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Abstract

Following a scheme inspired by the recent results of B. Feigon, where she obtains
what she called a local relative trace formula for PG Lo and a local Kutznetsov trace
formula for U(2), we describe the spectral side of a local relative trace formula for
G := PGL(2,E) relative to the symmetric subgroup H := PGL(2,F) where E/F is
an unramified quadratic extension of local non archimedean fields of characteristic 0.
This spectral side is given in terms of regularized normalized periods and normalized
C-functions of Harish-Chandra. Using the geometric side of such local relative trace
formula obtained in a more general setting by P. Delorme, P. Harinck and S. Souaifi,
we deduce a local relative trace formula for G relative to H. We apply our result to
invert some orbital integrals.
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1 Introduction

Let E/F be an unramified quadratic extension of local non archimedean fields of character-
istic 0. In this paper, we prove a local relative trace formula for G := PGL(2, E) relative
to the symmetric subgroup H := PGL(2,F) following a scheme inspired by B. Feigon [F].

As in [Ar], the way to establish a local relative trace formula is to describe two asymp-
totic expansions of a truncated kernel associated to the regular representation of G x GG on
L?(@), the first one in terms of weighted orbital integrals (called the geometric expansion),
and the second one in terms of irreducible representations of G (called the spectral expan-
sion). The truncated kernel we consider is defined as follows. The regular representation
R of G x G on L?(G) is given by (R(g1,92)¢)(2) = (g5 'xg1). For f = f1 ® fo, where f;
and fs are two smooth compactly supported functions on G, the corresponding operator
R(f) is an integral operator on L?(G) with smooth kernel

Ky(o,y) = L F1(g9) folzg)dg = L f1(xgy) fa(g)da.

*The first author was supported by a grant of Agence Nationale de la Recherche with reference ANR-
13-BS01-0012 FERPLAY.



We define the truncated kernel K™(f) by

K"(f) := ijH Ky¢(z,y)u(x, n)u(y,n)dzdy,

where the truncated function u(-, n) is the characteristic function of a large compact subset
in H depending on a positive integer n as in [Ar] or [DHSo].

In [DHSo], we study such a truncated kernel in the more general setting where H is
the group of F-points of a reductive algebraic group H defined and split over F and G
is the group of F-points of the restriction of scalars G := Resg/;pH from E to F and we
obtain an asymptotic geometric expansion of this truncated kernel in terms of weighted
orbital integrals.

It is considerably more difficult to obtain a spectral asymptotic expansion of the trun-
cated kernel and the main part of this paper is devoted to give it for H = PGL(2).

First, we express the kernel Ky in terms of normalized Eisenstein integrals using the
Plancherel formula for G (cf. section 3) . Then the truncated kernel can be written as a
finite linear combination, depending on unitary irreducible representations of G, of terms
involving scalar product of truncated periods (cf. Corollary 4.2). The difficulty appears
in the terms depending on principal series of G.

Let M (resp., P) be the image in G of the group of diagonal (resp., upper triangu-
lar) matrices of GL(2,E) and let P be the parabolic subgroup opposite to P. As M is
isomorphic to E*, we identify characters on M and on E*. The group of unramified
characters of M is isomorphic to C* by a map z — x,. Let § be a unitary character of
E*, which is trivial on a fixed uniformizer of F*. For z € C*, we set J, := 6 ® x,. We
denote by (i%d,,i%Cs.) the normalized induced representation and by (i%d,,i5Cs.) its
contragredient. Then, the normalized truncated period is defined by

Pj(S) = fH E°(P,5.,8)(h)u(h,n)dh, S €iBCs ®i%Cs,,

where E°(P, 4., ) is the normalized Eisenstein integral associated to %4, (cf. (3.6)). The
contribution of i, in K™(f) is a finite linear combination of integrals

————dz

(S, 8 = JOPQZ(S)P(Q(S’) . 5,8 € i§Cs, ®i9C;,

z
where O is the torus of complex numbers of modulus equal to 1.
To establish the asymptotic expansion of this integral, we recall the notion of nor-

malized regularized period introduced by B. Feigon (cf. section 4). This period, denoted
by

%
Po.() = | (P8, 8) (b
H
is meromorphic in a neighborhood V of O with at most a simple pole at z = 1 and defines

a H x H invariant linear form on i%Cs, ®2’%C:52. Moreover, the difference P, (S) — P5! (S)
is a rational function in z on V with at most a simple pole at z = 1 which depends



on the normalized C-functions of Harish-Chandra. As normalized Eisenstein integrals
and normalized C-functions are holomorphic in a neighborhood of O, we can deduce an
asymptotic behavior of the integrals I (S,S") in terms of normalized regularized periods
and normalized C-functions (cf. Proposition 7.1).

Our first result (cf. Theorem 7.3) asserts that K™(f) is asymptotic to a polynomial
function in n of degree 1 whose coefficients are described in terms of generalized matrix
coefficients mg¢ ¢ associated to unitary irreducible representations (m,V;) of G where &
and &’ are linear forms on V;. When (7, V;) is a normalized induced representation, these
linear forms are defined from the regularized normalized periods, its residues, and the
normalized C-functions of Harish-Chandra.

We make precise the geometric asymptotic expansion of K"(f) obtained in [DHSo]
for H := PGL(2). Therefore, comparing the two asymptotic expansions of K"(f), we
deduce our relative local trace formula and a relation between orbital integrals on elliptic
regular points in H\G and some generalized matrix coefficients of induced representations
(Theorem 8.1).

As corollary of these results, we give an inversion formula for orbital integrals on
regular elliptic points of H\G and for orbital integrals of a matrix coefficient associated
to a cuspidal representation of G.

We thank the referee for his useful comments.

2 Notation

Let F be a non archimedean local field of characteristic 0 and odd residual characteristic
q. Let E be an unramified quadratic extension of F. Let Op (resp., Og) denote the ring
of integers in F (resp., in E). We fix a uniformizer w in the maximal ideal of Op. Thus w
is also a uniformizer of E. We denote by v(-) the valuation of F, extended to E. Let |- |p
(resp., | - |g) denote the normalized valuation on F (resp., on E). Thus for a € F*, one has
lalr = |alg.

Let Ng/rp be the norm map from E* to F*. We denote by E' the set of elements in
E* whose norm is equal to 1.

Let H := PGL(2) defined over F and let G := ResE/F(ﬂ xg E) be the restriction of
scalars of H from E to F. We set H := H(F) = PGL(2,F) and G := G(F) = PGL(2,E).
Let K := Q(OF) = PGL(2, OE)

We denote by C*(G) the space of smooth functions on G and by C°(G) the subspace
of compactly supported functions in C*(G). If V' is a vector space of valued functions on
G which is invariant by right (resp., left) translations, we will denote by p (resp., A) the
right (resp., left) regular representation of G in V.

If V is a vector space, V' will denote its dual. If V is real, V¢ will denote its complex-
ification.

