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Abstract

Following a scheme inspired by the recent results of B. Feigon, where she obtains
what she called a local relative trace formula for PGL2 and a local Kutznetsov trace
formula for Up2q, we describe the spectral side of a local relative trace formula for
G :“ PGLp2,Eq relative to the symmetric subgroup H :“ PGLp2,Fq where E{F is
an unramified quadratic extension of local non archimedean fields of characteristic 0.
This spectral side is given in terms of regularized normalized periods and normalized
C-functions of Harish-Chandra. Using the geometric side of such local relative trace
formula obtained in a more general setting by P. Delorme, P. Harinck and S. Souaifi,
we deduce a local relative trace formula for G relative to H. We apply our result to
invert some orbital integrals.
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1 Introduction

Let E{F be an unramified quadratic extension of local non archimedean fields of character-
istic 0. In this paper, we prove a local relative trace formula for G :“ PGLp2,Eq relative
to the symmetric subgroup H :“ PGLp2,Fq following a scheme inspired by B. Feigon [F].

As in [Ar], the way to establish a local relative trace formula is to describe two asymp-
totic expansions of a truncated kernel associated to the regular representation of GˆG on
L2pGq, the first one in terms of weighted orbital integrals (called the geometric expansion),
and the second one in terms of irreducible representations of G (called the spectral expan-
sion). The truncated kernel we consider is defined as follows. The regular representation
R of GˆG on L2pGq is given by pRpg1, g2qψqpxq “ ψpg´1

2 xg1q. For f “ f1 b f2, where f1

and f2 are two smooth compactly supported functions on G, the corresponding operator
Rpfq is an integral operator on L2pGq with smooth kernel

Kf px, yq “

ż

G
f1pgyqf2pxgqdg “

ż

G
f1px

´1gyqf2pgqdg.

˚The first author was supported by a grant of Agence Nationale de la Recherche with reference ANR-
13-BS01-0012 FERPLAY.
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We define the truncated kernel Knpfq by

Knpfq :“

ż

HˆH
Kf px, yqupx, nqupy, nqdxdy,

where the truncated function up¨, nq is the characteristic function of a large compact subset
in H depending on a positive integer n as in [Ar] or [DHSo].

In [DHSo], we study such a truncated kernel in the more general setting where H is
the group of F-points of a reductive algebraic group H defined and split over F and G
is the group of F-points of the restriction of scalars G :“ ResE{FH from E to F and we
obtain an asymptotic geometric expansion of this truncated kernel in terms of weighted
orbital integrals.

It is considerably more difficult to obtain a spectral asymptotic expansion of the trun-
cated kernel and the main part of this paper is devoted to give it for H “ PGLp2q.

First, we express the kernel Kf in terms of normalized Eisenstein integrals using the
Plancherel formula for G (cf. section 3) . Then the truncated kernel can be written as a
finite linear combination, depending on unitary irreducible representations of G, of terms
involving scalar product of truncated periods (cf. Corollary 4.2). The difficulty appears
in the terms depending on principal series of G.

Let M (resp., P ) be the image in G of the group of diagonal (resp., upper triangu-
lar) matrices of GLp2,Eq and let P̄ be the parabolic subgroup opposite to P . As M is
isomorphic to Eˆ, we identify characters on M and on Eˆ. The group of unramified
characters of M is isomorphic to C˚ by a map z Ñ χz. Let δ be a unitary character of
Eˆ, which is trivial on a fixed uniformizer of Fˆ. For z P C˚, we set δz :“ δ b χz. We
denote by piGP δz, i

G
PCδzq the normalized induced representation and by piGP δ̌z, i

G
P Čδzq its

contragredient. Then, the normalized truncated period is defined by

PnδzpSq :“

ż

H
E0pP, δz, Sqphquph, nqdh, S P iGPCδz b iGP Čδz ,

where E0pP, δz, ¨q is the normalized Eisenstein integral associated to iGP δz (cf. (3.6)). The
contribution of iGP δz in Knpfq is a finite linear combination of integrals

Inδ pS, S
1q :“

ż

O
PnδzpSqP

n
δz
pS1q

dz

z
, S, S1 P iGPCδz b iGP Čδz

where O is the torus of complex numbers of modulus equal to 1.
To establish the asymptotic expansion of this integral, we recall the notion of nor-

malized regularized period introduced by B. Feigon (cf. section 4). This period, denoted
by

PδzpSq :“

ż ˚

H
E0pP, δz, Sqphqdh

is meromorphic in a neighborhood V of O with at most a simple pole at z “ 1 and defines
a HˆH invariant linear form on iGPCδz b iGP Čδz . Moreover, the difference PδzpSq´P

n
δz
pSq

is a rational function in z on V with at most a simple pole at z “ 1 which depends
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on the normalized C-functions of Harish-Chandra. As normalized Eisenstein integrals
and normalized C-functions are holomorphic in a neighborhood of O, we can deduce an
asymptotic behavior of the integrals Inδ pS, S

1q in terms of normalized regularized periods
and normalized C-functions (cf. Proposition 7.1).

Our first result (cf. Theorem 7.3) asserts that Knpfq is asymptotic to a polynomial
function in n of degree 1 whose coefficients are described in terms of generalized matrix
coefficients mξ,ξ1 associated to unitary irreducible representations pπ, Vπq of G where ξ
and ξ1 are linear forms on Vπ. When pπ, Vπq is a normalized induced representation, these
linear forms are defined from the regularized normalized periods, its residues, and the
normalized C-functions of Harish-Chandra.

We make precise the geometric asymptotic expansion of Knpfq obtained in [DHSo]
for H :“ PGLp2q. Therefore, comparing the two asymptotic expansions of Knpfq, we
deduce our relative local trace formula and a relation between orbital integrals on elliptic
regular points in HzG and some generalized matrix coefficients of induced representations
(Theorem 8.1).

As corollary of these results, we give an inversion formula for orbital integrals on
regular elliptic points of HzG and for orbital integrals of a matrix coefficient associated
to a cuspidal representation of G.

We thank the referee for his useful comments.

2 Notation

Let F be a non archimedean local field of characteristic 0 and odd residual characteristic
q. Let E be an unramified quadratic extension of F. Let OF (resp., OE) denote the ring
of integers in F (resp., in E). We fix a uniformizer ω in the maximal ideal of OF. Thus ω
is also a uniformizer of E. We denote by vp¨q the valuation of F, extended to E. Let | ¨ |F
(resp., | ¨ |E) denote the normalized valuation on F (resp., on E). Thus for a P Fˆ, one has
|a|F “ |a|

2
E.

Let NE{F be the norm map from Eˆ to Fˆ. We denote by E1 the set of elements in
Eˆ whose norm is equal to 1.

Let H :“ PGLp2q defined over F and let G :“ ResE{FpH ˆF Eq be the restriction of
scalars of H from E to F. We set H :“ HpFq “ PGLp2,Fq and G :“ GpFq “ PGLp2,Eq.
Let K :“ GpOF q “ PGLp2,OEq.

We denote by C8pGq the space of smooth functions on G and by C8c pGq the subspace
of compactly supported functions in C8pGq. If V is a vector space of valued functions on
G which is invariant by right (resp., left) translations, we will denote by ρ (resp., λ) the
right (resp., left) regular representation of G in V .

If V is a vector space, V 1 will denote its dual. If V is real, VC will denote its complex-
ification.

Let p be the canonical projection of GLp2,Eq onto G. We denote by M and N the
image by p of the subgroups of diagonal matrices and upper triangular unipotent ma-
trices of GLp2,Eq respectively. We set P :“ MN and we denote by P̄ the parabolic
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subgroup opposite to P . Let δP be the modular function of P . We denote by 1 and w the
representatives in K of the Weyl group WG of M in G.

For J “ K,M or P , we set JH :“ J XH.

For a, b in Eˆ, we denote by diagGpa, bq the image by p of the diagonal matrix
ˆ

a 0
0 b

˙

P GLp2, Eq. The natural map pa, bq ÞÑ diagGpa, bq induces an isomorphism

from Eˆ ˆ Eˆ{diagpEˆq » Eˆ to M where diagpEˆq is the diagonal of Eˆ ˆ Eˆ.

Hence, each character χ of Eˆ defines a character of M given by
diagGpa, bq ÞÑ χpab´1q, which we will denote by the same letter.

