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Abstract. In the case of semiclassical measures of the quantized cat-map, we give a simpli-
�ed proof of Anantharaman-Nonnenmacher's result for semiclassical measures on a riemannian
compact manifold of constant negative curvature [2]. We show that for any hyperbolic matrix
A in SL(2,Z) and any semiclassical measure µ associated to it, the Kolmogorov-Sinai entropy
is bounded from below, i.e.

hKS(µ,A) ≥
λ+

2
,

where λ+ is the positive Lyapunov exponent of A. Thanks to Faure-Nonnenmacher-de Bièvre
construction in [8], this bound is optimal.

1. Introduction

In the case of manifolds of negative curvature, the Quantum Unique Ergodicity Conjecture
states that all eigenfunctions of the Laplacian equidistribute on M in the high energy limit [13].
In [1], Anantharaman proved that for a compact riemannian manifold M of Anosov type, the
Kolmogorov-Sinai entropy of any semiclassical measure associated to a sequence of eigenfunctions
of ∆ is positive. Her result proves in particular that eigenfunctions of the Laplacian cannot
concentrate only on a closed geodesic in the large eigenvalue limit. After that, in the case where
M is a compact manifold of constant curvature K = −1 [2], Anantharaman and Nonnenmacher
proved the following explicit bound1 on the Kolmogorov-Sinai entropy of a semiclassical measure
µ:

(1) hKS(µ, g) ≥ d− 1
2

,

where g is the geodesic �ow on the unit cotangent bundle S∗M and d is the dimension of M .
In this second case, the proof was simpli�ed by the use of an entropic uncertainty principle due
to Maassen and U�nk [12]. This principle is a consequence of the Riesz-Thorin interpolation
theorem and it can be stated as follows [2], [12]:

Theorem 1.1 (Maassen-U�nk). Let H and H̃ be two Hilbert spaces. Let U be an unitary operator

on H̃. Suppose (πi)Di=1 is a family of operators from H̃ to H that satis�es the following property

of partition of identity:
D∑
i=1

π†iπi = IdH̃.

Then, for any unit vector ψ, we have

(2) −
D∑
i=1

‖πiψ‖2H log ‖πiψ‖2H −
D∑
i=1

‖πiUψ‖2H log ‖πiUψ‖2H ≥ −2 log sup
i,j
‖πiUπ†j‖L(H).

In [2], the method was to use this principle for eigenfunctions of the Laplacian and a well-chosen
partition of IdL2(M) so that the quantity in the left side of (2) can be interpreted as the usual
entropy from information theory [14]. One of the main di�culty (that already appeared in [1])

was then to give a sharp estimate on the quantity ‖πiUπ†j‖L2(M)→L2(M) for this choice.
One knows that a good way to study phenomena of quantum chaos like these ones is to look at
toy models. For instance, one of the simplest toy model is given by the quantized map associated
to an hyperbolic matrix A in SL(2,Z) that acts on the torus T2 := R2/Z2 [5]. This dynamical

1Thanks to [11], proving Quantum Unique Ergodicity would be then equivalent to get rid of 2 in the inequality.
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system provides a model of highly chaotic classical behavior (Anosov property for instance) and
the usual questions of quantum chaos naturally arise in this setting [5]. Our goal is to give a proof
of inequality (1) for this model:

Theorem 1.2. Let A be an hyperbolic matrix in SL(2,Z) that acts on the torus T2. Then, for

any semiclassical measure µ associated to it, we have

hKS(µ,A) ≥ λ+

2
,

where λ+ is the positive Lyapunov exponent of A.

Our interest in writing this note was not only to provide a proof in the case of quantized cat-
maps but also to give a proof that avoid the major di�culties mentioned above and that appeared
in [2]. In particular, we make a quite di�erent choice of partition of identity in the entropic un-
certainty principle (precisely (9)) so that the lower bound in (2) can be computed (more) easily.
We underline that Faure, Nonnenmacher and de Bièvre proved that in the setting of quantized cat
maps, the measure 1

2δ0 + 1
2Leb is a semiclassical measure. In particular, it says that the bound in

the previous theorem is sharp.
This result on the entropy of semiclassical measures of the torus can be compared to previous re-
sults on semiclassical measures obtained by Bonechi-de Bièvre [4] and by Faure-Nonnenmacher [9].
A stronger result than theorem 1.2 on the entropy of semiclassical measures is given by Brooks
in [7]. So, this note should not be seen as a new result but as a simpli�cation of Anantharaman-
Nonnenmacher's proof in the setting of quantized cat-maps and as a new point of view on the
methods developed in [2].