Let p be the canonical projection of GL(2,E) onto G. We denote by M and N the
image by p of the subgroups of diagonal matrices and upper triangular unipotent ma-
trices of GL(2,E) respectively. We set P := MN and we denote by P the parabolic



subgroup opposite to P. Let dp be the modular function of P. We denote by 1 and w the
representatives in K of the Weyl group W of M in G.
For J =K, M or P, we set Jg :=J n H.

For a,b in E*, we denote by diagg(a,b) the image by p of the diagonal matrix
( 8 2 > € GL(2,E). The natural map (a,b) — diagg(a,b) induces an isomorphism
from E* x E* /diag(E*) ~ E* to M where diag(E™) is the diagonal of E* x E*.

Hence, each character x of E* defines a character of M given by

diagg(a,b) — x(ab™'), which we will denote by the same letter. (2.1)

We define the map hy; : M — R by

g hm(m) = lab~Yg for m = diagg(a,b). (2.2)

We define similarly hyz,, on My by q v (diaga (b)) — \gp=1|p for a,b € F*. Then for
m € My, one has dp(m) = 5pH(m)2 = q_2hMH(m),

We normalize the Haar measure dx on F' so that vol(Op) = 1. We define the measure

1 1
d*z on F* by d*z = ﬁwdm Thus, we have vol(O ) = 1. We let M and My have
-9 " |TF

the measure induced by d*z. We normalize the Haar measure on K so that vol(K) = 1.
Let dn be the Haar measure on N such that

| aptmpnan—1.

Let dg be the Haar measure on G such that

JG f(g)dg = JM JN JK f(mnk)dk dn dm.

We define dh on H similarly.
The Cartan decomposition of H is given by

H = KyM}; Ky where M}, := {diagg(a,b);a,be F*,|ab~|p < 1}, (2.3)

and for any integrable function f on H, we have the standard integration formula

f f(]:)dl’:f j DPH(m)f(klka)dmdkgdkl, (2.4)
H Ky JKg JMpyg

where (m)-1( N .
~fopy(m)T (1 4+ g it me M,
Dy (m) = { 0 otherwise.
For h € H, we denote by M(h) an element of M;, such that h € KyM(h)Kpy. The
element hjys, (M(h)) is independent of this choice. We thank E. Lapid who suggests us
the proof of the following Lemma.



2.1 Lemma. Let ) be a compact subset of H. There is Ng > 0 sastisfying the following

property:

or any h € Q, there exists X;, € R such that, for all m € M, satisfying har,, (m) = Ny,
H H

one has

hary, (M(mh)) = har, (m) + Xp.
Proof :

For a matrix « = (x; ;)i ; of GL(2,F), we set

F(x):= logmax< i, )
ij \|detz|p
The function F' is clearly invariant under the action of the center of GL(2,F), hence
it defines a function on H which we denote by the same letter.
Since | - | is ultrametric, for £ € Ky and h € H, we have F(kh) < F(h), hence,
F(k='kh) < F(kh). Using the same argument on the right, we deduce that F is right and
left invariant by Kp.

q—2n1 q—Qng ) _

If m = diagg(w™,w™?) with n; —ng > 0 then F(m) = log max (q_m_n2 e

(n1 —na)logq = har, (m)log g. Thus, we deduce that
F(h) = haty (M(R)) loga, e H.

Ifh = < (Z fl ) and m = diagg(w™,w"?), then

F(mh) = log max (|a|%q”2—m, b2g"2 ™ |e[2g™me, \d@qm—m) ~log |ad — belp.

Therefore, we can choose Ny > 0 such that, for any h € Q and m € M}, with hy(m) > Ny,
we have

F(mh) = log max (|c|12:q”1_”2, |d|12;q”1_”2) —log|ad — be|p
= (n1 — n2)log ¢ + logmax(|c|3, |d|%) — log |ad — belp.

Hence, we obtain the Lemma. O

3 Normalized Eisenstein integrals and Plancherel formula

We denote by ]/\4\2 the set of unitary characters of F* which are trivial on w.

Let X (M) be the complex torus of unramified characters of M and X (M), be the
compact subtorus of unitary unramified characters of M. For z € C*, we denote by x.
the unramified character of E* defined by x.(w) = z. By definition of hjy;, we have
Xo(m) = 2" (M2 Each element of X (M) is of the form . for some z € C* and X (M),
identifies with the group O of complex numbers of modulus equal to 1.

For 6 € J/\I\g and z € C*, we set 0, := 0 ® x,. We will denote by C;, the space of §,.

Let Q = MU be equal to P or to P. Let 6 € M\g and z € C*. We denote by igéz
the right representation of G in the space igC(sz of maps v from G to C, right invariant
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by a compact open subgroup of G and such that v(mug) = dg(m)Y25,(m)f(g) for all
me M,ueU and g € G.

One denotes by (Egdz,iﬁm(g@) the compact realization of (igéz,ig(@gz) obtained by
restriction of functions. If v € zg ~kC, one denotes by v, the element of ig(C(;Z whose
restriction to K is equal to v.

One defines a scalar product on zg ~ixC by

(v,0") = JKU(k:)v/(k)dk:, v,v' € igﬁKC (3.1)

If z € O (hence ¢, is unitary), the representation 58(52) is unitary. Therefore, by
“transport de structure”, ig(éz) is also unitary.

Let (6.,Cs.) be the contragredient representation of (8., Cs,). We can and will identify
(igéz,igc(gz) with the contragredient representation of (ig&z,igc(gz) and ig(ng ® ig(C(;z
with a subspace of Endg(ig(C(sz) ([W], 1.3).

Using the isomorphism between ig@;z and zg ~ i C, we can define the notion of rational
or polynomial map from X (M) to a space depending on igC(;Z as in ([W] IV.1 and VL.1).

We denote by A(Q,Q,d,) : ig(C(;z — ig(C(;Z the standard intertwining opera-
tor. By ([W], IV. 1. and Proposition IV.2.2), the map 2z € C* — A(Q,Q,5.) €
Homg(ig(c(;z,zg@(;z) is a rational function on C*. Moreover, there exists a rational com-

plex valued function 5(8,) depending only on M such that A(Q,Q,d,) o A(Q,Q,d,) is the
dilation of scale j(d,). We set

u(6) 1= (6. (3:2)
By ([W] Lemme V.2.1), the map z — p(J,) is rational on C* and regular on O.
The Eistenstein integral E(Q,J,) is the map from ig(C(;z ® ig@:;z to C*(G) defined by

E(Q,6.,v®1)(g9) = ((i§0:)(g)v,), veigCs_ ,veifCs,. (3.3)

Ifye ig(ng ® ig@vgz is identified with an endomorphism of ig(C(gz, we have

E(Q,6:,¢)(g) = tr(i&:(g)v). (3.4)

We introduce the operator Cp p(1,d,) := Id® A(P, P, §.) from z']G;(C(;Z ®ig(CV(;Z to z']G;(C(;Z ®
ig(C:;z. By ([W], Lemme V.2.2), one has

the operator ,u(5z)1/20p7p(1, 0,) is unitary and regular on O. (3.5)

We define the normalized Eisenstein integral E°(P,§,) : i%Cs. ® ig(C:;Z — C%(G) by

EO(P7 62) \IJ) = E(P) 5Z7OP‘P(1552:)71\11)‘ (36)



By ([S], §5.3.5), we have
EY(P,§,,¥) is regular on O. (3.7)

For f € C*(G), we denote by f the function defined by f(g) := f(9~"). Then, the oper-
ator %0, (f) belongs to igng ®i%Cs, < Endg(i%Cs,). We define the Fourier transform
F(P,6,, f) €i8Cs, ® i%Cs. of f by

F(P,6., f) = iB0.(f).