(2.1)

We define the map hM : M Ñ R by

q´hM pmq “ |ab´1|E for m “ diagGpa, bq. (2.2)

We define similarly hMH
on MH by q´hMH pdiagGpa,bqq “ |ab´1|F for a, b P Fˆ. Then for

m PMH , one has δP pmq “ δPH pmq
2 “ q´2hMH pmq.

We normalize the Haar measure dx on F so that volpOFq “ 1. We define the measure

dˆx on Fˆ by dˆx “
1

1´ q´1

1

|x|F
dx. Thus, we have volpOˆF q “ 1. We let M and MH have

the measure induced by dˆx. We normalize the Haar measure on K so that volpKq “ 1.
Let dn be the Haar measure on N such that

ż

N
δP̄ pmP̄ pnqqdn “ 1.

Let dg be the Haar measure on G such that
ż

G
fpgqdg “

ż

M

ż

N

ż

K
fpmnkqdk dn dm.

We define dh on H similarly.

The Cartan decomposition of H is given by

H “ KHM
`
HKH where M`

H :“ tdiagGpa, bq; a, b P Fˆ, |ab´1|F ď 1u, (2.3)

and for any integrable function f on H, we have the standard integration formula
ż

H
fpxqdx “

ż

KH

ż

KH

ż

MH

DPH pmqfpk1mk2qdmdk2dk1, (2.4)

where

DPH pmq “

"

δPH pmq
´1p1` q´1q if m PM`

H ,
0 otherwise.

For h P H, we denote by Mphq an element of M`
H such that h P KHMphqKH . The

element hMH
pMphqq is independent of this choice. We thank E. Lapid who suggests us

the proof of the following Lemma.
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2.1 Lemma. Let Ω be a compact subset of H. There is N0 ą 0 sastisfying the following
property:
for any h P Ω, there exists Xh P R such that, for all m P M`

H satisfying hMH
pmq ě N0,

one has
hMH

pMpmhqq “ hMH
pmq `Xh.

Proof :

For a matrix x “ pxi,jqi,j of GLp2,Fq, we set

F pxq :“ log max
i,j

´

|xi,j |
2
F

|detx|F

¯

.

The function F is clearly invariant under the action of the center of GLp2,Fq, hence
it defines a function on H which we denote by the same letter.

Since | ¨ |F is ultrametric, for k P KH and h P H, we have F pkhq ď F phq, hence,
F pk´1khq ď F pkhq. Using the same argument on the right, we deduce that F is right and
left invariant by KH .

If m “ diagGpω
n1 , ωn2q with n1´n2 ě 0 then F pmq “ log max

´ q´2n1

q´n1´n2
,
q´2n2

q´n1´n2

¯

“

pn1 ´ n2q log q “ hMH
pmq log q. Thus, we deduce that

F phq “ hMH
pMphqq log q, h P H.

If h “

ˆ

a b
c d

˙

and m “ diagGpω
n1 , ωn2q, then

F pmhq “ log max
´

|a|2Fq
n2´n1 , |b|2Fq

n2´n1 , |c|2Fq
n1´n2 , |d|2Fq

n1´n2

¯

´ log |ad´ bc|F.

Therefore, we can choose N0 ą 0 such that, for any h P Ω and m PM`
H with hM pmq ą N0,

we have
F pmhq “ log max

´

|c|2Fq
n1´n2 , |d|2Fq

n1´n2

¯

´ log |ad´ bc|F

“ pn1 ´ n2q log q ` log maxp|c|2F, |d|
2
Fq ´ log |ad´ bc|F.

Hence, we obtain the Lemma.

3 Normalized Eisenstein integrals and Plancherel formula

We denote by xM2 the set of unitary characters of Eˆ which are trivial on ω.
Let XpMq be the complex torus of unramified characters of M and XpMqu be the

compact subtorus of unitary unramified characters of M . For z P C˚, we denote by χz
the unramified character of Eˆ defined by χzpωq “ z. By definition of hM , we have
χzpmq “ zhM pmq{2. Each element of XpMq is of the form χz for some z P C˚ and XpMqu
identifies with the group O of complex numbers of modulus equal to 1.
For δ P xM2 and z P C˚, we set δz :“ δ b χz. We will denote by Cδz the space of δz.

Let Q “ MU be equal to P or to P̄ . Let δ P xM2 and z P C˚. We denote by iGQδz
the right representation of G in the space iGQCδz of maps v from G to C, right invariant

5



by a compact open subgroup of G and such that vpmugq “ δQpmq
1{2δzpmqfpgq for all

m PM,u P U and g P G.
One denotes by p̄iGQδz, i

K
KXQCq the compact realization of piGQδz, i

G
QCδzq obtained by

restriction of functions. If v P iKQXKC, one denotes by vz the element of iGQCδz whose
restriction to K is equal to v.

One defines a scalar product on iKQXKC by

pv, v1q “

ż

K
vpkqv1pkqdk, v, v1 P iKQXKC. (3.1)

If z P O (hence δz is unitary), the representation īGQpδzq is unitary. Therefore, by

“transport de structure”, iGQpδzq is also unitary.

Let pδ̌z, Čδzq be the contragredient representation of pδz,Cδzq. We can and will identify
piGQδ̌z, i

G
QČδzq with the contragredient representation of piGQδz, i

G
QCδzq and iGQCδz b iGQČδz

with a subspace of EndGpi
G
QCδzq ([W], I.3).

Using the isomorphism between iGQCδz and iKQXKC, we can define the notion of rational

or polynomial map from XpMq to a space depending on iGQCδz as in ([W] IV.1 and VI.1).

We denote by ApQ̄,Q, δzq : iGQCδz Ñ iG
Q̄
Cδz the standard intertwining opera-

tor. By ([W], IV. 1. and Proposition IV.2.2), the map z P C˚ ÞÑ ApQ̄,Q, δzq P
HomGpi

G
QCδz , iGQ̄Cδzq is a rational function on C˚. Moreover, there exists a rational com-

plex valued function jpδzq depending only on M such that ApQ, Q̄, δzq ˝ApQ̄,Q, δzq is the
dilation of scale jpδzq. We set

µpδzq :“ jpδzq
´1. (3.2)

By ([W] Lemme V.2.1), the map z ÞÑ µpδzq is rational on C˚ and regular on O.

The Eistenstein integral EpQ, δzq is the map from iGQCδz b iGQČδz to C8pGq defined by

EpQ, δz, v b v̌qpgq “ xpi
G
Qδzqpgqv, v̌y, v P iGQCδz , v̌ P iGQČδz . (3.3)

If ψ P iGQCδz b iGQČδz is identified with an endomorphism of iGQCδz , we have

EpQ, δz, ψqpgq “ trpiGQδzpgqψ
˘

. (3.4)

We introduce the operator CP,P p1, δzq :“ IdbApP̄ , P, δ̌zq from iGPCδz b iGP Čδz to iGPCδz b
iG
P̄
Čδz . By ([W], Lemme V.2.2), one has

the operator µpδzq
1{2CP,P p1, δzq is unitary and regular on O. (3.5)

We define the normalized Eisenstein integral E0pP, δzq : iGPCδz b iGP̄ Čδz Ñ C8pGq by

E0pP, δz,Ψq “ EpP, δz, CP |P p1, δzq
´1Ψq. (3.6)
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By ([S], §5.3.5), we have

E0pP, δz,Ψq is regular on O. (3.7)

For f P C8c pGq, we denote by f̌ the function defined by f̌pgq :“ fpg´1q. Then, the oper-
ator iGP δzpf̌q belongs to iGPCδz b iGP Čδz Ă EndGpi

G
PCδzq. We define the Fourier transform

FpP, δz, fq P iGPCδz b iGP Čδz of f by

FpP, δz, fq “ iGP δzpf̌q.

The G-invariant scalar product on iGPCδz defined in (3.1) induces a G-invariant scalar
product on iGPCδz b iGP Čδz given by

pv1 b v̌1, v2 b v̌2q “ pv1, v2qpv̌1, v̌2q.

