Transport et diffusion

G. ALLAIRE

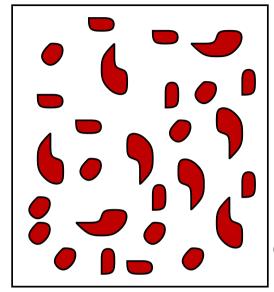
Cours no. 9 - le 10/III/2010

Homogénéisation

(encore un lien entre transport et diffusion)

- Equation de Boltzmann stationnaire
- Equation de Boltzmann instationnaire
- Equation de diffusion (sera fait en PC...)

Principes de l'homogénéisation



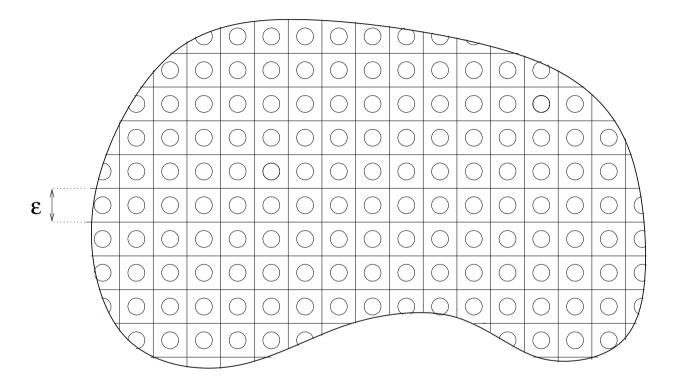
PRISE
DE
MOYENNE
(HOMOGENEISATION)

MILIEU EFFECTIF (MATERIAU COMPOSITE)

MILIEU HETEROGENE

- Méthode de moyennisation dans les équations aux dérivées partielles.
- Recherche de paramètres moyens (ou effectifs, homogénéisés, équivalents, macroscopiques) pour un milieu hétérogène.
- Recherche de modèles macroscopiques simplifiés.

Homogénéisation périodique



 Ω

Plusieurs approches ou méthodes existent: on décrit ici la plus simple, à savoir l'homogénéisation périodique.

Hypothèse: le milieu hétérogène considéré est périodique.

Homogénéisation périodique (suite)

- rightharpoonup Rapport de la période sur la taille caractéristique du milieu $= \epsilon$.
- Bien que, pour le problème considéré, il n'y ait qu'une seule valeur physique ϵ_0 du paramètre ϵ , on considère une suite de problèmes avec ϵ de plus en plus petit.
- rightharpoons On fait une analyse asymptotique quand ϵ tend vers 0.
- On approchera le "vrai problème" ($\epsilon = \epsilon_0$) par le "problème limite" obtenu quand $\epsilon \to 0$ (qu'on espère plus simple).

(1) Equation de Boltzmann linéaire stationnaire

Section efficace variable: $\sigma(y)$ fonction Y-périodique, avec $Y = (0,1)^N$.

 $\sigma(y + e_i) = \sigma(y)$ $\forall e_i$ i-ème vecteur de la base canonique.

On remplace y par $\frac{x}{\epsilon}$:

 $x \to \sigma\left(\frac{x}{\epsilon}\right)$ périodique de période ϵ dans toutes les directions.

Même définition pour $\tilde{\sigma}(x, \frac{x}{\epsilon})$. On considère

$$\begin{cases} \epsilon^{-1}v \cdot \nabla u_{\epsilon} + \epsilon^{-2}\sigma(\frac{x}{\epsilon}) \left(u_{\epsilon} - \int_{V} u_{\epsilon} dv\right) + \tilde{\sigma}(x, \frac{x}{\epsilon})u_{\epsilon} = S(x, \frac{x}{\epsilon}, v) & \text{dans } \Omega \times V \\ u_{\epsilon}(x, v) = 0 & \text{sur } \Gamma^{-} \end{cases}$$

Nous faisons l'hypothèse de sous-criticité

$$\tilde{\sigma}(x,y) \ge 0 \text{ pour } (x,y) \in \Omega \times Y.$$

Remarques

- La mise à l'échelle choisie (scaling) provient d'une hypothèse de libre parcours moyen des particules de l'ordre de grandeur de la période. Elle permet d'obtenir une limite de diffusion (cf. Chapitre 4).
- \Rightarrow Domaine convexe borné régulier Ω .
- \Rightarrow Bord rentrant $\Gamma^- = \{x \in \partial\Omega, v \in V, v \cdot n(x) < 0\}.$
- Pour simplifier on suppose que $V = \mathbf{S}_{N-1}$, la sphère unité, et que la mesure dv est telle que

$$\int_{V} dv = 1.$$

Un calcul direct de u_{ϵ} peut être très cher (car il faut un maillage de taille $h < \epsilon$), donc on cherche les valeurs moyennes de u_{ϵ} .

Anstaz (série formelle)

On suppose que la solution est sous la forme

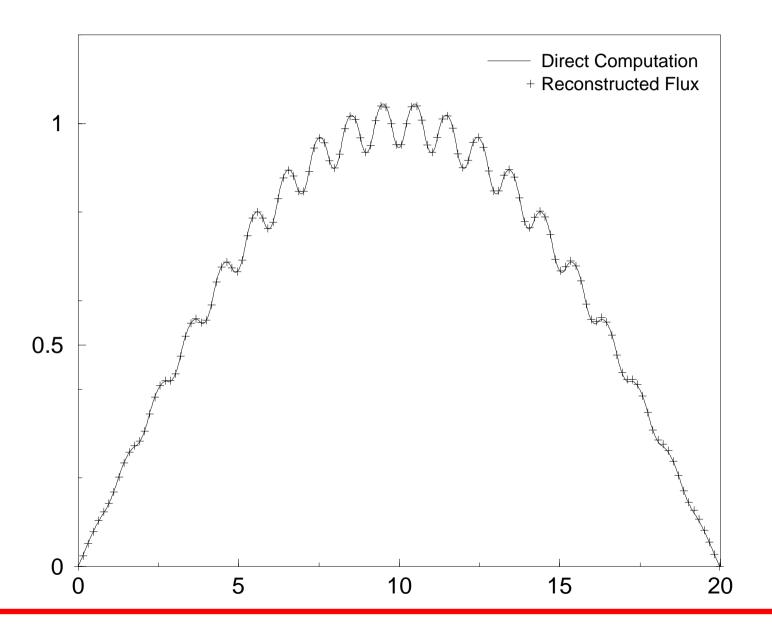
$$u_{\epsilon}(x,v) = \sum_{i=0}^{+\infty} \epsilon^{i} u_{i} \left(x, \frac{x}{\epsilon}, v \right),$$

où chaque terme $u_i(x, y, v)$ est une fonction de trois variables $x \in \Omega$, $y \in Y = (0, 1)^N$ et $v \in V$, qui est périodique en y de période Y.

