasis re-
peat it in the main results of this subsection.

The condition holds for all symmetric varieties, essentially by [Del, Lemma
15]. Together with the wavefront and strong factorizability assumptions
(both of which hold for symmetric spaces), it guarantees the validity of the
full Plancherel decomposition [SV, Theorem 7.3.1], [Del, Theorem 6].

10.8. Lemma. (1) If X is a symmetric variety, then it satisfies the strong
generic injectivity assumption.
(2) If X satisfies the strong generic injectivity condition, the element wy'
in the definition of this condition can be taken to map the set of simple
spherical roots ) into ©.

Proof. By [Del, Lemma 15(iv)], for every Z € a}@ there is an element wy €
Wx such that:
Wy (Z ) = w(Z ) .

Since Wy is finite, an element wx € Wx will be equal to wyz for a Zariski
dense set of elements of a}}’@, but then wx will actually work for all ele-
ments of a% .

The second claim follows from known root system combinatorics: Think-
ing of a}‘(’@ and a}@ as the orthogonal complements, in a%, of the sets ©,
resp. ), for any element wx € Wy which maps a% g into a’ , we neces-

sarily have that w'Q2 is in the linear span of ©. The set of elements in Wy
which satisfy (10.14) is a union of Wx,,\Wx /Wx,-cosets. (It is actually a
single coset, but that doesn’t matter here.) If we choose a representative
wx of minimal length for one of these cosets, then:

wx© > 0and wy'Q > 0.

The second statement implies that w ' 2 belongs to the positive span of ©,
since it is already known to belong to its linear span; the first statement,
then, implies that it actually belongs to ©. O

10.9. Remark. The strong version of the generic injectivity condition will
only be used to prove that “scattering maps preserve cuspidality”, cf. Propo-
sition 12.1. This result has been proven in a different way for symmetric
varieties by [CD14], relying heavily on the structure of these varieties. In
each specific case, the strong generic injectivity condition is easy to check
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once one knows the dual group of the spherical variety; of course, it would
be desirable to have a proof of this property in some more general setting.

For the following lemma we identify aﬁ(’Q, as we did before, with a sub-
space of afy := Hom(P(g ,Gm) ® Q < a*; on the other hand, we have a
restriction map from characters of the Borel B to characters of the center
Z(Lg) of the Levi of Py, ; we will write:

Centg : a* — a8y ~ Hom(Z(Lg),G,,) @ Q
for the corresponding map.
10.10. Lemma. Assume the strong generic injectivity condition for X. Then:
(1) For w e W we have * (a},egc) < a¥ g iff wis equivalent in W /Wi
to an element wx € Wx with w)}lQ c O.
(2) Forwx € Wx(Q2,0) and w € W we have:

Centq o wx| = Centg o w| =
Q X‘ax,e,c Q |“X,e,<c

iﬁ‘w = wx in WLQ\W.

We prove the lemma below. If the meaning of the lemma is not imme-
diately obvious, the following corollary has a representation-theoretic con-
tent related to supercuspidal supports, more precisely their “weak tangent
spaces”. Recall that we denoted by t : Ay o — Ky the tautological charac-
ter.

10.11. Corollary. (1) Let Y Xédlsc be a connected component, and define
My as before. Then the only components on the right hand side of (10.11)
which are contained in a% g ¢ are those indexed by classes of elements
wyx € Wx with w;(lQ c 0.

(2) The eigencharacters *t, w € Wx (€2, ©), appear in (10.6) with multiplicity
one. The same holds if we replace A’y ¢, by any subgroup of finite index.

Strictly speaking, the discussion up to this point implies that the eigen-
characters corresponding to elements of Wx (2, ©) appear with multiplicity
at most one. However, scattering theory implies that they do appear — al-
ready in the asymptotics of Eisenstein integrals. We omit the details, since
we will encounter this point later.

Proof of Lemma 10.10. For the first statement, we notice that if * (a}@’(c) c
ak oc then, by strong generic injectivity, there is a wx € Wx such that
wy! - w fixes all points of a o

However, it is known that a’ o contains strictly Pg-dominant elements
[SV, Proof of Corollary 15.3.2], i.e. elements that are positive on each coroot

corresponding to the unipotent radical of Pg. Therefore the only elements
of W which act trivially on it are the elements of W . Hence, w € wxWr,.



62 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

Since wx takes a% g into a¥ ), its inverse must map (2 into ©, by properties
of root systems.

For the second statement we notice that in terms of an orthogonal W-
invariant inner product on a*, the operator Centq, represents the orthogo-
nal projection onto ag,. On the other hand, wx|yx _ _ already has image in

ak oc © ag ¢ therefore the only way that

Centq o w = Centn o w
Q X‘aBk(,(—),C Q |a§’@,c

is that U}‘agk( oc also has image in a’ ,. By the first statement, this implies
that w is equivalent to wx in Wi, \W. O

Combining Proposition 10.1 with Corollary 10.11, and observing that the
eigencharacters “t, w € Wx (2, ©), are already defined over Ky, we arrive
at the following strengthening of Corollary 10.3:

10.12. Proposition. Assume the strong generic injectivity condition for X. The
Al g-module My admits a decomposition:

My= H My o M, (10.15)
wEWx(Q,@)

where MY is the (honest) eigenspace with eigencharacter “t, and the space M3t
contains none of these eigencharacters.

Of course, this proposition is vacuous unless © ~ €.

10.13. Polynomial decomposition of morphisms. We now return to the
torsion-free sheaf
M := Homg (S(Xq), ZLo),

—disc

whose rational sections over a connected component Y < X5 we de-
noted before by My . We also denote by Mty the restriction of M to the
connected component Y.

Let us discuss to what extent the decomposition of Proposition 10.12 ex-
tends to a decomposition of this sheaf — the goal being to determine the
poles that might get introduced when decomposing an element of My as
in (10.15). Our approach is similar to [DH14, Proposition 2], based on the
theory of the resultant, which in turn was inspired by the proof of Lemma
VI.2.1 in Waldspurger [Wal03], except that by considering all elements of
Al q simultaneously we can eliminate some unnecessary poles.

Namely, let W} be as in (10.6), and consider only those pairs wx € Wx (2, ©),
w € Wy for which the equality:

OOy, = D) (10.16)

——=unr
represents a divisor in X5, . Notice that not all pairs (wx,w) as above
represent a divisor. For example, if © = Q = (J so that Wx(£2,0) = Wy,
and w = 1, only the pairs (wx, 1) with wy a reflection in Wx represent a
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divisor. The images of these divisors under the quotient map X5. 3w —
o ®@w € Y¢ are divisors on Y, and we let U denote their complement.

10.14. Proposition. Assume the strong generic injectivity condition for X. The
restriction My of the sheaf M = Homg (S(Xq), Lo) over U decomposes as a
direct sum of subsheaves:

mU: @ mt'l[? @ mrest’
wEWX(Q7®)

where I denotes the subsheaf of Ay g-equivariant morphisms with respect to
the map w : Ay o — A o

10.15. Remark. We can be more precise about the poles of the decomposition
(10.15). Let E be any rational section of My (i.e. £ € My), and for simplic-

ity let us consider its pull-back to X} Z (to be denoted by the same letter).
Let f be any function on Y whose scheme-theoretic zero locus contains the
divisors (10.16); for example, we could take f to be defined by any element
z € Ay g as follows:

F=1T00E) = (d)(2)
where the product ranges over all palrs (wx,w) defining divisors as above.

(Both sides are functions on Xg L .) Then the summands in the decompo-
sition 10.15 of f - E have no more poles than E itself.

We will later see (Corollary 11.4) that for the objects that we are inter-
ested in, namely the normalized constant terms, the poles of the above form
where w is also in Wx (2, ©) actually do not show up.

Proof. Clearly, by the previous section, the sheaf 9ty admits a direct sum
decomposition into a finite number of eigenspaces for the maximal com-
pact subgroup of A’y . Each eigencharacter defines a connected compo-

nent of A/’X\Q We fix such a component V' and consider 9y as a sheaf over
Ve x Yc. (Elements of A’y o now restrict to polynomials over V¢.)

Set R := C[V x Y. The annihilator of My in R is the ideal Z generated
by the “minimal polynomials” (10.6), where z ranges over all elements of
Al - (Clearly, a finite set of elements generating A’y , modulo its maximal
compact subgroup sulffices.)

The spectrum of the ring R = R/Z has a finite number of irreducible
components, parametrized by orbits of the distinct factors of (10.6) under

—=unr

the Galois group of the extension (X5 /Y). We denote by Z,, the compo-
nents corresponding to w € Wx (€2, ©), and by Z,es the union of the rest of
the components; we use P, Pt for the corresponding prime ideals.

Let YZ™ < Y denote the union of the images of all subvarieties given
by equations of the form (10.16), whether these equations represent divisors
or subvarieties of larger codimension. For any f € R which is not a zero
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divisor and vanishes on Y, consider the localization:

My [f7']
which is a sheaf over the spectrum of R[f~1].

Notice that the components Z, — V¢ x Y¢ have no intersection lying
over the complement of Y:"#; therefore, R[ f ~1]is a direct sum of integral
domains, and we have a corresponding decomposition of the identity ele-
ment:

1= 2 Tw + 1resty (1017)

where 1, € R[f~!]. This gives a decomposition of 9y over the comple-
ment of the zero set of f. Since the only requirement on f was that it van-
sing

ishes on Y- °, we get a decomposition of Sﬁyc\ygmg:

w rest
Y e ® My ygme

Finally, recall from the proof of Lemma 7.3 that 9t = Hom¢ (S(Xq), Ze)

is a subsheaf of a locally free sheaf over Y. A section of % defined in
a neighborhood of a subvariety of codimension > 2 extends (uniquely) to

this subvariety. Therefore, the above decomposition of S)JIYC\YSmg extends
. C
to the complement of all divisors contained in Y2, i.e. to U. a
We return to the asympotics of the normalized constant terms introduced
in (10.1):
#,Q " /zdisc
E@,disc = E@,disc ceq: S(XQ> - (C(XQ 739)-
10.16. Corollary. Let Q2 ~ ©. There is a decomposition:
Eg,gisc = Z w + /Subunit, (1018)
weWx (@79)

where all summands are elements of:
—disc
M = Homg (S(XQ),(C(Xé ,f@))

with the following properties:

(1) The operator .#,, is an eigenvector of A’y o on M; more precisely, it is
w-equivariant with respect to the action of Al ), i.e. A  acts via the
character *“t.

(2) The operator .#subunit has no w-equivariant direct summand with respect
to the action of A’y ¢, for any w € Wx (Q, 0).

—disc

(3) The poles of all summands are linear; for each component Y < X§
they are contained in the union of the poles of E§ 4. and the images of
divisors given by equations:

OOy, = (D)
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for those pairs wx € Wx(Q,0),w € W, in the notation of (10.6) for

which this equality represents a divisor in X

The statements of this corollary will be strengthened in the next couple
of sections, in order to arrive at the results of §9. The notation .Zsubunit 1S
due to the fact that, as we will see in the next section using L?-theory, the

—disc

exponents of these morphisms over the unitary subset X5  are “subuni-
tary”.

10.17. Explication of the fiberwise scattering maps. Here we would like
to emphasize here that the fiberwise scattering maps ., play the role of
“functional equations” between the normalized Eisenstein integrals. We
use the fact that these maps are equivariant with respect to discrete cen-
ters, which is a yet-unproven statement of Theorem 9.3, because we are not
going to use the following result anywhere.

10.18. Proposition. Let O, be associates, and w € Wx(Q,0). The corre-
—disc

sponding fiberwise scattering map .7, € C <Xé ,Homg (Lo, w* Zq) | is the

unique rational family of maps making the following diagram commute (for almost
—disc

aloe X5 ):

S(X@)a,disc (1019)

%

S(X) Fvo

*
h

S(XQ)“’U,disc
Proof. We have 1o f = 10Sy f. By Theorem 7.5 and (9.5) this becomes:

G * G
f/\Ldisc E@,o’,discf do = ‘[/\Ldisc EQ,“’O‘,diSCwalf do,
X(—) X(—)

and disintegrating over o we get that Fg , gisc and Eq ws disc © <, _1 must
be equal for almost every o, hence equal as rational functions of o. Using
(9.2), the proposition follows by passing to adjoints. O

This proof is actually rather indirect, to avoid the discussion of “small
Mackey restriction” of [SV, §15.5]; it can be inferred directly from this dis-
cussion, when “injectivity of small Mackey restriction” is known (such as
in the case of symmetric varieties).

This result is essentially equivalent to the description of the constant
term of Eisenstein integrals in terms of “ B-matrices” and intertwining inte-
grals in [CD14, Theorem 8.4]; that work can be considered as a qualitative
study of these functional equations in the case of symmetric spaces, which
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among other things gives some results that we prove here without rely-
ing so much on the structure of symmetric varieties, such as the fact that
“scattering maps preserve cuspidal summands” (Theorem 9.3).