Notice that by the inclusion iGPCδz b iGP Čδz Ă EndpiGPCδzq, this scalar product coincides
with the Hilbert-Schmidt scalar product on the space of Hilbert-Schmidt operators on
iGPCδz defined by

pS, S1q “ trpSS1˚q, (3.8)

where trpSS1˚q “
ř

o.n.b.xSS
1˚ui, uiy and this sum converges absolutely and does not de-

pend on the basis.
Then, the Fourier transform is the unique element of iGPCδz b iGP Čδz such that

pEpP, δz,Ψq, fqG “ pΨ,FpP, δz, fqq. (3.9)

Moreover, we have ([W] Lemme VII.1.1)

EpP, δz,FpP, δz, fqqpgq “ tr
“

piGP δzqpλpgqf̌q
‰

. (3.10)

We define the normalized Fourier transform F0pP, δz, fq of f P C8c pGq as the unique
element of iGPCδz b iGP̄ Čδz such that

pΨ,F0pP, δz, fqq “ pE
0pP, δz,Ψq, fqG, Ψ P iGPCδz b iGP̄ Čδz .

It follows easily from (3.9) and (3.5) that

F0pP, δz, fq “ µpδzqCP |P p1, δzqFpP, δz, fq,

thus we deduce that

E0pP, δz,F0pP, δz, fqq “ µpδzqEpP, δz,FpP, δz, fqq. (3.11)

Therefore, we can describe the spectral decomposition of the regular representation R :“
ρ b λ of G ˆ G on L2pGq of ([W] Théorème VIII.1.1) in terms of normalized Eisenstein
integrals as follows. Let E2pGq be the set of classes of irreducible admissible representations
of G whose matrix coefficients are square-integrable. We will denote by dpτq the formal
degree of τ P E2pGq. Then we have

fpgq “
ÿ

τPE2pGq

dpτqtrpτpλpgqf̌qq `
1

4iπ

ÿ

δPxM2

ż

O
E0pP, δz,F0pP, δz, fqqpgq

dz

z
. (3.12)
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4 The truncated kernel

Let f P C8c pG ˆ Gq be of the form fpy1, y2q “ f1py1qf2py2q with fj P C
8
c pGq. Then the

operator Rpfq (where R :“ ρb λ) is an integral operator with smooth kernel

Kf px, yq “

ż

G
f1pgyqf2pxgqdg “

ż

G
f1px

´1gyqf2pgqdg.

Notice that the kernel studied in [Ar], [F] or [DHSo] corresponds to the kernel of the
representation λˆ ρ which coincides with Kf2bf1px, yq “ Kf1bf2px

´1, y´1q.

The aim of this part is to give a spectral expansion of the truncated kernel obtained
by integrating Kf against a truncated function on H ˆH as in [Ar].

4.1 Lemma. For pτ, Vτ q P E2pGq, we fix an orthonormal basis Bτ of the space of Hilbert-

Schmidt operators on Vτ . For δ P xM2 and z P O, we fix an orthonormal basis BP̄ ,P pCq of

iKPXKCb iK
P̄XK

Č. Using the isomorphism S ÞÑ Sz between iKPXKCb iK
P̄XK

Č and iGPCδz b
iG
P̄
Čδz , we have

Kf px, yq “
ÿ

τPE2pGq

ÿ

SPBτ

dpτqtrpτpxqτpf1qSτpf̌2qqtrpτpyqSq

`
1

4iπ

ÿ

δPxM2

ÿ

SPBP̄ ,P pCq

ż

O
E0pP, δz,ΠδzpfqSzqpxqE

0pP, δz, Szqpyq
dz

z
,

where ΠδzpfqSz :“ piGP δz b iG
P̄
δ̌zqpfqSz “ piP δzqpf1qSzpiP̄ δzqpf̌2q and the sums over S are

all finite.

Proof :

For x P G, we set

hpvq :“

ż

G
f1puvxqf2pxuqdu,

so that
Kf px, yq “

“

ρpyx´1qh
‰

peq. (4.1)

If π is a representation of G, one has

π
`

ρpyx´1qh
˘

“

ż

GˆG
f1pugyqf2pxuqπpgqdudg “

ż

GˆG
f1pu1qf2pxuqπpu

´1u1y
´1qdudu1

“

ż

GˆG
f1pu1qf2pu2qπpu

´1
2 xu1y

´1qdu1du2 “ πpf̌2qπpxqπpf1qπpy
´1q.

Therefore, using the Hilbert-Schmidt scalar product (3.8), one obtains for τ P E2pGq,

tr τ
`

ρpyx´1qh
˘

“ tr τpf̌2qτpxqτpf1qτpyq
˚ “ pτpf̌2qτpxqτpf1q, τpyqq

“
ÿ

SPBτ

pτpf̌2qτpxqτpf1q, S
˚qpτpyq, S˚q “

ÿ

SPBτ

tr pτpxqτpf1qSτpf̌2qqtrpτpyqSq,
(4.2)
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where the sum over S in Bτ is finite.

We consider now π :“ iGP δz with δ P xM2 and z P O. By (3.10) and (3.11), we have

E0pP, δz,F0pP, δz, rρpyx
´1qhsˇ qpeq “ µpδzqtr πpρpyx

´1qhq. (4.3)

Let BP,P pCδzq be an orthonormal basis of iGPCδz b iGP Čδz . Since f1, f2 P C
8
c pGq, the

operators πpf1q and πpf̌2q are of finite rank. Therefore, we deduce as above that

tr π
`

ρpyx´1qh
˘

“ tr
`

πpf̌2qπpxqπpf1qπpyq
´1
˘

“
ÿ

SPBP,P pCδz q
trpπpxqπpf1qSπpf̌2qqtrpπpyqSq,

where the sum over S in BP,P pCδzq is finite.
In what follows, the sums over elements of an orthonormal basis will be always finite.

Hence, by (3.4), we deduce that

tr πpρpyx´1qhq “
ÿ

SPBP,P pCδz q
EpP, δz, πpf1qSπpf̌2qqpxqEpP, δz, Sqpyq. (4.4)

Recall that we fix an orthonormal basis BP̄ ,P pCq of the space iKPXKC b iK
P̄XK

Č which

is isomorphic to iGPCδz b iG
P̄
Čδz by the map S ÞÑ Sz. By (3.5), the family S̃pδzq :“

µpδzq
´1{2CP,P p1, δzq

´1Sz for S P BP̄ ,P pCq is an orthonormal basis of iGPCδz b iGP Čδz .
Moreover, using the inclusion iGPCδz b iG

P̄
Čδz Ă HomGpi

G
P̄
Cδz , iGPCδzq, and the adjonc-

tion property of the intertwining operator ([W], IV.1. (11)), we have CP,P p1, δzq
´1S “

S ˝ ApP, P̄ , δzq
´1, for all S P iGPCδz b iG

P̄
Čδz . Since ApP, P̄ , δzq

´1 ˝ iGP pδzq “ iG
P̄
pδzq ˝

ApP, P̄ , δzq
´1, writing (4.4) for the basis S̃pδzq, we obtain

tr πpρpyx´1qhq

“ µpδzq
´1

ÿ

SPBP̄ ,P pCq
EpP, δz, πpf1qCP,P p1, δzq

´1pSzqπpf̌2qqpxqEpP, δz, CP,P p1, δzq´1Szqpyq

“ µpδzq
´1

ÿ

SPBP̄ ,P pCq
EpP, δz, CP,P p1, δzq

´1rpiGP δzqpf1qSzpi
G
P̄ δzqpf̌2qsqpxqEpP, δz, CP,P p1, δzq´1Szqpyq

“ µpδzq
´1

ÿ

SPBP̄ ,P pCq
E0pP, δz, pi

G
P δzqpf1qSzpi

G
P̄ δzqpf̌2qqpxqE0pP, δz, Szqpyq.

We set Πδz :“ iGP δz b i
G
P̄
δ̌z. Then we have

ΠδzpfqSz “ pi
G
P δzqpf1qSzpi

G
P̄ δzqpf̌2q.

(4.5)

By (4.3), we obtain

E0pP, δz,F0pP, δz, rρpyx
´1qhsˇ qqpeq “

ÿ

SPBP̄ ,P pCq
E0pP, δz,ΠδzpfqSzqpxqE

0pP, δz, Szqpyq.
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The Lemma follows from (3.12), (4.1), (4.2) and the above result.