C'est un postulat!

On peut justifier les 2 premiers termes seulement...

(Il manque des termes de couches limites.)



Règle de dérivation

On injecte cette série dans l'équation et on utilise la règle

$$\nabla \left(u_i \left(x, \frac{x}{\epsilon}, v \right) \right) = \left(\epsilon^{-1} \nabla_y u_i + \nabla_x u_i \right) \left(x, \frac{x}{\epsilon}, v \right).$$

On a donc

$$\nabla u_{\epsilon}(x,v) = \epsilon^{-1} \nabla_{y} u_{0}\left(x, \frac{x}{\epsilon}, v\right) + \sum_{i=0}^{+\infty} \epsilon^{i} \left(\nabla_{y} u_{i+1} + \nabla_{x} u_{i}\right) \left(x, \frac{x}{\epsilon}, v\right).$$

L'équation devient une série en ϵ

$$-\epsilon^{-2} \left[v \cdot \nabla_{y} u_{0} + \sigma(y) \left(u_{0} - \int_{V} u_{0} \, dv \right) \right] \left(x, \frac{x}{\epsilon}, v \right)$$

$$-\epsilon^{-1} \left[v \cdot \nabla_{y} u_{1} + v \cdot \nabla_{x} u_{0} + \sigma(y) \left(u_{1} - \int_{V} u_{1} \, dv \right) \right] \left(x, \frac{x}{\epsilon}, v \right)$$

$$-\sum_{i=0}^{+\infty} \epsilon^{i} \left[v \cdot \nabla_{y} u_{i+2} + v \cdot \nabla_{x} u_{i+1} + \sigma(y) \left(u_{i+2} - \int_{V} u_{i+2} \, dv \right) + \tilde{\sigma}(x, y) u_{i} \right] \left(x, \frac{x}{\epsilon}, v \right)$$

$$= S\left(x, \frac{x}{\epsilon}, v \right).$$

- Seuls les 3 premiers termes de la série seront importants.

On commence par un lemme technique.

Alternative de Fredholm

Lemme. Soit $g \in L^2(Y \times V)$. Le problème aux limites

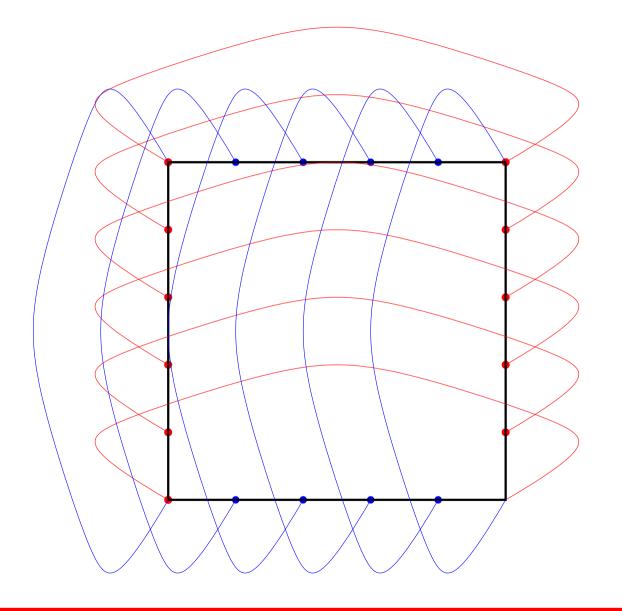
$$\begin{cases} v \cdot \nabla_y \phi + \sigma(y) \left(\phi - \int_V \phi \, dv \right) = g(y, v) & \text{dans } Y \times V \\ y \to \phi(y, v) \text{ Y-p\'eriodique} \end{cases}$$

admet une unique solution $\phi \in L^2(Y \times V)/\mathbb{R}$ (à une constante additive près) si et seulement si

$$\int_{Y} g(y, v) \, dy = 0.$$

Preuve. Clairement la solution ϕ est définie à l'addition d'une constante près puisque $\int_V dv = 1$.

Condition aux limites de périodicité dans Y



Preuve (suite)

On se contente de vérifier la condition nécessaire d'existence d'une solution. On intègre l'équation sur Y et le terme de transport disparait car

$$\int_{Y} v \cdot \nabla_{y} \phi \, dy = \int_{\partial Y} v \cdot n\phi \, ds = 0$$

à cause des conditions aux limites de périodicité. On obtient donc

$$\int_{Y} \sigma \left(\phi - \int_{V} \phi \, dv \right) dy = \int_{Y} g \, dy$$

que l'on intègre par rapport à v

$$0 = \int_{V} \int_{Y} \sigma(y) \left(\phi - \int_{V} \phi \, dv \right) dy \, dv = \int_{V} \int_{Y} g \, dy \, dv$$

car

$$\int_{V} \left(\phi - \int_{V} \phi \, dv \right) dv = 0.$$

L'équation en ϵ^{-2} est

$$v \cdot \nabla_y u_0 + \sigma(y) \left(u_0 - \int_V u_0 \, dv \right) = 0,$$

qui s'interprète comme une équation dans la cellule unité $Y \times V$ avec des conditions aux limites de périodicité (x n'est qu'un paramètre).

Par Fredholm la solution u_0 est une fonctions constante par rapport à (y, v) mais qui peut néanmoins dépendre de x

$$u_0(x, y, v) \equiv u(x).$$

L'équation en ϵ^{-1} est

$$v \cdot \nabla_y u_1 + \sigma(y) \left(u_1 - \int_V u_1 \, dv \right) = -v \cdot \nabla_x u(x),$$

qui est une équation pour l'inconnue u_1 dans la cellule de périodicité $Y \times V$. Comme $V = \mathbf{S}_{N-1}$ est symétrique, on a

$$\int_{V} v \cdot \nabla_{x} u(x) \, dv = 0.$$

Par Fredholm il existe donc une unique solution, à une constante additive près, ce qui nous permet de calculer $u_1(x, y, v)$ en fonction du gradient $\nabla_x u(x)$.

