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LECTURE 6

THE NAVIER-STOKES LIMIT: CONVERGENCE PROOF




Conservation defects — 0O
(as in FG+DL, CPAM 2002, but simpler)

Proposition. D¢(v) — 0in L1

loc

(Ry xR3)ase— 0.

eSplit the conservation defect as De(v) = D! (v) 4+ D2(v) with

Dg (v) = €i3<<’UKﬁ6 ( G/eG/e* —V G€G€>2>

)
D?(v) = 633<<’0Kﬁe (\/@ —V G€G€> v G€G€>>

That De1 (v) — 0 comes from the entropy production estimate.



oSetting = = 5 < GLG", — \/GGGG) VGG, we further split D2(v)

€
Into

<<U1|U|2>K€’7€Ee>> + g<<’U’l)\/e(1 — ’/}\/e*”?é”?e*)ze»

€

2

€

DZ(v) = -

+ %<<(’U + vlﬁe’AYe*’AYé’AYE*E€>>

The first and third terms are easily mastered by the entropy production
bound and classical estimates on the tail of Gaussian distributions.

eSending the second term to O requires knowing that

1+ 1ol (VO

2
) is uniformly integrable on [0,7] x K x R3

for the measure dtdzM dv, for each T' > 0 and each compact K C R3.




Asymptotic behavior of the momentum flux

Proposition.  Denoting by N the L2 (M dv)-orthogonal projection on ker £

VGe —1

€

2
Fe(A) = 2<A (rl ) >—2<A‘€%Q(\/Ge, 4 G€)>+O(1)L}Oc(dtdm)

The proof is based upon splitting F<(A) as
VG —1\?\ 2 VGe—1
Fc(A) = <AK€% ( 66 + ; AKE% :

€

2
using the uniform integrability of (1 4 |v]|) (@) and the following
conseqguence thereof

VGe—1 I_lx/GE— 1

€ €

=0
L2 (dtdz;L2((14|v|)Mdv))

lim
e—0




eBy the entropy production estimate, modulo extraction of a subsequence

1 :
. ( GG, — \/GEGE) g in L2(dtdwdp)
and passing to the limit in the scaled, renormalized Boltzmann equation

leads to

//R3 g2 ql(v — vx) - w|Msdvsdw = %fu Vg = %A - V,u -+ oddinwv
X

oSince Y1 ~ 14~ one gets

FE(A) — A(<UK€96’76>) — V(V:qu + (un)T) + O(l)w—LllOC(dtd:c)

(remember that A(u) = u ® u — 5|u|2I), while

(VK geve) — win Llloc(R—I— x R3)




Strong compactness

eIn order to pass to the limit in the quadratic term A({v_ geve)), ONe needs
strong-L?2 compactness of (VK. GeYe)-

e\elocity averaging provides strong compactness in the x-variable:

(\/ea + Ge

2
—1
) Is locally uniformly integrable on R X R3 x R3
€

\/Ea + Ge —1
€
This implies that, for each T > 0 and each compact C C R3,

(B + v - V) is bounded in L} (R4 x R> x R3)

T
/O /C |<UK696’76>(757 r+y) — <UK€g€fye>(t’ a?)|2dxdt -0
as |y| — 0, uniformly in e > 0




eIt remains to get compactness in the time variable. Observe that

OtP(vE geve) = P(De(v) — divg Fe(A)) is bounded in Llloc(dt, W_S’l)

x,loc

(Recall that D.(v) — O while F¢(A) is bounded in LL (dtdz)).

loc

eTogether with the compactness in the z-variable that follows from velocity
averaging, this implies that

P{vg geve) — win LZQOC(dtd:B)

eRecall that (v geve) — win Le (dtdx); we DO NOT seek to prove that

(VK geve) — w Strongly in leoc(dtda:)




Filtering acoustic waves (PLL+NM, ARMA 2002)

einstead, we prove that

Pdivy <<UK€g€7€>®2) — Pdivg (u®2) in D’(Rj_ x R3)ase— 0

eObhserve that
€at<UK€96’YE> + Vx(l|v|%( geYe) — 01N Llloc(R—l—? Wloc (R3))
D (30| geve) + diva(3vg geve) — 0in L (R W loc 1(R3))

as e — 0.