To integrate the kernel Kf on H ˆH, we introduce truncation as in [Ar]. Let n be a
positive integer. Let up¨, nq be the truncated function defined on H by

uph, nq “

"

1 if h “ k1mk2 with k1, k2 P KH ,m P H such that 0 ď |hMH
pmq| ď n

0 otherwise

We define the truncated kernel by

Knpfq :“

ż

HˆH
Kf px, yqupx, nqupy, nqdxdy. (4.6)

Since Kf px
´1, y´1q coincides with the kernel studied in ([DHSo] 2.2) and upx, nq “

upx´1, nq, this definition of the truncated kernel coincides with that of [DHSo].
We defined truncated periods by

Pnτ pSq :“

ż

H
trpτpyqSqupy, nqdy, pτ, Vτ q P E2pGq, S P Endfin.rkpVτ q, (4.7)

where Endfin.rkpVτ q is the space of finite rank operators in EndpVτ q, and

PnδzpSq :“

ż

H
E0pP, δz, Szqpyqupy, nqdy, δ P xM2, z P O, S P iKPXKCb iKP̄XKČ. (4.8)

4.2 Corollary. With notation of Lemma 4.1, one has

Knpfq “
ÿ

τPE2pGq

ÿ

SPBτ

dpτqPnτ pτ b τ̌pfqSqP
n
τ pSq

`
1

4iπ

ÿ

δPxM2

ÿ

SPBP̄ ,P pEq

ż

O
PnδzpΠδzpfqSqP

n
δz
pSq

dz

z
,

where the sums over S are all finite and Πδz :“ īGP δz b ī
G
P̄
δ̌z.

Proof :

For τ P E2pGq and S P Bτ , one has τpf1qSτpf̌2q “ τb τ̌pfqS. Therefore, since the functions
we integrate are compactly supported, the assertion follows from Lemma 4.1.

5 Regularized normalized periods

To determine the asymptotic expansion of the truncated kernel, we recall the notion of
regularized period introduced in ([F]). It is defined by meromorphic continuation.

Let z0 P C˚. Then, for z P C˚ such that |zz0| ă 1, the integral

ż

M`
H

χz0pmqχzpmqp1´ upm,n0qqdm “
ÿ

nąn0

pzz0q
n “

pzz0q
n0`1

1´ zz0

10



is well defined and has a meromorphic continuation at z “ 1. Morever this meromorphic
continuation is holomorphic on V ´ t1u with a simple pole at z0 “ 1.

Let δ P xM2. We consider now an holomorphic function z ÞÑ ϕz P C
8pGq defined in a

neighborhood V of O in C˚ such that

there exist a positive integer n0 and two holomorphic functions z P V ÞÑ φiz P
C8pKH ˆKHq, i “ 1, 2 such that, for k1, k2 P KH , and m P M`

H satisfying
hMH

pmq ą n0, we have

δP pmq
´1{2ϕzpk1mk2q “ δzpmqφ

1
zpk1, k2q ` δz´1pmqφ2

zpk1, k2q.

(5.1)

Recall that Mphq for h P H is an element in M`
H such that h P KHMphqKH . By the

integral formula (2.4), we deduce that for |z| ă minp|z0|, |z0|
´1q, the integral

ż

H
ϕz0phqχzpMphqqp1´ uph, n0qqdh

“ p1` q´1q
`

ż

KHˆKH

φ1
z0pk1, k2qdk1dk2

˘

ż

M`
H

δpmqχz0zpmqp1´ upm,n0qqdm

`p1` q´1q
`

ż

KHˆKH

φ2
z0pk1, k2qdk1dk2

˘

ż

M`
H

δpmqχz´1
0 zpmqp1´ upm,n0qqdm

is also well defined and has a meromorphic continuation at z “ 1. Morever this meromor-
phic continuation is holomorphic on V ´ t1u with at most a simple pole at z0 “ 1. As

up¨, n0q is compactly supported, we deduce that the integral
ż

H
ϕz0phqχzpMphqqdh “

ż

H
ϕz0phqχzpMphqquph, n0qdh`

ż

H
ϕz0phqχzpMphqqp1´uph, n0qqdh.

has a meromorphic continuation at z “ 1 which we denote by
ż ˚

H
ϕz0phqdh.

The above discussion implies that

ż ˚

H
ϕz0phqdh is holomorphic on V ´ t1u with at most a

simple pole at z0 “ 1.

The next result is established in ([F] Proposition 4.6), but we think that the proof is
not complete. We thank E. Lapid who suggests us the proof below.

5.1 Proposition. (H-invariance) For x P H, we have
ż ˚

H
ϕz0phxqdh “

ż ˚

H
ϕz0phqdh.

Proof :

We fix x P H. For z, z1 in C˚, we set F pϕz0 , z, z
1qphq :“ ϕz0phqχzpMphqqχz1pMphx´1qq.

By (5.1), for k1, k2 P KH , and m PM`
H with hMH

pmq ą n0, we have

δP pmq
´1{2F pϕz0 , z, z

1qpk1mk2q “ φ1
z0pk1, k2qδpmqpz0zq

hMH pmqz1hMH pMpk1mk2x´1qq
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`φ2
z0pk1, k2qδpmqpz

´1
0 zqhMH pmqz1hMH pMpk1mk2x´1qq.

We can choose n0 such that Lemma 2.1 is satisfied. Thus, for any k2 P KH , there
exists Xk2x´1 P R such that, for any m P M`

H satisfying 1 ´ upm,n0q ‰ 0, we have
hMH

pMpk1mk2x
´1qq “ hMH

pmq `Xk2x´1 . We deduce that

δP pmq
´1{2F pϕz0 , z, z

1qpk1mk2qp1´ upm,n0qq “ φ1
z0pk1, k2qδpmqpz0zz

1q
hMH pmqz

1Xk2x
´1

`φ2
z0pk1, k2qδpmqpz

´1
0 zz1qhMH pmqz

1Xk2x
´1 .

Therefore, by Hartogs’ Theorem and the same argument as above, the function

pz0, z, z
1q ÞÑ

ż

H
ϕz0phqχzpMphqqχz1pMphx´1qqdh

is well defined for |z0zz
1| ă 1, and has a meromorphic continuation on V ˆ pC˚q2. We

denote by Ipϕz0 , z, z
1q this meromorphic continuation. Moreover, for z0 ‰ 1, the function

pz, z1q ÞÑ Ipϕz0 , z, z
1q is holomorphic in a neighborhood of p1, 1q.

For |z0z| ă 1, we have Ipϕz0 , z, 1q “

ż

H
ϕz0phqχzpMphqqdh. Hence we deduce that

Ipϕz0 , 1, 1q “

ż ˚

H
ϕz0phqdh.

On the other hand, we have Ipϕz0 , 1, z
1q “

ż

H
ϕz0phxqχz1pMphqqdh for |z0z

1| ă 1, there-

fore, one obtains

Ipϕz0 , 1, 1q “

ż ˚

H
ϕz0phxqdh.

This finishes the proof of the proposition.

We will apply this to normalized Eisenstein integrals. Let δ P xM2 and z P C˚. Recall
that we have defined the operator CP,P p1, δzq by

CP,P p1, δzq :“ IdbApP̄ , P, δ̌zq P HomG

`

iGPCδz b iGP Čδz , iGPCδz b iGP̄ Čδz
˘

.

We set

CP,P pw, δzq :“ ApP, P̄ , wδzqλpwq b λpwq P HomG

`

iGPCδz b iGP Čδz , iGPCwδz b iGP̄ ˇCwδz
˘

.

where λpwq is the left translation by w which induces an isomorphism from iGPCδz to
iG
P̄
Cwδz . For s PWG, we define

C0
P,P ps, δzq :“ CP,P ps, δzq ˝CP,P p1, δzq

´1 P HomG

`

iGPCδz b iGP̄ Čδz , i
G
PCsδz b iGP̄ ˇCsδz

˘

. (5.2)

In particular, C0
P,P p1, δzq is the identity map of iGPCδz b iG

P̄
Čδz . By arguments analogous

to those of ([W] Lemme V.3.1.), we obtain that
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for s PWG, the rational operator C0
P |P ps, δzq is regular on O. (5.3)

Let S P iKPXKC b iK
P̄XK

Č. By (3.7), the normalized Eisenstein integral E0pP, δz, Szq is
holomorphic in a neighborhood V of O. We may and will assume that V is invariant by the
map z ÞÑ z´1. By ([He] Theorem 1.3.1) applied to λpk´1

1 qρpk2qE
0pP, δz, Szq, k1, k2 P KH ,

there exists a positive integer n0 such that, for k1, k2 P KH , and m P M`
H satisfying

hMH
pmq ą n0, we have

δP pmq
´1{2E0pP, δz, Szqpk1mk2q

“ δpmq
´

χzpmqtr
`“

C0
P,P p1, δzqSz

‰

pk1, k2q
˘

` χz´1pmqtr
`“

C0
P,P pw, δzqSz

‰

pk1, k2q
˘

¯

.