11. SCATTERING: THE UNITARY CASE

The unitary asympotics (adjoints of Bernstein maps) were obtained in
[SV, §11.4] by filtering out the unitary exponents of the Plancherel decom-
position. More precisely, given a (smooth, say) function ® € L?(X) with
Plancherel decomposition:

B(x) = f o7 () (),

G
then it is known that e, ®™ is A x o-finite with only unitary and subunitary
exponents (generalized eigencharacters) for p-almost all 7. We recall the
notion of subunitary exponents for a morphism from S(X¢q) to a smooth rep-
resentation V: it means that the morphism is Ax o-finite, and the image of
its dual: V' — C®(Xgq) has subunitary exponents under the action of Ax o,
i.e. generalized characters which are < 1 on A}Q (For the definition of
A};Q see §2.)
By construction we have:

2(®) = L (5,2 (), (1L.1)

where (e£®™)"" refers to isolating the part of (¢ ®™) with unitary gener-
alized exponents, cf. [SV, Proposition 11.4.2].

Moreover, [SV], [Del] have proven Theorem 9.1 restricted to L?(Xg )aisc
and with the modification that the condition of w-equivariance with respect
to 395¢(X L) be replaced by the weaker condition of w-equivariance with
respect to A,X,e- In other words,

L) O 1Ol L2 (Xo)uiee = Z Sws (11.2)
weWx (Q,G))

with S, being w-equivariant with respect to A’y o.
Combining all the above with Theorem 7.5 and Corollary 10.16 we ob-
tain:

—disc

11.1. Proposition. Let ©,Q < Ax. Forevery o € X5 (hence unitary), the
Ax q-exponents of Eg’ﬁisc are unitary or subunitary.
Let © ~ Q. Consider the operator .#subunit 0f Corollary 10.16. For every

—disc

o€ XL (hence unitary) where this operator is defined (regular), the resulting
morphism:
S(Xa) = Zoo

has subunitary exponents.
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We have:
Lgklb@f(x) = Z J‘/zdisc yq:_lf&(x)do- (11'3)
)7 Xe

weWX(Q,Q

Proof. In the notation of Theorem 7.5:
16 (@) = | _ g chPomanct (@)do
X@

and therefore, by the above, ef, Eg , disc can only have unitary or subunitary
Ax o-exponents (for almost all ); hence, the same holds for .“supunit-

On the other hand, (11.1) together with the property of w-equivariance
with respect to A’y g of the maps S, of (11.2) implies that all unitary A’y o-
exponents of ef, Eg  disc are contained among the exponents of the .,’s.

This proves (11.3), and it shows that .”supbunit Only has subunitary expo-
nents. O

This proves assertion (9.5) of Theorem 9.3: the scattering operator Sy, :
L*(Xe) — L?(Xq), i.e. the w-equivariant part of 1{.e f with respect to the
action of Ax g, is given by:

Suf(z) = fXA S f7 (@) do.

The following proves the assertion on 33¢(X})-equivariance of Theo-
rem 9.1; assertion (9.6) of Theorem 9.3; and the regularity statement of The-
orem 9.3. The regularity statement, i.e. the fact that the operators ., and
hence also -#subunit by Proposition 8.5, are actually regular on the unitary
set, means that the condition “where this operator is defined” is superflu-
ous in Proposition 11.1.

11.2. Proposition. Let © ~ Q, w € Wx(0,Q). For every o € Xégsc where the
operator .y, is defined, the resulting morphism:

S(Xq) — Lo

factors through the discrete " o-coinvariants S(Xq)we disc = -Zo,w o and is gener-
ically an isomorphism between Lo w, and Lo . In particular, w induces an

—disc —disc

isomorphism: X5 = Xk
—disc

Thus, ./, is a rational section of the sheaf Homg(w* %0, Lo ) over Xéc s
poles do not meet the unitary set, i.e.:

—disc
yw el <Xé ,Homg(w*$9,$@)> . (11.4)
The operators .7, satisfy the natural associativity conditions:
S 0Ly = Sy forwe Wx(Q,0),w' € Wx(E,Q).

The scattering map S, is w-equivariant with respect to the discrete center
3(XE)-



68 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

For the proof of the proposition we will need the following lemma:

11.3. Lemma. Suppose that 11, o are non-isomorphic, irreducible representations
of the Levi quotient of a parabolic P, and that X is a subtorus of the unramified
characters of P containing P-regular characters (i.e. those which are non-trivial
on the image of all coroots corresponding to roots in the unipotent radical of P).

Then, for w € X in general position, Ip(Ti @ w) and Ip(To ® w) are irreducible
and non-isomorphic.

Proof. The irreducibility statement is [Sau97, Théoréme 3.2] — notice that
irreducibility of the induced representation is a Zariski open condition [Ren10,
V1.8.4, Proposition].

Suppose Ip(11 ®@w) ~ Ip(T2®@w) for w in some Zariski dense subset X’ of
&, fix such an isomorphism for each such w and denote this representation
by m,,. Without loss of generality, we may assume that the trivial character
w = 1 belongs to A’. From the two realizations of m,, we deduce that its
(normalized) Jacquet module (7,)p with respect to P has an irreducible
quotient which is isomorphic to 7 ® w, and an irreducible quotient which
is isomorphic to 7> ® w. We will show that, if w belongs to some fixed open
dense subset of &, these quotients have to coincide.

To see that, let M be the Levi quotient of P, and consider semisimplifica-
tions, to be denoted by [r] (or, alternatively, elements in the Grothendieck
group of admissible representations). We have [ ® w] < [(m,)p] and
[72 ®w] < [(mw)p] as representations of M.

Now let (@, p) be a pair consisting of a parabolic () = P and a supercus-
pidal representation p of its Levi quotient L such that 7 is a subquotient of
Io(p). We will compute semisimplifications of Jacquet modules of 7, with
respect to (). As in the proof of [Sau97, Théoreme 3.2], we have, from the
two realizations of m,:

[(TFW)Q] = Z w[(Tl ®w)me—1Qw]7 (115)
weWK‘fVD]pz

and

[(r)el = Y, “l(®w)iraw-1qul- (1L.6)

’IUGW/W]\/[
wMw—15L

Here, W), denotes the Weyl group of M.

Notice that the term of each of the above sums corresponding to the triv-
ial coset 1W), is the semi-simplicifaction of the Jacquet module of 7; ® w
with respectto M nQ (i = 1, 2). If the two irreducible quotients 7, — 71 Qw
and 7, — T ® w do not coincide (i.e. do not have the same kernel), since
71 and 7 are irreducible, that means that all the irreducible summands of
[(T1 ® w) m~g] should appear among the irreducible summands of the sub-
sum of (11.6) with w # 1Wy,.

Let p; be an irreducible (necessarily cuspidal) summand of [(71)y~q] —
50 p1 ® w is an irreducible summand of [(71 ® w)a~@]. If we assume it to
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be isomorphic, for each w € X”, to some irreducible (cuspidal) summand of
the terms of (11.6) with w # 1W},, and since X’ is Zariski dense, there is a
w € W~ W)y, a Zariski dense subset X’ = X’ and an irreducible summand

P2 of w[(TQ)Mr\w—le] with
P1OwW =~ p2 ®“w

forallwe X”.

Let wg € X”, so that the central characters of p; ®wy and pa®%wy coincide.
Thus, the restrictions of w/wp and “w/“wy to the center of L have to coincide
for all w € X”. Since X" is Zariski dense in /X, the restrictions of all w and
“w to the center of L have to coincide, for all w € X. But, having assumed
that X contains P-regular characters, this is only possible if w € Wy, a
contradiction. O

Notice that, by the wavefront and strong factorizability assumption, X% .
contains Pg-regular (in fact: “strictly P-dominant”) elements for every © c
Ax — s. the proof of [SV, Corollary 15.3.3]. Therefore, the lemma applies

——=unr

to families of irreducible representations of Lg twisted by X5

Proof of Proposition 11.2. By w-equivariance with respect to A’y g, it follows
that the specialization of .7, at o factors through the A’y ,-coinvariant
space:

S(XQ)on'7

where x, is the central character of 0. Moreover, since S, is a morphism:
L*(Xo)dise — L%*(Xq)dise, it follows that .7, is zero on the kernel of the
map:

S(XQ>“’XU — L7 (XQ/A,X,Q,w Xo )disc

(for almost all, and hence for all o where it is defined), and hence factors
through the discrete coinvariants S(Xq)wy, dgisc- By the fact that Sy, is an
isometry, we get that .7, is non-zero on every connected component of
—disc

L
X® . . . .

By definition, the space S(Xq)wy, disc is equal to:

@ B%Q,’ﬁ

—disc —
where 7 ranges over the fiber of the map: X§. — Ay ¢ (central charac-

ter) over “x,-.
We claim that for ¢ in general position, the only such 7 with the property
that /(o) and Io(7) have a common subquotient is 7 = “o. To see this,

—disc
let o vary in a family of the form oy ® x, with o9 € X5  and y varying
——unr ——unr

in X%t . Thus, Yo = Yoy ® w, with w = Yy varying in X% . By Lemma
e ymng Q y
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11.3, for w in general position the representation /g (o) is irreducible, and
hence the standard intertwining operator is an isomorphism:

Ig(o) ~ Ig(Yo).
Thus, any non-zero morphism:
Io(7) — Ie(0)

gives, by composition, a non-zero morphism: Iq(7) — Io(*0).

—disc —
If {71,..., 7} is the fiber of X {5 — A , over “xo,, then the fiber over
“Xo, for o as above, is {11 ® w, ..., 7, ® w}. Again by Lemma 11.3, for w

in general position, we cannot have a non-zero morphism Io(7; ® w) —
In(Yop®w), unless 7; @ w ~ Yoy ® w, or equivalently 7; ~ “oy.

Thus, the specialization of ., at o factors through .Z »,. Using (9.5),
this proves that the scattering map 5, is w-equivariant with respect to the
discrete center 345¢(X%). The fact that S,, is an isometry now proves that
the resulting map: £ v, — Zo » is an isomorphism for generic o.

For the regularity statement, we will proceed as in the proof of Propo-
sition 8.5, where a priori knowledge of the integrability of Eisenstein inte-
grals gave us their regularity on the unitary spectrum. Here we will use the
a priori knowledge (Theorem 9.1) that the scattering operators are bounded
operators between L2-spaces (in fact, isometries, but we will not use that):

Sw i L*(X6)dise — L*(Xq)dise-

In terms of Theorem 5.2, this can be written as a map:

—disc —disc
LXXE %) - LX(XE %),

which, we now know, is induced by some element:

—disc
yw € (C(Xé’ ,Homg(,ﬁf@,w*,ﬁfg)).

By Corollary 10.16, ., has linear poles. Corollary 3.6 now implies that
it is regular on the unitary spectrum.

Finally, the associativity conditions on .7, follow from those of the uni-
tary scattering maps S,,. Indeed, the only way that the composition of the
following maps:

9 —disc 9 —disc 9 —disc
(X o) — LX) - LX(XE ),

given by fiberwise application of ., and .,,, is equal to the fiberwise
application of .7, is that S|z, = S © Fwl 2, for almost all o €

)/(g ISC, and thus for all.
O

11.4. Corollary. When we decompose ngldisc as in 10.18, the poles of the form
(10.16) with w € Wx (€2, ©) do not appear.
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Proof. Indeed, by (10.7) these poles intersect the unitary set, where we have
just proven that the summands are regular. O

Finally, we prove the continuous preservation of Harish-Chandra Schwartz
spaces under the scattering maps, thus completing the proof of Theorem
9.1:

Proof that S, w € Wx (€, ©), restricts to a continuous map: € (Xe)dise = € (Xq)dise-
By (9.5) the following diagram commutes:

Sw
Lz(XG)disc L2(Xﬂ)disc

l i

—disc dis

L2XE T, Lo) 2o 12(XE

,Zq),

where the vertical arrows are the isomorphisms of the Plancherel formula
(5.2).
By the regularity statement of Proposition 11.2, the restriction of the bot-
tom arrow to smooth sections gives an isomorphism:
- /\Ldisc T . /\Ldisc
CP(Xg %) ——=C*(X5 L)
which by Theorem 5.2 corresponds to an isomorphism between discrete

summands of the corresponding Harish-Chandra Schwartz spaces.
O

12. SCATTERING: THE SMOOTH CASE

We now turn to the smooth case, in order to prove Theorem 9.2 and the
remainder of Theorem 9.3. As in the unitary case, the smooth scattering
maps S,, will be given by integrating the fiberwise scattering maps .7,
but now over a shift of the unitary set in analogy to Theorem 7.4. However,
there is an important result that needs to be proven first: that “cuspidal
scatters to cuspidal”. This is the analog of “discrete scatters to discrete”
in the unitary case, which was proven in the course of the development of
the Plancherel theorem, by an analytic argument. Similarly, here, “cuspidal
scatters to cuspidal” will be proven using a priori knowledge about smooth
asymptotics, and more precisely the support theorem 7.6.