The G-invariant scalar product on i$Cs_ defined in (3.1) induces a G-invariant scalar
product on i]G;ng ® ig(C(;z given by

(v1 ® U1, v2 ® U2) = (v1,v2)(V7, V2).

Notice that by the inclusion i$Cs, ® i%Cs, = End(i%Cs, ), this scalar product coincides
with the Hilbert-Schmidt scalar product on the space of Hilbert-Schmidt operators on
i%Cs. defined by

(S,8") = tr(S9™), (3.8)

where tr(SS™) = > ., (S5 u;, u;) and this sum converges absolutely and does not de-
pend on the basis.
Then, the Fourier transform is the unique element of i%Cs, ® i%Cs, such that

(E(P?527\Il)vf)G = (\Ila‘F(P7527f)> (3'9)
Moreover, we have (W] Lemme VII.1.1)
E(P, 0., F(P, 0, )(9) = tr[(5:)(M9) f)]- (3.10)

We define the normalized Fourier transform FOP,6,, f) of f € CP(G) as the unique
element of i%Cs, ® ig(C(;Z such that

(U, FO(P, 6., f)) = (E°(P,6., %), fla, ¥ eifCs. ®iECs..
It follows easily from (3.9) and (3.5) that
FUP, 6., ) = 1(6:)Cpyp(1,6.)F (P, 6., f),
thus we deduce that
E°(P,6., FO(P,b., ) = u(6:)E(P, 6, F(P, 6., f)). (3.11)

Therefore, we can describe the spectral decomposition of the regular representation R :=
p® A of G x G on L?(G) of (W] Théoréme VIIL.1.1) in terms of normalized Eisenstein
integrals as follows. Let £2(G) be the set of classes of irreducible admissible representations
of G whose matrix coefficients are square-integrable. We will denote by d(7) the formal
degree of 7 € £2(G). Then we have

flo) = ¥ donGO@N + 5= X [ FReFPLMNET. (612

TEES (G) deMo



4 The truncated kernel

Let f e CP(G x G) be of the form f(y1,y2) = fi(y1)f2(y2) with f; € CP(G). Then the
operator R(f) (where R := p® \) is an integral operator with smooth kernel

Ky(o,y) = L F1(g9) folzg)dg = L £ g) fol9)dg

Notice that the kernel studied in [Ar], [F] or [DHSo] corresponds to the kernel of the
representation A x p which coincides with Ky,gf, (2,y) = Kpepn (™ y™h).

The aim of this part is to give a spectral expansion of the truncated kernel obtained
by integrating Ky against a truncated function on H x H as in [Ar].

4.1 Lemma. For (1,V;) € &(G), we fix an orthonormal basis By of the space of Hilbert-
Schmidt opemtors on V,. Foré e M\g and z € O, we fix an orthonormal basis prp((C) of
szK(C ® z C Using the isomorphism S — S, between ing(C ® ingC and ig(C(;z ®
12 (C5 we h(we

= > D dr )T(f1)ST(f2))tr(7(y)S)
T€€2(G) SeBr
ST IDYN UL NUESCruraramic

seMs, Se€Bp p(C)

where s, (f)S, := (i%6, ®ip<5z)(f)5z = (ipd.)(f1)S-(ip0.)(f2) and the sums over S are
all finite.

Proof :

For x € G, we set
v) = fG f1(uwvzx) fo(zu)du

so that
Ky(z,y) = [plyz~")h](e). (4.1)

If 7 is a representation of G, one has

m(p(yz)h) = f f1(ugy) fo () (g)dudg = f f1(un) folwu)m(u ury ™ duduy
GxG

GxG
= f f1 (ul)fg(u2)ﬂ(u51xu1y_1)du1du2 = W(fg)w(x)ﬂ(fl)w(y_l).
GxG

Therefore, using the Hilbert-Schmidt scalar product (3.8), one obtains for 7 € &(G),

tr T(

(yz™Hh) = tr 7(f)7(2)7(fO)T()" = (1(f)7(2)7(f1), 7(y))
= > ((f)7(@)(f1), S*) (7 (), 5%) = D) tr (r(@)7(f1)ST(f2))tr(7(y)S),

SeB- SeB-

(4.2)
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where the sum over S in B, is finite.

We consider now 7 := i$5, with & € M, and z € O. By (3.10) and (3.11), we have
BO(P, 6., FO(P, 6., [plya~ )] )(e) = u(6-)tx m(p(yz—)h). (43)

Let Bp,p(Cs,) be an orthonormal basis of i%Cs. ®iGCs.. Since f1, fo € CX(G), the
operators 7(f1) and 7(f2) are of finite rank. Therefore, we deduce as above that

tr 7 (p(ya=h) = te(x(fo)m(@)n(fmy) ™) = Y, tr(w(@)w(f)ST(f2))tr(x(y)S),

SeBp,p(Cs,)

where the sum over S in Bp p(Cs,) is finite.
In what follows, the sums over elements of an orthonormal basis will be always finite.

Hence, by (3.4), we deduce that

tra(pyeh) = >, E(P6,w(f1)S7(f2)) (@) E(P, 4., 5)(y)- (4.4)
SeBp,p(Cs,)

Recall that we fix an orthonormal basis Bp p(C) of the space & C® igﬁ KC which
is isomorphic to i%Cs, ® ig(C;;z by the map S — S,. By (3.5), the family S(5,) :=
1(8,)"2Cpp(1,8,)71S, for S e Bp p(C) is an orthonormal basis of i3Cs. ® iGCs. .