Therefore, the normalized Eisenstein integral satisfies (5.1). Hence, we can define the
normalized regularized period by

PδzpSq :“

ż ˚

H
E0pP, δz, Szqphqdh, S P iKPXKCb iKP̄XKČ. (5.4)

The above discussion implies that PδzpSq is a meromorphic function on the neighborhood
V of O which is holomorphic on V ´ t1u.

For s PWG and S P iKPXKCb iK
P̄XK

Č, we set

Cps, δzqpSq :“ p1` q´1q

ż

KHˆKH

tr
`“

C0
P,P ps, δzqSz

‰

pk1, k2q
˘

dk1dk2. (5.5)

By the same argument as in ([F] Proposition 4.7), we have the following relations
between the truncated period and the normalized regularized period.

If δ|Fˆ ‰ 1 then, for n large enough, we have PδzpSq “ PnδzpSq, (5.6)

If δ|Fˆ “ 1 then, for n large enough, we have

PδzpSq “ PnδzpSq `
zn`1

1´ z
Cp1, δzqpSq `

z´pn`1q

1´ z´1
Cpw, δzqpSq.

(5.7)

The following Lemma is analoguous to ([F] Lemma 4.8 ).

5.2 Lemma. Let z P C˚ and S P iKPXKCb iK
P̄XK

Č.

1. If δ|Fˆ ‰ 1 and δ|E1 ‰ 1 then, for n large enough, we have

PδzpSq “ PnδzpSq “ 0.

2. If δ|Fˆ ‰ 1 and δ|E1 “ 1 then, for n large enough, we have

PδzpSq “ PnδzpSq.
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3. If δ|Fˆ “ 1 and δ|E1 ‰ 1 then PδzpSq “ 0 whenever it is defined, and

Cp1, δ1qpSq “ Cpw, δ1qpSq.

4. If δ|Fˆ “ 1 and δ|E1 “ 1 then δ2 “ 1. We have Cp1, δ1qpSq “ ´Cpw, δ1qpSq and
the regularized normalized period PδzpSq is meromorphic with a unique pole at z “ 1
which is simple.

Proof :

Case 2 follows from (5.6). By ([JLR] Proposition 22), if δ|E1 ‰ 1 and z ‰ 1 then the

representation iGP δz admits no nontrivial H-invariant linear form. Thus in that case,
Proposition 5.1 implies PδzpSq “ 0 whenever it is defined. We deduce case 1 from (5.6)
and in case 3, it follows from (5.7) that

PnδzpSq “ ´
´ zn`1

1´ z
Cp1, δzqpSq `

z´pn`1q

1´ z´1
Cpw, δzqpSq

¯

.

Since PnδzpSq and Cps, δzqpSq for s PWG are holomorphic functions at z “ 1, and

Resp
zn`1

1´ z
Cp1, δzqpSq, z “ 1q “ ´Cp1, δ1qpSq,

Resp
z´pn`1q

1´ z´1
Cpw, δzqpSq, z “ 1q “ Cpw, δ1qpSq,

(5.8)

we deduce the result in the case 3.

In case 4, we obtain easily δ2 “ 1. By ([W] Corollaire IV.1.2.), the intertwining operator
ApP̄ , P, δzq has a simple pole at z “ 1. Thus the function µpδzq has a zero of order 2
at z “ 1. In that case, by ([S], proof of Theorem 5.4.2.1), the operators CP |P ps, δzq for

s PWG have a simple pole at z “ 1 and

RespCP |P p1, δzq, z “ 1q “ ´RespCP |P pw, δzq, z “ 1q.

Therefore, if we set Tz :“ pz ´ 1qCP |P p1, δzq and Uz :“ pz ´ 1qCP |P pw, δzq, then Uz and
T´1
z are holomorphic near z “ 1 and T1 “ ´U1 as δ2 “ 1. By definition (cf. (5.2)), we

have C0
P |P pw, δzq “ UzT

´1
z . Hence, one deduces that C0

P |P pw, δ1q “ ´Id “ ´C
0
P |P p1, δ1q,

where Id is the identity map of iGPCδ1 b iG
P̄
Čδ1 . We deduce the first assertion in case 4

from the definition of Cps, δzqpSq (cf.(5.5)).
Since PnδzpSq and Cps, δzqpSq for s P WG are holomorphic functions at z “ 1, the last

assertion follows from (5.7), (5.8) and the above result. This finishes the proof of the
Lemma.

6 Preliminary Lemma

In this part, we prove a preliminary lemma which will allow us to get the asymptotic
expansion of the truncated kernel in terms of regularized normalized periods.
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Let V be a neighborhood of O in C˚. We assume that V is invariant by the map
z ÞÑ z̄´1. Let f be a meromorphic function on V. We assume that f has at most a pole
at z “ 1 in V.
For r ă 1 (resp. r ą 1) such that f is defined on the set of complex numbers of modulus

r, then the integral

ż

|z|“r
fpzqdz does not depend of the choice of r. We set

ż

O´
fpzqdz :“

ż

|z|“r
fpzqdz, r ă 1. (6.1)

and
ż

O`
fpzqdz :“

ż

|z|“r
fpzqdz, r ą 1. (6.2)

Notice that we have
ż

O`
fpzqdz ´

ż

O´
fpzqdz “ 2iπRespfpzq, z “ 1q. (6.3)

The two following properties are easily consequences of the definitions:

lim
nÑ`8

ż

O´
znfpzqdz “ 0, and lim

nÑ`8

ż

O`
z´nfpzqdz “ 0 (6.4)

We have assumed that V is invariant by the map z Ñ z̄´1. Then, the function f̃pzq :“
fpz̄´1q is also a meromorphic function on V with at most a pole at z “ 1 and it satisfies
f̃pzq “ fpzq for z P O.

Let cps, zq and c1ps, zq, for s PWG be holomorphic functions on V such that cps, 1q ‰ 0
and c1ps, 1q ‰ 0. Let p and p1 be two meromorphic functions on V with at most a pole at
z “ 1. We set

pnpzq :“ ppzq ´
” zn`1

1´ z
cp1, zq `

z´pn`1q

1´ z´1
cpw, zq

ı

and

p1npzq :“ p1pzq ´
” zn`1

1´ z
c1p1, zq `

z´pn`1q

1´ z´1
c1pw, zq

ı

.

(6.5)

6.1 Lemma. We assume that pn and p1n are holomorphic on V and that either p and p1

are vanishing functions or cp1, 1q “ ´cpw, 1q and c1p1, 1q “ ´c1pw, 1q . Then, the integral
ż

O
pnpzqp1npzq

dz

z

is asymptotic as n approaches `8 to the sum of
ż

O´

´

ppzqp̃1pzq `
cp1, zqc̃1p1, zq

p1´ zqp1´ z´1q
`

cpw, zqc̃1pw, zq

p1´ zqp1´ z´1q

¯dz

z
, (6.6)

´2iπ
” d

dz

´

cpw, zqc̃1p1, zq
¯ı

z“1
`2iπ

” d

dz

´

cpw, zqpz´1qp̃1pzq`c̃1p1, zqpz´1qppzq
¯ı

z“1
, (6.7)

and

2iπp2n` 1qcpw, 1qc̃1p1, 1q´ 2iπpn` 1q
`

cpw, 1qRespp̃1, z “ 1q` c̃1p1, 1qRespp, z “ 1q
˘

. (6.8)
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Proof :

Since pn and p̃1n are holomorphic functions on V, we have

ż

O
pnpzqp1npzq

dz

z
“

ż

O´
pnpzqp̃1npzq

dz

z

“

ż

O´

´

ppzq ´
zn`1

1´ z
cp1, zq ´

z´pn`1q

1´ z´1
cpw, zq

¯´

p̃1pzq ´
z´pn`1q

1´ z´1
c̃1p1, zq ´

zn`1

1´ z
c̃1pw, zq

¯dz

z

“

ż

O´

´

ppzqp̃1pzq `
cp1, zqc̃1p1, zq

p1´ zqp1´ z´1q
`

cpw, zqc̃1pw, zq

p1´ zqp1´ z´1q

¯dz

z

`

ż

O´
z2pn`1q cp1, zqc̃

1pw, zq

p1´ zq2
dz

z
´

ż

O´
zn`1

´cp1, zqp̃1pzq ` ppzqc̃1pw, zq

1´ z

¯dz

z

`

ż

O´
z´2pn`1q cpw, zqc̃

1p1, zq

p1´ z´1q2

dz

z
´

ż

O´
z´pn`1q

´cpw, zqp̃1pzq ` ppzqc̃1p1, zq

1´ z´1

¯dz

z
.