We notice that both the statement “discrete scatters to discrete” and “cus-
pidal scatters to cuspidal” have been proven by Carmona-Delorme [CD14]
in the symmetric case. The proofs there heavily use the structure of sym-
metric varieties. Here we present a different argument which applies in
greater generality.

Recall again the asymptotics of normalized constant terms, defined in
section 10:

—disc

,Q
Eg,disc = Eé:),disc ceq: S(XQ) - C(Xé 739)-



72 PATRICK DELORME, PASCALE HARINCK, AND YIANNIS SAKELLARIDIS

We may project those to the cuspidal quotient (and summand) Lg of Zo,
in which case we will denote them by:

Q —~cusp
Eg,cusp : S(XQ) - (C(Xé ,,C@)-
12.1. Proposition. If Q2 does not contain a conjugate of ©, then Eg’?usp is zero.

IfQ ~ © then B4 factors through S(Xq)cusp:

©,cusp
EXY) /zcuSp
E@,cuSp € Homg (S(Xﬂ)cuspa(c(X@ ,ﬁ@)) .

The summands ., of (10.18), viewed as in (11.4), restrict to elements of:
r (E@“‘S", Homg (w* L, £@)> (12.1)

(i.e. preserve the cuspidal summands of the bundles £,), and the projection of
ZSubunit 0f (10.18) to Leg is zero, hence we have a decomposition:
ESoe = O Tl (122)

O,cusp
weWx (@,Q)

where |, denotes the restriction of .7, to the subbundle L,.

We will prove this proposition below; let us first see how it implies The-
orems 9.2 and 9.3.

First of all, the decomposition (12.2), combined with Theorem 7.4, allows
us to express the composition ef,eg, restricted to S(Xe)cusp as a sum:

holsronn = Y S
weWx (22,0)

as claimed in Theorem 9.2, where S, is defined as in (9.4). Notice that (9.4)

is independent of w as long as w » 0; this follows from Corollary 10.18,

according to which the .7, are rational with linear poles (hence no poles

for w » 0). Moreover, by Proposition 12.1,

yw(S(XG)CuSp) - COO(XQ)Cusp~

Now define, as in Theorem 9.2 the space ST (Xg)cusp = C* (X0 )cusp as
the span of all spaces:
Sws (X Q)cusp
with Q ~ © and w € Wx(0,Q). This includes the case w = 1 where S,, =
Id, s0 ST (X6e)cusp @ S(X6)cusp- Let us prove that the scattering maps (and,
incidentally, the Bernstein maps) extend to the spaces ST (Xg)cusp, and that
they satisfy the associativity properties asserted in Theorem 9.2:

12.2. Proposition. For f € ST (Xg)cusp and w € Wx(Q,0), define S, f €
ST(Xq)cusp and eo f € C*(X) as follows: If

[= 2 Sw feuw)

(©w)
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with w' € Wx (0,0’) and fier ) € S(Xer)cusp, we set:

Swf = Z Sww/ f(@/’w/).
(©"w)
and:
€@f = Z co/ f(@/’w/).
(©"w)
Then the resulting maps are well-defined (do not depend on the decomposition
of f chosen), and S, is an isomorphism:

Bw : S+ (X@)cusp i S+(Xﬂ)cusp-

Moreover, S, is w-equivariant with respect to the actions of 3**P(Xk) on
C*(Xo)cuspr CP(Xq)cusp, and the maps S, satisfy the associativity properties
of Theorem 9.2.

Proof. First of all, (9.4) implies that every element of S™(Xg)cusp is of mod-
erate growth, as was the case for elements of e, (S(X)), cf. Proposition 7.7.
Hence, every element of S*(Xg)cusp admits a unique spectral decomposi-
tion of the form (7.4), with the only difference from (7.4) being that the
forms f%do are not polynomial, but rational with linear poles, given by
(9.4). We point the reader to [SV, §15.4.4] for details on the spectral decom-
position of functions of moderate growth.

If f = 20 uw)Swfew) as in the statement of the proposition then,
using (9.4) and the associativity property (9.6) of the fiberwise scattering
maps .7, we conclude that the operator S,, described in the proposition
also admits the expression (9.4), which proves that it is well-defined.

Similarly for eg: by the commutativity of (10.19), it is expressed explicitly
by applying the formula of Theorem 7.4 to the spectral decomposition (7.4)
of f.

Moreover, (9.3) now follows from (9.6), and the fact that S; = Id shows
that these maps are isomorphisms. The extension of the action of the cusp-
idal center with the given properties is obvious.

The associativity relations of the operators S,, follow from those of the
operators .#,,, which were proven in the previous section. O

This completes the proof of Theorem 9.3, and of Theorem 9.2 for the case
Q~06.

If 2 does not contain a conjugate of O then the same calculation and
Proposition 12.1 show that the projection of e eq to C°(Xe)cusp is zero or,
equivalently, ef,eq, when restricted to S(Xg)cusp, is zero.

Finally, if Q2 contains, but is not equal to, a conjugate of © then by switch-
ing the roles of © and (2 in the above argument, since © does not contain a
conjugate of (2 we have:

*
€0,cusptQ |S(XQ)cusp =0,

which means that ef,eg, when restricted to S(Xg)cusp, has image in C*°(Xq )noncusp-
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This completes the proof of Theorem 9.2, assuming Proposition 12.1.
Now let us come to the proof of Proposition 12.1.

Proof of Proposition 12.1. The proof is based on the same result as Theorem
7.4, namely Proposition 7.6 on the support of elements of e (S(X)). This
proposition implies, in particular, that for every f € S(Xg)cusp, the support
of efyee f has compact closure in an affine embedding X§ of Xq. Moreover,
Proposition 7.7 states that this function is of moderate growth.

By Theorem 7.4,

eheof(z) = Qf

w

— cusp Eo gcuspf?(z)do = f — cusp Eg,a,cuspfa(x)d(L
-1x§ wolxk
(12.3)
the second equality because e, commutes with the integral (because it is
equivariant and commutes after evaluating “close to infinity” — cf. the
proof of Proposition 7.1).
We first claim that if || < |©],i.e. dim Ax o > dim Ax g, then e eq f has
to be zero. Since we may translate f by the action of G, it is enough to fix
an Ay o-orbit Z and show that

egeefl, =0.

We identify Z with Ax o by fixing a base point. Let X be an affine em-
bedding of X as above, and let ¥ be an algebraic character of Ax o which
extends to the closure Z of Z in X& by zero. We remind that an affine em-
bedding of a torus Ax q is described by the set of characters of Ax  which
vanish on the complement of the open orbit, and this set (monoid) of char-
acters has to generate the character group; in particular, such a character v
exists. The function efeq f is of moderate growth; since Z \ Z is a divisor,
this is equivalent to saying that there is an open cover Z = u;U; and for
every i a function F; which is regular on U; n Z such that |efeg f| < |F;|
on U; n Z. Multiplied by a high enough power of v, F; becomes regu-
lar on the whole U;. The support of efee f|, has compact closure in Z,
and the Haar measure on Z ~ Ax q, after multiplied by a high enough
power of v, also extends to a finite measure on the closure of the support
of efeef|,. Therefore, for a large enough n, the function ||" - efee f|,
belongs to L?*(Z) = L*(Ax.q), and its abelian Fourier/Mellin transform is
in L2(Ax o).

On the other hand, let us revisit Proposition 10.1, fixing again a con-

—

—=Cusp r
nected component Y of X5 : As w varies in Xéc , each factor of (10.6)

o —

varies over a set of characters of Ax o of positive codimension in Ax qc.

More precisely, the support of the C[Z)g\g)]—module generated by Eg”?usp

(restricted to the connected component Y') is contained in a subscheme S
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of Ax . whose reduction is the union:

U “(xAxec) e S Axac
weWq X,Q

in the notation of (10.6).
Hence, on one hand we have that the C[Ax o|-module generated by

E(’f)’gusp is supported on a subscheme of A/X\Q ¢ Which does not contain any
connected component, and, on the other hand, the restriction of any eg,eg f
to any Ax n-orbit (which decomposes as in (12.3)), when multiplied by a
high enough power || of the absolute value of a character ), belongs to
L*(Axq). Elementary Fourier analysis will now prove that this function is
zero. -

Indeed, the C[Ax q]-action on Eg’,Q corresponds to an action of the

cusp
completed Hecke algebra

H(Ax.q) == limH(Ax.q,J),

J

with J ranging over a basis of compact open subgroups. More specifically,
given a polynomial P € C[Ax ], there is a compatible system of mea-

sures (hp)s € (H(Axq,J))s such for x € A/X\Q a J-invariant character,
the Mellin transform satisfies

00 = | hrslax @) = PO,

Ax 0

Since the dimension of the support subscheme S < A/X?l(c is smaller than

that of @C, there is P € (C[A/XB], non-zero on every connected compo-
nent, which vanishes on S (i.e. vanishes with the appropriate multiplicity,
since S is not necessarily reduced). Explicitly, if for every factor of (10.6)
of the form (z — “(xt)(z)) we choose an element z, ., € Axq on which

Y (xw)(2y,w) is equal to some constant a,,, for all w € Xéu (such an ele-
ment exists for dimension reasons), then the restriction of P to a connected
component of A/);; can be taken to be the product, over all pairs (x,w)
such that “x belongs to that component, of the terms (z,, — ay,») (Where
Zy,w 18 by evaluation a polynomial on this component and a,,,,, we repeat,
is a constant complex number). For every open compact subgroup J, the

measure hp,; annihilates the restriction of EX?  to the chosen component

©,cusp
——cusp
Y < X%
Now take f € S(Xg)cusp, spectrally supported on the chosen component

—~cusp

Y « X} , and an open compact subgroup J < Ax o such that efyee f is
J-invariant. By (12.3), we will have hp j x eee f = 0, and therefore

([9["hp.g) = ([9["eqeaf) = [¢I" - (hp.s * egee f) = 0.
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But the function |¢|"ef,ee f, restricted to any A x o-orbit, belongs to L*(Axg)
(where we have chosen a base point to identify this restriction with a func-
tion ® on Ax o). Thus, its Mellin transform ®(y) = SAX o ®(ax)x (a)dais

in L? (Z;)) On the other hand, the Mellin transform of &’ := (|¢)|*hp ) *®
is equal to ®'(x) = P(x|¢|™™)®(x|¢|™). Since ® = 0, and P is non-
vanishing outside of a set of measure zero in A/);z, it follows that ® = 0,
and hence ® = 0.

This proves that efee f = 0 when |2 < |O].

Now assume that 2 does not contain a conjugate of ©. By induction on
2], we may assume that ey, eg f = 0 for every ' < Q and hence efyeo f €
C*(Xq)cusp, for all f € S(Xg)cusp- That means that E(f)’,?usp factors through
S(Xq)cusp, SO by evaluating at points of regularity we get a family Z of
morphisms:

S(XQ)CU.SP - ﬁ@,o-

In the language of §10.5, we will examine the weak tangent space of this
family which, we recall, has to do with the set of morphisms obtained by
second adjointness:

S(Xgli)cusp - (59,0)9- (124)

By Corollary 10.6 we have that WTq(Z), if nonempty, is a union of sets
of the form:

[ (a%0,c)];

where | o | denotes image in a*/Wp,,. On the other hand, we can twist the

morphisms (12.4) by elements of Xééﬂr, thus obtaining a possibly larger
family J whose weak tangent space will be a union of components of the
form:

[ (a},@,tc)] +aXac

By the first statement of Lemma 10.10 (with © and €2 interchanged), since
2 does not contain a conjugate of ©, the dimension of this is strictly larger
than the dimension of a% , . This is a contradiction: the supercuspidal
supports of all finite-length quotients of S(X&)cusp belong to the equiva-
lence classes of a countable union of families of the form (7 ® w, L), with

——unr

(7, L) a supercuspidal pair in Lo and w varying in X5 ; hence, we cannot

have a family of finite-length quotients of S(X§)cusp Whose weak tangent
——=unr

space has dimension larger than that of X, (Lz ¢ le. larger than that of Ay .

This shows that Eg’?usp is zero.
Finally, consider the case 2 ~ ©. First of all:
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12.3. Lemma. Let Y < Xécusp be a connected component, and E € M3 :=
Hom¢(S(Xq),C(Y, Lo)). Let Ky = C(Y), and let E = Y, E; be the decom-
position of F into elements of (distinct) generalized eigenspaces® for the action
of Ax.q on the finite-dimensional Ky -vector space M"Y, If E factors through
S(Xq)cusp, 50 does each of the E;’s.

The validity of the lemma is obvious, since Homg(S(Xq)cusp: C(Y, Lo))
is an Ax o-stable subspace of M3-°P.

Because of the lemma, the projections to Lg of all summands ., of
(10.18) all factor through S(Xg)cusp, in other words by (11.4) they restrict to
elements of (12.1).