Moreover, using the inclusion ig(ng ® ig@;;z c Homg(igC(gz, iIGD(ng), and the adjonc-
tion property of the intertwining operator ([W], IV.1. (11)), we have Cpp(1,8,)71S =
S o A(P,P,5,)7", for all S € i¥Cs, ® i%Cs,. Since A(P,P,6.)" 0i%(6.) = i%(d) o
A(P,P,5,)"", writing (4.4) for the basis S(d.), we obtain

tr 7 (p(yz~")h)

= u(6:)"" D E(P6.,m(f1)Cpp(1,8:) " (S2)m(f2)) () E(P, 62, Crp(1,6.)1S:) (y)
SeBp p(C)

= M((SZ)il Z E(P, 527CP,P(1752)71[@%@)(]01)52(@%52)(]EZ)])(QU)E(R 5Z7CP,P(1752)_1SZ)(9)
SeBp p(C)

= u(6:)7" Z E°(P,5., (iIGD‘SZ)(fl)SZ(ig(SZ)(fQ))(x)EO(Pa 02, 52)(y)-
SeBp p(C)

We set IIs5, := igéz ® igévz. Then we have

I5, (f)S: = (1%5.)(f1)S:(1%5.) (fa).

By (4.3), we obtain

E°(P,6., FO(P,6., [plyz~ )] ))(e) = >, E%P,6.,T5.(f)S.) () EO(P, 6z, 5.) (y).
SeBp p(C)
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The Lemma follows from (3.12), (4.1), (4.2) and the above result. O

To integrate the kernel Ky on H x H, we introduce truncation as in [Ar]. Let n be a
positive integer. Let u(-,n) be the truncated function defined on H by

1 if h = kymko with ki, ke € K, m € H such that 0 < |hMH(m)| <n
u(h,n) = .
0 otherwise

We define the truncated kernel by

K"(f):= f Ky¢(z,y)u(z,n)u(y,n)dzdy. (4.6)

HxH

Since Kf(z7',y~!) coincides with the kernel studied in ([DHSo] 2.2) and u(z,n) =
u(z~!,n), this definition of the truncated kernel coincides with that of [DHSo).
We defined truncated periods by

P(S) = JH tr(7(y)S)u(y,n)dy, (7,Vr) € E(G), S € End fi i (V7), (4.7)

where End ¢, 71(V7) is the space of finite rank operators in End(V;), and
P§(S) := J E%(P,6.,5.)(y)u(y,n)dy, &€ My, z€0,S ¢ iE C® igﬁKC (4.8)
H

4.2 Corollary. With notation of Lemma /4.1, one has

Y, 2, dn)Pr(r®@7(f)S)Pr(S)

TGEQ (G) SEBT

4z7r Z Z JP(S (ILs.( )Pn(s)dj,

seM, SeBp p(

where the sums over S are all finite and H(;Z = 5%52 ®gg5vz.

Proof :
For 7 € &(G) and S € B;, one has 7(f1)S7(f2) = T®7(f)S. Therefore, since the functions
we integrate are compactly supported, the assertion follows from Lemma 4.1. O

5 Regularized normalized periods

To determine the asymptotic expansion of the truncated kernel, we recall the notion of
regularized period introduced in ([F]). It is defined by meromorphic continuation.
Let zp € C*. Then, for z € C* such that |zz| < 1, the integral

no+1

fw Xeo (M)X=(m)(1 = u(m,ng))dm = > (z20)" = (2z0)"0 "

1-— 220
H n>ngo
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is well defined and has a meromorphic continuation at z = 1. Morever this meromorphic
continuation is holomorphic on V — {1} with a simple pole at zy = 1.

Let § € M,. We consider now an holomorphic function z — v, € C°(QG) defined in a
neighborhood V of O in C* such that

there exist a positive integer ng and two holomorphic functions z € V ~— ¢’ €
C®(Kpg x Kg),i = 1,2 such that, for ki, ke € Ky, and m € ME satisfying
hary, (m) > ng, we have (5.1)

op(m) ™ P (kimks) = 6.(m)@L(ky, ko) + 6,1 (m) g2 (k1 ka).

Recall that M(h) for h € H is an element in M}, such that h € KyM(h)Ky. By the
integral formula (2.4), we deduce that for |z| < min(|zol, |20|~!), the integral

L oo (W)X=(M(R)) (1 = u(h, no))dh

=(1+q1)(f

oL (ki ko) dk dks) f §(m) Xz0z(m) (1 — u(m, ng))dm

KuyxKp M
+(1+ q_l) (f ¢§0(k‘1, k:g)dk:ldk:g) J d(m)x,-1,(m)(1 —u(m,ng))dm
KyxKpy M}, 0

is also well defined and has a meromorphic continuation at z = 1. Morever this meromor-
phic continuation is holomorphic on V — {1} with at most a simple pole at zyp = 1. As

u(+,ng) is compactly supported, we deduce that the integral

f 20 ()X (M(h))dh = j sozo<h>xz<M<h>>u<h,no>dh+f oo (W)X (M(R)) (1—u(h, no))dh.
H H H

has a meromorphic continuation at z = 1 which we denote by

J* 0z (h)dh.

H

*

The above discussion implies that J @z, (h)dh is holomorphic on V — {1} with at most a
H
simple pole at zg = 1.

The next result is established in ([F] Proposition 4.6), but we think that the proof is
not complete. We thank E. Lapid who suggests us the proof below.

5.1 Proposition. (H-invariance) For x € H, we have

J* Yz (hx)dh = j* 0z (h)dh.

H H
Proof :

We fix z € H. For z,2' in C*, we set F(ps,,2,2")(h) := ¢z (h)xz(M(h))x (M(hx1t)).
By (5.1), for k1, ks € Ky, and m € M}, with hag, (m) > ng, we have

5p(m)_1/2F(cpZO, 2, 2" ) (kymks) = qzbl:o (1, k2)0(m)(z02)"Mu (m) thary (M(kimkaz=1))

11



+¢2, (k1, k2)d(m )(zg ) () o harg (M(kimkaa™),
We can choose ng such that Lemma 2.1 is satisfied. Thus, for any ke € Kpg, there
exists Xj,,—1 € R such that, for any m € M;; satisfying 1 — u(m,ng) # 0, we have
hoary (M(kimkaxz™)) = har, (m) + Xp,0-1. We deduce that
5P(m)_1/2F(g0ZO, 2, 2" ) (kymk2) (1 — u(m,ng)) = d)io (k1, kg)é(m)(zozz’)hMH (m) /Xyt
+62 (K, k2)8(m) (zg 122" )ain 07 2 Fhaamt,
Therefore, by Hartogs’ Theorem and the same argument as above, the function

(202, 2') o fH 0 (W)X (M) X (M (B Y))

is well defined for |29z2| < 1, and has a meromorphic continuation on ¥ x (C*)2. We
denote by I(¢,, 2, 2") this meromorphic continuation. Moreover, for zy # 1, the function
(2,2") = I(pz,, 2, 2') is holomorphic in a neighborhood of (1,1).