2. Quantum mechanics on the torus

In this section, we will brie�y recall some facts about quantization of linear symplectic toral
automophisms. We follow the approach and notations used by Bouzouina and de Bièvre in [5]
and we refer the reader to it for further details and references. In this note, ρ = (x, ξ) will
denote a point of the phase space (i.e. R2 or T2) and σ the usual symplectic form on R2, i.e.
σ((x, ξ), (x′, ξ′)) = x′ξ − xξ′. In the case of R, the state of a quantum particle is a tempered
distribution ψ ∈ S ′(R). Then, phase space translation operators acting on this space can be
de�ned as

U~(x, ξ) := e
ı
~σ((x,ξ),(Q,P )),

with (Qψ)(x) := xψ(x) and (Pψ)(x) := ~
ı
∂ψ
∂x (x). It can be outlined that it is related to the stan-

dard representation on S ′(R) of the Heisenberg group and that it is unitary on L2(R). Standard
facts about this can be found in the book by Folland [10]. In particular, it can be shown that

(3) U~(x, ξ)U~(x′, ξ′) = e
ı
2~σ((x,ξ),(x′,ξ′))U~(x+ x′, ξ + ξ′).

To de�ne the quantum states associated to the phase space, it is reasonable to require a kind of
invariance under the translation operators U~(q, p) for (q, p) ∈ Z2. It means that the quantum
states will have the same periodicity as the phase space. To do this, we let κ = (κ1, κ2) be an
element of [0, 2π[2 and we require that, for all (q, p) ∈ Z2, a quantum state ψ should check the
following condition:

U~(q, p)ψ = e−ıκ1q+ıκ2pψ.

It can be remarked that κ di�erent from 0 is allowed as, for α ∈ R, ψ and eıαψ represent the
same quantum state. The states in S ′(R) that satisfy the previous conditions are said to be the
quantum states on the 2-torus and their set is denoted HN (κ) where N satis�es 2π~N = 1. The
following lemma can be shown [5]:

Lemma 2.1. HN (κ) is not reduced to 0 i� N ∈ N∗. In this case, dimHN (κ) = N . Moreover,

for all (q, p) ∈ Z2, U~( qN ,
p
N )HN (κ) = HN (κ) and there is a unique Hilbert structure such that

U~( qN ,
p
N ) is unitary for each (q, p) ∈ Z2.
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The Hilbert structure on HN (κ) is not very explicit [5]. However, one can make it more clear
using the following map which de�nes a surjection of S(R) (Schwartz functions) onto HN (κ):

S(κ) :=
∑

(n,m)∈Z2

(−1)Nnmeı(κ1n−κ2m)U~(n,m).

This projector associates to each state in S(R) a state which is periodic in position and impulsion.
Using it, we can de�ne |φ, κ〉 := S(κ)|φ〉 and |φ′, κ〉 := S(κ)|φ′〉 for |φ〉 and |φ′〉 in S(R). Then,
the following link between scalar products on L2(R) and HN (κ) holds:

(4) 〈κ, φ|φ′, κ〉HN (κ) =
∑

n,m∈Z2

(−1)Nnmeı(κ1n−κ2m)〈φ|U~(n,m)|φ′〉L2(R).

We constructed a family of Hilbert spaces associated to the phase space T2 for every energy level
N . In the case of the torus, classical observables are C∞ functions on T2. One can construct a
quantization procedure that associates an operator on each HN (κ) for every f [5]. This can be
achieved by considering the anti-Wick quantization. To describe this quantization, we de�ne the
coherent state centered at point (0, 0) as

|0〉(x) :=
(

1
π~

) 1
4

e−
x2
2~ .

We de�ne the translated coherent state at point ρ ∈ R2 as |ρ〉 := U~(ρ)|0〉. This de�nes a state of

L2(R) which is centered in ρ on a ball of radius
√

~ of the phase space R2. Using these coherent
states, one can construct a positive quantization on the torus mimicking the anti-Wick quantization
on R2 [5]. To do this, we project the coherent states on the Hilbert space HN (κ):

|ρ, κ〉 := S(κ)|ρ〉.