By (6.4), the second and third terms of the right hand side converge to 0 as n ap-
proaches `8.

By (6.3), one has

ż

O´
z´2pn`1q cpw, zqc̃

1p1, zq

p1´ z´1q2

dz

z
“

ż

O`
z´2pn`1q cpw, zqc̃

1p1, zq

p1´ z´1q2

dz

z
´2iπRespz´2pn`1q cpw, zqc̃

1p1, zq

zp1´ z´1q2
, z “ 1q.

Let φpzq :“ z´2pn`1q cpw, zqc̃
1p1, zq

zp1´ z´1q2
“ z´p2n`1q cpw, zqc̃

1p1, zq

pz ´ 1q2
. Since cpw, zq and c̃1p1, zq

are holomorphic functions on V, the function φ has a unique pole of order 2 at z “ 1.
Thus, we obtain

Respφ, z “ 1q “
” d

dz

´

pz´1q2φpzq
¯ı

z“1
“ ´p2n`1qcpw, 1qc̃1p1, 1q`

” d

dz

´

cpw, zqc̃1p1, zq
¯ı

z“1
.

We deduce from (6.4) that

ż

O´
z´2pn`1q cpw, zqc̃

1p1, zq

p1´ z´1q2

dz

z
“ 2iπp2n`1qcpw, 1qc̃1p1, 1q´2iπ

” d

dz

´

cpw, zqc̃1p1, zq
¯ı

z“1
`ε1pnq,

(6.9)
where lim

nÑ`8
ε1pnq “ 0.

When p and p1 are vanishing functions, we obtain the result of the Lemma.

Otherwise, by (6.5) and our assumptions, the function
cpw, zqp̃1pzq ` ppzqc̃1p1, zq

1´ z´1
is a mero-

morphic function with a unique pole of order 2 at z “ 1. Applying the same argument as
above, we obtain

ż

O´
z´pn`1q

´cpw, zqp̃1pzq ` ppzqc̃1p1, zq

1´ z´1

¯dz

z

“

ż

O`
z´pn`1q

´cpw, zqp̃1pzq ` ppzqc̃1p1, zq

1´ z´1

¯dz

z
´2iπ

” d

dz

´

z´pn`1qpz´1qpcpw, zqp̃1pzq`ppzqc̃1p1, zqq
¯ı

z“1
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“ 2iπpn` 1q
`

cpw, 1qRespp̃1, z “ 1q ` Respp, z “ 1qc̃1p1, 1q
˘

´2iπ
” d

dz

´

cpw, zqpz ´ 1qp̃1pzq ` pz ´ 1qppzqc̃1p1, zq
¯ı

z“1
` ε2pnq,

where lim
nÑ`8

ε2pnq “ 0.

Therefore, we obtain the Lemma by (6.9) and the above result.

7 Spectral side of a local relative trace formula

We recall the spectral expression of the truncated kernel obtained in Corollary 4.2:

Knpfq “
ÿ

τPE2pGq

ÿ

SPBτ

dpτqPnτ pτ b τ̌pfqSqP
n
τ pSq

`
1

4iπ

ÿ

δPxM2

ÿ

SPBP̄ ,P pEq

ż

O
PnδzpΠδzpfqSqP

n
δz
pSq

dz

z
,

where the sums over S are all finite and Πδz :“ īGP δz b ī
G
P̄
δ̌z.

By ([F] Lemma 4.10), if pτ, Vτ q P E2pGq and S P Endfin.rkpVτ q, then

lim
nÑ`8

Pnτ pSq “

ż

H
trpτphqSqdh. (7.1)

We consider now the second term of the above expression of Knpfq. Let δ P xM2 and
S P iKPXKCb iK

P̄XK
Č. We keep notation of the previous section. In particular, for z P C˚,

we have C̃ps, δzqpSq “ Cps, δz̄´1qpSq and P̃δzpSq “ Pz̄´1pSq. By definition of δz, we have
δ1 “ δ.

7.1 Proposition. Let S P iKPXKCb iKP̄XKČ. We set S1z :“ ΠδzpfqS.

1. If δ|Fˆ ‰ 1 and δ|E1 ‰ 1 then, for n P N large enough, one has

ż

O
PnδzpS

1
zqP

n
δz
pSq

dz

z
“ 0.

2. If δ|Fˆ ‰ 1 and δ|E1 “ 1 then

lim
nÑ`8

ż

O
PnδzpS

1
zqP

n
δz
pSq

dz

z
“

ż

O
PδzpS

1
zqPδzpSq

dz

z
.

3. Assume that δ|Fˆ “ 1 and δ|E1 ‰ 1. Then

ż

O
PnδzpS

1
zqP

n
δz
pSq

dz

z

is asymptotic when n approaches `8 to

2iπp2n` 1qCp1, δqpS11qCp1, δqpSq
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`

ż

O´

´Cp1, δzqpS
1
zqC̃p1, δzqpSq

p1´ zqp1´ z´1q
`
Cpw, δzqpS

1
zqC̃pw, δzqpSq

p1´ zqp1´ z´1q

¯dz

z

´2iπ
d

dz

”

Cpw, δzqpS
1
zqC̃p1, δzqpSq

ı

z“1
.

4. Assume that δ|Fˆ “ 1 and δ|E1 “ 1. Then

ż

O
PnδzpS

1
zqP

n
δz
pSq

dz

z

is asymptotic when n approaches `8 to

2iπp2n` 3qCp1, δqpS11qCp1, δqpSq

`

ż

O´

´

PδzpS
1
zqPδzpSq `

Cp1, δzqpS
1
zqC̃p1, δzqpSq

p1´ zqp1´ z´1q
`
Cpw, δzqpS

1
zqC̃pw, δzqpSq

p1´ zqp1´ z´1q

¯dz

z

´2iπ
d

dz

”

Cpw, δzqpS
1
zqC̃p1, δzqpSq

ı

z“1

`2iπ
” d

dz

´

pz ´ 1qPδzpS
1
zqC̃p1, δzqpSq ` Cpw, δzqpS

1
zqpz ´ 1qP̃δzpSq

¯ı

z“1
.

Proof. The two first assertions are immediate consequences of Lemma 5.2. To prove 3.
and 4., we set:

pnpzq :“ PnδzpS
1
zpfqq, p1npzq :“ PnδzpSq, ppzq :“ PδzpS

1
zpfqq, p1pzq :“ PδzpSq

and cps, zq :“ Cps, δzqpS
1
zpfqq, c1ps, zq :“ Cps, δzqpSq for s PWG.

By (5.7) and Lemma 5.2, these functions satisfy (6.5) and we can apply Lemma 6.1. The
result in case 3 follows immediately since ppzq “ p1pzq “ 0 by Lemma 5.2.

In case 4, we have cp1, 1q “ ´cpw, 1q and c1p1, 1q “ ´c1pw, 1q by Lemma 5.2. Moreover, the
relations (6.5) give Respp, z “ 1q “ ´cp1, 1q`cpw, 1q and Respp̃1, z “ 1q “ c1p1, 1q´c1pw, 1q.
Hence, we obtain

2iπp2n` 1qcpw, 1qc̃1p1, 1q ´ 2iπpn` 1q
`

cpw, 1qRespp̃1, z “ 1q ` c̃1p1, 1qRespp, z “ 1q
˘

.