Finally, we claim that the projection of -“sybunit to Le is zero. The argu-
ment here is identical to the one one we used for the case that €2 does not
contain a conjugate of ©, using the weak tangent space of the correspond-
ing family of maps:

S(Xé)cusp - (['@,U)Q
which arises from .s,bunit- If this family were non-zero, based on Lemma
10.10 it would give rise again to a family of morphisms of the form (12.4)
whose weak tangent space has dimension larger than that of a¥ (, ¢, a con-
tradiction.
O

12.4. Remark. Regarding the last step of the proof: in the discrete case, there
is no contradiction to the existence of subunitary exponents. The reason is
that the “subunitary parts” of Eisenstein integrals do not need to be “dis-
crete modulo center” (while the cuspidal parts were necessarily cuspidal
modulo center by Lemma 12.3). Indeed, they could be non-discrete, but
with a central character that makes them decay “towards infinity”.

Part 5. Paley-Wiener theorems
13. THE HARISH-CHANDRA SCHWARTZ SPACE
We start by proving the following two results:
13.1. Proposition. (g takes € (Xe)aisc continuously into € (X).
And in the other direction:
13.2. Proposition. .§ 4. takes ¢'(X) continuously into €' (Xe)disc-

We first reduce both statements to the case Z(X) = 1. This is achieved by
using (2.13) and (2.14), which identify (X ) and L?(X) as closed subspaces
of a direct sum of spaces of the form:

C(Z(X)xY)~F(Z(X))RF(Y),
44Generalized eigenspaces” is used here in the generality of non-algebraically closed

fields, i.e. a generalized eigenspace does not necessarily correspond to an eigenvalue, but
to an irreducible monic polynomial.
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respectively:
L*(Z2(X) x Y) ~ L*(Z(X))QL*(Y),
where Y is a spherical [G, G]-variety with Z(Y') = 1.
It is obvious from the definitions that the Bernstein maps on those spaces
are induced by Bernstein maps for the second factor:

o : L(Yo) — LA(Y),

which reduces both problems to the case Z(X) = 1. We will assume this
for the two proofs.

The proof of Proposition 13.1 will require a lemma: Fix an open com-
pact subgroup J < G and a collection (Ng)e of J-good neighborhoods of
infinity. We may, and will, assume that this collection is determined by
the neighborhoods V4, where o runs over all simple spherical roots and
& := Ax \ {a}, in the following sense:

No = (] Na- (13.1)
ag®

We will also be denoting:

N§ := No ~ U Ng,
QcO
remembering that the image of N in Xo/Ax e is compact.

By a decaying function on X we will mean a positive, smooth function
whose restriction to each Ng is Ax e-finite function with subunitary ex-
ponents. Notice that, by our definition, a subunitary exponent on Ax e
is allowed to be unitary on a “wall” of A},e (it only has to be < 1 on
fi},e)- However, by demanding that the exponents of our function are
A}’@-subunitary on every Ng, this possibility is ruled out: no exponent can
be unitary on a wall of A},e- We will call such exponents strictly subuni-
tary. Together with our assumption that Z(X) = 1 a decaying function is
automatically in €' (Ng).

This definition is essentially compatible with the way the notion of “de-
caying function on A}@” that was introduced in [SV] (and will be used in
the proof below): Indeed, for each © — Ax, a decaying function on A},ef
according to [SV], is any function bounded by the restriction of a positive,
Ax e-finite function with strictly subunitary A}’@—exponents. Hence, a de-
caying (J-invariant) function f on X, in our present sense, is precisely a
J-invariant function with the property that for every © < Ax and every
x € N§ (or equivalently: = € Ng) the function:

AL gaa—|(fia™" 1a)l, (13.2)

where 1,; denotes the characteristic function of zJ, is bounded by a de-
caying function on A% 4. (Notice that this is stronger than saying that the
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restriction of the function to the A% 4-orbit is a decaying function; our defi-
nition of the action of A% 4 is normalized by the square root of the volume,
s. §2.6, so the above bound is equivalent to a bound of f(ax) by Vol(ax.J )_%
times a decaying function on A% o.)

Let 7o denote, for each O, the map of restriction to Ne.

13.3. Lemma. When Z(X) = 1, for any ® € L*(X)’ the alternating sum:
Alb(®) = > (-D)®lFe.5@ (13.3)
@CAX

is bounded in absolute value by |®| 12 (x) times a decaying function which depends
only on J.

Proof. We claim that for every a € Ax, and every = € N, the restriction of
(13.3) to A% , - x satisfies the bound:

| Al6(®)(a - z)| < | @] 12(x) Vol(az]) ™2 Ra(a), (13.4)

where R, is a decaying function on A; ; that only depends on J.
This will prove the Lemma: Indeed, for an arbitrary ©, = € Né and
a € Ay g we geta bound:

| AL(®)(a-2)] = | ALl(®)(b- a'a)] < | 8] 12(x) Vol(azJ)* Re(a),

for every a € Ax \ © and decomposition a = a'b with ' € A} 4 and
be A} ., where Rg is the decaying function on A7 o defined as:

R _ . i R, (D) | .
o(a) = 1min (a_a/b,a/erﬁin rt o ))

X,

(Notice that Ax g is generated by the one-dimensional tori Ax 4, o €
Ax ~\ 0, up to finite index. Checking that Rg, as defined above, is a decay-
ing function essentially reduces the problem to the monoid N4x >, decay-
ing functions R4 for each of the coordinates, which can also be assumed to
be equal to the same function R, and Re((na)aca x~0) = R(maxq nq).)

To prove (13.4), we notice that Alt(®) is equal to the sum over all © con-
taining « of the terms:

(—1)'® (Fors® — Fou (ajtd (o) ®)-
By the transitivity property of Bernstein maps:
1P = Lg/’* ou1g® for® c @,

where Lg’* is the corresponding adjoint Bernstein map for the variety Xe/,
and by the fact that the norm of (,® for some ©' ¢ Ay with o € ©, is
bounded by a fixed multiple of |®| ;2 (x), it is enough to prove the statement
when (13.3) is replaced by ® — .} ® (the rest of the terms being similar, with
@ replaced by 1§, ®, whose norm is bounded by a constant times |®||2(x))-
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Thus, we need to prove that for every = € N » the restriction of ® — /2® to
A% ., -z is bounded by |®| r2(x) Yol(axJ)"2 - Ry, where R, is a decaying
funct1on on A} 4 that only depends onJ.

This follows from [SV, Lemma 11.5.1] (and its proof): Indeed, if ¥ = 1,
the characteristic function of some J-orbit on Ny, and a € A}@, then we

have:
KCI) —k®, 0t \I/>‘ = ‘<<I>, (eq —tg)at - \I/>‘ <

<[ @2y - I(ea —ta)a™ - llpe(x) < | @] 2(x)CuQ” (a)
in the notation of loc.cit. so we can set R,(a) = CyQ”(a), where Q”(a) is
a decaying function on A} , which is independent of ®, U. In the proof of

[SV, Lemma 11.5.1] it is seen actually, that the constant C'y can be bounded
by a fixed multiple of:

IV 20x,) + 2 leaa: - ¥ L2 x)

where the a;’s range in a fixed finite set of elements of A+ . When V¥ is
the characteristic function of a J-orbit xJ on Ny, this sum w1ll 51mply be
bounded by a fixed (the number of a;’s +1) multiple of Vol(z.J)2 2, the L2
norm of ¥ — recall that “close to infinity” the Bernstein maps eg are in-
duced by measure-preserving identifications of J-orbits, cf. [SV, Proposi-
tion 4.3.3] and [Del, Theorem 2]. Therefore, for every z € Ny and a € A},a
we get:
(@ — 2P, 0" 1,0)| « | 12(x) - Vol(z])2 Q7 (a)

where the implicit constant only depends on J. Taking into account that the
measure on N, is an Ax 4-eigenmeasure, say with character 64, we have by
definition:

_1
<(I) - LZ(D, ail : 1:(:J> = <CI) - Lz(p? 5& : (a)1a$J> =

1
= (® — k@) (ax)d, 2( ) Vol(azJ) = (® — 15®)(ax)d? (a) Vol(zJ),
and hence the above inequality becomes:

@ — (2®|(ax) < |®2(x) - Vol(a - 2J)"7Q” (a).

This proves the lemma.
(]

Proof of Proposition 13.1. Fix a ©, as in a statement of the proposition. We
will prove the proposition inductively on |A x| — |0, the base case © = Ay
being trivial. Assume that it has been proven for all orders of |Ax| — |O]
smaller than the given one.

We have already reduced the proposition to the case Z(X) = 1, which
we will henceforth assume. (Notice, however, that by the inductive as-
sumption we are free to assume the proposition for any smaller value of
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|A x| — |©| without this assumption.) We fix an open compact subgroup J
and J-good neighborhoods Nq of {)-infinity as in the setup of Lemma 13.3,
and use the notation NN, as before.
By Lemma 13.3, it is enough to prove:
For all Q < Ax, the composition of tfe : L*(Xe)dise —
L?(Xq) with restriction to Ng, takes €' (X ) ais continuously into
€ (Nq).
(13.5)
Indeed, by Lemma 13.3, for every f € % (Xe)’ the difference:

of — > (D)o f
QS Ax
is bounded by a fixed decaying function times |to f| « |f|, and by the
claim the subtrahend above is (continuously) in the Harish-Chandra Schwartz
space.

First of all, if {2 does not contain a conjugate of O then (¢.e| L2(X6 )aice
and there is nothing to prove. Now let (£2;); denote representatives for
Wx,,-conjugacy classes of subsets of {2 which are Wx-conjugate to ©. (Here,
Wx, © Wx denotes the little Weyl group of X, which is generated by
the simple reflections corresponding to elements of €2.) Denote by L&_ :
L*(Xgq,) — L?(Xq) the analogous Bernstein maps for the variety Xq. We
claim that there are non-zero integers dq(2;) such that:

L6 O L0l L2(Xo)uiee = 2 \/dQ(Qi)*lb& o L5, O Le- (13.6)

Indeed, the image of L?(Xg)gisc under 1, o te lies in the direct sum
(over all i) of the spaces L*(Xq)[q,), where L?(Xq)[q,) denotes the im-

age of L?(Xq,)disc under c&_. This follows from the transitivity property

1= L9 * 0.1, of the Bernstein maps, and the fact that 1 4, e = 0 unless =
isa Wy- conjugate of O.

Let do (%) = #Wx, (92, ;). It follows from Theorem 1.2 that the map:
do() 18, 010"« LH(Xq) — L*(Xq)

is the identity on L? (Xa)[q,], and zero on the summands L*(X, [, with

j # 1. Hence,
Z Vda (2 LQ o L

is the identity on the image of L?(Xe)aisc under 1§, © te, and (13.6) follows.
The map ¢, o te is a continuous map:

%(XG)disc - %(Xﬂi)disc

by Theorem 9.1, so by replacing © by (2; we have reduced the claim (13.5)
to the statement of the proposition when © < Q and X is replaced by Xq,.
It now follows by the induction hypothesis. O
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Now we come to proving the other direction. We keep assuming that
Z(X) = 1, having reduced the problem to this case.

Proof of Proposition 13.2. Let f € ¢(X)”, and let X = | | N§, be a decompo-
sition as above; then feo := f|y, € €(Ng) = ¢(Xe). By Theorem 5.2, we

—~disc
need to show that the image of Ladisc fin L?(Xe)disc = LQ(Xé ,Zo) ac-

—disc
tually liesin C*(X§ , o) (smooth sections), and that the resulting map:

—=disc
¢(X)! - C*(X§ %) is continuous.
First of all, for each © and 2 consider the composition of maps:

eq W.dise 19 ~ 19 /Edisc
S(Xq) == S(X) —— L*(Xe)daisc — L (X§ ,Zo). (13.7)

By (7.5), this composition is given by the restriction of the maps Eg’ﬁisc of
(10.1) (Q-asymptotics of normalized constant terms). Recall that by Propo-

sition 8.5, the image of Egﬁisc lies in F(Xédlsc, Zo) (i.e. rational sections
whose poles do not meet the unitary set).

Our goal is show that the maps Eg’ﬁis . extend continuously to operators
represented by the bottom horizontal row of the following diagram, where
the vertical arrows are the natural inclusions:

—disc

S(Ng) ——T(X§ o)

-

C(NY) -~ = C*(XE . L),
This will prove the proposition, once we know it for all €2.