Problèmes de cellule

Pour chaque vecteur $(e_i)_{1 \le i \le N}$, on appelle **problème de cellule**

$$\begin{cases} v \cdot \nabla_y w_i + \sigma(y) \left(w_i - \int_V w_i \, dv \right) = -v \cdot e_i & \text{dans } Y \times V \\ \\ y \to w_i(y, v) & Y\text{-p\'eriodique.} \end{cases}$$

Par linéarité, on calcule facilement

$$u_1(x, y, v) = \sum_{i=1}^{N} \frac{\partial u}{\partial x_i}(x) w_i(y, v).$$

(En fait u_1 est défini à l'addition d'une fonction de x près, mais cela n'importera pas dans la suite.)

Finalement, l'équation en ϵ^0 est

$$v \cdot \nabla_y u_2 + \sigma(y) \left(u_2 - \int_V u_2 \, dv \right) = -v \cdot \nabla_x u_1 - \tilde{\sigma}(x, y) u + S,$$

qui est une équation pour l'inconnue u_2 dans la cellule de périodicité $Y \times V$.

Par Fredholm il existe une solution si la condition de compatibilité suivante est vérifiée

$$\int_{Y} \int_{V} \left[-v \cdot \nabla_{x} u_{1}(x, y, v) - \tilde{\sigma}(x, y) u(x) + S(x, y, v) \right] dy dv = 0.$$

On remplace u_1 par son expression en fonction de $\nabla_x u$ et on obtient le problème homogénéisé pour u.

Puisque

$$u_1(x, y, v) = \sum_{i=1}^{N} \frac{\partial u}{\partial x_i}(x) w_i(y, v),$$

on calcule

$$\int_{Y} \int_{V} -v \cdot \nabla_{x} u_{1}(x, y, v) \, dy \, dv =$$

$$-\sum_{i=1}^{N} \nabla_{x} \left(\frac{\partial u}{\partial x_{i}} \right) (x) \cdot \int_{Y} \int_{V} v \, w_{i}(y, v) \, dy \, dv =$$

$$-\sum_{i,j=1}^{N} D_{ij}^{*} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} (x)$$

Seule compte la partie symétrique de D^* .

Formule de Kubo

Le tenseur homogénéisé D^* est défini par (formule de Kubo)

$$D_{ij}^* = \operatorname{Sym}\left(-\int_V \int_V v_j w_i(y, v) \, dy \, dv\right).$$

(Remarquons que l'addition d'une constante à w_i ne change pas la valeur de D_{ij}^* car $\int_V v_j dv = 0$.)

On introduit les moyennes

$$\sigma^*(x) = \int_Y \tilde{\sigma}(x, y) dy$$
 et $S^*(x) = \int_Y \int_V S(x, y, v) dy dv$

On obtient l'équation homogénéisée

$$\begin{cases}
-\operatorname{div}_x \left(D^* \nabla_x u(x) \right) + \sigma^*(x) u(x) = S^*(x) & \operatorname{dans} \Omega, \\
u = 0 & \operatorname{sur} \partial \Omega,
\end{cases}$$

Lemme. Le tenseur D^* est défini positif.

Preuve. Montrons que $D^*\xi \cdot \xi > 0$ pour $\xi \neq 0 \in \mathbb{R}^N$. Soit

$$w_{\xi}(y,v) = \sum_{i=1}^{N} \xi_i w_i(y,v)$$
 solution de

$$\begin{cases} v \cdot \nabla_y w_{\xi} + \sigma(y) \left(w_{\xi} - \int_V w_{\xi} \, dv \right) = -v \cdot \xi & \text{dans } Y \times V \\ y \to w_{\xi}(y, v) & Y\text{-p\'eriodique.} \end{cases}$$

On multiplie l'équation par $w_{\mathcal{E}}$ et on l'intègre sur Y

$$\int_{Y} v \cdot \nabla_{y} w_{\xi} w_{\xi} dy = \frac{1}{2} \int_{\partial Y} v \cdot n w_{\xi}^{2} ds = 0$$

à cause des conditions aux limites de périodicité. On obtient donc

$$\int_{Y} \sigma \left(w_{\xi} - \int_{V} w_{\xi} \, dv \right) w_{\xi} \, dy = -\int_{Y} v \cdot \xi \, w_{\xi} \, dy$$

On intègre par rapport à v

$$\int_{V} \int_{Y} \sigma \left(w_{\xi} - \int_{V} w_{\xi} \, dv \right) w_{\xi} \, dy \, dv = - \int_{V} \int_{Y} v \cdot \xi \, w_{\xi} \, dy \, dv.$$

Comme la fonction $(w_{\xi} - \int_{V} w_{\xi} dv)$ est de moyenne nulle en v, on a

$$\int_{V} \int_{Y} \sigma \left(w_{\xi} - \int_{V} w_{\xi} \, dv \right) \left(\int_{V} w_{\xi} \, dv \right) dy \, dv = 0.$$

En combinant les deux on en déduit

$$0 \le \int_{V} \int_{Y} \sigma \left(w_{\xi} - \int_{V} w_{\xi} \, dv \right)^{2} dy \, dv = -\int_{V} \int_{Y} v \cdot \xi \, w_{\xi} \, dy \, dv = D^{*} \xi \cdot \xi$$

Montrons que cette inégalité est stricte. Si $D^*\xi \cdot \xi = 0$ pour un vecteur $\xi \neq 0$, alors on en déduit que $w_{\xi} \equiv \int_{V} w_{\xi} dv$ est indépendant de v et en reportant dans l'équation on obtient

$$v \cdot \nabla_y (w_{\xi}(y) + \xi \cdot y) = 0 \text{ dans } Y \times V.$$

Comme v est quelconque et w_{ξ} ne dépend pas de v, cela implique que $w_{\xi}(y) = -\xi \cdot y + C$ qui ne peut pas être périodique! Contradiction.

Origine de la condition aux limites

Développement asymptotique sur le bord, au premier ordre ϵ^0 :

$$u_0(x, y, v) \equiv u(x) = 0 \text{ sur } \Gamma^- = \{x \in \partial\Omega, v \in V, v \cdot n(x) < 0\}.$$

Comme u(x) ne dépend pas de v, on en déduit que cette fonction doit être nulle sur tout le bord $\partial\Omega$.