This de�nes states centered in ρ on a ball of radius
√

~ of the phase space T2. The anti-Wick
quantization of an observable f in C∞(T2) is de�ned as follows2:

OpAWκ (f) :=
∫

T2
f(ρ)|ρ, κ〉〈ρ, κ| dρ

2π~
.

It satis�es that for a symbol f , OpAWκ (f)∗ = OpAWκ (f) and that the quantization is nonnegative.
It also satis�es a resolution of identity property [5]

OpAWκ (1) = IdHN (κ) =
∫

T2
|ρ, κ〉〈ρ, κ| dρ

2π~
.

For the cat-map model, the classical evolution on T2 is given by a discrete time map A (where
A is an hyperbolic matrix in SL(2,Z)). As in the case of the hamiltonian �ow on a manifold,
we would like to quantize the dynamic associated to A on the phase space, i.e. de�ne a quantum
progator associated to A. This can be done using the metaplectic representation of SL(2,R) [10].
In fact, it de�nes for each matrix A the unique (up to a phase) operator which satis�es

∀ρ ∈ R2, M(A)U~(ρ)M(A)−1 = U~(Aρ).

M(A) is called the quantum propagator associated to A. It is an unitary operator on L2(R) and
it can be shown [5]:

Lemma 2.2. For each hyperbolic A ∈ Sp(2,Z) and each N ∈ N∗, there exists at least one

κ ∈ [0, 2π[2 such that

M(A)HN (κ) = HN (κ).

Mκ(A) denotes then the restriction of M(A) to HN (κ). It is an unitary operator.

All these de�nitions allow to introduce the notion of semiclassical measures for the quantized
cat-maps [5]:

2One can show that it is related to the Weyl quantization ‖Opwκ (f)−OpAWκ (f)‖L(HN (κ)) = Of (N−1)
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De�nition 2.3. Let A be an hyperbolic matrix in SL(2,Z). We call semiclassical measure of
(T2, A) any accumulation point of a sequence of measures of the form

∀f ∈ C∞(T2,C), µN (f) := 〈ψN |OpAWκ (f)|ψN 〉HN (κ) =
∫

T2
f(ρ)N

∣∣∣〈ψN |ρ, κ〉HN (κ)

∣∣∣2 dρ,
where (ψN )N is a sequence of eigenvectors of Mκ(A) in HN (κ).

The set of semiclassical measure de�nes a nonempty set of probability measures on the torus
T2. They are A-invariant measures using the following Egorov property:

Theorem 2.4 (Egorov property). Let A be an hyperbolic matrix in SL(2,Z). For every a in

C∞(T2), one has

∀t ∈ R, Mκ(A)−tOpAWκ (f)Mκ(A)t = OpAWκ (f ◦At) +Of (e−2λ+tN),

where the constant involved in the remainder depends only on f and λ+ is the positive Lyapunov

exponent of A, i.e. λ+ := sup{log |γ| : γ ∈ Sp(A)}.

In other words, this proposition says that the quantum propagation is related to the classical
evolution for times under the Ehrenfest time:

mE(N) :=
[

1− ε
2λ+

logN
]
,

where ε is some small positive number. In particular, one has that the measures µN de�ned by 2.3
are almost A-invariant until the Ehrenfest time:

Corollary 2.5. Let (ψN )N be a sequence of eigenvectors of Mκ(A) in HN (κ) and µN the associ-

ated sequence of measures. Then, for every positive ε, one has

(5) ∀f ∈ C∞(T2,C), ∀|t| ≤ mE(N), µN (f ◦At) = µN (f) + of,ε(1),

where the constant in remainder depends only on f and ε.

3. Proof of theorem 1.2

We consider a semiclassical measure µ associated to a sequence of eigenvectors ψNk of Mκ(A)
in HNk(κ), i.e. µ(f) = limk→+∞〈ψNk |Op

AW
κ (f)|ψNk〉HNk (κ). To simplify notations , we will not

mention k in the following of this note. We start our proof by �xing a �nite measurable partition
Q of small diameter δ (< 1/100 for instance)3 whose boundary is not charged by µ [2]. We denote
η(x) := −x log x (with the convention 0 log 0 = 0). We recall that the Kolmogorov-Sinai entropy
of the measure µ for the partition Q can be de�ned as [14]

hKS(µ,A,Q) := lim
m→+∞

1
2m

∑
|α|=2m

η
(
µ
(
AmQα−m · · · ∩A−(m−1)Qαm−1

))
,

where αj varies in {1, · · · ,K} (K is the cardinal of Q).