Fix a connected component Y of Xédlsc, and recall that I'(Y, Zp) is actu-
ally a D(Y')-module (module for the ring of polynomial differential opera-
tors on Y). Fix any D € D(Y) and apply it to the operator Eg’ﬁisc. As we
have seen in Lemma 10.4, the resulting element:

DE%Y,. € Hom (S(Xa),T(Y, o))

(not a G-equivariant homomorphism) has the same exponents, possibly
with higher multiplicity, as Eg’gisc, and by Proposition 11.1, these are either

unitary or subunitary with respect to /01}7@.
We will use the following lemma of linear algebra:

13.4. Lemma. Suppose S is a finitely generated abelian group together with a
finitely generated submonoid St < S that generates S. If S has a locally finite ac-
tion on a complex vector space V , with the degrees of all vectors uniformly bounded
by an integer m, and generalized eigencharacters which are unitary or subunitary
with respect to ST, and if | e || is any norm on V., there exist a tempered function T
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on S and a finite subset Sy < S, depending only on St and m, with the property
that:
Js - o] < T(s) max s -]
S/ESO

forallse ST, veV.

We remind that “locally finite” means that the span of the S-translates of
each vector is finite dimensional, and the degree of a vector is the dimen-
sion of this S-span. Compare this lemma with [SV, Lemma 10.2.5].

Proof. We may replace S* by the free monoid on a set of generators, and S
by the free group on this set. We can then reduce to the case S = Z, ST =N,
because, if 77, S, work for (Z,N), then T'(ny,...,n,) = T'(n1)---T'(n,),
So =S4 x -+ x S{ will work for (Z",N").

For (Z,N) we apply induction on the degree: Writing the minimal poly-
nomial of the generator M := '’ € N on an element v € V as P(z) =
(x—()Q(z), and assuming by induction that the lemma holds for the vector
v' = (M —{)v (with some tempered function 7" and some set S, depending
only on the degree of (), we get an estimate:

[ < M (M | < T (n = 1) - max s’ o+ M7 o,
0

where we have used the induction hypothesis and the assumption that
|¢| < 1. Repeating this estimate for M" !v and so forth, in the end we
get:

M) < (T (n—1)+ T (n—2) +- -+ T"(1)) max |'v'| +|v]| < T(n) max 5"
s'eS|, s'eSy

(again using |¢| < 1) where T'(n) = 2(T"(n—1)+T'(n—2)+---+T'(1)) +1,
So = {0} u S§ U (S +1). O

—=disc
We now fix a Haar measure do on X5, which determines norms | o |,
on the fibers of Zg over the unitary set, cf. (4.19). By regularity, for any
F e §(Xq) the numbers

)
g

DB

,disc,o

as o varies in Y, are uniformly bounded in o. If we now fix a set of J-orbits
on N, whose A} -translates cover Ny, and denote by F; their characteris-
tic functions, we claim that there is a finite set Sy of elements of Ax o and a
tempered function 7" on Ax q such that:

< T'(a) max
o SESO

HDEZ)’ESC,U(M) (13.8)

,Q
DEg,disc,U (SFZ)

g

for all a € A;&Q. Indeed, this follows from the above lemma, using the
fact that Ax o acts on S(Xgq)” through a finitely generated quotient, and

that the DEg’giSC , are all Ax o-finite with uniformly bounded degree, by
Lemma 10.4.
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For an arbitrary element ® € L? (N&)J , writing it as a series in A% -
translates of the Fjs:
® = Z cijaj - Iy,
—disc

its image in L*(X§ , %) is given by the corresponding series:
Z CZ] @ dlSC a] E)

If, in particular, ® € %(NQ), by (13.8) we deduce that the correspond-

—=disc
ing series for DE@ “dise(®) converges in L*(X§5 |, %), and is bounded by
continuous seminorms on %' (N{,).
Since the seminorms:

= D /\dlqc 5 .D € D Y ,
Fro IDSl e+ D e DY)
—disc
form a complete system of seminorms for C*(XJ , %), we deduce that
the maps E@ Jisor Testricted to S(INY))7, extend continuously to:

P\ —disc
CNG) — C(XE L),
This proves Proposition 13.2.
O

We are now ready to complete the proof of our main result on the Harish-
Chandra Schwartz space:

13.5. Theorem. For each ©, orthogonal projection to L?(Xg)aisc gives a topolog-
ical direct sum decomposition:
%(XQ) = %(XQ)disc @ %(XG)Cont-
For each w € Wx(Q, ©) the scattering map S, restricts to a topological iso-
morphism:
%(XG)disc o %(XQ)diSC‘
The map o* of (1.2) restricts to a topological isomorphism:

¢(X) > ( ) %(Xe)disc> : (13.9)

@CAX
where the exponent ™ denotes invariants of the scattering maps S.,.

Proof. The first two statements have been proven in Proposition 5.1 and
Theorem 9.1. )
mv
Because of the second statement, the space (Q—)@C Ax C (X @)disc) makes

sense. By Proposition 13.2 and Theorem 1.2 the space ¢ (X) injects con-
tinuously into it. Finally, since ) o(i§ o ig) is a multiple of the identity
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on (@@C Ax L*(X @)disc) mv, it follows from Proposition 13.1 that the map

from %' (X) to ((—D@CAX %(X@)disc)mv is onto. O

The combination of Theorems 7.5 and 13.5 gives Theorem 1.4, which we
repeat for convenience of the reader:

13.6. Theorem (cf. Theorem 13.6). The normalized constant terms E§ ;.. ex-
tend to an isomorphism of LF-spaces:

¢ (X) = (@ c@o@dm,z@)) , (13.10)
(€]

where ™ here denotes .%,,-invariants, i.e. collections of sections ( fo)e such that
for all triples (©,Q, w € Wx (£, ©)) we have: .7, fo = fa.

In particular, the existence of a ring 3"*™P(X) of multipliers on ¢ (X),
as described in Corollary 1.5, immediately follows from either of the above
two versions of our Paley—-Wiener theorem for the Harish-Chandra Schwartz
space:

13.7. Corollary. Let

z’temp()() — (@ﬁdiSC(Xé/)> ,
©

where the exponent inv denotes invariants of all the isomorphisms induced by
triples (©,Q,w € Wx(£,0)).
There is a canonical action of 3'*™P(X) by continuous G-endomorphisms on
¢ (X), characterized by the property that for every ©, considering the map:
L%,disc : %(X) - %(Xe)disc
we have:
Lg,dise(z ) f) = Z@(Lg,discf)
for all z € 3%°™P(X), where zg denotes the ©-coordinate of z.
Proof. Indeed, 3'°*™P(X) acts by continuous G-automorphisms on the right
hand side of (13.9) or (13.10), and the action is characterized by the stated
property. U
We complete this section by formulating an extension of the properties
of Bernstein and scattering maps from the discrete components of Harish-

Chandra Schwartz spaces to the whole space. For the proof, we point the
reader to the proof of Theorem 14.7, which will be completely analogous.

13.8. Theorem. For every triple (©,2, w € Wx (2, ©)) the scattering map:
Sw: L*(Xe) — L*(Xq)
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restricts to a topological isomorphism:
¢ (Xe) — ¢(Xa)
which is 3*°MP(X§)-equivariant with respect to the obvious isomorphism:
FP(XE) S 5o (xE)

induced by w.
The Bernstein maps vg and their adjoints 1§ map ¢ (Xe) continuously into
¢ (X)) and vice versa.

14. THE SCHWARTZ SPACE

We now come to our Paley—Wiener theorem for the Schwartz space of
compactly supported, smooth functions on X. Besides the properties of
the scattering operators S, of §9, we will use the following basic result:

14.1. Theorem. Let [©] run over all associate classes of subsets of Ax, and for
each such class let S(X )[@] denote the space generated by all eqS(Xq)cusp, §2 €
[©]. Then:

S(X) = DS(X)er. (14.1)
[©]

Proof. The sum is direct by Theorem 9.2. We need to show that the map:
Yleo : D S(Xo)eusp — S(X)
[e) (€]

is surjective.

We will use induction on the size of Ay, the case Ax = (& being tauto-
logically satisfied (because then S(X) = S(X)cusp). Assume that the propo-
sition has been proven when X is replaced by Xq, for all 2 & Ax. Let us
denote by €2 : S(Xg) — S(Xq) (O = ) the corresponding maps for the
variety Xq. Recall the transitivity property:

ereg = €Q.

Therefore,

266 (S(Xe)cusp) = S(X)cusp + Z eo (S(Xo))-
e O+Ax
Assume that §(X) # Do) S(X)[e), then there would be a non-zero sub-
space V' of the smooth dual (i.e. C*(X)) which would vanish on all the
spaces on the right hand side of the last equation. In particular, eV = 0
for all © # Ax, hence the elements of V' are compactly supported modulo
the center of X. But then they cannot be orthogonal to the cuspidal part
S(X)eusp = S(X)[AX]-
O
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14.2. Remark. This theorem is false, in general, in the non-factorizable case,
if we define the cuspidal subspace S(X)cusp, as in section 6, by requiring
that the image under the Plancherel decomposition (5.2) of the (smooth)
function is relatively cuspidal. For example, if X = PGL3 under the G =
Gy, x PGLy action (with G, acting as a split subtorus by multiplication on
the left, and PGLy acting by multiplication on the right) then it is known
that the tensor product of the trivial character of F'* by the Steinberg rep-
resentation St of PGL; is relatively cuspidal on X, while this is not the
case for non-trivial characters of F'*. What this means is that the image of
an embedding St < S(F*\ PGL3) will be orthogonal to eg(S(X)) (this
is the property of 1 ® St being relatively cuspidal), but also orthogonal to
S(X)cusp (Which has no Steinberg-equivariant part, since for generic char-
acters of F'* the Steinberg representation is not relatively cuspidal).

Recall that for each ©® we have defined ST (Xg)cusp as the subspace of
C*(Xe) generated by all spaces of the form:

8wS<XvQ)cuSp

where (2 is an associate of © and w € Wx (£, 0), and in Theorem 9.2 (and
Proposition 12.2) we extended the scattering operators S,, to isomorphisms
between these spaces.
We are now ready to prove a Paley—Wiener theorem, reminding first that
the exponent ™" in:
(PeST(X6)eusp) (14.2)
denotes invariants of these maps. Notice that, as follows easily from the

definitions, any element of (14.2) can be obtained by averaging elements of
the spaces S(Xg)cusp Via the operators S,,, i.e.:

14.3. Lemma. For any element f = (fe)e of (14.2) there is a (non-unique)
element
(f/@)G € @@S(X@)cusp
such that:
fe = D Sufh. (14.3)

QuweWx (0,0)

Proof. Let ©; vary in a set of representatives for associate classes of subsets
of Ax. For each i there is, by definition of the spaces S™(Xg), a collection

(f&ll,w)Q'w@i;weWX (©;,9) € G_)Qw@i;weWX (@i,Q)S(XQ)CUSp

with f@i = ZQ;weWX(ei,Q) gwfé,w'
Setting then

1
fo = oo foyu
e, 2
(where ©; is the representative for the associate class of (2), we easily get
from the W (0©;, ©;)-invariance of fg, and the associativity properties of
the scattering operators that (14.3) holds for every ©.
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14.4. Theorem. The sum of the morphisms eg, ., defines an isomorphism:

S(X) ~ (@S (Xo)eusp) ™ - (14.4)

Proof. It is an immediate corollary of Theorem 14.1 and Theorem 9.2 that
the image of Mg €& cysp lies in (DS (Xe)eusp) -

Lemma 14.3 shows that the map is surjective, and injectivity follows
from Proposition 7.1. O

It is easy from this to deduce the fiberwise version in terms of normalized
constant terms. First of all, for every © — Ax let:
—cusp —_rcusp
on [X(g ,/:@] cC (X(g ,cg)
be the subspace generated by the images of all fiberwise scattering maps
“w, for 2 and associate of © and w € Wx (0, 2). Notice that by the regu-
larity of scattering maps on the unitary spectrum (Theorem 9.3), we might
as well have written I'( ) instead of C( ). Then it is clear that such an .7,
induces an isomorphism:
—~cusp —_7cusp
cr|xg T La| >t [XE T Lo
and the combination of Theorems 7.4 and 14.4 gives Theorem 1.9, which
we repeat for convenience of the reader:

14.5. Theorem. The normalized cuspidal constant terms E ., give rise to an
isomorphism:

S(X) > (@ cHxL™, £@]> , (14.5)
(€]

where ™ here denotes .%,,-invariants.

In particular, the existence of a ring 3*(X) of multipliers on S(X), as
described in Corollary 1.10, immediately follows from either of the above
two versions of our Paley—Wiener theorem for the Schwartz space:

14.6. Corollary. Let

S}

3M(X) = (69 5C“Sp(Xé)> ,

where the exponent inv denotes invariants of all the isomorphisms induced by
triples (©,Q,w € Wx (£, ©)).

There is a canonical action of 3™ (X') by continuous G-endomorphisms on S(X),
characterized by the property that for every ©, considering the map:

6%,cusp : S(X) - S+ (X@)cusp
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we have:
eacusp(z ) f) = z@(eg,cuspf>

forall z € 35(X), where zg denotes the ©-coordinate of z.
Proof. Indeed, 3" (X) acts by continuous G-automorphisms on the right
hand side of (14.4) or (14.5), and the action is characterized by the stated
property. U

We complete this section by extending the smooth scattering maps from
the cuspidal components of Schwartz spaces to the whole space.
14.7. Theorem. There are unique extensions of the smooth scattering maps, for
all triples (©,Q,w e Wx(£,0)):

S, : S(Xe) — C*(Xq),
such that for all ©' < ©, setting Q' = wO’:
€6 © SulS(XoJewss = Sw © €60 [S(Xg)eusn? (14.6)

where as usual we denote by €3,, e, the analogous equivariant exponential maps
for the varieties Xg, Xq, respectively.