For |zpz| < 1, we have I(p4,,2,1) = f 0z (h)xz(M(h))dh. Hence we deduce that
H

*
[(szoa 1, 1) = JH Pzo (h)dh

On the other hand, we have I(p,,,1,2') = J 0z (h) X (M(R))dh for |292'| < 1, there-
H

fore, one obtains

This finishes the proof of the proposition. O

We will apply this to normalized Eisenstein integrals. Let § € M\g and z € C*. Recall
that we have defined the operator Cpp(1,0,) by

Cpp(1,6,) == Id® A(P, P,5,) € Homg (i%Cs, ®i%Cs,,i%Cs, ®i%Cs.).
We set
Cp,p(w,d,) := A(P, P,wd.)\(w) @ Mw) € Homg (i3Cs, ® i%5Cs, , iFCrs, ®i%ECus, ).
where A(w) is the left translation by w which induces an isomorphism from i%Cs, to
ig(Cw(;z. For s € W¢, we define
C p(s,8.) = Cpp(s,8.) o Cpp(1,0.) " € Homg (i5Cs, ®i%C;s,,i3Cos, ®i%Css.). (5.2)

In particular, C% (1,6,) is the identity map of i4Cs, ® i% (ng By arguments analogous
to those of (W] Lemme V.3.1.), we obtain that

12



for s € W&, the rational operator CIOJ|P(5, 0,) is regular on O. (5.3)

Let S € if . C® igﬁKC By (3.7), the normalized Eisenstein integral E°(P,d,,S,) is
holomorphic in a neighborhood V of O. We may and will assume that )V is invariant by the
map z +— 2~ !. By ([He] Theorem 1.3.1) applied to A(k;')p(k2) E°(P, 6., S.), k1, ks € Kg,
there exists a positive integer ng such that, for ki, ks € Kg, and m € M;} satisfying

hary, (m) > ng, we have
Sp(m)~V2EY (P65, S.) (kimks)

= 5(m) (Xz(m)tr([C%P(l, 5.)S.](k1, k2)) + a1 (m)tr([CY p(w, 6.)S. ] (1, k2))>.

Therefore, the normalized Eisenstein integral satisfies (5.1). Hence, we can define the
normalized regularized period by

*
P5.(S) := f E°(P,6,,S.)(h)dh, Seif xC®i5 ,C. (5.4)
H

The above discussion implies that Ps_(S) is a meromorphic function on the neighborhood
V of O which is holomorphic on V — {1}.

For s€ W& and S e ing(C@ingC, we set

C(5,0.)(S) i= (1+q_1)L< (O (s 85 (hn Rk, (5.5)

By the same argument as in ([F] Proposition 4.7), we have the following relations
between the truncated period and the normalized regularized period.

If §jpx # 1 then, for n large enough, we have Pj_(S) = P§ (S5), (5.6)

If px = 1 then, for n large enough, we have

~(n+1) (5.7)
C(w,0,)(9).

n+1 P

S 0(1,8,)(S) +

1—2z2 E 1—2z1

F5.(S) = P () +

The following Lemma is analoguous to ([F] Lemma 4.8 ).

5.2 Lemma. Let z € C* andSezPﬁKC@)z C.

PnK

1. If jpx # 1 and ;g1 # 1 then, for n large enough, we have

P5.(S) = PL(S) = 0.
2. If ojpx # 1 and 61 = 1 then, for n large enough, we have

Ps (S) = P5.(95).
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8. If o)px =1 and §g1 # 1 then Ps_(S) = 0 whenever it is defined, and

C(l, 51)(5) = C(w, (51)(5)

4. If §px = 1 and ;1 = 1 then 6* = 1. We have C(1,61)(S) = —C(w, 61)(S) and
the regularized normalized period Ps_(S) is meromorphic with a unique pole at z = 1
which is simple.

Proof :
Case 2 follows from (5.6). By ([JLR] Proposition 22), if §jz1 # 1 and 2 # 1 then the

representation igéz admits no nontrivial H-invariant linear form. Thus in that case,
Proposition 5.1 implies Pj,(S) = 0 whenever it is defined. We deduce case 1 from (5.6)
and in case 3, it follows from (5.7) that

n+1 —(n+1)

z

P = (5

C(1,8.)(S) + =

—z 1—21

C(w, 52)(5)).

Since P§! (S) and C(s,0;)(95) for s € WY are holomorphic functions at z = 1, and

Res(Z—C(1,8.)(8). = 1) = ~C(Lh)(S).
(5.8)
»—(n+1)
Res(1 — Z_lC(w,éz)(S),z =1)=C(w,d)(9),

we deduce the result in the case 3.

In case 4, we obtain easily 62 = 1. By ([W] Corollaire IV.1.2.), the intertwining operator
A(P, P,0,) has a simple pole at z = 1. Thus the function u(d,) has a zero of order 2
at z = 1. In that case, by ([S], proof of Theorem 5.4.2.1), the operators Cp p(s,d,) for

s € W¢ have a simple pole at z = 1 and
Res(Cp|p(1,62),2 = 1) = —Res(Cp|p(w,d.),z = 1).

Therefore, if we set T, := (2 — 1)Cp|p(1,0.) and U, := (2 — 1)Cp|p(w,d.), then U, and
T, ! are holomorphic near z = 1 and T} = —U; as §° = 1. By definition (cf. (5.2)), we

z

have C’?,|P(w,5z) = U,T.!. Hence, one deduces that C}),‘P(w,(ﬁ) =—Id = —C?,|P(1,51),

where Id is the identity map of i%Cs, ® ig(CV(;l. We deduce the first assertion in case 4
from the definition of C(s,d,)(S) (cf.(5.5)).

Since Py’ (S) and C(s,d,)(S) for s € WY are holomorphic functions at z = 1, the last
assertion follows from (5.7), (5.8) and the above result. This finishes the proof of the
Lemma. O

6 Preliminary Lemma

In this part, we prove a preliminary lemma which will allow us to get the asymptotic
expansion of the truncated kernel in terms of regularized normalized periods.
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Let V be a neighborhood of O in C*. We assume that V is invariant by the map
z+> z7 ! Let f be a meromorphic function on V. We assume that f has at most a pole
at z=11in V.

For r < 1 (resp. r > 1) such that f is defined on the set of complex numbers of modulus

r, then the integral J f(2)dz does not depend of the choice of r. We set

|z|=r
f(z)dz = f f(z)dz, r<l1. (6.1)
oO- |z|=r
and
f(z)dz := f f(z)dz, r>1. (6.2)
o+ |z|=r
Notice that we have
(2)dz — J F(2)dz = 2iRes(f(2), 2 = 1). (6.3)
o+ -

The two following properties are easily consequences of the definitions:

li "f(z)dz=0 d i "f(z)dz =0 6.4

L f(z)dz=0, and  lim o’ f(z)d= (6.4)

We have assumed that V is invariant by the map z — z~*. Then, the function f(z) :=
f(z71) is also a meromorphic function on V with at most a pole at z = 1 and it satisfies

f(z) = f(z) for z€ O.