“ 2iπp2n` 3qcp1, 1qc̃1p1, 1q,

and the result in that case follows from Lemma 6.1.

To describe the spectral side of our local relative trace formula, we introduce general-
ized matrix coefficients.
Let pπ, V q be a smooth unitary representation of G. We denote by pπ1, V 1q its dual
representation. Let ξ and ξ1 be two linear forms on V . For f P C8c pGq, the linear
form π1pf̌qξ belongs to the smooth dual V̌ of V ([R] Théorème III.3.4 and I.1.2). The
scalar product on V induces an isomorphism j : v ÞÑ p¨, vq from the conjugate complex
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vector space V of V and V̌ , which intertwines the complex conjugate of π and π̌ as π is
unitary. One has

v̌pvq “ pv, j´1pv̌qq, v P V, v̌ P V̌ .

Therefore, for v P V , we have

`

π1pf̌qξ
˘

pvq “ ξ
`

πpfqv
˘

“ pv, j´1
`

π1pf̌qξ
˘

q.

As πpfq is an operator of finite rank, we have for any orthonormal basis B of V

j´1
`

π1pf̌qξ
˘

“
ÿ

vPB
pπ1pf̌qξqpvq ¨ v (7.2)

where the sum over v is finite, and pλ, vq ÞÑ λ ¨ v is the action of C on V .
Let ξ1 be the linear form on V defined by ξ1puq “ ξ1puq. We define the generalized matrix
coefficient mξ,ξ1 by

mξ,ξ1pfq “ ξ1
´

j´1
`

π1pf̌qξ
˘

¯

.

Then, by (7.2), we obtain

mξ,ξ1pfq “
ÿ

vPB
ξpπpfqvqξ1pvq. (7.3)

Hence, this sum is independent of the choice of the basis B.
Let z P C˚. We set pΠz, Vzq :“ piGP δz b iG

P̄
δ̌δz , i

G
PCδz b iG

P̄
Čδzq. We denote by pΠz, V q

its compact realization. We define meromorphic linear forms on Vz using the isomorphism
Vz » V .

7.2 Lemma. Let ξz and ξ1z be two linear forms on V which are meromorphic in z on a
neighborhood V of O. Let B be an orthonormal basis of V . Then, for f P C8c pGˆGq, the
sum

ÿ

SPB
ξzpΠzpfqSqξz̄´1pSq

is a finite sum over S which is independent of the choice of the basis B.

Proof :

For z P O, the representation Πz is unitary. Hence (7.3) gives the Lemma in that case.
Since the linear forms ξz and ξ1z are meromorphic on V, we deduce the result of the Lemma
for any z in V by meromorphic continuation.

With notation of the Lemma, we define, for z P V, the generalized matrix coefficient
mξz ,ξ1

z̄´1
associated to pξz, ξ

1
zq by

mξz ,ξ1
z̄´1
pfq :“

ÿ

SPB
ξzpΠzpfqSqξz̄´1pSq.

Therefore, using Proposition 7.1, we can deduce the asymptotic behavior of the truncated
kernel in terms of generalized matrix coefficients.
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7.3 Theorem. As n approaches `8, the truncated kernel Knpfq is asymptotic to

n
ÿ

δPxM2,δ|Fˆ“1

mCp1,δq,Cp1,δqpfq`
ÿ

τPE2pGq

dpτqmPτ ,Pτ pfq`
1

4iπ

ÿ

δPxM2,δ|Fˆ‰1,δ
|E1“1

ż

O
mPδz ,Pδz

pfq
dz

z

`
1

4iπ

ÿ

δPxM2,δ|Fˆ“1,δ
|E1‰1

Rδpfq `

ż

O´

mCp1,δzq,Cp1,δz̄´1 qpfq `mCpw,δzq,Cpw,δz̄´1 qpfq

p1´ zqp1´ z´1q

dz

z

`
1

4iπ

ÿ

δPxM2,δ|Fˆ“δ|E1“1

R̃δpfq `

ż

O´

mCp1,δzq,Cp1,δz̄´1 qpfq `mCpw,δzq,Cpw,δz̄´1 qpfq

p1´ zqp1´ z´1q

dz

z

`

ż

O´
mPδz ,Pδz̄´1

pfq
dz

z
.

where

Rδpfq :“ 2iπ
´

mCp1,δq,Cp1,δqpfq ´
” d

dz
mCpw,δzq,Cp1,δz̄´1 qpfq

ı

z“1

¯

,

R̃δpfq “ 2iπ
´

3 mCp1,δq,Cp1,δqpfq ´
” d

dz
mCpw,δzq,Cp1,δz̄´1 qpfq

ı

z“1

`

” d

dz
pz ´ 1q

´

mPδz ,Cp1,δz̄´1 qpfq `mCpw,δzq,Pz̄´1
pfq

¯ı

z“1

¯

,

Pτ pSq “

ż

H
trpτphqSqdh, S P Endfin.rkpVτ q,

PδzpSq “

ż ˚

H
E0pP, δz, Szqphqdh, S P iKPXKCb iKP̄XKČ

and

Cps, δzqpSq :“ p1` q´1q

ż

KHˆKH

tr
`“

C0
P,P ps, δzqSz

‰

pk1, k2q
˘

dk1dk2, s PWG

8 A local relative trace formula for PGLp2q

We make precise the geometric expansion of the truncated kernel obtained in ([DHSo]
Theorem 2.3) for H :“ PGLp2q. This geometric expansion depends on orbital integrals
of f1 and f2, and on a weight function vL where L “ H or M . To recall the definition of
these objects, we need to introduce some notation.

If J is an algebraic group defined over F, we denote by J its group of points over F and
we identify J with the group of points of J over an algebraic closure of F. Let JH be
an algebraic subgroup of H defined over F. We denote by J :“ ResE{FpJH ˆF Eq the
restriction of scalars of JH from E to F. Then, the group J :“ JpFq is isomorphic to
JHpEq.

The nontrivial element of the Galois group of E{F induces an involution σ of G defined
over F.
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We denote by P the connected component of 1 in the set of x in G such that σpxq “ x´1.
A torus A of G is called a σ-torus if A is a torus defined over F contained in P. Let SH
be a maximal torus of H. We denote by Sσ the connected component of S XP. Then Sσ
is a maximal σ-torus defined over F and the map SH ÞÑ Sσ is a bijective correspondence
between H-conjugacy classes of maximal tori of H and H-conjugacy classes of maximal
σ-tori of G. (cf. [DHSo] 1.2).

Each maximal torus of H is either anisotropic or H-conjugate to M . We fix TH a set
of representatives for the H-conjugacy classes of maximal anisotropic torus in H.

By ([DHSo] (1.28)), for each maximal torus SH of H, we can fix a finite set of repre-
sentatives κS “ txmu of the pH,Sσq-double cosets in HSσ XG such that each element xm
may be written xm “ hma

´1
m where hm P H centralizes the split component AS of SH and

am P Sσ.

The orbital integral of a compactly supported smooth function is defined on the set
Gσ´reg of σ-regular points of G, that is the set of point x in G such that HxH is Zariski
closed and of maximal dimension. The set Gσ´reg can be described in terms of maximal
σ-tori as follows. If SH is a maximal torus of H, we denote by s the Lie algebra of S and
we set s :“ spFq. We set

∆σpgq “ detp1´Adpg´1σpgqqg{sq, g P G.

By ([DHSo] (1.30)), if x P Gσ´reg then there exists a maximal torus SH of H such that
∆σpxq ‰ 0. Morever, there are two elements xm P κS and γ P Sσ such that x “ xmγ.
We define the orbital integral Mpfq of a function f P C8c pGq on Gσ´reg as follows. Let
SH be a maximal torus of H. For xm P κS and γ P Sσ with ∆σpxmγq ‰ 0, we set

Mpfqpxmγq :“ |∆σpxmγq|
1{4
F

ż

diagpASqzpHˆHq
fph´1xmγlqdph, lq

where diagpASq is the diagonal of AS ˆAS .