Remarquons qu'à l'ordre suivant ϵ^1 il n'est pas possible, en général, d'imposer que

$$u_1(x, y, v) \equiv \sum_{i=1}^{N} \frac{\partial u}{\partial x_i}(x) w_i(y, v) = 0 \text{ sur } \Gamma^-$$

La série formelle est donc fausse: il faut la corriger par des "couches limites".

Conclusion

$$u_{\epsilon}(x,v) \approx u(x) + \epsilon \sum_{i=1}^{N} \frac{\partial u}{\partial x_{i}}(x) w_{i}\left(v, \frac{x}{\epsilon}\right)$$

- On remplace le problème exact par le problème homogénéisé.
- \Rightarrow On doit calculer les solutions $w_i(y, v)$ des problèmes de cellule pour obtenir le tenseur homogénéisé constant D^* .
- $\triangleright D^*$ ne dépend ni de Ω , ni des sources S, ni des conditions aux limites.
- \Rightarrow Le tenseur D^* caractérise la microstructure.
- \Rightarrow On est passé du transport pour u_{ϵ} à de la diffusion pour u.
- ⇒ Ça rappelle l'approximation par la diffusion.

(2) Equation de Boltzmann linéaire instationnaire

On cherche la solution $u_{\epsilon}(t, x, v)$ de

$$\begin{cases} \frac{\partial u_{\epsilon}}{\partial t} + \epsilon^{-1}v \cdot \nabla u_{\epsilon} + \epsilon^{-2}\sigma(\frac{x}{\epsilon}, v)u_{\epsilon} = \epsilon^{-2} \int_{V} \tilde{\sigma}(\frac{x}{\epsilon}, v, v')u_{\epsilon}(v') dv' & \text{dans } \Omega \times V \times \mathbb{R}^{+} \\ u_{\epsilon}(t = 0, x, v) = u^{0}(x, \frac{x}{\epsilon}, v) & \text{dans } \Omega \times V \\ u_{\epsilon}(t, x, v) = 0 & \text{sur } \Gamma^{-} \times \mathbb{R}^{+} \end{cases}$$

C'est la mise à l'échelle (scaling) usuelle pour obtenir une limite de diffusion (cf. Chapitre 4).

Par contre, aucune hypothèse de sous-criticité ou d'équilibre asymptotique entre absorption et collisions.

On suppose que $V = \mathbf{S}_{N-1}$, la sphère unité, et que $\int_V dv = 1$.

Hypothèse sur les sections efficaces

 $\sigma(y,v)$ et $\tilde{\sigma}(y,v,v')$ sont positives, bornées et Y-périodiques par rapport à la variable y mais ne sont pas supposées isotropes, c'est-à-dire qu'elles peuvent dépendre de la vitesse v.

On suppose que ce sont des fonctions paires de la vitesse

$$\sigma(y, v) = \sigma(y, -v)$$
 et $\tilde{\sigma}(y, v, v') = \tilde{\sigma}(y, -v, -v')$.

Anstaz (série formelle)

Attention! On rajoute une exponentielle en temps car on ne sait pas si le problème est critique ou pas...

$$u_{\epsilon}(t, x, v) = e^{-\frac{\lambda^* t}{\epsilon^2}} \sum_{i=0}^{+\infty} \epsilon^i u_i \left(t, x, \frac{x}{\epsilon}, v \right),$$

où chaque terme $u_i(t, x, y, v)$ est une fonction de quatre variables t > 0, $x \in \Omega$, $y \in Y = (0, 1)^N$ et $v \in V$, qui est périodique en y de période Y.

Le comportement microscopique va être plus compliqué: on a besoin de plusieurs lemmes techniques.

Remarque. Encore un lien avec la criticité!

Criticité microscopique

Lemme. $\exists \lambda^* \in \mathbb{R}$ première valeur propre et $\psi(y,v) > 0$ tel que

$$\begin{cases} -\lambda^* \psi + v \cdot \nabla_y \psi + \sigma(y, v) \psi = \int_V \tilde{\sigma}(y, v, v') \psi(y, v') \, dv' & \text{dans } Y \times V \\ y \to \psi(y, v) & Y\text{-p\'eriodique.} \end{cases}$$

 λ^* est aussi valeur propre du problème adjoint avec $\psi^*(y,v) > 0$

$$\begin{cases} -\lambda^* \psi^* - v \cdot \nabla_y \psi^* + \sigma(y, v) \psi^* = \int_V \tilde{\sigma}^*(y, v, v') \psi^*(y, v') \, dv' & \text{dans } Y \times V \\ y \to \psi^*(y, v) & Y\text{-périodique,} \end{cases}$$

avec la section efficace adjointe $\tilde{\sigma}^*$ définie par $\tilde{\sigma}^*(y,v',v) = \tilde{\sigma}(y,v,v')$.

 λ^* est simple et de plus petit module, parmi toutes les valeurs propres, pour ces deux problèmes.

Remarques

- ⇔ C'est une conséquence de Perron-Frobenius (Krein-Rutman).
- Parmi toutes les fonctions propres possibles, seules ψ et ψ^* sont positives dans tout le domaine $Y \times V$.
- A cause de la condition de symétrie en vitesse sur les sections efficaces, on vérifie que la fonction propre adjointe ψ^* est donnée par

$$\psi^*(y,v) = \psi(y,-v).$$

Puisque les fonctions propres sont définies à un coefficient multiplicatif près, on décide de les normaliser de manière à ce que

$$\int_{Y} \int_{V} \psi(y, v) \psi^{*}(y, v) \, dy \, dv = 1.$$

Alternative de Fredholm

Lemme. Soit un terme source $S(y,v) \in L^2(Y \times V)$. Le problème

Lemme: Soft un terme source
$$S(y,v) \subset E'(T \times V)$$
. Le probleme
$$\begin{cases} -\lambda^* \phi + v \cdot \nabla_y \phi + \sigma(y,v) \phi = \int_V \tilde{\sigma}(y,v,v') \phi(y,v') \, dv' + S(y,v) \, \mathrm{dans} \, Y \times V \\ y \to \phi(y,v) \end{cases}$$
 Y-périodique

admet une solution $\phi(y, v) \in L^2(Y \times V)$, unique à l'addition près d'un multiple de la première fonction propre $\psi(y, v)$, si et seulement si

$$\int_{Y} \int_{V} S(y,v) \, \psi^*(y,v) \, dy \, dv = 0,$$

où $\psi^*(y,v)$ est la première fonction propre adjointe.