Let ¢(s, z) and (s, 2), for s € W be holomorphic functions on V such that ¢(s, 1) # 0
and /(s,1) # 0. Let p and p’ be two meromorphic functions on V with at most a pole at
z=1. We set

pro! ,—(n+1)
pn(z) :==p(z) — [1 — Zc(l,z) +1o Z_lc(w,z)]
and (6.5)
ontl , »—(n+1)

pL(2) =9 (2) — [1 —, ¢z + 1_72710'(10,2)].

6.1 Lemma. We assume that p, and p), are holomorphic on V and that either p and p’
are vanishing functions or ¢(1,1) = —c(w, 1) and ¢/(1,1) = —(w, 1) . Then, the integral

fo pn(Z)m%

is asymptotic as n approaches +o0 to the sum of

~, c(1,2)c(1, 2) c(w, z)d (w, z) \dz
J (pewe) + I—2(1—21)  (T=2(- z*1)>?

: (6.6)

. —&-22’77[6% (c(w, 2)(z—1)p'(2)+¢(1, z)(z—l)p(z))] , (6.7)

z=1

—2i7r[di; (c(w, 2)d(1, z))]
and

2im(2n + 1)c(w, 1)¢/(1,1) — 2im(n + 1) (c(w, 1) Res(p/, = = 1) + (1, 1) Res(p, z = 1)). (6.8)

2=
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Proof :

Since p, and 1;/71 are holomorphic functions on V, we have

Jop”(z)md; = f _pn(z)ﬁn(z)@

[0 e - T ) (1) - e - T o)
= L (e (e) + (10—1 Szi/(};—)l) * (1c - ;jzi/(iﬂ;ii) ) %

+J ) L2n+1) c(l,z)c/(w,z) dz f e+l (c(l, 2)p(2) + p(2)c (w, z))@

(1—2)2 =z o- I-2 z
cw,ch’ 1,2)dz —(n c(w, z Y (2 2)c 1,2)\ dz
P[ B IRl [ (G 02 b

By (6.4), the second and third terms of the right hand side converge to 0 as n ap-
proaches +o00.
By (6.3), one has

J Z—2(n+1) c(w,z)g’(l,z)%
_ (1—271)2 =2

——2imRes(z

J Z—2(n+1)wd'z —Z(N+1)M z=1).
o+ (1—2"1)2 2 2(1—271)2 7

ye(w, 2)d (1, 2) _ Z_(2n+1)c(w, 2)c (1, 2)
2(1—271)2 (z —1)2
are holomorphic functions on V, the function ¢ has a unique pole of order 2 at z = 1.

Thus, we obtain

Let ¢(z) := z~2(n+1 . Since ¢(w, z) and ¢(1, 2)

Res(¢,z = 1) = [%((2—1)2¢(z)>] — —(2n+1)c(w,1)(1, 1)+[di(c(w,z)8<1,z))]

z=1 z z=1

We deduce from (6.4) that

f ) 2_2(”+1)c(w’z)&(1’z>cf = 2im(2n+1)c(w, 1)¢(1, 1)—2i7r[diz (c(w,z)cN’(l,z))L:I—i-el(n),

(1—2z71)2
(6.9)
where lim ¢;(n) = 0.
n—+0o0
When p and p’ are vanishing functions, we obtain the result of the Lemma.
, / + / 17 .
Otherwise, by (6.5) and our assumptions, the function c(w, 2)p'(2) + p(2)¢(1,2) is a mero-

1—271
morphic function with a unique pole of order 2 at z = 1. Applying the same argument as
above, we obtain

f e (<l AP (=) + ()2 (1, )

1—2-1 z

= [ e (A PRI i (ot o) o, ) 0070,

1—21 z
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= 2im(n + 1)(c(w, 1)Res(p/, z = 1) + Res(p, z = 1) (1, 1))

—22'77[% (c(w, 2)(z — 1)p(2) + (2 — Dp(2)e (1, z))] + ea(n),

z=1

where lim ez(n) = 0.
n— -+

Therefore, we obtain the Lemma by (6.9) and the above result. O

7 Spectral side of a local relative trace formula

We recall the spectral expression of the truncated kernel obtained in Corollary 4.2:

Y, DL An)PHT @ F(f)S)PE(S)

T€E2(G) SeEB

1 —d
+— J P} (T, (f)S)PE(S) Z,
47 =
66M2 SGBP p(
where the sums over S are all finite and I, := i P(5 ® z Gs,.

By ([F] Lemma 4.10), if (7, V;) € £&2(G) and S € Endfmmk(V ), then

lim PI'(S) = JH tr(7(h)S)dh. (7.1)

n——+0o0

We consider now the second term of the above expression of K"(f). Let d € M, and
Se ifg ~kC® igﬁ C. We keep notation of the previous section. In particular, for z € C*,

we have C(s,0,)(S) = C(s,05-1)(S) and Pj,(S) = P.—1(S). By definition of 8., we have
d = 4.

7.1 Proposition. Let S e ing(C(@igﬁKC We set S, := 15, (f)S.
1. If ojpx # 1 and §jg1 # 1 then, for n € N large enough, one has

JP5 S’)P”(S)d; ~0.

2. If o)px # 1 and §;p1 = 1 then

—__d d
lim | PP (SL)PE(S) ZZ f Ps.(S))P5.(S) ZZ.
O

n—-+0o0

3. Assume that §px =1 and 0|1 # 1. Then
——d
f Py(SDPE(S)—
o : z
18 asymptotic when n approaches +o0 to

2im(2n + 1)C(1,6)(S))C(L, 0)(S)
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_|_

f (C(Léz)(Sé)é(lﬁz)(S) C(w,@)(sé)é(wﬁz)(s))dz
o- (1=2)(1 =271 (1—2)(1 =271 z

d s
—2md7[0(w, 5.)(S))C(1, 53)(5)]

¥4 z=1

4. Assume that 6 px =1 and dpn = 1. Then
| PrsomEE s
10 z
18 asymptotic when n approaches +o0 to
2im(2n + 3)C(1,6)(S7)C(1,6)(S)

C(1,68:)(S)C(1,6:)(S ) 4 (w752)(S;)é(w75z>(S))ClZ
(1—2)1—271) (1—-2)(1—-271) z

1
_d o
—2im | C(w,6.)(SL)C(1,8.)(S)

] (PP +

z=1

i (2 = DPL(SDO,8)(8) + Clw,8:)(S(= ~ DB (S)) |

z:1'

Proof. The two first assertions are immediate consequences of Lemma 5.2. To prove 3.
and 4., we set:

pn(2) == P (SL(f)), pu(2) = PL(S),  pl2) = Ps.(Si(f), 1/(2) := P5.(9)

and (s, z) := C(s,0,)(S.(f)), c(s,2):=C(s,5,)(S) for s € WE.

By (5.7) and Lemma 5.2, these functions satisfy (6.5) and we can apply Lemma 6.1. The
result in case 3 follows immediately since p(z) = p/(z) = 0 by Lemma 5.2.