These maps satisfy the same associativity relations as their restrictions to cusp-
idal spectra (s. Theorem 9.2), and S, is 3™ (X§)-equivariant with respect to the
obvious isomorphism:

7 (xE) = ()
induced by w.
Proof. Given Proposition 14.1 (applied to Xg), property (14.6) characterizes
the extension of S,,, provided it is unambiguous. For this, we need to
show that if F = 68,1f1 = 68,2]”2 € S(X@), with f1 € S(X®/1 )cusP and fg €
S (X@r2 )cusp, then the left hand side of (14.6), applied to either f; or f>, gives
the same result.

Theorem 14.4, applied to Xg, implies that the kernel of the map:

Z 68'. : @ S(X@;)cuSp — S(Xo)
=12 =12
is generated by elements of the form: (fi,—f2) with f; € S (X@;)Cusp and
fa = Sy f1 for some v’ € Wx (04, ©)); thus, we can assume our pair ( f1, f2)
to be of this form.
Then we have:

Swa = 8wgw’fl = 8ww’fl = 8vuuu)’wflgwfl

(by the associativity properties of scattering maps), hence the element (S, f1, =S, f2)
belongs to the kernel of the map:

D) e s B S(Xay)eusp — S(Xa).
i=12 i=12

Thus, the operator S,, is well-defined on S(Xg). The associativity and
3™ (X§)-equivariance properties follow easily from the construction. O
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15. EXAMPLES OF SCATTERING OPERATORS

15.1. Scattering operators in the group case. Let us consider the case of
the group, X = H, G = H x H. We consider it not just as a homogeneous
space, but as a pointed space, with a distinguished element 1 € H, which
will help us fix isomorphisms for its boundary degenerations. Its boundary
degenerations are parametrized by conjugacy classes of parabolics in H,
where a given class of parabolics [ P] corresponding to © — Ay we have:

Xip == Xo = Lp x7*F7 (H x H) ~ Xg ~ L3\ (Up\H x Up\H).

Here we have chosen representatives P for [P] and P~ for the opposite
class, Lp = P n P~ a Levi subgroup and Up, U the corresponding unipo-
tent radicals. The space X|p) lives over an open subset Y in the product of
Grassmannians of H corresponding to [P] x [P~], and its fiber over (P, P™)
is isomorphic to Lp canonically up to inner automorphism. In particular, each
fiber has a canonical point 1 € Lp; the subgroup H%#8 acts transitively on

Y, preserving those points.
—disc —~ dis
Let us identify the space X5. with the space L p(clsc of isomorphism
—~ dis
classes of discrete series representations of Lp by identifying o € L p(clbc

with the representation & ® o of the Levi quotient Lp of P x P~. Fixing
a Haar measure on H, which induces invariant measures on all X [P], We
can identify the smooth dual of the bundle .#|p| of discrete coinvariants

—_— —~di
for X|p) with the bundle whose fiber Z|p) , over o € Lp¢ > is the induced
representation / g;f, (C5), where C5 < C*(Lp) is the space of matrix co-
efficients of 5. The matrix coefficient map

c®F3v®0— (v,6(e)0) € Cs

allows us to canonically identify I g;g, (Cs) with Ip(o) ® Ip- (o).

Now consider a pair ([P],[Q]) of associate classes of parabolics of H,
and an element w € Wg(Q, P). If we fix a representative P for [P] and a
Levi subgroup L, the pair ([Q], w) gives rise to a representative @ of [Q]
which shares the Levi subgroup L with P; the relation is that “'() shares a
minimal parabolic with P. We will say that “the relative position of P and
@ is determined by w”.

We let Tp|g denote the rational family of standard intertwining opera-
tors, as o varies:

Tpig: Ig(a) — I (0). (15.1)
This family depends on the choice of a Haar measure on Up/Up n Ug, and
is generically invertible with a rational family 7', b of inverses.

We denote by P~, Q™ the opposite parabolics with respect to the chosen
Levi. The product:

Trig® Tyt p : 15 (0) ® IS (3) ~ Lqwe — L1 ~ IF (0) @ IF-(5)
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does not depend on choices of Haar measures, because of the isomorphisms:
Up/UgnUp ~Up nUgy- ~Ugy-/Up- nUg-.

Notice also that there is no lack of symmetry here, because T ®TCE_1 p- =
~1
Top ®Tp-1q-

15.2. Proposition. For any pair ([P],[Q)]) of associate classes of parabolics of
H, and w € Wg(Q, P), the adjoints of the corresponding fiberwise scattering
operators .y, are the family of operators:

—_——

Tpio® Ty, p- : Liareo = 4Pl o

Proof. The result will follow from Proposition 10.18.

Let us for simplicity denote by Tj the standard intertwining operator
between induction from a given parabolic and its opposite; it will be clear
from the context which parabolic we are referring to.

By [SV, Lemma 15.7.1], the normalized Eisenstein integrals can be writ-
ten as the composition of matrix coefficients with 7, ! as follows:

AT,
_—

Eq: I5(0)®15 (5) Ho)yo18(E) X c™(H).

Here M denotes the matrix coefficient map, which depends on the choice
of a Haar measure on Ug,-, which brings Ig (6) and Ig (0) in duality. On
the other hand, Ty : I5(5) — I/} (5) is also proportional to the choice of a

measure on U, so the composition of M with Id®T; ' does not depend
on choices.
Now, we have a commutative diagram:

C*(H) (15.2)
% \m
. TriQ®Tg), N
I} (o) ® 15(5) (o) ® I (5)
10T, T Tl@TO_I
TP\Q®T(31 \p—

IH(0)® I (5) (o) @ I (5)

of operators varying rationally with E;gsc. The fact that the operator Tp|o®
Téﬁp commutes with matrix coefficients follows from the fact that Tp|q is
adjoint to T p. The fact that the operator on the last horizontal arrow
making the diagram commute is Tp|g ® Tc5—1| p— follows from the fact that
ToTqip = To-1p-To = To-1p-Tr- 19T P-

From the commutative diagram (10.19) (dualized), we now infer that the

adjoint of .}, is the operator Tpo ® Téf - O
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15.3. Unramified scattering operators. We now assume that G is split, and
G, X are endowed with compatible models over the ring of integers 0. We
will discuss results of [Sak13] in the light of our current framework. For
this, we assume that the conditions of [Sak13, §1.7 and 2.4] hold. In par-
ticular, there is a way to identify the universal torus Ax as a torus orbit
Ax < X (over o), so that its “anti-dominant” elements A} c Ax(F) repre-
sent all K = G(o)-orbits on X.

We will consider only the most degenerate boundary degeneration X,
which carries an action of Ax. Scattering operators for that degeneration
are parametrized by elements of the little Weyl group Wx of X. We have

Xg(F)/K =~ Ax(F)/A(o), (15.3)

where A is the universal Cartan of G (wWhose quotient as an algebraic vari-
ety is Ax). The isomorphism (15.3) is fixed so that for “very antidominant”
elements a € A%, the K-orbit represented by a on Xy corresponds, un-
der the exponential map, to the K-orbit represented by a on X, cf. [Sak,
Theorem 4.2].

A technical comment is in order: For the purpose of interpreting expres-
sions of the form e®(x), where & is a coroot of the universal Cartan of G' and
X an unramified character of Ax (or A’y =the image of A(F) in Ax(F')), we
identify Ax as a quotient of the universal Cartan A in such a way that the
action of Ax on the open Borel orbit X — X is compatible with the
action of A = B/N on )O(@/N. Then, e®(x) just means the value of y on
&(w), where w is a uniformizer in the field. (We use exponential notation,
because we use additive notation for the coroots.) This convention is com-
patible with [Sak13].

We may interpret the functional equations established in loc.cit. in terms
of normalized Eisenstein integrals and scattering operators as we did above
for the group, but we do not actually need to worry about normalization:
Indeed, Theorem 4.2.2 in loc.cit. implies the following, which we state be-
fore defining the terms used:

15.4. Theorem. For every w € W there is a rational family of H(G, K )-equivariant
operators

B,(x) = < I <—e@<x>>) by (53 0) : O (X g > C(Xg5) K

a>0,wa<0

satisfying the cocycle conditions B, ("' x) © By,(X) = By (x), such that, for
a Zariski dense subset of X-distinguished Satake parameters, the space of efy-
asymptotics of H(G, K)-eigenfunctions with those Satake parameters is precisely
the space of all B, -invariants.
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The theorem itself does not talk about asymptotics, actually, but about
the evaluation of #(G, K)-eigenfunctions (where (G, K') denotes the un-
ramified Hecke algebra G with respect ot K) on A% < X (F). It was ex-
plained in [Sak] that can also be seen as a formula for ej-asymptotics on
Xg.

We explain the notation: The space C°(X )X is the subspace of C* (X )
where A(F') acts with unramified character x; this notation is compatible
with the notation C*(Xg)%,, that we have been using for the dual of the
fiber Lo , (the index s here is superfluous).

The character x lives in the space of unramified characters of A(F") which
are trivial on the kernel of A — Ax. The normalized action of A ex-
plained in 2.6 implies that C*(X )X is a direct sum of copies of the nor-
malized induced representation Ip x)-(x); thus, its Satake parameter is the

1
W-conjugacy class of dx) X where J(x) denotes the modular character of

L(X). Those are the “X-distinguished Satake parameters” of the theorem.

The notation b,, refers precisely to the operators (matrices there, because
a basis has been chosen) denoted by the same symbol in Theorem 4.2.2,
while the notation B, is adapted from (6.1) of loc.cit. (s. also Theorem 1.2.1
there), which refers to a slightly special case. The coroots & appearing in
the relation between B,, and b,, are the coroots of G.

Finally, the notion of “B, -invariants” is completely analogous to the
“ S .-invariants” of our main theorems: a vector

(fo)we P CP(Xg)™™ (15.4)

weWx

is in the space of “B,,-invariants” if for every w, w’ € Wx we have:

fw’w = Ew/fw-

Notice that the map from Wx-conjugacy classes of x’s to X-distinguished
Satake parameters is not necessarily injective (as happens, for example,
when X = N\G, with N maximal unipotent, where W = 1). Therefore, to
obtain the ef;-asymptotics of all (G, K)-eigenfunctions with a given Sa-
take parameter, as in the theorem, one might need to take the direct sum of
B, ,-invariants of several of the spaces (15.4).

From Theorem 15.4 we can now deduce:

15.5. Proposition. In the notation of Theorem 15.4, the adjoints of the fiberwise
scattering operators

FwX) : Loy = L
restricted to K-invariants, are given by:

Fw1(X)* = By(x™1) : CP(X )X K - (X)X K, (15.5)

w

Proof. From the fact that the images of normalized Eisenstein integrals:

Egy : CP(Xg)X ' — C¥(X)
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also span the space of (G, K)-eigenfunctions on X with given Satake pa-
rameter, for a Zariski-dense set of X-distinguished Satake parameters, we
deduce:
_ —1
exBox= D, Bu(x ™) :C%(Xg)¥ — C%(Xg),
wEWX

and by the definition of the fiberwise scattering maps in (10.18), the claim
follows. O

Up to this point we have presented nothing more than a new symbol for
the scattering maps; however, the results of [Sak13] now give rise to a many
examples of scattering operators, restricted to unramified vectors. We will
only discuss the two most characteristic examples, that of course are much
older than loc.cit.

15.6. Example. (Whittaker model.) Consider the case of X = N~\G, where
N~ is a maximal unipotent subgroup over o, and N~ (F) is equipped with
a non-degenerate character U. We keep assuming that G is split, for sim-
plicity. The character is chosen to be trivial on all (o) for all simple coroots
&, but non-trivial on ¢(w~'0), where @ denotes a uniformizer. In this case,
Xy = X as varieties, but with trivial character on N~ (F'). For every un-
ramified character y of the universal Cartan A(F), the space C® (X)X
is 1-dimensional (isomorphic to the unramified vectors of the normalized
principal series 1 g, (x)), with a canonical basis element Pk x which is equal
to 1 on N™1K. (The normalization of the character ¥ on N~ (F') makes the
double coset N™1K unambiguous; the exponent ~ on ¢ is to remind that
we are using the opposite Borel than that containing N~ to identify the
character y with a character of the universal Cartan.)

The Shintani-Casselman-Shalika formula states that, in this case, b,,(x) =
1forallw € Wx = W in terms of the canonical basis elements, i.e. b, (x) ¢y, =

P wy cf. §5.5 in loc.cit. Hence,

y$<X>=( [ <—e‘°“<x>)> L CF (X)X - O (X ) XK,

a>0,wa<0

In particular, the scattering operators have no poles and we get:
15.7. Corollary. In the Whittaker case, we have ST (X x)5 = S(X)X.