Preuve. Clairement la solution ϕ est définie à l'addition près de $C\psi$.

Preuve (suite)

Pour vérifier que la condition est nécessaire on multiplie l'équation par ψ^* et on intègre par parties. Le terme de transport devient

$$\int_{Y} \int_{V} v \cdot \nabla_{y} \phi \, \psi^{*} \, dy \, dv = -\int_{Y} \int_{V} v \cdot \nabla_{y} \psi^{*} \, \phi \, dy \, dv.$$

Par ailleurs, en intervertissant l'ordre d'intégration en v et v' et en utilisant la section adjointe $\tilde{\sigma}^*$, le terme de collision devient

$$\int_{Y} \int_{V} \int_{V} \tilde{\sigma}(y, v, v') \phi(y, v') dv' \psi^{*}(y, v) dv dy =$$

$$\int_{V} \int_{V} \int_{V} \tilde{\sigma}^{*}(y, v', v) \psi^{*}(y, v) dv \phi(y, v') dv' dy.$$

On fait ainsi apparaître l'équation pour ψ^* en facteur de ϕ qui s'annule, ce qui conduit à la condition nécessaire.

Cascade d'équations

L'équation en ϵ^{-2} est

$$-\lambda^* u_0 + v \cdot \nabla_y u_0 + \sigma u_0 = \int_V \tilde{\sigma} u_0 \, dv',$$

qui s'interprète comme un problème aux valeurs propres dans Y avec des conditions aux limites de périodicité (t et x sont des paramètres).

Donc, λ^* est une valeur propre et u_0 une fonction propre.

On veut une solution physique (une densité de particule), i.e. positive.

Donc λ^* est la première valeur propre associée à $\psi > 0$.

Comme λ^* est simple, $\exists u(t,x)$, indépendante de (y,v), tel que

$$u_0(t, x, y, v) \equiv u(t, x) \psi(y, v).$$

L'équation en ϵ^{-1} est

$$-\lambda^* u_1 + v \cdot \nabla_y u_1 + \sigma u_1 = \int_V \tilde{\sigma} u_1 \, dv' - v \cdot \nabla_x u_0,$$

qui est une équation pour l'inconnue u_1 dans Y (t et x sont des paramètres) avec la source

$$f(t, x, y, v) = -v \cdot \nabla_x u_0 = -v \cdot \nabla_x u(t, x) \psi(y, v)$$

En vertu de Fredholm, on peut résoudre en u_1 si

$$\int_{V} \int_{V} v \, \psi(y, v) \, \psi^*(y, v) \, dy \, dv = 0.$$

Or, $\psi^*(y,v) = \psi(y,-v)$, et comme $V = \mathbf{S}_{N-1}$ est symétrique, on a

$$\int_{Y} \int_{V} v \, \psi(y, v) \, \psi^{*}(y, v) \, dy \, dv = \int_{Y} \int_{V} v \, \psi(y, v) \, \psi(y, -v) \, dy \, dv
= - \int_{Y} \int_{V} v \, \psi(y, -v) \, \psi(y, v) \, dy \, dv = 0,$$

c'est-à-dire que la condition nécessaire et suffisante est bien satisfaite.

Pour chaque vecteur $(e_i)_{1 \leq i \leq N}$ de la base canonique de \mathbb{R}^N , on appelle **problème de cellule**

$$\begin{cases} -\lambda^* w_i + v \cdot \nabla_y w_i + \sigma w_i = \int_V \tilde{\sigma} w_i \, dv' - v \cdot e_i \psi & \text{dans } Y \times V \\ y \to w_i(y, v) & Y\text{-p\'eriodique.} \end{cases}$$

Par linéarité, on calcule u_1 en fonction du gradient $\nabla_x u(t,x)$

$$u_1(t, x, y, v) = \sum_{i=1}^{N} \frac{\partial u}{\partial x_i}(t, x)w_i(y, v) + C(t, x)\psi(y, v),$$

où C(t,x) est n'importe quelle fonction indépendante de (y,v).

Finalement, l'équation en ϵ^0 est

$$-\lambda^* u_2 + v \cdot \nabla_y u_2 + \sigma u_2 = \int_V \tilde{\sigma} u_2 \, dv' - v \cdot \nabla_x u_1 - \frac{\partial u_0}{\partial t},$$

qui est une équation pour l'inconnue u_2 dans Y (t et x paramètres).

Il existe une solution u_2 si la condition de compatibilité est vérifiée

$$\int_{Y} \int_{V} \left(-v \cdot \nabla_{x} u_{1} - \frac{\partial u_{0}}{\partial t} \right) \psi^{*} \, dy \, dv = 0.$$

Or, on a normalisé ψ^* par

$$\int_{Y} \int_{V} \psi(y, v) \psi^{*}(y, v) dy dv = 1,$$

donc la condition est

$$\frac{\partial u}{\partial t}(t,x) + \sum_{i,j=1}^{N} \frac{\partial^2 u}{\partial x_i \partial x_j}(t,x) \int_{Y} \int_{V} v_j \, w_i \, \psi^* \, dy \, dv = 0.$$

Définissons le tenseur homogénéisé D^*

$$D_{ij}^* = -\operatorname{Sym}\left(\int_Y \int_V v_j w_i(y, v) \psi^*(y, v) \, dy \, dv\right).$$

Remarquons que l'addition d'une fonction $C(t, x)\psi(y, v)$ à w_i ne change pas la valeur de D_{ij}^* .

L'équation homogénéisée est

$$\begin{cases} \frac{\partial u}{\partial t} - \operatorname{div}_x \left(D^* \nabla_x u \right) = 0 & \operatorname{dans} \Omega \times \mathbb{R}^+, \\ u(t = 0, x) = \tilde{u}^0(x) & \operatorname{dans} \Omega, \\ u = 0 & \operatorname{sur} \partial \Omega \times \mathbb{R}^+, \end{cases}$$

La condition aux limites de Dirichlet pour u s'obtient par développement asymptotique.