In case 4, we have ¢(1,1) = —c(w, 1) and ¢/(1,1) = —c'(w, 1) by Lemma 5.2. Moreover, the
relations (6.5) give Res(p,z = 1) = —¢(1,1)+c¢(w, 1) and Res(p/, 2 = 1) = ¢/(1,1) -/ (w, 1).
Hence, we obtain

2im(2n + 1)c(w, 1)¢/(1,1) — 2im(n + 1) (e(w, 1)Res(p/, z = 1) + ¢/(1,1)Res(p, z = 1)).

— 2im(2n + 3)e(1,1)¢/(1, 1),

and the result in that case follows from Lemma 6.1. O

To describe the spectral side of our local relative trace formula, we introduce general-
ized matrix coeflicients.
Let (m,V) be a smooth unitary representation of G. We denote by (7/,V’) its dual
representation. Let § and & be two linear forms on V. For f € CP(G), the linear
form 7’(f)¢ belongs to the smooth dual V of V ([R] Théoreme II1.3.4 and 1.1.2). The
scalar product on V' induces an isomorphism j : v — (-,v) from the conjugate complex

18



vector space V of V and V, which intertwines the complex conjugate of 7 and 7 as 7 is
unitary. One has
5(0) = (0,57 @), veV,oeV.

Therefore, for v € V', we have

(7' (He) (v) = &(n(fHv) = (v,57H (7'(£)€))-

As m(f) is an operator of finite rank, we have for any orthonormal basis B of V'

i (HE) = D (@ (HO) v (7.2)

veB

where the sum over v is finite, and (\,v) = X - v is the action of C on V.

Let ¢ be the linear form on V defined by &(u) = ¢/(u). We define the generalized matrix
coefficient m¢ ¢ by

mee(f) =€ (7 (7' (1)¢)).
Then, by (7.2), we obtain
mee(f) =D & (f)v)E (v). (7.3)

veB

Hence, this sum is independent of the choice of the basis B.

Let z € C*. We set (IL,, V) := (i%6, ®i§552,ig(c§z ®iIG5C52). We denote by (II,, V)
its compact realization. We define meromorphic linear forms on V, using the isomorphism
V,~V.

7.2 Lemma. Let &, and &, be two linear forms on V which are meromorphic in z on a
neighborhood V of O. Let B be an orthonormal basis of V.. Then, for f € CX(G x G), the
sum

Z gz(ﬁz(f)s)fi—l (S)

SeB
is a finite sum over S which is independent of the choice of the basis B.
Proof :

For z € O, the representation II, is unitary. Hence (7.3) gives the Lemma in that case.
Since the linear forms &, and £, are meromorphic on V, we deduce the result of the Lemma
for any 2z in ¥V by meromorphic continuation. O

With notation of the Lemma, we define, for z € V, the generalized matrix coefficient
me, ¢, associated to (£, &%) by

me. e ()= &L(f)S)E-1(9).

SeB

Therefore, using Proposition 7.1, we can deduce the asymptotic behavior of the truncated
kernel in terms of generalized matrix coefficients.
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7.3 Theorem. As n approaches +o0, the truncated kernel K™(f) is asymptotic to

d
no > meag)c + >0 d(r)ymp, p,(f)+ 4217r > Jmpaz,sz(f);

5e]%,5lFX =1 T€€2(G) 551\72,5|FX #1,0 1 =1

1 mes.),cs, 1)) T Mewes.).cws. 1) (f) dz
T hin 2 Rs(f) + =21 =21 P

—~ O—
6€M2’5\FX :1’6\E1 #1

1 5 Ralf) + Me(1,8,).00,0,-0) () + Mow,e.),cws,—»)(f) dz
dir b o- 1—2)(1—2z1) 2
6€M2’5\F>< :5|E1:1
dz
+ JO_ MPps,.Ps__, (f)?-
where p
Rs(f) == 2i7f<m0(1,5),0(1,5)(f) - [@mc*(w,(sz),cu,arl)(f)]zzl>,
_ , d
Rs(f) = 2im (3 me(1,6),0(1,0) (f) — [@m(,*(w,sz),cu,afl)(f)]z:1
d
+ [@(Z -1) (mp(;z cs, 1)) +mows.) p., (f)>]z:1)’
P(S) = J tr(r(h)S)dh, S € Endpimo(Vy),
H
*
P5.(S) = f E°(P,6.,S.)(h)dh, Seip xC®is .C
H
and

C(s,0.)(8):= (1 +q¢7 1) L{ . tr([CP.p(s,0.)S:](k1, k2))dk1dks, s€WC

8 A local relative trace formula for PGL(2)

We make precise the geometric expansion of the truncated kernel obtained in ([DHSo]
Theorem 2.3) for H := PGL(2). This geometric expansion depends on orbital integrals
of f1 and fo, and on a weight function vy, where L = H or M. To recall the definition of
these objects, we need to introduce some notation.

If J is an algebraic group defined over F, we denote by J its group of points over F and
we identify J with the group of points of J over an algebraic closure of F. Let Jy be
an algebraic subgroup of H defined over F. We denote by J := Resg/p(Jy xr E) the
restriction of scalars of Jy from E to F. Then, the group J := J(F) is isomorphic to

I (E).
The nontrivial element of the Galois group of E/F induces an involution o of G defined
over F.

20



We denote by P the connected component of 1 in the set of z in G such that o(z) = x L.

A torus A of G is called a o-torus if A is a torus defined over F contained in P. Let Sy
be a maximal torus of H. We denote by S, the connected component of S nP. Then S,
is a maximal o-torus defined over F and the map Sy — S, is a bijective correspondence
between H-conjugacy classes of maximal tori of H and H-conjugacy classes of maximal
o-tori of G. (cf. [DHSo] 1.2).

Each maximal torus of H is either anisotropic or H-conjugate to M. We fix Ty a set
of representatives for the H-conjugacy classes of maximal anisotropic torus in H.

By ([DHSo] (1.28)), for each maximal torus Sy of H, we can fix a finite set of repre-
sentatives kg = {x,,} of the (H, S,)-double cosets in HS,, n G such that each element z,
may be written x,, = hma;f where h,, € H centralizes the split component Ag of Sy and
am € 9,.

The orbital integral of a compactly supported smooth function is defined on the set
G777 of o-regular points of G, that is the set of point x in G such that HxH is Zariski
closed and of maximal dimension. The set G°~"Y can be described in terms of maximal
o-tori as follows. If Sy is a maximal torus of H, we denote by s the Lie algebra of S and
we set 6 := 5(F). We set

Ag(g) = det(1 — Ad(gilg(g))g/sx geG.

By ([DHSo] (1.30)), if z € G"% then there exists a maximal torus Sy of H such that
A, (z) # 0. Morever, there are two elements x,, € kg and v € S, such that x = x,,7.