3.1. Using the entropic uncertainty principle. Our quantization is de�ned for smooth ob-
servables on the torus. So we start by de�ning a smooth partition (Pi)Ki=1 of observables in
C∞(T2, [0, 1]) (of small support of diameter less than 2δ) that satis�es the following property of
partition of T2:

(6) ∀ρ ∈ T2,

K∑
i=1

P 2
i (ρ) = 1.

Mimicking the de�nition of Kolmogorov-Sinai entropy, we de�ne the quantum entropy of ψN with
respect to P:

(7) h2m(ψN ,P) := −
∑
|α|=2m

µN (P2
α) logµN (P2

α),

3The parameter δ is small and �xed for all the note: it has no vocation to tend to 0.



ENTROPY OF SEMICLASSICAL MEASURES FOR QUANTIZED CAT-MAPS 5

where Pα :=
∏m−1
j=−m Pαj ◦ Aj for α := (α−m, · · · , αm−1). One can verify that for �xed m, we

have

(8) h2m(µ,P) := −
∑
|α|=2m

µ(P2
α) logµ(P2

α) = lim
N→∞

h2m(ψN ,P).

So, for a �xed m, the quantum entropy we have just de�ned tends as N →∞ to the usual entropy
of µ at time 2m (with the notable di�erence that we consider smooth partitions). Our crucial
observation to apply the entropic uncertainty principle is that we have the following partition of
identity for HN (κ):

(9)
∑
|α|=2m

∫
T2

P2
α(ρ)|ρ, κ〉〈ρ, κ|Ndρ = IdHN (κ).

The entropic uncertainty principle can be applied forH = L2(T2) and H̃ = HN (κ). For ρ in T2 and

ψ in HN (κ), we de�ne παψ(ρ) :=
√
NPα(ρ)〈ρ, κ|ψ〉. This de�nes a linear application from HN (κ)

to L2(T2,C) and its adjoint is given by π†αf :=
∫

T2

√
NPα(ρ)f(ρ)|ρ, κ〉dρ, for f in L2(T2,C).

It de�nes a quantum partition of identity as it satis�es the relation
∑
|α|=2m π

†
απα = IdHN (κ).

Applying (2) for this partition and U = Mκ(A)n, we bound ‖παMκ(A)nπ†β‖L(L2(T2,C)) and �nally
�nd as a corollary of the Entropic Uncertainty Principle:

Corollary 3.1. Using the previous notations, one has

∀n ∈ N, ∀m ∈ N, h2m(ψN ,P) ≥ − log sup
ρ,ρ′∈T2

{N |〈κ, ρ′|Mκ(A)n|ρ, κ〉|} − log sup
|α|=2m

{Leb(P2
α)}.

We underline that the last corollary holds for any integers n and m and our strategy will consist
now into optimizing n and m to prove the main theorem.

3.2. Estimate of the quantum correlation function. In [8], using relation (4) for the scalar
product on HN (κ), Faure, Nonnenmacher and de Bièvre were able to give an estimate of the
quantum correlation function |〈κ, ρ′|Mκ(A)t|ρ, κ〉| (see also [3]). In fact, using (4), we know that∣∣〈κ, ρ′|Mκ(A)t|ρ, κ〉HN (κ)

∣∣ ≤ ∑
r∈Z2

∣∣∣∣〈0
∣∣∣M(A)−

t
2U~

(
r +A−

t
2 ρ′ +A

t
2 ρ
)
M(A)

t
2

∣∣∣ 0〉
L2(R)

∣∣∣∣ .
From [10] (chapter 4), the metaplectic representation of a matrix Dγ of the form

(
γ 0
0 γ−1

)
is given, for every f in S(R), by M (Dγ) f(x) = 1√

γ f(γ−1x). Combining these two observations,

they proved that as long as |t| ≤ 1−ε
λ+

logN , the only term that contributes to the previous sum is

the term (0, 0), precisely:

Lemma 3.2. There exists a constant C > 0 such that, for t ≤ 2mE(N), one has:

∀ρ ∈ T2, ∀ρ′ ∈ T2,
∣∣〈κ, ρ′|Mκ(A)t|ρ, κ〉HN (κ)

∣∣ ≤ Ce−λ+t
2 .