La donnée initiale est définie par

$$\tilde{u}^{0}(x) = \int_{V} \int_{V} \psi^{*}(y, v) \, u^{0}(x, y, v) \, dy \, dv$$

Conclusion

On a formellement établi

$$u_{\epsilon}(t, x, v) \approx e^{-\frac{\lambda^* t}{\epsilon^2}} \left(\psi\left(\frac{x}{\epsilon}, v\right) u(t, x) + \epsilon \sum_{i=1}^{N} \frac{\partial u}{\partial x_i}(t, x) w_i\left(\frac{x}{\epsilon}, v\right) \right),$$

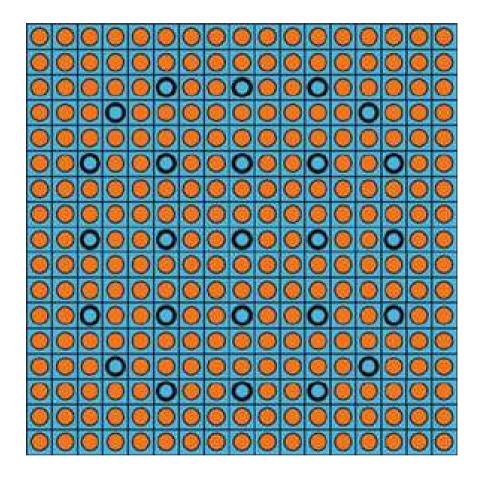
où (λ^*, ψ) est solution du problème spectral dans Y, w_i est solution du problème de cellule dans Y et u est solution de l'équation homogénéisée de diffusion.

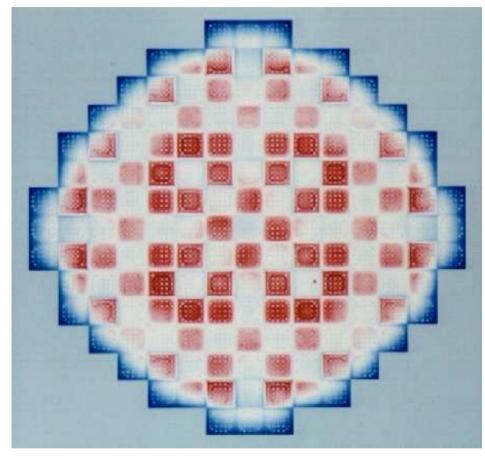
Procédure numérique de couplage transport/diffusion: calcul de la puissance neutronique dans un réacteur nucléaire.

Au niveau de chaque assemblage: transport (ψ) .

Dans le coeur du réacteur: diffusion (u).

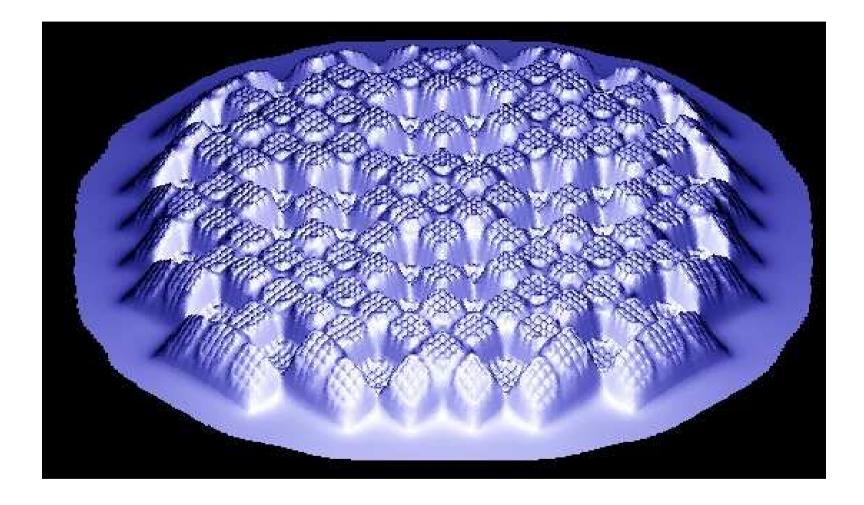
Reconstruction fine de la puissance par factorisation.

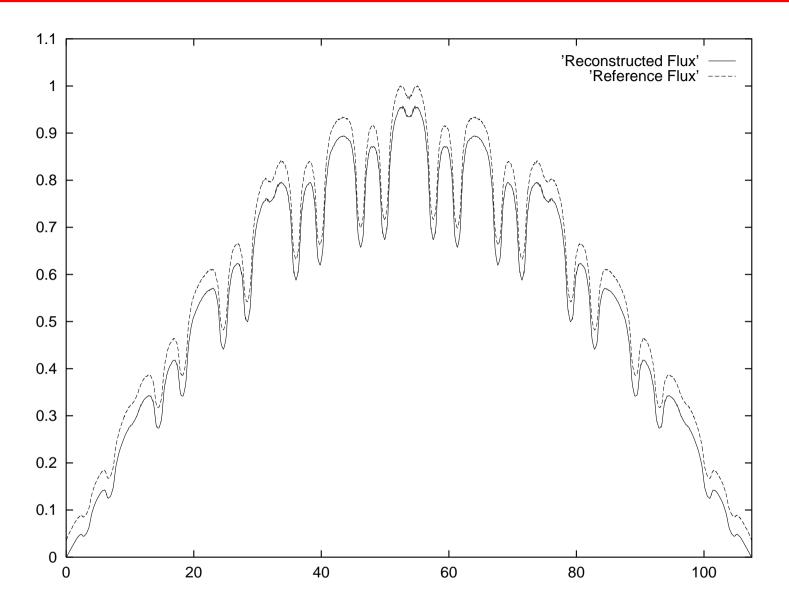




assemblage

coeur





Comparaison entre une solution exacte de l'équation du transport (trait pointillé) et une solution reconstruite par homogénéisation (trait plein).

Lemme. Le tenseur D^* est défini positif.