We define the orbital integral M(f) of a function f € C(G) on G779 as follows. Let
Sp be a maximal torus of H. For x,, € kg and v € S, with Ay (z,7y) # 0, we set

MF)en) = |alam) [ gy FOT D o
iag(Ag X .

where diag(Ag) is the diagonal of Ag x Ag.

We now give an explicit expression of the truncated function vy, (-, n) defined in ([DHSo]
(2.12)), where n is a positive integer and L is equal to H or M. Let n be a positive integer.
It follows immediately from the definition ([DHSo] (2.12)) that we have

vg(T1,Y1,T2,y2,n) =1, 21,91, 72,2 € H. (8.2)

We will describe vy using ([DHSo] (2.63)). Since H = Py K, each x € H can be written
x = mp, (x)np, (x)kp, () with mp,, () € Myg,np,(z) € Ng and kp, (x) € K. We take
similar notation if we consider P instead of P. For Q = P or P, we set

hqy (z) := by (mQH (z))-

With our definition of hyy, (2.2), the map My — R given in ([DHSo] (1.2)) coincides with
—(log @)hn,y, -
For x1,4y1,x2 and yo in H, we set

zp(w1, 41,2, y2) := inf (hp, (x1) — hpy (Y1), hp, (22) — hpy (42)),
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and
zp(x1,y1, w2, y2) := —inf (hp, (y1) — hpy (21), hp, (y2) — hpy (22)).

We omit x1,y1, 22 and o in this notation if there is no confusion. Hence the elements ZIO3
and Z% of ([DHSo] (2.55)) coincide with (log¢)zp and (logq)zp respectively. Therefore,
the relation ([DHSo] (2.63)) gives

) q)\(nJrzP) ) q)\(fn+z13) N
UM(ffl,ylafﬂZay%n):)l\li% (m@*'q )+ﬁ(1+q ))
L q/\(n+zP) qf)\(nfzf:,) L q)\(nJrzP) _ qf)\(nfszrl)

= lim + = lim
A0\ 1 — g 1—q* A0 1—q A

=2n+1+z2p— zp.
We set
V(@ y1, @2, 92) = 2p — 2p
= inf (hp, (x1)=hpy (1), hp, (22) —hpy (y2)) +inf (hp, (y1)—hpy (1), hp, (y2) —hpy (22)).
Therefore, ([DHSo] Theorem 2.3) gives:

As n approaches to +o0, the truncated kernel K™(f) is asymptotic to

Y A, || MO ) MO )

ITmERM

(8.3)

N Y LﬁM(fl)(wmv)/\/l(fz)(wmv)dw S B JM(, WM(F) (£mr)dd,

SpeTgu{Mp}TmEkrs ImERM

where the constants CS)Myl'm are defined in ([RR] Theorem 3.4) and WM(f) is the weighted
integral orbital given by

Ao (zm™) " PWM(f) (2m7)

J f A @ emyme) fa(yr  emyy2) vy (21, y1, 22, y2)d (1, 22)d(y1, y2).-
diag(Mg)\HxH Jdiag(Mg)\H x H

Therefore, comparing asymptotic expansions of K™(f) in Theorem 7.3 and (8.3), we
obtain:

8.1 Theorem. For fi and fy in CP(G) then we have:

1.

2 > S JM(, M) @mNM(f) (@my)dy = > me@s).cns(f).

TmERM 6€M275|F>< =1
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2. (Local relative trace formula). The expression

DO Y LHM(fl)(wmv)M(ﬁ)(xm'v)dw S A fMg WM(F) @)y

SpeTgU{Mpg} TmELS ImERM

equals

1

S dmee () Y jompgz,pégf)dz

dam z
7'652(0) 5€M2,5|F>< #1,5‘]51:1

1 Mme(1,6,).00.0,-1) (F) + Mows.),cws,—»)(f) dz
T hin Z Rs(f) + (1—-2)(1—-271 z

—~ O—
§eMa,8)x =1,0| 1 #1

1 . me,6.),0(1,6.-1) () + Mews.),cws._)(f) d
S R (1,6),C(15,-1) s ctws.(f) dz
o- (1—-2)(1 271

§eMs,85x =0 g1 =1
dz
o

+ Jo— ™MPs,.Ps__, (f)

where

. d
Rs(f) := 2im (mcu,a),cu,a)(f) - [@mcm,az),cu,ag_l)(f)]zzl>,

) d
Rs(f) = 2im (3 me1,s),0(1,6) (f) — [@mcm,(&z),ca,az,l)(f)]z

e 1) (s, o) + e ()] )

z

=1

P.(S) = JH tr(t(h)S)dh, Se End(V;),

*
Ps (S) = f E°(P,6.,S.)(h)dh, S e€ip xC®ik ,C
H
and

C(5,0.)(S) = (1—|—q_1)L( (O (s, 58k )b, s WO

As an application of this Theorem, we will invert orbital integrals on the anisotropic
o-torus M, Q\f G.
Let § € Ms. As the operator C’%P(l, §) is the identity operator of i%Cs. ® igng, one
has
C, O (w@m) = (1 +¢) J olk)ib(ks)dkrdks, v®w € i (CoE  C.
KH XKH

Hence, we have C(1,8) = (1 + ¢ ')& ® & where & and & are the H-invariant linear
forms on ifgm xC and igﬁ ; C respectively given by the integration over Kp. Therefore,
one deduces that

me(1,8),0(1,6) (1 @ f2) = mgs e;(fr)me; 5 (f2)-
Moreover, by ([AGS] Corollary 5.6.3), the distribution f +— mg ¢ (f) is smooth in a
neighborhood of any o-regular point of G.
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8.2 Corollary. Let f € CP(G). Let xy, € kpr and v € M, such that x,,7y is o-regular.
Then we have

C%/[,zm |AU (mm’)/) |1/4M (f) (xm’y) = Z Mes s (f)m§5,§5 (mm’y)
5e]T/E,5W =1

Proof :

Let (Jn)n be a sequence of compact open sugroups whose intersection is equal to the
neutral element of G. Then the characteristic function g, of J,x;,vJ, approaches the
Dirac measure at x,,y. Therefore, taking f; := f and fo := g, in Theorem 8.1 1., we
obtain the result. |

Remark. Let (7,V;) be a supercuspidal representation of G and f be a matrix coefficient
of 7. Then we deduce from the corollary that the orbital integral of f on o-regular points
of M, is equal to 0.

Moreover, by ([Fli], Proposition 11) we have dim V/H = 1. Let ¢ be a nonzero H-
invariant linear form on V.. Let Sy be an anisotropic torus of H and x,, € kg. Then,
applying our local relative trace formula to fi := f and f, approaching the Dirac measure
at a o-regular point x,,y with v € S,, we obtain

|Ag (@m)[VEM(f) (@) = eme e (f)me.e(@m),

where ¢ is some nonzero constant.
J. Hakim obtained these results by other methods ([Ha] Proposition 8.1 and Lemma
8.1).
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