(8.1)

We now give an explicit expression of the truncated function vLp¨, nq defined in ([DHSo]
(2.12)), where n is a positive integer and L is equal to H or M . Let n be a positive integer.
It follows immediately from the definition ([DHSo] (2.12)) that we have

vHpx1, y1, x2, y2, nq “ 1, x1, y1, x2, y2 P H. (8.2)

We will describe vM using ([DHSo] (2.63)). Since H “ PHKH , each x P H can be written
x “ mPH pxqnPH pxqkPH pxq with mPH pxq P MH , nPH pxq P NH and kPH pxq P KH . We take
similar notation if we consider P̄ instead of P . For Q “ P or P̄ , we set

hQH pxq :“ hMH
pmQH pxqq.

With our definition of hMH
(2.2), the map MH Ñ R given in ([DHSo] (1.2)) coincides with

´plog qqhMH
.

For x1, y1, x2 and y2 in H, we set

zP px1, y1, x2, y2q :“ inf
`

hP̄H px1q ´ hPH py1q, hP̄H px2q ´ hPH py2q
˘

,
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and
zP̄ px1, y1, x2, y2q :“ ´ inf

`

hP̄H py1q ´ hPH px1q, hP̄H py2q ´ hPH px2q
˘

.

We omit x1, y1, x2 and y2 in this notation if there is no confusion. Hence the elements Z0
P

and Z0
P̄

of ([DHSo] (2.55)) coincide with plog qqzP and plog qqzP̄ respectively. Therefore,
the relation ([DHSo] (2.63)) gives

vM px1, y1, x2, y2, nq “ lim
λÑ0

´ qλpn`zP q

1´ q´2λ
p1` q´λq `

qλp´n`zP̄ q

1´ q2λ
p1` qλq

¯

“ lim
λÑ0

´qλpn`zP q

1´ q´λ
`
q´λpn´zP̄ q

1´ qλ

¯

“ lim
λÑ0

qλpn`zP q ´ q´λpn´zP̄`1q

1´ q´λ

“ 2n` 1` zP ´ zP̄ .

We set
v0
M px1, y1, x2, y2q :“ zP ´ zP̄

“ inf
`

hP̄H px1q´hPH py1q, hP̄H px2q´hPH py2q
˘

`inf
`

hP̄H py1q´hPH px1q, hP̄H py2q´hPH px2q
˘

.

Therefore, ([DHSo] Theorem 2.3) gives:

As n approaches to `8, the truncated kernel Knpfq is asymptotic to

2n
ÿ

xmPκM

c0
M,xm

ż

Mσ

Mpf1qpxmγqMpf2qpxmγqdγ

`
ÿ

SHPTHYtMHu

ÿ

xmPκS

c0
S,xm

ż

Sσ

Mpf1qpxmγqMpf2qpxmγqdγ`
ÿ

xmPκM

c0
M,xm

ż

Mσ

WMpfqpxmγqdγ,

(8.3)

where the constants c0
M,xm

are defined in ([RR] Theorem 3.4) and WMpfq is the weighted
integral orbital given by

∆σpxmγq
´1{2WMpfqpxmγq

“

ż

diagpMHqzHˆH

ż

diagpMHqzHˆH
f1px

´1
1 xmγx2qf2py

´1
1 xmγy2qv

0
M px1, y1, x2, y2qdpx1, x2qdpy1, y2q.

Therefore, comparing asymptotic expansions of Knpfq in Theorem 7.3 and (8.3), we
obtain:

8.1 Theorem. For f1 and f2 in C8c pGq then we have:

1.

2
ÿ

xmPκM

c0
M,xm

ż

Mσ

Mpf1qpxmγqMpf2qpxmγqdγ “
ÿ

δPxM2,δ|Fˆ“1

mCp1,δq,Cp1,δqpfq.
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2. (Local relative trace formula). The expression

ÿ

SHPTHYtMHu

ÿ

xmPκS

c0
S,xm

ż

Sσ

Mpf1qpxmγqMpf2qpxmγqdγ`
ÿ

xmPκM

c0
M,xm

ż

Mσ

WMpfqpxmγqdγ

equals

ÿ

τPE2pGq

dpτqmPτ ,Pτ pfq `
1

4iπ

ÿ

δPxM2,δ|Fˆ‰1,δ
|E1“1

ż

O
mPδz ,Pδz

pfq
dz

z

`
1

4iπ

ÿ

δPxM2,δ|Fˆ“1,δ
|E1‰1

Rδpfq `

ż

O´

mCp1,δzq,Cp1,δz̄´1 qpfq `mCpw,δzq,Cpw,δz̄´1 qpfq

p1´ zqp1´ z´1q

dz

z

`
1

4iπ

ÿ

δPxM2,δ|Fˆ“δ|E1“1

R̃δpfq `

ż

O´

mCp1,δzq,Cp1,δz̄´1 qpfq `mCpw,δzq,Cpw,δz̄´1 qpfq

p1´ zqp1´ z´1q

dz

z

`

ż

O´
mPδz ,Pδz̄´1

pfq
dz

z
.

where

Rδpfq :“ 2iπ
´

mCp1,δq,Cp1,δqpfq ´
” d

dz
mCpw,δzq,Cp1,δz̄´1 qpfq

ı

z“1

¯

,

R̃δpfq “ 2iπ
´

3 mCp1,δq,Cp1,δqpfq ´
” d

dz
mCpw,δzq,Cp1,δz̄´1 qpfq

ı

z“1

`

” d

dz
pz ´ 1q

´

mPδz ,Cp1,δz̄´1 qpfq `mCpw,δzq,Pz̄´1
pfq

¯ı

z“1

¯

,

Pτ pSq “

ż

H
trpτphqSqdh, S P EndpVτ q,

PδzpSq “

ż ˚

H
E0pP, δz, Szqphqdh, S P iKPXKCb iKP̄XKČ

and

Cps, δzqpSq :“ p1` q´1q

ż

KHˆKH

tr
`“

C0
P,P ps, δzqSz

‰

pk1, k2q
˘

dk1dk2, s PWG.

As an application of this Theorem, we will invert orbital integrals on the anisotropic
σ-torus Mσ of G.

Let δ P xM2. As the operator C0
P,P p1, δq is the identity operator of iGPCδz b iGP̄ Čδz , one

has

Cp1, δqpv b w̌q “ p1` q´1q

ż

KHˆKH

vpk1qw̌pk2qdk1dk2, v b w̌ P iKPXKCb iKP̄XKČ.

Hence, we have Cp1, δq “ p1 ` q´1qξδ b ξδ̌ where ξδ and ξδ̌ are the H-invariant linear
forms on iKPXKC and iK

P̄XK
Č respectively given by the integration over KH . Therefore,

one deduces that
mCp1,δq,Cp1,δqpf1 b f2q “ mξδ,ξδpf1qmξδ̌,ξδ̌

pf2q.

Moreover, by ([AGS] Corollary 5.6.3), the distribution f ÞÑ mξδ̌,ξδ̌
pfq is smooth in a

neighborhood of any σ-regular point of G.
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8.2 Corollary. Let f P C8c pGq. Let xm P κM and γ P Mσ such that xmγ is σ-regular.
Then we have

c0
M,xm |∆σpxmγq|

1{4Mpfqpxmγq “
ÿ

δPyM2,δ|Fˆ“1

mξδ,ξδpfqmξδ̌,ξδ̌
pxmγq.

Proof :

Let pJnqn be a sequence of compact open sugroups whose intersection is equal to the
neutral element of G. Then the characteristic function gn of JnxmγJn approaches the
Dirac measure at xmγ. Therefore, taking f1 :“ f and f2 :“ gn in Theorem 8.1 1., we
obtain the result.

Remark. Let pτ, Vτ q be a supercuspidal representation of G and f be a matrix coefficient
of τ . Then we deduce from the corollary that the orbital integral of f on σ-regular points
of Mσ is equal to 0.

Moreover, by ([Fli], Proposition 11) we have dim V 1Hτ “ 1. Let ξ be a nonzero H-
invariant linear form on Vτ . Let SH be an anisotropic torus of H and xm P κS . Then,
applying our local relative trace formula to f1 :“ f and f2 approaching the Dirac measure
at a σ-regular point xmγ with γ P Sσ, we obtain

|∆σpxmγq|
1{4Mpfqpxmγq “ cmξ,ξpfqmξ,ξpxmγq,

where c is some nonzero constant.
J. Hakim obtained these results by other methods ([Ha] Proposition 8.1 and Lemma

8.1).
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