As mentioned above, the strategy to prove this lemma essentially consists in estimating the
scalar products of two Gaussian states (one is spread in the unstable direction and the other one
in the stable direction). Then, taking n = 2mE(N) in corollary 3.1, we �nd that there exists a
constant C such that the quantum entropy at time 2m is bounded from below as follows:

(10) ∀m ≥ 1, h2m(ψN ,P) ≥ − logN + λ+mE(N)− log sup
|α|=2m

{Leb(P2
α)}+ C

This estimate is our main simpli�cation compared with [2]. We underline that lemma 3.2 plays a
crucial role in our proof4 as it replaces all the discussion of section 3 in [2].

4The other term on the lower bound will be estimate thanks to the computation of the entropy of the Lebesgue
measure.
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3.3. Subadditivity of the quantum entropy. Now, we have to �nd a timem for which previous
inequality is optimal. It will depend on N and the last di�culty is that ifm(N) grows too fast with
N , h2m(N)(ψN ,P) has no particular reason to tend to hKS(µ,A) in the semiclassical limit. We
have to be careful and we �rst verify that classical arguments from ergodic theory (subadditivity of
the entropy) can be adapted for the quantum entropy as long as m ≤ logN/(2λ+). In particular,
we prove that the sequence 1

2m0
h2m0(ψN ,P) is 'almost' decreasing until the Ehrenfest time (see

paragraph 3.5):

Lemma 3.3. We �x an integer m0 ≤ mE(N). We have then

1
2mE(N)

h2mE(N)(ψN ,P) ≤ 1
2m0

h2m0(ψN ,P) +R(m0, N),

where R(m0, N) is a remainder that satis�es ∀m0 ∈ N, limN→∞R(m0, N) = 0.

Combining this lemma with the entropic estimation (10), we have, for every �xed m0 > 0,

(11)
1

2m0
h2m0(ψN ,P) + R̃(m0, N) ≥ −(1 + ε)

λ+

2
− 1

2mE(N)
log sup
|α|=2mE(N)

{Leb(P2
α)}.

where R̃(m0, N) is a remainder that satis�es ∀m0 ∈ N, limN→∞ R̃(m0, N) = 0.

3.4. The conclusion. To conclude, it remains to bound the quantity sup|α|=2mE(N){Leb(P2
α)}.

To do this, we underline that, for each α of length 2m,

∀x ∈ supp(P2
α), Leb(P2

α) ≤ Leb(supp(P2
α)) ≤ Leb(B(x, 2δ, 2m)),

where B(x, 2δ0, 2m) := {y ∈ T2 : ∀j ∈ [−m,m − 1], d(Ajx,Ajy) < 2δ0}, where d is the metric
induced on T2d by the Euclidean norm on R2d. By induction and using the invariance of the metric
d, we know that for every x in T2d and for every k in Z, A−kB(Akx, 2δ0) = x + A−kB(0, 2δ0).
Then, using the invariance by translation of the Lebesgue measure, we know that for every x
in T2d, Leb(B(x, 2δ0, 2m)) = Leb(B(0, 2δ0, 2m)). Combining [6] and theorem 8.15 from [14], we
know that Leb(B(0, 2δ0, 2m)) ≤ Cδ0e−2m(Λ+−ε). We use this last inequality and we make N tends
to in�nity in (11). It gives, for every positive m0,

1
2m0

h2m0(µ,P) ≥ λ+

2
(1− 2ε).

This last inequality holds for all (small enough) smoothing P of the partition Q. The lower bound
does not depend on the derivatives of P so we we can replace the smooth partition P by the true
partition Q in the de�nition of h2m0(µ,P). We let m0 tends to in�nity and then ε to 0 in order
to �nd

hKS(µ,A) ≥ hKS(µ,A,Q) ≥ λ+

2
.�

3.5. Proof of lemma 3.3. To complete the proof of the previous paragraph, it remains to prove
lemma 3.3. To prove this lemma, we use classical properties of the entropy of a partition [14]
(chapter 4) that we brie�y prove here (see theorem 4.3 and 4.9 in [14] for details). We �x three
integers p, n and m. To simplify our notations, we de�ne the p-translated entropy as follows:

hp2m(ψN ,P) :=
∑
|α|=2m

η
(
µN (P2

α ◦Ap)
)
.