Preuve. Montrons que $D^*\xi \cdot \xi > 0$ pour $\xi \neq 0 \in \mathbb{R}^N$. Soit

$$\theta_{\xi}(y,v) = \sum_{i=1}^{N} \xi_i \frac{w_i(y,v)}{\psi(y,v)}$$
 solution de

$$\begin{cases} v \cdot \nabla_y \theta_{\xi} + \frac{\theta_{\xi}}{\psi} \int_V \tilde{\sigma} \psi \, dv' - \frac{1}{\psi} \int_V \tilde{\sigma} \theta_{\xi} \psi \, dv' = -v \cdot \xi \quad \text{dans } Y \times V \\ y \to \theta_{\xi}(y, v) & Y\text{-p\'eriodique.} \end{cases}$$

On multiplie l'équation par $\psi\psi^*\theta_{\xi}$ et on intègre par parties sur Y pour obtenir

$$-\frac{1}{2} \int_{V} \int_{Y} \theta_{\xi}^{2} v \cdot (\psi \nabla \psi^{*} + \psi^{*} \nabla \psi) dy dv$$

$$+ \int_{V} \int_{Y} \psi^{*} \theta_{\xi} \left(\theta_{\xi} \int_{V} \tilde{\sigma} \psi dv' - \int_{V} \tilde{\sigma} \theta_{\xi} \psi dv' \right) dy dv$$

$$= -\int_{V} \int_{Y} v \cdot \xi \psi \psi^{*} \theta_{\xi} dy dv = D^{*} \xi \cdot \xi$$

D'autre part, en soustrayant l'équation pour ψ^* multipliée par ψ à celle pour ψ multipliée par ψ^* on a

$$v \cdot (\psi \nabla \psi^* + \psi^* \nabla \psi) = \psi^* \int_V \tilde{\sigma} \psi \, dv' - \psi \int_V \tilde{\sigma}^* \psi^* \, dv'.$$

On en déduit que

$$\int_{V} \int_{Y} \theta_{\xi}^{2} v \cdot (\psi \nabla \psi^{*} + \psi^{*} \nabla \psi) dy dv = \int_{V} \int_{Y} \theta_{\xi}^{2} \left(\psi^{*} \int_{V} \tilde{\sigma} \psi dv' - \psi \int_{V} \tilde{\sigma}^{*} \psi^{*} dv' \right) dy dv.$$

Or, en permutant l'ordre des intégrations en v et v' on a

$$\int_V \int_Y \theta_\xi^2 \psi \int_V \tilde{\sigma}^* \psi^* \, dv' \, dy \, dv = \int_V \int_Y \psi^* \int_V \tilde{\sigma} \theta_\xi^2 \psi \, dv \, dy \, dv'.$$

Au total on obtient donc

$$0 \le \frac{1}{2} \int_{V} \int_{V} \int_{V} \tilde{\sigma} \psi(v') \psi^{*}(v) \left(\theta_{\xi}(v) - \theta_{\xi}(v')\right)^{2} dv \, dy \, dv' = D^{*} \xi \cdot \xi.$$

Montrons que l'inégalité est stricte.

Si $D^*\xi \cdot \xi = 0$ pour un vecteur $\xi \neq 0$, alors on en déduit que $\theta_{\xi}(v)$ est indépendant de v et en reportant dans son équation on obtient

$$v \cdot \nabla_y (\theta_{\xi}(y) + \xi \cdot y) = 0 \text{ dans } Y \times V.$$

Comme v est quelconque et θ_{ξ} ne dépend pas de v, cela implique que $\theta_{\xi}(y) = -\xi \cdot y + C$ où C est une constante quelconque. Le caractère affine de θ_{ξ} contredit la condition aux limites de périodicité. Par conséquent, on doit avoir $D^*\xi \cdot \xi > 0$.

(3) Equation de diffusion

Tenseur de diffusion variable: D(y) fonction Y-périodique, avec $Y = (0,1)^N$.

$$D(y + e_i) = D(y)$$
 $\forall e_i$ *i*-ème vecteur de la base canonique.

On remplace y par $\frac{x}{\epsilon}$:

 $x \to D\left(\frac{x}{\epsilon}\right)$ périodique de période ϵ dans toutes les directions.

Domaine borné Ω , source f(x), densité ou flux u_{ϵ} solution de

$$\begin{cases} -\operatorname{div}\left(D\left(\frac{x}{\epsilon}\right)\nabla u_{\epsilon}\right) = f & \operatorname{dans} \Omega\\ u_{\epsilon} = 0 & \operatorname{sur} \partial\Omega, \end{cases}$$

Un calcul direct de u_{ϵ} peut être très cher (car il faut un maillage de taille $h < \epsilon$), donc on cherche les valeurs moyennes de u_{ϵ} .

Développements asymptotiques à deux échelles

On suppose que (série formelle)

$$u_{\epsilon}(x) = \sum_{i=0}^{+\infty} \epsilon^{i} u_{i} \left(x, \frac{x}{\epsilon} \right),$$

avec $u_i(x, y)$ fonction de deux variables x et y, périodique en y de période $Y = (0, 1)^N$. On injecte cette série dans l'équation et on utilise la règle

$$\nabla \left(u_i \left(x, \frac{x}{\epsilon} \right) \right) = \left(\epsilon^{-1} \nabla_y u_i + \nabla_x u_i \right) \left(x, \frac{x}{\epsilon} \right).$$

On a donc

$$\nabla u_{\epsilon}(x) = \epsilon^{-1} \nabla_{y} u_{0}\left(x, \frac{x}{\epsilon}\right) + \sum_{i=0}^{+\infty} \epsilon^{i} \left(\nabla_{y} u_{i+1} + \nabla_{x} u_{i}\right) \left(x, \frac{x}{\epsilon}\right).$$

L'équation devient une série en ϵ

$$-\epsilon^{-2} \left[\operatorname{div}_{y} (D \nabla_{y} u_{0}) \right] \left(x, \frac{x}{\epsilon} \right)$$

$$-\epsilon^{-1} \left[\operatorname{div}_{y} \left(D (\nabla_{x} u_{0} + \nabla_{y} u_{1}) \right) + \operatorname{div}_{x} \left(D \nabla_{y} u_{0} \right) \right] \left(x, \frac{x}{\epsilon} \right)$$

$$-\sum_{i=0}^{+\infty} \epsilon^{i} \left[\operatorname{div}_{x} \left(D (\nabla_{x} u_{i} + \nabla_{y} u_{i+1}) \right) + \operatorname{div}_{y} \left(D (\nabla_{x} u_{i+1} + \nabla_{y} u_{i+2}) \right) \right] \left(x, \frac{x}{\epsilon} \right)$$

$$= f(x).$$

- rightharpoons On identifie chaque puissance de ϵ .
- Seuls les 3 premiers termes de la série seront importants.