eSetting Vyme = (I — P)(vg, geve), the system above becomes

B Vame + Va(:[0|% geve) — 0in LE(Ry; W M (R3), s>1
. —1,1
68t<%‘v|%(€g€’7€> + %Awﬂ-ﬁ — 01In Llloc(R+’ Wioe (RS))




eStraightforward computation shows that

divz ((Veme)?) = 5Va (IVame® = 2(3101%.967)%) + o(1) 11 (aany

eOn the other hand, because the limiting velocity field is divergence-free,
one has

Vame — 0in L2 (dtdz) as e — O
e Splitting
+2P divy (P(vg, geve) V Vare)

The last two terms vanish with e while the first converges to P divy(u®?)
since P{vg, geve) — w strongly in L2 (dtdx).



The key estimates (as in FG+LSR, Invent. Math. 2004)

Proposition. For each T > 0 and each compact K C R3, the family
2
(\/G_g_l) (1 + |v|) is uniformly integrable on [0,7] x K x R3 for the

measure dtdx M dwv.

2
ldea no. 1| We first prove that (@) (1 + |v]) is uniformly integrable
on [0,7] x K x R3 for the measure dtdxMduv in the v-variable .

eWe say that ¢e = ¢c(x,y) € L%7y(du(x)dy(y)) is uniformly integrable in
the y-variable for the measure du(x)dv(y) iff

/ sup " |pe(x,y)|dv(y)du(x) — 0 as a — O uniformly in e

v(A)<a



eStart from the formula

£<¢@;¢>:%Q<WI—1AEZ—1

€

)—%Q(¢Ga¢GQ

and use the following estimate (G.-Perthame-Sulem, ARMA 1988)

€ €

1Q(f, f)||L2((1—|—|v|)_1Mdv) < C||f||L2(MdrU)||f||L2((1-|-|v|)Mdv)
to arrive at

(1_0(6)«;—61 >Hm1_ﬂ¢a—el
¢ L2(Mdv) € ¢ L2((14|v]) Mdv)
2
Ge — 1
<0(e) ;2 +0(e) ‘r
b € L2(Mdv)

eThis estimates tells us that —VGg_l stays close to its associated infinitesi-
mal Maxwellian = regularity+decay in v.




ldea no. 2|Use a L1-variant of velocity averaging (FG+LSR, CRAS 2002).

Lemma. Let f,, = frn(x,v) be a bounded sequence in Llloc(dacdv) such

that v - V. fn IS also bounded in Llloc(da:dv). Assume that fy, is locally
uniformly integrable in v. Then

e f, IS locally uniformly integrable (in =, v), and

e for each test function ¢ € Lcg,,, RD), the sequence of averages

pa(@) = [ falz, )¢ (v)dv

is relatively compact in L} (dz).



elLet's prove that the sequence of averages pi’i IS locally uniformly inte-
grable (LSR, CPDEs 2002). WLOG, assume that f,, and ¢ > 0.

elLet x = x (¢, z,v) be the solution to

8tX _I_ (U VCBX — 07 X(O,CE,’U) — ]_A(.CC)

Clearly, x(t,z,v) = le(t)(v) (x takes the values 0 and 1 only). On the
other hand,

| Az ()| = /x(t,m,v)dv — /lA(x — tv)dv = L%'

eRemark: this is the basic dispersion estimate for the free transport equa-
tion.




eSet
gn(x,v) := fn(z,v)é(v), and
hn(z,v) i= v Vagn(z,v) = ¢(0)(v- Vi fn(z,v))

Both g, and h,, are bounded in L:}:/v’ while g, is uniformly integrable in v.

eObserve that (hint: integrate by parts the 2nd integral in the r.h.s.)

/A/gndvda:Z//x(t) gndvdm_/ot/ hn(x,v)x(s,xz,v)dzrdvds

The second integral on the r.h.s. is O(t)sup||hn||;1 < € by choosing

t > 0 small enough. For that value of ¢, |A;(t)| — 0 as |A| — O, hence
the first integral on the r.h.s. vanishes by uniform integrability in v.