This is the only example that we know where the extended Schwartz
space of the boundary degeneration is equal to the original Schwartz space,
as far as K-invariants go. As we will see in the next subsection, this is not
true for Iwahori-invariants.

15.8. Example. (Group case.) We discussed scattering operators for the group
case X = H in the previous subsection, but for unramified vectors we can
also describe them explicitly using Macdonald’s formula for spherical func-
tions. We keep assuming that G' (hence H) is split, for simplicity. Using the
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notation of §15.1, for [P] = [B] (where B here denotes the class of Borel
subgroups of H, not of ) we may identify the smooth dual C® (X)X " of
Lip1y With Ip(x)®Ip-(x ) (since the fiber of X5 over B is trivialized, cf.
§15.1). Here x is an unramified character of B, and we keep the convention
from §15.1 of using the parameter  to denote the representation Y ® x ! of
B x B™.

Using the canonical basis vector of (Ip(x) ® Iz-(x!))¥, we may again
express scattering operators on K = H(o) x H(o)-invariants as scalars. In
this case we have Wy = Wy (the Weyl group of H), and Macdonald’s
formula implies:

P qiled -1 wy,—1
Fw(X) ( H (—e a)1_1ea> (x) : C* (X)X K C*(Xg) X K
a>0,wa<0 q
where the coroots & > 0 in the product above are the positive (with respect
to B) coroots of H, not all positive coroots of G.

15.9. Examples with Iwahori-fixed vectors. Let us consider the Whittaker
and the group case in rank one.

15.10. Example. (Whittaker model) Consider the Whittaker model of G =
PGLy, with conventions (about integral models and characters) as above.
Let w be the non-trivial element of the Weyl group. We can reinterpret
Example 15.6 as saying that

1—e @
* =— ()10 : .
yw (X) 1 — q_lea (X) 0 (15 6)
CP (X)X = I5-(x7Y) = I§-("x71) = C¥(Xp)"™X
Indeed, this holds for K-fixed vectors by the formula
1—q¢g e _
W(X)@K,wxﬂ,

but for x in general position these generate the whole representation.
The rational family of operators (15.6) may be regular on K-fixed vectors,
but this is not true for all vectors in the representation. More precisely, for a

holomorphic family of functions x — ¢, -1 € C*(X g)Xi1 with the property
1

1

TO()D[_(7X—1 =

that 3 does not belong to the trivial subrepresentation C — Ig, (62), the
B

_1
section .7 (x)(¢y-1) has a simple pole at x = d5°. It follows from this that
we have a short exact sequence:
0—S(Xy)! - ST (Xy)! —-St7 -0

of H(G, J)-modules, where J is the Iwahori subgroup and St denotes the
Steinberg representation. (Restricting to Iwahori-invariants is just a way to
isolate the spectral contribution of unramified principal series.) The quo-

tient St” lives over the character y = 6§ =3 of A, which is where the trivial
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representation is a quotient of S(Xg), = L. The trivial representation
is no longer a quotient of S*(X), as should be the case for the Whittaker
model.

15.11. Example. (The group case) Consider the case X = H = PGL3 under
the G = PGLs x PGLy-action. We have seen that for the non-trivial element
w € Wx = Wy the scattering map is given by:

L300 = To® Ty : O (Xp)¥ > In() @ Ip-(x ) = C*(Xg)™ ",
where again we denote here by B a Borel subgroup of H (not G).

It can easily be seen that, for x unramified, Ty®7T, ' has poles precisely at
X=29 +2; more precisely, for a holomorphic family of functions x — ¢, -1 €
COO(X@)X_I, the section .7 (x) (»,-1) has a (simple) pole at x = %2 if and
only if the specialization of ¢, -1 at that point does not belong to any proper
subrepresentation of

1 _
C*(Xp)" " ~ Ip(6%2) @ - (572).
From this it can be inferred that we have a short exact sequence:
0—S(Xy)! - ST (Xy) -t/ @St ®@C®C — 0,

with the quotient St” ® St” living over y = 572 and the quotient C® C
living over x = ¢ 2. The fiber V of S (X ) over either of x = § 3 admits a
short exact sequence:

0-StRXCPACRSt—->V -St®StdC®C -0
and, of course, as a result both St ® St and C ® C are quotients of S(H).

16. THE BERNSTEIN CENTER AND THE GROUP PALEY-WIENER THEOREM

16.1. The Bernstein center. We will now see how our Paley—Wiener the-
orem, and in particular the description of multipliers (Corollary 1.10), im-
plies the well-known theorem on the structure of the Bernstein center in
the case of the group, X = H, G = H x H. The argument is inductive in
the size of H; in particular, we have used the structure of the Bernstein cen-
ter for its proper Levi subgroups in Corollary 10.6 and hence Proposition
12.1 in order to deduce our Paley-Wiener theorem and the existence of the
multiplier ring 3 (H) on S(H).

Recall that the Bernstein center 3(H) is, by definition, the center of the
category M (H) of smooth representations of H, i.e. the algebra of natural
transformations of the idendity functor of M(H). When X = H the bound-
ary degenerations Xg, © — Ax are parametrized by classes of parabolics
in H, where for a given parabolic P corresponding to © — Ax we have:

Xp = Xo ~ L3\ (Up\H x Up\H) ~ Lp x"*F" (H x H).

Here P~ is an opposite parabolic, Lp = P n P~ a Levi subgroup and
Up,Up the corresponding unipotent radicals.
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For all H x H-representations that appear below, if not specified other-

wise, we let the Bernstein center of H act via the embedding H 1L, HxH.

16.2. Theorem. (1) The canonical morphism:
3(H) — Endpxn(S(H)) (16.1)

is an isomorphism.

(2) For every class of parabolics P in H (corresponding to © < Ax) the
Bernstein center acts fiberwise, i.e. 3°P(X§) = C[Le"sP]-equivariantly,
on S(Xe)eusp =~ C[LE™, Lo].

(3) The action of any element of 3(H) on each fiber of Leg is scalar; this scalar

varies polynomially on LY, i.e. we get a canonical morphism:

3(H) — @ CLSP). (16.2)
P

(4) The above map gives rise to an isomorphism:

3(H) = (@ C[E?Sp],> =3""(H), (16.3)
P

where the exponent ™ denotes invariants with respect to the isomor-
phisms:

Tcusp __ 7cusp

L™ ~ LY

induced by all w e Wi (P, Q).

Proof. (1) Choose a Haar measure dh on H, and let z — «(z) denote the
morphism (16.1). We can construct an inverse to « as follows: Let
(m, V') be a smooth representation of H and let .J be an open compact
subgroup. For Z € Endyxu(S(H)) we define an endomorphism
B(Z) of V7 by:

B(Z)(v) = m(Z(1;/Vol(J))dh)(v),

where 1; is the characteristic function of J. It is easy to see that
this defines an endomorphism 3(Z) of V, and that the collection
of these endomorphisms is an element of the Bernstein center (also
to be denoted by 5(Z)). Finally, the fact that § is inverse to « fol-
lows from applying any z € 3(H) to the morphism of smooth H-
representations:

SH)®7>3 f®uv— w(fdh)(v) e,

where the left hand side is considered as an H-module only via the
action on S(H) by left multiplication.

(2) This is obvious from the definition of the Bernstein center and the
fact that the ;%P (X §)-action commutes with the G = H x H-action.
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(3) The action is generically scalar because for o € ffCUSp in general posi-
tion the representations I (¢) and I} (o) are irreducible, s. Lemma
11.3. On the other hand, it has to preserve the space S(Xe)cusp =
C[I:;;ISP, Lo] of regular sections of Lg, so it has to be polynomial in
o.

(4) From our Paley—Wiener theorem (e.g. in the form of Theorem 14.5)
and the 3%P(X§)-equivariance properties of the scattering maps,
it follows that the image of (16.2) has to lie in the invariants. On
the other hand, by the inverse of (16.1) and the fact that 3 (H) <
Endy« g (S(H)), every invariant induces an H x H-equivariant en-
domorphism of S(H ), thus by the first assertion of this proposition
we get the desired isomorphism.

O

16.3. Paley—Wiener theorem. In the case of the group, X = H,G = Hx H,
we would like to explain the relation of our theorem to the well-known
Paley—-Wiener theorem of Bernstein [Ber] and Heiermann [Hei01]. We clar-
ify that our theorem goes only half-way towards their result; for the other
half, one needs to appeal to Proposition (0.2) of [Hei01], which is proba-
bly also the hardest part of that paper. This is because the Paley—Wiener
theorem of Bernstein and Heiermann for the group does not generalize
(as a statement) to spherical varieties; and there is a non-trivial distance
to cover in order to obtain one from the other, accomplished through the
aforementioned proposition of Heiermann. In fact, the steps taken in part
A of [HeiO1] can be recast in the setting of our general proof; thus, our work
provides a weak generalization, but not a new proof of the Paley-Wiener
theorem for reductive groups. We find it important, nevertheless, to ex-
plain the connection.

To state the Paley—Wiener theorem of Bernstein and Heiermann we will
use the language of bundles, as in §3, 4; we will not explicitly detail the
algebraic structure of the bundles that we will encounter, since the process
is identical to the one we have used thus far.

16.4. Theorem (Bernstein [Ber], Heiermann [HeiO1]). For every parabolic P
of H, denoting its Levi quotient by L, consider the bundle o — End (I ()) over
Lo,
Fixing a Haar measure dh, for every smooth representation m we have the canon-
ical map:
S(H) > f — 7©(fdh) € End(7).

Then this map gives rise to an isomorphism:

S(H) > ((-PC [a e [P End (I}E(&))]) ,

where:
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e P ranges over all conjugacy classes of parabolics;
o the exponent ™ refers to sections of the bundle of endomorphisms which
commute with all standard intertwining operators.

We will use the notation of §15.1. In particular, Ty p is the standard in-
tertwining operator between representations induced from parabolics P,
which share a common Levi subgroup (depending on a choice of Haar mea-
sure on Ug/Ug nUp), X|p) denotes the boundary degeneration correspond-

——

ing to a class [ P] of parabolics in H, and the space X [I;D] c " is identified with

LE™P as explained there.

By setting I (o) in duality with I (5) (that depends on the choice of a
Haar measure on Up-), the bundle with fibers o — End (15 (5)) of Theo-
rem 16.4 is identified with the bundle whose fiber over o € L& is 14 (5) ®

IH (o).
Thus, the morphism f — 7 (fdh) can be understood as a morphism:

M*:S(X) - C [a e Lowe [H(5) @ I8 (a)] (16.4)

where the notation M* is due to the fact that this is dual to the operation of
taking matrix coefficients. On the other hand, the condition of invariance
under standard intertwining operators in Theorem 16.4 can be tranlated to
the condition of invariance under the operators:

-1
TQ\P®TP|Q
_

C (a e fewe H(z) @1k (a)) C (a e Lo 1H(6) @ 1Y <a)) .

By [SV, §15.7], one obtains the normalized cuspidal constant terms E§ .,
out of this by composing with the inverse of the standard intertwining op-
erator Ty : I (c) — If (o) in the second variable:

S(X) M 18 (6) @ 1 (0)] 2 ¢ (1 (5) © I (o).

where we have for brevity omitted L<"P from the notation.
Thus, we have a commutative diagram:

S(H) (16.5)
M* MA
ClIE(6) @1 (0)] 1o 1p®Tp|q C [15(5—) ® Ig(a)]
~l1®TO—1 ~ [1QT; !
C(IHE) @I (o)) el e (IH(&) L 1 (a))
P P Q Q-

which is dual to (15.2), so the compositions of slanted and vertical arrows
are the normalized constant terms. Notice that up to this point we have
made choices of Haar measures on H and Up- (so that the left slanted
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arrow M™ is proportional to the measure dh and inversely proportional
to Up-), and of a Haar measure on Up (to which 7! is inversely propor-
tional; and similarly when P is replaced by (). The measure dh also induces
measures on the boundary degenerations X P X[y and we leave to the
reader to check that the choices of measures cancel each other out when
we identify the bundles in the bottom row with the bundles of cuspidal
coinvariants £[ PJ, resp. £[Q].

Our Theorem 14.4, together with Proposition 15.2, states that the sum of
normalized constant terms induces an isomorphism:

S(H) = (@ C*[I£(5) @1{.1@)]) , (16.6)
P

where inv denotes invariants of the fiberwise scattering maps ., = T p®
T;,1| - Recall that the space C* [1H(5) ® IH (0)] is generated by apply-
ing these scattering maps to regular sections.