On commence par un lemme technique.

Lemme (alternative de Fredholm). Soit $g \in L^2(Y)$. L'équation

$$\begin{cases} -\operatorname{div}_y\left(D(y)\nabla_y v(y)\right) = g(y) \text{ dans } Y \\ y \to v(y) \text{ Y-p\'eriodique} \end{cases}$$

admet une unique solution $v \in H^1_\#(Y)/\mathbb{R}$ si et seulement si

$$\int_{Y} g(y) \, dy = 0.$$

Preuve. Vérifions qu'il s'agit d'une condition nécessaire d'existence. On intégre l'équation sur Y

$$\int_{Y} \operatorname{div}_{y} \left(D(y) \nabla_{y} v(y) \right) dy = \int_{\partial Y} D(y) \nabla_{y} v(y) \cdot n \, ds = 0$$

à cause des conditions aux limites de périodicité: $D(y)\nabla_y v(y)$ est périodique et la normale n change de signe sur des cotés opposés de Y.

La condition suffisante s'obtient par application du Théorème de Lax-Milgram dans $H^1_\#(Y)/\mathbb{R}$.

Equation en ϵ^{-2} :

$$\begin{cases} -\operatorname{div}_y(D(y)\nabla_y u_0(x,y)) = 0 \text{ dans } Y \\ y \to u_0(x,y) \text{ Y-p\'eriodique} \end{cases}$$

Il s'agit d'une e.d.p. en y (x n'est qu'un paramètre).

Par unicité de la solution (à une constante près), on en déduit

$$u_0(x,y) \equiv u(x)$$

Equation en e^{-1} :

$$\begin{cases} -\operatorname{div}_y(D(y)\nabla_y u_1(x,y)) = \operatorname{div}_y(D(y)\nabla_x u(x)) & \operatorname{dans} Y \\ y \to u_1(x,y) & Y\text{-p\'eriodique} \end{cases}$$

La CNS d'existence est vérifiée. Donc u_1 dépend linéairement de $\nabla_x u(x)$.

On introduit les problèmes de cellule

$$\begin{cases} -\operatorname{div}_{y}\left(D(y)\left(e_{i}+\nabla_{y}w_{i}(y)\right)\right)=0 & \operatorname{dans} Y\\ y\to w_{i}(y) & Y\text{-p\'eriodique,} \end{cases}$$

avec $(e_i)_{1 \le i \le N}$ base canonique de \mathbb{R}^N . On a

$$u_1(x,y) = \sum_{i=1}^{N} \frac{\partial u}{\partial x_i}(x)w_i(y)$$

Equation en ϵ^0 :

$$\begin{cases}
-\operatorname{div}_y\left(D(y)\nabla_y u_2(x,y)\right) = \operatorname{div}_y\left(D(y)\nabla_x u_1\right) \\
+\operatorname{div}_x\left(D(y)(\nabla_y u_1 + \nabla_x u)\right) + f(x) \text{ dans } Y \\
y \to u_2(x,y) \text{ Y-p\'eriodique}
\end{cases}$$

CNS d'existence et d'unicité de la solution u_2 :

$$\int_{Y} \left(\operatorname{div}_{y} \left(D(y) \nabla_{x} u_{1} \right) + \operatorname{div}_{x} \left(D(y) (\nabla_{y} u_{1} + \nabla_{x} u) \right) + f(x) \right) dy = 0$$

On remplace u_1 par sa valeur en fonction de $\nabla_x u(x)$

$$\operatorname{div}_{x} \int_{Y} D(y) \left(\sum_{i=1}^{N} \frac{\partial u}{\partial x_{i}}(x) \nabla_{y} w_{i}(y) + \nabla_{x} u(x) \right) dy + f(x) = 0$$

et on trouve le problème homogénéisé

$$\begin{cases}
-\operatorname{div}_{x}(D^{*}\nabla_{x}u(x)) = f(x) \text{ dans } \Omega \\
u = 0 \text{ sur } \partial\Omega
\end{cases}$$

Tenseur homogénéisé:

$$D_{ji}^* = \int_Y D(y)(e_i + \nabla_y w_i) \cdot e_j \, dy,$$

ou bien, par intégration par parties

$$D_{ji}^* = \int_Y D(y) (e_i + \nabla_y w_i(y)) \cdot (e_j + \nabla_y w_j(y)) dy.$$

En effet, le problème de cellule donne

$$\int_{Y} D(y) \left(e_i + \nabla_y w_i(y) \right) \cdot \nabla_y w_j(y) \, dy = 0.$$

- \Rightarrow La formule pour D^* n'est pas totalement explicite car il faut résoudre les problèmes de cellule.
- $\triangleright D^*$ ne dépend ni de Ω , ni de f, ni des conditions aux limites.
- \Rightarrow Le tenseur D^* caractérise la microstructure.

On peut démontrer:

$$u_{\epsilon}(x) = u(x) + \epsilon u_1\left(x, \frac{x}{\epsilon}\right) + r_{\epsilon} \quad \text{avec} \quad ||r_{\epsilon}||_{H^1(\Omega)} \le C\epsilon^{1/2}$$

Le correcteur n'est pas négligeable pour les courants

$$\nabla u_{\epsilon}(x) = \nabla_x u(x) + (\nabla_y u_1) \left(x, \frac{x}{\epsilon} \right) + t_{\epsilon} \quad \text{avec} \quad ||t_{\epsilon}||_{L^2(\Omega)} \le C \epsilon^{1/2}$$

Par principe du maximum on peut obtenir

$$||u_{\epsilon}(x) - u(x)||_{L^{\infty}(\Omega)} \le C\epsilon.$$

Conclusion

$$u_{\epsilon}(x) \approx u(x) + \epsilon \sum_{i=1}^{N} \frac{\partial u}{\partial x_{i}}(x) w_{i}\left(\frac{x}{\epsilon}\right)$$

- On remplace le problème exact par le problème homogénéisé.
- \Rightarrow On doit calculer les solutions $w_i(y)$ des problèmes de cellule pour obtenir le tenseur homogénéisé constant D^* .
- ⇒ Le type d'équation n'a pas changé ici (mais ça n'est pas toujours le cas).