Mimicking the usual proof for the subadditivity of the entropy of a partition [14] (chapter 4), we
write

hp2(n+m)(ψN ,P) = −
∑
|α|=2(n+m) µ

N
(∏n+m−1

j=−m−n P
2
αj ◦A

j+p
)

logµN
(∏m+n−1

j=−m+n P
2
αj ◦A

j+p
)

+
∑
|α|=2(n+m) η

(
µN
(∏m+n−1

j=−m−n P
2
αj
◦Aj+p

)
µN
(∏m+n−1

j=−m+n P
2
αj
◦Aj+p

))µN (∏m+n−1
j=−m+n P

2
αj ◦A

j+p
)
.
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Using the concavity of the function η and the property of partition of identity (6), we can write
the following inequality:

hp2(n+m)(ψN ,P) ≤
∑
|α|=2m

η

µN
 m+n−1∏
j=−m+n

P 2
αj ◦A

j+p

+
∑
|α|=2n

η

µN
−m+n−1∏
j=−m−n

P 2
αj ◦A

j+p

 .

Under a more compact form, it can be reformulated as follows:

Lemma 3.4. Using previous notations, one has

(12) ∀p ∈ N, ∀n ≥ 0, ∀m ≥ 0, hp2(n+m)(ψN ,P) ≤ hn+p
2m (ψN ,P) + h−m+p

2n (ψN ,P).

We �x now two integers m0 < m and write the Euclidean division m = qm0 + r where 0 ≤ r <
m0. We use inequality (12) to derive

h2m(ψN ,P) ≤ hr2qm0
(ψN ,P) + h−qm0

2r (ψN ,P).

We apply one more time inequality (12) to �nd

h2m(ψN ,P) ≤ hr+m0
2(q−1)m0

(ψN ,P) + h
−(q−1)m0+r
2m0

(ψN ,P) + h−qm0
2r (ψN ,P).

By induction, we �nally have the following corollary:

Corollary 3.5. Using previous notations, one has

(13) h2m(ψN ,P) ≤ h−qm0
2r (ψN ,P) +

q∑
j=1

h
−(q+1−2j)m0+r
2m0

(ψN ,P).

Proof of lemma 3.3. This last inequality is true for any integers (m,m0, r) satisfying m =
qm0 + r. We can now give the proof of lemma 3.3. To do this, we �x a positive integer m0 and
consider (q, r) in N×N satisfying qm0 + r = mE(N) where 0 ≤ r < m0. Recall that according to
Egorov property (proposition 2.5), one has, for every a in C∞(T2),

∀ |t| ≤ mE(N), µN
(
a ◦At

)
= µN (a) + oa(1), as N → +∞.

We underline that the remainder tends to 0 uniformly for t in the allowed interval. We now apply
this property to P2

α where |α| = 2m0. Using the continuity of η, we �nd that

∀ |t| ≤ mE(N), η
(
µN
(
P2
α ◦At

))
= η

(
µN (P2

α)
)

+ oα(1), as N → +∞.
As m0 is �xed, we can deduce from the de�nition of hp2m0

(ψN ,P) that

∀ |p| ≤ mE(N), hp2m0
(ψN ,P) = h2m0(ψN ,P) + om0(1), as N → +∞.

We can apply this result in inequality (13). In this case, one has that p = −(q+1−2j)m0+r belongs
to [−mE(N),mE(N)]. As |qm0| ≤ mE(N), we can also write h−qm0

2r (ψN ,P) = h2r(ψN ,P) + or(1)
as N tends to in�nity. Finally, we �nd that

h2mE(N)(ψN ,P) ≤ h2r(ψN ,P) + qh2m0(ψN ,P) + (q + 1)R′(m0, N),

where R′(m0, N) is a remainder that satis�es ∀m0 ∈ N, limN→∞R′(m0, N) = 0. The conclusion
of the lemma follows from this last statement.�
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