To see that this implies Theorem 16.4, the only non-trivial statement to

prove is that every element of:

(@C [15(5) ®Ig(0)]> (16.7)
Q

corresponds to an element of the right hand side of (16.6) under the di-
agram (16.5), but this is [Hei01, Proposition 0.2] which, in our language,
states:

16.5. Proposition (Heiermann [HeiO1]). For every element ¢ = (pq)q of
(16.7) there is an element & = (£p)p € @p C[IH (6) ® I (0)] such that:

Q= > Top ®Tgp-Ep

P~Q,weWg (P,Q) Q

Notice that T p @1 p- = T p®(Too T;_l 0~ ). Thus, under the vertical
arrows of diagram (16.5), the element ¢ corresponds to the element:

> Tor®Tylgtp
P~QueWr (PQ) 0

of ((—BQ ct [Ig(&) ® Ig, (o)] ) ™ This recovers Theorem 16.4 on the basis
of [HeiO1, Proposition 0.2].

APPENDIX A. CHARACTERIZATION OF STRONGLY FACTORIZABLE
SPHERICAL VARIETIES

In this appendix we assume that G is split.
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Recall that a homogeneous spherical variety X is called factorizable if the
rank of X is equal to the rank of Z(X), and that a wavefront spherical
variety is called strongly factorizable if all its Levi varieties are factorizable.

We will characterize factorizable and strongly factorizable spherical vari-
eties in terms of combinatorial invariants attached to X . We refer the reader
to [Lun01] for more details on the definitions and properties of these invari-
ants.

Recall that the group X (X) = Hom(Ax,G,,) defined previously de-
notes the subgroup of characters of a Borel subgroup B which are trivial on
generic stabilizers or, equivalently, the group of eigencharacters of the Borel
subgroup on the space F(X)5) of non-zero rational B-eigenfunctions on
X. By definition, the group X'(X) is a subgroup of X'(A), the character
group of the universal Cartan A = B/N.

The little Weyl group Wx acts on X(X). The character group of Z(X)
can be identified with the quotient of X'(X) by the characters in the sub-
space of X(X)g = X (X) ® Q spanned by the set A x of spherical roots.

Let D be the set of colors, i.e. prime B-stable geometric divisors. Each
of them induces a valuation on the function field over the algebraic closure
F(X) and, by restriction to B-eigenfunctions, amap px : D — Hom(X(X), Z).
Indeed, there is a short exact sequence

1—>FX—>F(X)(B)—>X(X)—>1, (A1)
and the valuations are trivial on F*. Since, in the case of G being split, the

Galois group acts trivially on X'(X), these valuations are Galois stable — in
particular, Galois-conjugate colors give rise to the same valuation.

A.1. Proposition. A homogeneous spherical G-variety X is factorizable if and
only if the following two conditions are satisfied:

(1) X(X)g~ = X(A)F;

(2) the set px (D) of valuations induced by colors lies in the subspace of X (X ),
spanned by the images of coroots of G under the quotient map X (A)g —
X(X)E-

A wavefront homogeneous spherical variety is strongly factorizable if and only
if the following two conditions are satisfied:

(1) For every subset © of the set Ax of spherical roots,

X(X)g e = X(A)y"e.
(Recall that the little Weyl group Wx, of Xe is generated by the simple
reflections associated to elements of ©; by W, we denote the Weyl group
of the Levi subgroup Le.)

(2) For every color D, px (D) is a multiple of the image of a simple coroot ¢ of
G.

Before we prove the proposition, we make some remarks, prove some
lemmas and give some examples that clarify its use.
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Remarks. (1) In terms of the dual groups, the first condition means that
the center of the dual group of X is, up to finite indices, contained in
the center of the dual group of GG, and similarly for all Levi varieties
(for strong factorizability). Notice that the dual group’ G’y of X isa
canonical subgroup of the dual group G of G, if the Tannakian con-
struction of Gaitsgory-Nadler is assumed, or a canonical subgroup
up to conjugacy by the canonical maximal torus, if a combinatorial
definition based on the set A x of spherical roots is used. The dual
Lo of the Levi Le is determined by the set of simple roots of G in
the support of elements of ©, and the simple roots in the Levi of
P(X). Hence, this is a condition that can be easily checked once the
spherical roots of X and the parabolic P(X) are known.

(2) The second condition (in both cases) cannot be read off from dual
groups. It requires more specific knowledge on colors, which can
be obtained from the Luna diagram [Lun01] of the spherical variety.
This condition, for strong factorizability, eventually boils down to a
determination of valuations for “type T” colors, i.e. colors attached®
to simple roots of G belonging to (the set of unnormalized spherical
roots)’ ¥ x. More precisely:

A.2. Lemma. The second condition for strong factorizability is satisfied if and
only if for every ac € X x which is also a simple root for G, the two colors contained

in X - P, induce valuations equal to $.
Such colors are called undetermined in [Kno96, §5].

Proof. Indeed, for every color D there exists at least one « such that D <
XP,, and then px (D) = the image of & (hence the second condition of
strong factorizability is satisfied) except when o € X x, cf. [Lun01]. In this
last case, consider the boundary degeneration of rank one associated to
© = {a}. The Levi Leg has simple roots {a} u S%, where, using Luna’s
notation, S% denotes the simple roots in the Levi of P(X). But it is known
that if 3 € S% then the image of the coroot 3 in X' (X )¢ is zero. Hence,
px (D) has to be a multiple of (the image of) ¢, and then it has to be equal
to % (Cf. loc.cit. for all the facts we are using.) O

Moreover, it has been proven by Losev [Los09, Theorem 2] that for a €
Y x as in the previous lemma, the spherical variety Xy = N(H)\G =
X/Autg(X) (where X = H\G and N (H ) denotes its normalizer), the spher-
ical root o gets replaced by 2c. That means that, up to dividing by the

SWe are using here the Gaitsgory-Nadler dual group, denoted by G x cn in [SV], as-
suming that its root datum is the one corresponding to the spherical roots — see loc.cit.,
Theorem 2.2.3.

6A color D is attached to the simple root a of G if it belongs to X P,, where P, is the
parabolic of semisimple rank 1 associated to a.

Those are the spherical roots as used by Luna. They are multiples of elements of Ax.
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G-automorphism group or a suitable subgroup thereof, X is a spherical
variety whose spherical system has no simple roots, and those have been
classified, along with “strict spherical varieties” by [BCF10]. Most of those
are symmetric, and among the non-symmetric ones some are not of wave-
front type or do not satisfy the first condition of Proposition A.1, but there
are some examples that do:

A.3. Example. Let X = G2\SOy. Its spherical system is denoted b”(3) in
[BCF10]. With simple roots labelled consecutively (on the Dynkin diagram)
as a1, ag, az, where aj is the short root, we have S% = {a1,as} and Tx =
{Ozl + 209 + 3043}.

The variety X is factorizable for trivial reasons: Z(X) is trivial. From its
spherical system it can be deduced that its only boundary degeneration is
the unique horospherical homogeneous variety X with ngg = 5% and

character group spanned by a1 + 2as + 3as. Thus, X = SL3 U\G, where
U is the unipotent radical of the parabolic with Levi of type GL3, and SL3 is
the derived group of this Levi. Hence, the Levi variety is SL3 \ GL3, which
is factorizable.

A4. Example. Let X = H\G, where G is the exceptional group G and
H = SLg; its spherical system is denoted ¢(2) in loc.cit. Here S% = {as}
(the long root) and X x = {2a; + ag}. Again, Z(X) = 1, and from the
spherical system it can be deduced that the only boundary degeneration
X is isomorphic to the quotient of G by the subgroup SLs -U, where U
is the unipotent radical of the parabolic whose Levi has root a3, and SLo
belongs to that Levi. Thus, X é = SLs \ GLgo, which is factorizable.

Now we come to the proof of Proposition A.1.

Proof of Proposition A.1. Consider the diagram of natural morphisms of tori:

Z(X) Ax Xab
Z(G)Y —s A —— G
In terms of character groups we have a dual diagram:

X(X)®Q/(Ex)g=—X¥(X)®Q=——X(X")®Q

| | |

X(A)®Q/(P)g~— X(A)®Q~—X(G")®Q.

The vertical arrows are injective, and so are the horizontal arrows on the
right. Thus, for an element x € X'(X) ® Q to come from X (X?") ® Q, first
of all it has to come from X (G??) ® Q; thus, it has to be orthogonal to the
subspace of Hom(X'(A), Q) spanned by coroots of G. Granted that, and
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assuming without loss of generality that xy € X'(X), we need to make sure
that such a character is trivial on the subgroup H stabilizing a point on the
homogeneous variety X. This is equivalent to saying that y, thought of as
a function on the open Borel orbit (uniquely determined up to scalar by
(A.1)), extends to a nonvanishing, reqular function on the spherical variety.
(The equivalence is established by pulling it back to G and using the fact
that a regular, non-vanishing function on G is necessarily a scalar multiple
of a character.) Which, in turn, is equivalent to saying that its valuations on
all colors are trivial. Thus:

XX ®Q - X(X)®Qnd n px(D), (A2)

where & denotes the image of coroots of G. Thus, X is factorizable if and
only if the span of colors and coroots of G in Hom(X'(X), Q) has the same
dimension as the span of X x in X'(X)q.

This condition can be reformulated, taking into account that there is a
Weyl group action on X'(X), under which the quotient X'(X) ® Q/ (Xx)q
can be identified with the subspace of Wx-fixed vectors. This, in turn, con-

tains the subspace X'(X) ® Q n (i)L. (Notice that, in terms of dual groups,
this containment corresponds the embedding into the center of the dual
group of X of its intersection with the center of the dual group of G.) Thus,
a variety is factorizable if and only if the Wx-fixed subspace of X' (X) ® Q
belongs to the W-fixed subspace of X' (A) ® Q and, moreover, the valuations
induced by colors, i.e. the set px (D), are in the subspace spanned by the
images of coroots of G.

For a Levi variety, the lattice X'(X) does not change, the set of spheri-
cal roots is a subset of X x, and the set of colors can be identified with the
subset of those D € D with (v, px (D)) > 0 for some ~ in that subset of X x
(cf. [LunO01]). The first condition of strong factorizability follows directly
from the first condition of factorizability, and the second follows from con-
sidering boundary degenerations with a unique spherical root, and clearly
suffices for all other boundary degenerations.

]

Finally, we check that the two examples A.3, A .4 of non-symmetric, strongly
factorizable varieties that we saw satisfy the rest of the assumptions of this
paper (s. §2.1).

In both cases, the character group X (X) is generated by the spherical
root, hence is of rank one, and the spherical root is a root of the group.
Hence, we have a’ o = either the line generated by the spherical root
(when © = (¥) or the trivial space {0} (when © = Ax). In the non-
trivial case, since a% g is one-dimensional, an element of the Weyl group
that leaves it invariant either acts trivially on it or acts by (—1); hence, both
actions are represented by elements of the little Weyl group W. Thus, the
strong generic injectivity assumption is fulfilled.
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We now sketch the argument for the validity of the explicit Plancherel
formula of [SV, Theorem 15.6.2], by checking the “generic injectivity of
small Mackey restriction” (we point the reader to loc.cit. for the definitions).
This has to do with representations appearing in the continuous spectrum
of X, i.e. in the spectrum of (the unique boundary degeneration) X. In
this case, since X is horospherical, the representations will have the form
Ip(x)(x), where ¥ is a character that is trivial on the intersection of P(X)
with the stabilizer of a point on X belonging to the opposite parabolic.

We need to show that, for generic such x, any morphism:

S(X) = Ipx)(x)
is obtained by the analytic continuation of the functional “integration over

_1
the open P(X)-orbit” (against the character x 1§ P(QX)). To show this, we

argue that other P(X)-orbits (or, for that matter, other Borel orbits) cannot
support such a P(X)-equivariant (or Borel-equivariant) distribution. For
unramified characters, this has been done in [Sak08], but the same argu-
ment works in general. It is enough to show that no B-orbit other than the
open one has character group (= the group of characters of the Borel sub-
group which are trivial on stabilizers of points on this orbit) different from
the open orbit (whose character group coincides with X'(X) and hence, in
our examples, is generated by the unique spherical root). By [Kno95], the
rank of the character group of each Borel orbit is at most equal to that rank
for the open orbit, which in our case is 1; and all orbits of maximal rank (in
our case, rank 1) are conjugate under an action of the full Weyl group W
defined by F. Knop, which is compatible with the action of W on character
groups (considered as subgroups of X'(A), the character group of the Borel).
The stabilizer of the open orbit under this action is the product Wx x Wrix),
where L(X) is the Levi of P(X), so the whole problem boils down to check-
ing that the stabilizer of X'(X)  X'(A) in W is equal to Wx x Wy in our
examples. This is indeed the case: Let w € W stabilize X' (X). Without loss
of generality (multiplying, if necessary, by the non-trivial element of W),
w acts trivially on X'(X). But this places w in the centralizer of the dual
torus Ax (the torus with cocharacter group X (X)) in the dual group G of
G, a Levi of G which by [Kno94, Lemma 3.1] is the Levi dual to P(X); thus,
w e WL( X)-
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